JPS61281460A - Alkaline zinc storage battery - Google Patents

Alkaline zinc storage battery

Info

Publication number
JPS61281460A
JPS61281460A JP60088306A JP8830685A JPS61281460A JP S61281460 A JPS61281460 A JP S61281460A JP 60088306 A JP60088306 A JP 60088306A JP 8830685 A JP8830685 A JP 8830685A JP S61281460 A JPS61281460 A JP S61281460A
Authority
JP
Japan
Prior art keywords
active material
zinc
material layer
current collector
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60088306A
Other languages
Japanese (ja)
Inventor
Kenji Inoue
健次 井上
Mitsuzo Nogami
光造 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60088306A priority Critical patent/JPS61281460A/en
Publication of JPS61281460A publication Critical patent/JPS61281460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent both the eduction of zinc and the coming-off of an active material, by making an active material layer of a plurality of layers, and causing the outer active material layer of a zinc electrode to contain calcium hydroxide. CONSTITUTION:A zinc electrode comprises a current collector 1 and active material layers provided on the surface of the current collector and each consisting of a plurality of layers such as an inner and an outer layers 2, 3. The outer layer 3 contains calcium hydroxide so that zinc dissolved in the form of zincic ion is prevented from being electrodeposited or educed somewhere else. The growth of zinc dendrite and the closure of pores as ion passages in the zinc electrode are thus prevented. Since the inner layer 2 contains no calcium hydroxide, the active material layers are kept from separating or coming off due to the contact of calcium hydroxide with the current collector 1.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はニッケルー亜鉛蓄電池、銀−亜鉛蓄電池などの
ように負極活物質として亜鉛を用いるアルカリ亜鉛蓄電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an alkaline zinc storage battery using zinc as a negative electrode active material, such as a nickel-zinc storage battery or a silver-zinc storage battery.

゛ (ロ)従来の技術 アルカリ亜鉛蓄電池は単位重量あl)の高いエネルギー
密度、高い作動電圧を有し、且つ経済性や安全性に優れ
ているなどの利点を有するが、サイクル寿命が短いとい
う欠点がある。この欠点が生じる原因には次の二つがあ
る。第一は充放電反応で亜鉛が溶解析出を繰シ返すため
、放電時に亜鉛酸イオンとなって溶出した亜鉛が亜鉛極
表面に析出し、との電析亜鉛が樹枝状に成長して正極と
短絡を引き起こした夛、また、亜鉛が亜鉛極表面近傍に
高密度に析出して、多孔性電極である亜鉛極のイオンの
経路となる孔を塞ぎ、電極内部に水散イオンの供給不足
が生じ反応性が低下することである。第二は亜鉛の自己
放電によシ集電体表面から水素ガスが発生して活物質が
集電体から剥離を起こすことである。
(b) Conventional alkaline zinc storage batteries have advantages such as high energy density per unit weight, high operating voltage, and excellent economy and safety, but they have short cycle life. There are drawbacks. There are two reasons why this defect occurs. The first is that zinc repeatedly undergoes dissolution and precipitation during the charge-discharge reaction, so the zinc eluted as zincate ions during discharge is deposited on the surface of the zinc electrode, and the deposited zinc grows in a dendritic manner and forms the positive electrode. In addition, zinc precipitates at a high density near the surface of the zinc electrode, which is a porous electrode, and blocks the pores that serve as ion paths, resulting in an insufficient supply of water-dispersed ions inside the electrode. This means that the reactivity decreases. The second problem is that hydrogen gas is generated from the surface of the current collector due to self-discharge of zinc, causing the active material to peel off from the current collector.

これらを改蕾するために亜鉛極に種々の金属酸化物を添
加剤として使用することが提案されている。その一つに
水酸化カルシウムがあシ、特公昭48−16104号公
報では亜鉛と水酸化カルシウムの混合粉末を集電体に塗
着してなる亜鉛極が、また、特公昭51−35937号
公報では亜鉛極表面にイオン透過性の分離膜を介して水
酸化カルシウム層を設は六亜鉛極が示されている。しか
しながら、前者に於いては集電体近傍に水酸化カルシウ
ムが存在するため活物質と集電体の密着性が悪くなシ活
物質と集電体との間の電子伝導性が低下し、また活物質
の脱落の原因にもなる。後者は亜鉛極表面からの亜鉛酸
イオンの溶出は抑えられるものの、亜鉛極表面近傍に亜
鉛が高密度に析出して電極内部への水酸イオンのfx給
不足が生じるという問題点があった。
In order to improve these properties, it has been proposed to use various metal oxides as additives in zinc electrodes. One of them is calcium hydroxide; Japanese Patent Publication No. 48-16104 discloses a zinc electrode made by coating a current collector with a mixed powder of zinc and calcium hydroxide; shows a hexagonal zinc electrode in which a calcium hydroxide layer is provided on the surface of the zinc electrode via an ion-permeable separation membrane. However, in the former case, since calcium hydroxide exists near the current collector, the adhesion between the active material and the current collector is poor, and the electronic conductivity between the active material and the current collector decreases. It may also cause the active material to fall off. Although the latter can suppress the elution of zincate ions from the surface of the zinc electrode, there is a problem in that zinc is deposited at a high density near the surface of the zinc electrode, resulting in insufficient fx supply of hydroxide ions into the electrode.

e→ 発明が解決しようとする問題点 本発明は亜鉛極に於ける亜鉛の樹枝状結晶の生長及び電
極表面近傍の高密度析出を抑制すると共に活物質の脱落
を防止することにより、サイクル寿命が向上したアルカ
リ亜鉛蓄電池を得ようとす本発明のアルカリ亜鉛蓄電池
は、集電体の表面に亜鉛活物質層を形設してなる亜鉛極
を備えたものであり、前記活物質層を複数の層から構成
し、集電体の表面に接する内部の活物質層を除き、少な
くとも亜鉛極表面に位置する表面部の活物質層に水酸化
カルシウムを含有させ虎ものである。
e→ Problems to be Solved by the Invention The present invention reduces the cycle life by suppressing the growth of zinc dendrites in the zinc electrode and high-density precipitation near the electrode surface, as well as preventing the active material from falling off. The alkaline zinc storage battery of the present invention, which attempts to obtain an improved alkaline zinc storage battery, is equipped with a zinc electrode formed by forming a zinc active material layer on the surface of a current collector. It is composed of layers, and except for the inner active material layer in contact with the surface of the current collector, at least the active material layer on the surface portion located on the surface of the zinc electrode contains calcium hydroxide.

(ホ)作 用 亜鉛の充電反応は溶解、析出の機構で進行することが知
られている。水酸化カルシウムは該反応で生じる亜鉛酸
イオンを亜鉛酸カルシウム((3azB(OIII)4
)として固定して電解液中に溶解逸散するのを防止する
働きを有するものでう夛。
(e) Function It is known that the charging reaction of zinc proceeds by the mechanism of dissolution and precipitation. Calcium hydroxide converts the zincate ion produced in this reaction into calcium zincate ((3azB(OIII)4
) to prevent it from dissolving and escaping into the electrolyte.

また、反面水酸化カルシウムは水及び亜鉛と反応して固
化するため活物質層と集電体とのIa着性を低下させる
On the other hand, since calcium hydroxide reacts with water and zinc and solidifies, it reduces the Ia adhesion between the active material layer and the current collector.

前記手段によシ、電解液が豊富に存在し亜鉛の溶解、析
出反応が生じ易い亜鉛極表面近傍に位置する前記表面部
の活物質層は水酸化カルシウムを含有しておシ、亜鉛酸
イオンとなって溶解しテ逸散した亜鉛が他の場所に電着
あるいは析出することを防止でき、これによって亜鉛の
樹枝状結晶の成長及び亜鉛極のイオンの経路となる孔の
閉塞を効果的に抑制することができる。マ六、集電体と
接する前記内部の活物質層は水酸化カルシウムを含有し
ていないので、水酸化カルシウムを含有シている場合に
生じる活物質層の集電体と接する部分が固化して、集電
体から活物質層が剥離、脱落することを防止できる。更
に水素過電圧を高め集電体からの水素ガス発生を抑え、
集電体と活物質層の密着性を充分保つインジウムやスズ
を前記内部の活物質層に含有させると集電体からの活物
質層の剥離または脱落をよル効果的に防止することがで
きる。
According to the above method, the active material layer in the surface area, which is located near the surface of the zinc electrode where an electrolytic solution is abundant and dissolution and precipitation reactions of zinc easily occur, contains calcium hydroxide and zincate ions. This prevents the dissolved and dissipated zinc from being electrodeposited or precipitated elsewhere, which effectively prevents the growth of zinc dendrites and the blockage of the pores that serve as routes for zinc electrode ions. Can be suppressed. Mar. 6, the inner active material layer that comes into contact with the current collector does not contain calcium hydroxide, so the part of the active material layer that comes into contact with the current collector will solidify, which would occur if it contained calcium hydroxide. , it is possible to prevent the active material layer from peeling off or falling off from the current collector. Furthermore, by increasing the hydrogen overvoltage and suppressing hydrogen gas generation from the current collector,
If the internal active material layer contains indium or tin that maintains sufficient adhesion between the current collector and the active material layer, peeling or falling off of the active material layer from the current collector can be more effectively prevented. .

また、亜鉛極の集電体表面に形設する亜鉛活物質層は一
般に集電体との密着面から表面まで活物質の組成が均一
であり、電解液が多く存在する表面部分が特に多く反応
して前述したような亜鉛の樹脂状結晶の成長などの問題
が生じるが、このように活物質層を内部の活物質層と表
面部の活物質層というように多層構造とする場合には、
表面部の活物質層よシ内部の活物質層の放電過電圧の方
が小さくなるより構成すると、電解液が少ない亜鉛極の
内部の活物質層まで深く放電でき、放電反応の亜鉛極表
面部に於ける偏)が解消されると共に亜鉛極の放電容量
も大きくなる。
In addition, the zinc active material layer formed on the current collector surface of the zinc electrode generally has a uniform composition of the active material from the contact surface with the current collector to the surface, and the surface area where there is a large amount of electrolyte is particularly reactive. However, if the active material layer has a multilayer structure such as an internal active material layer and a surface active material layer,
If the discharge overvoltage of the active material layer inside the zinc electrode is smaller than that of the active material layer on the surface, it is possible to discharge deeply to the active material layer inside the zinc electrode where there is less electrolyte. In addition, the discharge capacity of the zinc electrode increases as well.

(へ)実施例 厳化亜鉛90重量部、亜鉛10重量部KmZJl剤とし
て水酸化カルシウム5重量部、酸化タリウム2.5重量
部及び水酸化インジウム2.5重量部を混合し調整した
混合粉末に、結着剤としてのポリテトラフルオロエチレ
ンと水を加えて混練し圧延して活物質シートaを作製し
、また同時に同様にして酸化亜鉛90重量部、亜鉛粉末
1o重量部に添加剤として酸化タリウム2.5重量部及
び水酸化インジウム25重量部を混合し調整した混合粉
末を用い活物質シートbを作製した。これら活物質シ−
トを集電体であるパンチングメタルの両面ニジ−)bが
集電体に接し、シートaが表面側に位置するように圧着
し乾燥して、第1図に示すように集電体(1)の両表面
に内部の活物質層(2)と表面部の活物質層(3)の二
層の活物質を有する亜鉛極を得た。
(f) Example: 90 parts by weight of strict zinc, 10 parts by weight of zinc. A mixed powder prepared by mixing 5 parts by weight of calcium hydroxide, 2.5 parts by weight of thallium oxide and 2.5 parts by weight of indium hydroxide as a KmZJl agent. , polytetrafluoroethylene as a binder and water were added, kneaded and rolled to prepare an active material sheet a, and at the same time, thallium oxide was added as an additive to 90 parts by weight of zinc oxide and 10 parts by weight of zinc powder. An active material sheet b was prepared using a mixed powder prepared by mixing 2.5 parts by weight and 25 parts by weight of indium hydroxide. These active material sheets
The sheets were pressed together so that both sides of the punched metal sheet (2) b was in contact with the current collector and the sheet a was on the front side, and dried to form a current collector (1) as shown in Figure 1. ) was obtained, which had two layers of active material on both surfaces: an internal active material layer (2) and a surface active material layer (3).

こうして得られた亜鉛極の寸法は厚みQ、7Qa+。The dimensions of the zinc electrode obtained in this way are thickness Q and 7Qa+.

幅4Q1m+、長さ200ffであ夛、内部の活物質層
と表面部の活物質層の厚みの比は1:1である。
The width is 4Q1m+, the length is 200ff, and the ratio of the thickness of the internal active material layer to the surface active material layer is 1:1.

この亜鉛極を人とする。Let this zinc electrode be a person.

また、同様にして内部の活物質層と表面部の活物質層に
含有させる添加剤のみ表に示すように変化させて、更に
8種類の亜鉛極を作製し、合計9種類の亜鉛極A乃至工
を得た。尚、表に於いて添加剤の添加量は酸化亜鉛を9
0、亜鉛を10として重量比で表わしている。
In addition, in the same manner, only the additives contained in the internal active material layer and the surface active material layer were changed as shown in the table, and 8 more types of zinc electrodes were fabricated, resulting in a total of 9 types of zinc electrodes A to A. I got a job. In addition, the amount of additives added in the table is 9% of zinc oxide.
It is expressed as a weight ratio with zinc as 0 and zinc as 10.

次いで、これら亜鉛極A乃至lを夫々焼結式ニッケル極
と組み合わせて単二型ニッケルー亜鉛蓄電池を作製した
。こうして作製した電池の断面図を第2図に示す。第2
図中(4)は亜鉛極、(5)はニッケル極、(6)はセ
パレータ、(7)は電池外装缶、(8)は封口板、(9
)は絶縁バッキングである。また、これら電池のサイク
ルテストを行ない、得られたサイクル寿命を併せて表に
示す。サイクルテストは450mAで4時間30分充電
した後、[![ちに45QmAで4時間放電するという
操作を繰シ返して連続的に行ない、放電時に1.4Vの
電池電圧を3時以上維持できなくなったところを電池寿
命とした。また表に示したサイクル寿命は同一の電池を
5セル作製しサイクルテストを行ない、性能の最も劣る
1セルを除いた残シ4セルの平均で表わしている。
Next, each of these zinc electrodes A to I was combined with a sintered nickel electrode to produce an AA type nickel-zinc storage battery. A cross-sectional view of the battery thus produced is shown in FIG. Second
In the figure, (4) is a zinc electrode, (5) is a nickel electrode, (6) is a separator, (7) is a battery case, (8) is a sealing plate, (9)
) is an insulating backing. In addition, these batteries were subjected to cycle tests, and the cycle lives obtained are also shown in the table. The cycle test was performed after charging at 450mA for 4 hours and 30 minutes. [Then, the operation of discharging at 45 QmA for 4 hours was repeated and continued, and the battery life was defined as the point at which the battery voltage of 1.4 V could not be maintained for more than 3 hours during discharging. In addition, the cycle life shown in the table is expressed as the average of the remaining 4 cells after manufacturing 5 cells of the same battery and carrying out a cycle test, excluding the 1 cell with the poorest performance.

表 内部の活物質層に水酸化カルシウムを含有しない亜鉛極
A乃至Gを端えた電池は、内部の活物質層に水酸化カル
シウムを含有する亜鉛極R及びIを備えた電池に比べて
サイクル寿命が大きく向上しておシ、特に亜鉛極り、E
及びFのサイクル寿命の向上は顕著である。
Batteries with zinc electrodes A to G that do not contain calcium hydroxide in the active material layer inside the surface have a longer cycle life than batteries with zinc electrodes R and I that contain calcium hydroxide in the inner active material layer. Significantly improved, especially zinc, E
The improvement in cycle life of and F is remarkable.

水酸化カルシウムは電極作製時に水及び活物質である酸
化亜鉛または亜鉛と反応し、tたこの反応に於いて水が
消費されて活物質層は乾燥、収縮して固化する。表面部
の活物質層に加え、内部の活物質層にも水酸化カルシウ
ムを含有する亜鉛極R及び工は電池に組み込む以前に活
部質層にひびが入)、既に集電体から活物質層が剥離、
脱落し易い状態になっていた。これに対して内部の活物
質層に水酸化カルシウムを含有していない亜鉛極A乃至
Gは内部の活物質層と集電体の密着性は充分に保たれ、
1fC表面部の活物質層に水酸化カルシウムを含有して
いるものも、内部の活物質層によフ表面部の活物質層が
保持され、活物質層のひび割れも見られなかった。tた
、多孔質電極である亜鉛極は集電体と活物質とのオーミ
ックコンタクトを充分に保ち、深く充放電されるように
するのが好ましいが、水酸化カルシウムが集電体近傍に
存在すると、電極内部はもともと電解液が少ない上に、
水酸化カルシウムが亜鉛醗イオンを固定してしまうので
充電の際に集電体上に亜鉛が電着し難くな)、集電体と
活物質層との密着性が低下するものと考えられ、これら
のことから亜鉛極R及びlを備えた電池は亜鉛極A乃至
Gを備えた電池に比較してサイクル寿命が極端に短くな
ったものと推察される。
Calcium hydroxide reacts with water and zinc oxide or zinc as an active material during electrode production, and the water is consumed in this reaction, causing the active material layer to dry, shrink, and solidify. In addition to the surface active material layer, the internal active material layer also contains calcium hydroxide.In the case of zinc electrodes, the active material layer cracks before being incorporated into the battery), and the active material layer has already been removed from the current collector. The layers peel off,
It was in a state where it was easy to fall off. On the other hand, zinc electrodes A to G, which do not contain calcium hydroxide in the internal active material layer, maintain sufficient adhesion between the internal active material layer and the current collector.
In the case where the active material layer in the 1fC surface area contained calcium hydroxide, the active material layer in the outer surface area was retained by the internal active material layer, and no cracks were observed in the active material layer. In addition, it is preferable that the zinc electrode, which is a porous electrode, maintain sufficient ohmic contact between the current collector and the active material to enable deep charging and discharging, but if calcium hydroxide is present near the current collector, , there is originally little electrolyte inside the electrode, and
Calcium hydroxide fixes zinc ions, making it difficult for zinc to electrodeposit on the current collector during charging), which is thought to reduce the adhesion between the current collector and the active material layer. From these facts, it is inferred that the cycle life of the battery equipped with the zinc electrodes R and I was extremely short compared to the battery equipped with the zinc electrodes A to G.

集電体と活物質層との密着性を保つためには、亜鉛と共
析して緻密な結晶を作シ、且つ水素過電圧を高めて集電
体からの水素発生を抑えるような添加剤を、集電体と接
する内部の活物質層に含有させると効果的である。この
ような性質を有するものとして水酸化または酸化インジ
ウムと酸化スズがある。亜鉛極り、E及びFを備えた電
池全てに効果がみられるようK、インジウム及びスズは
単独で用いても、併用して用いても良い。
In order to maintain the adhesion between the current collector and the active material layer, additives are used that eutectoid with zinc to form dense crystals and increase the hydrogen overvoltage to suppress hydrogen generation from the current collector. It is effective to include it in the internal active material layer in contact with the current collector. Examples of materials having such properties include indium hydroxide or oxide and tin oxide. K, indium, and tin may be used alone or in combination so that the effect is seen in all batteries equipped with zinc poles, E, and F.

充放電の繰シ返しによシ、亜鉛酸イオンとなって溶解、
逸散した亜鉛が他の場所に電着あるいは析出して生じる
亜鉛の樹枝状成長や多孔質tWである亜鉛極のイオンの
経路となる孔の閉塞を抑制する添加剤として水酸化カル
シウム、酸化タリウム、水酸化インジウム及び酸化イン
ジウムがある。
Through repeated charging and discharging, it becomes zincate ions and dissolves.
Calcium hydroxide and thallium oxide are used as additives to suppress the dendritic growth of zinc that occurs when the escaped zinc is electrodeposited or precipitated elsewhere, and the clogging of the pores that serve as ion paths in the porous tW zinc electrode. , indium hydroxide and indium oxide.

水酸化カルシウムは亜鉛酸イオンを亜鉛酸カルシウムと
して固定し亜鉛の溶出を防止し、マタ亜鉛酸カルシウム
は充電されて亜鉛に戻るので、亜鉛が高密度に電析して
イオンの経路を塞ぐことを抑制することができる。この
水酸化カルシウムの添加による効果は亜鉛極AとGを備
えた電池のサイクル寿命を比較した場合に亜鉛極ムを備
えfc!池の方がサイクル寿命が長くなっていることか
ら明らかである。尚、亜鉛極表面にのみ水酸化カルシウ
ムの単独層を形設する方法もあるが、この場合亜鉛極表
面からの亜鉛酸イオンの溶出を抑制することはできるが
、電解液が比較的豊富にある亜鉛極表面近傍部の活物質
層内にまではその効果は及ばず、亜鉛極表面近傍に於い
て亜鉛が高密度に電析しイオンの経路を塞ぎ、活物質層
内部の充放電反応を防げることになり好ましくない。し
たがって、水酸化カルシウムは活物質層内に含有するよ
うに添加する必要がある。
Calcium hydroxide fixes zincate ions as calcium zincate and prevents the elution of zinc, and since calcium zincate is charged and returns to zinc, it prevents zinc from depositing in a high density and blocking the ion path. Can be suppressed. The effect of adding calcium hydroxide is significant when comparing the cycle life of batteries with zinc electrodes A and G. This is evident from the fact that ponds have a longer cycle life. There is also a method of forming a single layer of calcium hydroxide only on the surface of the zinc electrode, but in this case it is possible to suppress the elution of zincate ions from the surface of the zinc electrode, but the electrolyte is relatively abundant. This effect does not extend to the inside of the active material layer near the surface of the zinc electrode, and zinc is deposited in a high density near the surface of the zinc electrode, blocking the ion path and preventing charge/discharge reactions inside the active material layer. This is not desirable. Therefore, it is necessary to add calcium hydroxide so that it is contained within the active material layer.

酸化タリウムは還元電位が亜鉛よシもかなシ貴であるた
め、一度充電されると金属タリウムとな力、以後充放電
を繰ル返しても過充電しない限シ金属タリウムで存在す
る。−!り、亜鉛とタリウムの相互拡散定数は非常に大
きく、タリウム上に電着した亜鉛は一部タリウム中に拡
散して合金となシ安定化される。この効果としてタリウ
ムは充電反応の際に亜鉛電着の核となシ、タリウムが偏
在しない限り充放電を繰シ返しても亜鉛の粒径が変化し
なくなシ、亜鉛が高密度に析出してイオンの経路を塞ぐ
ことを抑制することができる。このように水酸化カルシ
ウムとタリウムは何れも亜鉛が高密度に析出することに
よって生じるイオンの経路の閉基を抑制する働きを有す
るが、電池CとDを備えた電池のサイクル寿命を比較し
ても明らかなように、水酸化カルシウムに加え酸化タリ
ウムも活物質層に添加するとよシ一層の効果を得ること
ができる。
Thallium oxide has a reduction potential much higher than that of zinc, so once it is charged it remains as metallic thallium, and remains as metallic thallium as long as it does not overcharge even after repeated charging and discharging. -! Therefore, the interdiffusion constant between zinc and thallium is very large, and some of the zinc electrodeposited on thallium diffuses into thallium to form an alloy and is stabilized. As a result, thallium acts as a nucleus for zinc electrodeposition during the charging reaction, and as long as thallium is not unevenly distributed, the particle size of zinc will not change even after repeated charging and discharging, and zinc will precipitate at a high density. This can prevent the ion path from being blocked. In this way, both calcium hydroxide and thallium have the function of suppressing group closure of the ion path caused by the dense precipitation of zinc, but when comparing the cycle lives of batteries equipped with batteries C and D, As is clear from the above, further effects can be obtained by adding thallium oxide in addition to calcium hydroxide to the active material layer.

またインジウムは亜鉛極表面から延びる亜鉛の樹枝状結
晶の成長を抑制すると共に水素過電圧を上げて亜鉛の自
己放電を抑える働きをし、亜鉛極BとDを備えfc!池
を対比しても明らかなように、活物質MK水酸化カルシ
ウム及びタリウムが添加されていても、更にインジウム
を添加するとサイクル寿命が著しく伸びる。このサイク
ル寿命ノ向上はインジウムとタリウムの両方を表面部の
活物質層に添加したことにも関係する。これKついて以
下に説明する。
In addition, indium suppresses the growth of zinc dendrites extending from the surface of the zinc electrode and increases the hydrogen overvoltage to suppress zinc self-discharge. As is clear from the comparison of the ponds, even if the active materials MK calcium hydroxide and thallium are added, the cycle life is significantly extended if indium is further added. This improvement in cycle life is also related to the addition of both indium and thallium to the surface active material layer. This K will be explained below.

通常、亜鉛極の集電体表面に形設した活物質層は、集電
体との密着面から表面まで活物質層の組成が均一であシ
、この亜鉛極を用いると電解液が豊富に存在する表面部
分が特に多く反応し、特に放電時には電解液が少ない内
部に未放電状態の亜鉛を残したまま表面部が放電状態の
酸化亜鉛に覆われてしまい、この酸化亜鉛は亜鉛よシ粒
径が大であるため多孔質電極である亜鉛極の内部に電解
液が充分に達しなくなシ内部の亜鉛は放電しなくなる。
Normally, the composition of the active material layer formed on the current collector surface of a zinc electrode is uniform from the surface in close contact with the current collector to the surface, and when this zinc electrode is used, the electrolyte is abundant. The existing surface area reacts particularly strongly, and during discharge, the surface area is covered with zinc oxide in the discharged state while leaving undischarged zinc inside where there is less electrolyte. Because the diameter is large, the electrolyte does not reach the inside of the zinc electrode, which is a porous electrode, and the zinc inside the electrode does not discharge.

このように表面部分の活物質が集中的に充放電に使われ
ると亜鉛極表面の亜鉛の樹枝状成長やイオン経路の閉塞
の進行が速くなシミ池のサイクル寿命が短くなる。前記
亜鉛iDでは表面部の活物質層にインジウムとタリウム
の両方が添加され、内部の活物質層にはインジウムのみ
添加されてお夛、このインジウム及びタリウムは両方を
活物質層に添加すると、インジウムとタリウムを夫々単
独に活物質に添加した場合と比較して亜鉛の放電過電圧
が60〜7QmV大きくなる。これはタリウムの添加に
よシ亜鉛がタリウム−亜鉛合金となって安定化され、更
にインジウムの添加により亜鉛の結晶が緻密になって放
電し難くなっているためと考えられる。このように表面
部の活物質層より内部の活物質層の方が放電過電圧が小
さいと、電解液の少ない亜鉛極内部まで深く放電するよ
うになシ、この結果充放電反応の偏シが解消されて亜鉛
極の劣化の進行速度が少さくなシ、亜鉛極の放電容量も
大きくなる。尚、表に於いて表面部の活物質層より内部
の活物質層の方が放電過電圧が小さくなっているものは
、亜鉛極り、E、F及びIであシ、その他は表面部の活
物質層と内部の活物質層の放電過電圧はほぼ同じである
。表から明らかなように、亜鉛WiD、E及びrを備え
た電池は他の電池よフサイクル寿命が非常に向上してい
ることがわかる。ただ亜鉛極工を備えた電池のサイクル
寿命は亜鉛極Hを漕え六電池のサイクル寿命より長くな
っているものの他のものよシはかなり短くなっているが
、とれは内部の活物質層に水酸化カルシウムを含有して
いるため活物質層が早期に集一体から剥離、脱落するた
め充分な効果が得られなかったためである。
If the active material on the surface is intensively used for charging and discharging in this way, the cycle life of the stain pond will be shortened, as dendritic growth of zinc on the surface of the zinc electrode and blockage of ion paths will progress rapidly. In the zinc iD, both indium and thallium are added to the surface active material layer, and only indium is added to the inner active material layer.When both indium and thallium are added to the active material layer, indium The discharge overvoltage of zinc increases by 60 to 7 QmV compared to the case where thallium and thallium are respectively added to the active material alone. This is thought to be because the addition of thallium stabilizes zinc by turning it into a thallium-zinc alloy, and the addition of indium makes the zinc crystals denser, making it difficult to discharge. In this way, if the discharge overvoltage is lower in the inner active material layer than in the surface active material layer, the discharge will occur deeper into the zinc electrode where there is less electrolyte, and as a result, the unbalanced charge/discharge reaction will be eliminated. As a result, the rate of deterioration of the zinc electrode is slowed down, and the discharge capacity of the zinc electrode is also increased. In addition, in the table, those in which the discharge overvoltage is smaller in the inner active material layer than in the surface active material layer are zinc poles, E, F, and I. The discharge overvoltages of the material layer and the internal active material layer are approximately the same. As is clear from the table, the life cycle life of the batteries with zinc WiD, E, and r is significantly improved compared to other batteries. However, although the cycle life of batteries equipped with zinc electrodes is longer than that of batteries with zinc electrodes H, it is considerably shorter than that of other batteries. This is because, since the active material layer contains calcium hydroxide, the active material layer peels off and falls off from the aggregate at an early stage, so that a sufficient effect could not be obtained.

上記実施例では集電体の表面に形設する活物質層を二層
にした場合について記載したが、活物質層は三層以上で
あってもよく、その場合には集電体に接する活物質層に
は水酸化カルシウムを含有させず、残りの活物質層全て
に水酸化カルシウムを含有させても同等の効果を生じる
のであり、少なくとも活物質層の剥離、脱落の影響の大
きい集電体に接する活物質層には水酸化カルシウムを含
有させず、また亜鉛の樹枝状成長及びイオンの経路とな
る亜鉛極中の細孔の閉塞が生じ易い亜鉛極表面部の活物
質111には水酸化カルシウムを含有させる必要がある
。放電過電圧については亜鉛極表面部の活物質層から集
電体に接する活物質に向って次第に小さくなるよう構成
し、亜鉛極中で放電が均一に進行する様にするのが好ま
しい。
In the above example, the case was described in which the active material layer formed on the surface of the current collector was two layers, but the active material layer may be three or more layers. Even if the material layer does not contain calcium hydroxide and all the remaining active material layers contain calcium hydroxide, the same effect is produced, at least for current collectors that are susceptible to peeling and falling off of the active material layer. The active material layer in contact with the zinc electrode does not contain calcium hydroxide, and the active material 111 on the surface of the zinc electrode, which tends to cause dendritic growth of zinc and blockage of pores in the zinc electrode that serve as ion routes, does not contain hydroxide. It is necessary to contain calcium. It is preferable to configure the discharge overvoltage so that it gradually decreases from the active material layer on the surface of the zinc electrode toward the active material in contact with the current collector, so that the discharge progresses uniformly in the zinc electrode.

尚、活物質中に含有させる添加剤の添加Iを、夫々の添
加剤の作用を個別に検討、研究した結果、水酸化インジ
ウムについては1〜5%、酸化タリウムについては1〜
5%、水酸化カルシウムについては1〜10%程度が良
好であることがわかったatな、活物質層を二層から構
成した場合の表面部の活物質層と内部の活物質層の厚み
の割合については2:1〜1:2の間に於いて同様の効
果があることが確められた。
In addition, as a result of individually examining and researching the effects of each additive, the addition I of additives to be included in the active material was found to be 1 to 5% for indium hydroxide and 1 to 5% for thallium oxide.
When the active material layer is composed of two layers, the thickness of the surface active material layer and the inner active material layer is It was confirmed that a similar effect was obtained when the ratio was between 2:1 and 1:2.

(ト)  発明の効果 本発明のアルカリ亜鉛蓄電池は、集電体の表面に活物質
層を形設してなる亜鉛極に於いて、前記活物質層を複数
層から構成し、且つ集電体の表面に接する内部の活物質
層を除き、少なくとも亜鉛極表面に位置する表面部の活
物質層に水酸化カルシウムを含有させたものであるから
、集電体と活物質層との密着性を充分に保ち、且つ亜鉛
極表面部に於ける亜鉛の樹枝状成長及びイオンの経路と
なる亜鉛極中の細孔の閉塞を抑制してサイクル寿命を向
上させることができる。更に、内部の活物質層に水酸化
インジウム、酸化インジウムまたは酸化スズを含有させ
ると、活物質層の集υ1体からの剥離、脱落がよシ一層
抑制され、前記内部の活物質層の放電過電圧を前記表面
部の活物質層の放電過電圧よシ小さく構成すると亜鉛極
の充放電反応が内部まで充分に進行し、放電容量が増す
と共に亜鉛極の劣化も抑制することができる。また表面
部の活物質層に水酸化カルシウムに加え、水酸化または
酸化インジウム及び酸化タリウムを含有させると、よル
一層亜鉛極の劣化を抑制でき1表面部の活物質層よ〕内
部の活物質層の放電過電圧を小さく構成する際にも有効
である。
(G) Effects of the Invention The alkaline zinc storage battery of the present invention has a zinc electrode in which an active material layer is formed on the surface of a current collector, the active material layer is composed of a plurality of layers, and the current collector Except for the internal active material layer in contact with the surface of the electrode, at least the surface active material layer located on the surface of the zinc electrode contains calcium hydroxide, so the adhesion between the current collector and the active material layer can be improved. It is possible to improve the cycle life by maintaining a sufficient amount of zinc and suppressing the dendritic growth of zinc on the surface of the zinc electrode and the clogging of pores in the zinc electrode that serve as ion paths. Furthermore, when the internal active material layer contains indium hydroxide, indium oxide, or tin oxide, peeling and falling off of the active material layer from the aggregate is further suppressed, and the discharge overvoltage of the internal active material layer is further suppressed. When the discharge overvoltage of the active material layer in the surface portion is made smaller than that of the active material layer in the surface portion, the charging/discharging reaction of the zinc electrode sufficiently proceeds to the inside, increasing the discharge capacity and suppressing deterioration of the zinc electrode. Furthermore, if the surface active material layer contains calcium hydroxide, indium hydroxide or indium oxide, and thallium oxide, the deterioration of the zinc electrode can be further suppressed. It is also effective in reducing the discharge overvoltage of the layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の亜鉛極の断面図、第2図は本発明の一
5J!施例に於けるアルカリ亜鉛蓄電池の縦断面図であ
る。 (1) −−−−−・集電体、(2)・旧・・内部の活
物質層、(3)・・・・・・表面部の活物質層、(4)
・・・・・・亜鉛極、(51町・−ニラクル極、(6)
・・・・・・セパレータ、(7)・・・・・・電池外装
缶、(8)・・・・・・封口板、(9)・・・・・・絶
縁バッキング。
FIG. 1 is a cross-sectional view of the zinc electrode of the present invention, and FIG. 2 is a sectional view of the zinc electrode of the present invention. It is a longitudinal cross-sectional view of an alkaline zinc storage battery in an example. (1) -------・Current collector, (2)・Old...Inner active material layer, (3)...Active material layer on the surface, (4)
・・・・・・Zinc electrode, (51 towns・-Niracle electrode, (6)
Separator, (7) Battery exterior can, (8) Sealing plate, (9) Insulating backing.

Claims (4)

【特許請求の範囲】[Claims] (1)集電体の表面に活物質層を形設してなる亜鉛極を
備えた電池であって、前記活物質層は複数層から構成さ
れ、且つ集電体の表面に接する内部の活物質層を除き、
少なくとも亜鉛極表面に位置する表面部の活物質層に水
酸化カルシウムを含有していることを特徴とするアルカ
リ亜鉛蓄電池。
(1) A battery equipped with a zinc electrode formed with an active material layer formed on the surface of a current collector, wherein the active material layer is composed of multiple layers, and the active material layer inside the current collector is in contact with the surface of the current collector. excluding the material layer,
An alkaline zinc storage battery characterized by containing calcium hydroxide in the active material layer of the surface portion located at least on the surface of the zinc electrode.
(2)前記内部の活物質層は、水酸化インジウム酸化イ
ンジウムまたは酸化スズを含有することを特徴とする特
許請求の範囲第(1)項記載のアルカリ亜鉛蓄電池。
(2) The alkaline zinc storage battery according to claim (1), wherein the internal active material layer contains indium hydroxide, indium oxide, or tin oxide.
(3)前記内部の活物質層は前記表面部の活物質層より
放電過電圧が小さいことを特徴とする特許請求の範囲第
(1)項記載のアルカリ亜鉛蓄電池。
(3) The alkaline zinc storage battery according to claim (1), wherein the internal active material layer has a lower discharge overvoltage than the surface active material layer.
(4)前記表面部の活物質層は、水酸化インジウムまた
は酸化インジウムと酸化タリウムを含有することを特徴
とする特許請求の範囲第(1)項または第(3)項記載
のアルカリ亜鉛蓄電池。
(4) The alkaline zinc storage battery according to claim (1) or (3), wherein the active material layer in the surface portion contains indium hydroxide or indium oxide and thallium oxide.
JP60088306A 1985-04-24 1985-04-24 Alkaline zinc storage battery Pending JPS61281460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60088306A JPS61281460A (en) 1985-04-24 1985-04-24 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60088306A JPS61281460A (en) 1985-04-24 1985-04-24 Alkaline zinc storage battery

Publications (1)

Publication Number Publication Date
JPS61281460A true JPS61281460A (en) 1986-12-11

Family

ID=13939246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60088306A Pending JPS61281460A (en) 1985-04-24 1985-04-24 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPS61281460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043710A (en) * 2007-08-07 2009-02-26 John E Stauffer Storage battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036025A (en) * 1973-06-01 1975-04-04
JPS5036025B1 (en) * 1970-11-20 1975-11-20
JPS58176870A (en) * 1982-04-09 1983-10-17 Sanyo Electric Co Ltd Alkaline-zinc battery
JPS59196562A (en) * 1983-04-20 1984-11-07 Sanyo Electric Co Ltd Alkaline zinc secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036025B1 (en) * 1970-11-20 1975-11-20
JPS5036025A (en) * 1973-06-01 1975-04-04
JPS58176870A (en) * 1982-04-09 1983-10-17 Sanyo Electric Co Ltd Alkaline-zinc battery
JPS59196562A (en) * 1983-04-20 1984-11-07 Sanyo Electric Co Ltd Alkaline zinc secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043710A (en) * 2007-08-07 2009-02-26 John E Stauffer Storage battery

Similar Documents

Publication Publication Date Title
KR20100089804A (en) Nickel electrode and alkali storage battery
EP2954589B1 (en) Process for forming a battery containing an iron electrode
JPS61281460A (en) Alkaline zinc storage battery
JPH06310125A (en) Negative electrode for lithium secondary battery
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JP2884570B2 (en) Sealed alkaline secondary battery
JPH10188994A (en) Alkaline storage battery
JP3514088B2 (en) Nickel-hydrogen storage battery
JPS6081777A (en) Nickel-zinc battery
JP2578633B2 (en) Zinc electrode for alkaline storage batteries
JPH01134862A (en) Alkaline zinc storage battery
JPS60185372A (en) Nickel-zinc storage battery
JPH071695B2 (en) Alkaline zinc storage battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery
JPS62110269A (en) Alkaline zinc storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JPS62123651A (en) Lithium secondary battery
JPS62108467A (en) Alkaline zinc storage battery
JPH0654662B2 (en) Cadmium negative electrode manufacturing method
JPS63146352A (en) Paste type cadmium negative electrode
JPH0817434A (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPH0584027B2 (en)
JPH063731B2 (en) Alkaline zinc storage battery
JPS62262367A (en) Alkaline zing storage battery