JPH10188994A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH10188994A
JPH10188994A JP8342992A JP34299296A JPH10188994A JP H10188994 A JPH10188994 A JP H10188994A JP 8342992 A JP8342992 A JP 8342992A JP 34299296 A JP34299296 A JP 34299296A JP H10188994 A JPH10188994 A JP H10188994A
Authority
JP
Japan
Prior art keywords
negative electrode
core material
storage battery
plated
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8342992A
Other languages
Japanese (ja)
Other versions
JP3478030B2 (en
Inventor
Takashi Yao
剛史 八尾
Ichiro Matsumura
一郎 松村
Shinichi Ito
真一 伊藤
Takashi Takano
隆 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP34299296A priority Critical patent/JP3478030B2/en
Publication of JPH10188994A publication Critical patent/JPH10188994A/en
Application granted granted Critical
Publication of JP3478030B2 publication Critical patent/JP3478030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the volume of a negative electrode core material, which occupies in the whole of a negative electrode, so as to provide an alkaline storage battery having high energy density by using a hole drilled steel plate, which is plated with Ni at a specified total thickness and which is heated for a specified time so as to obtain tensile strength and ductility of specified values or more, as a core material of a negative electrode for alkaline storage battery. SOLUTION: In an alkaline storage battery formed of a positive and a negative electrodes, a separator and the alkali electrolyte, a hole drilled steel plate, which is plated with Ni at 0.5-3μm of thickness for corrosion resistance, is used for negative electrode core material. This Ni plated hole drilled steel plate for an negative electrode core material has total thickness at 20-50μm, and it is heated at 500-700 deg.C for a specified time as to be obtain Vickers hardness at 70-130HV, and a required tensile strength and ductility are obtained. Volume of a part, which does not contribute to the electrode capacity, can be eliminated so as to improve the energy density of the battery. In a nickel- hydrogen storage battery, ratio of the mean particle diameter of hydrogen storage alloy of the negative electrode active material to the thickens of a core material thereof is desirably set at 1; (1-2.5).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル−水素蓄電
池やニッケル−カドミウム蓄電池等、負極芯材にNiめ
っきした穿孔鋼板を用いたアルカリ蓄電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery using a perforated steel sheet plated with Ni on a negative electrode core material.

【0002】[0002]

【従来の技術】近年、各種電源として用いられているア
ルカリ蓄電池は高信頼性が期待でき、小型軽量化が可能
となる等の理由で、小型電池は各種ポータブル機器用
に、大型電池は産業用の電源として広く使われている。
このようなアルカリ蓄電池において、正極には従来から
使用されている焼結式のニッケル極に加え、ペースト式
ニッケル極が用いられている。一方、負極には周知のカ
ドミウムを用いたニッケル−カドミウム蓄電池のほか、
これよりも高いエネルギー密度を有する電池系として、
水素を可逆的に吸蔵・放出することが可能な水素吸蔵合
金を用いたニッケル−水素蓄電池が開発され、その高容
量化が行われている。
2. Description of the Related Art In recent years, alkaline storage batteries used as various power sources can be expected to have high reliability and can be reduced in size and weight. For this reason, small batteries are used for various portable devices, and large batteries are used for industrial purposes. It is widely used as a power source.
In such an alkaline storage battery, a paste-type nickel electrode is used as a positive electrode in addition to a conventionally used sintered nickel electrode. On the other hand, in addition to the nickel-cadmium storage battery using cadmium for the negative electrode,
As a battery system with a higher energy density,
A nickel-hydrogen storage battery using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen has been developed and its capacity has been increased.

【0003】このニッケル−水素蓄電池の負極として
は、水素吸蔵合金粉末を導電剤粉末と共に焼結して水素
吸蔵合金電極とする方法(例えば特公昭58−4682
7号公報)、水素吸蔵合金粉末を発泡ニッケル担体のよ
うな三次元金属多孔体内に充填して電極とする方法(例
えば特開昭53−33332号公報)、高分子結着剤を
加えたペーストをNiめっきした穿孔鋼板に塗着するこ
とで電極とする方法(例えば特開昭61−163569
号公報)等が提案されている。
As a negative electrode of this nickel-hydrogen storage battery, a method of sintering a hydrogen storage alloy powder together with a conductive agent powder to form a hydrogen storage alloy electrode (for example, Japanese Patent Publication No. 58-4682)
No. 7), a method of filling a three-dimensional metal porous body such as a foamed nickel carrier with a hydrogen storage alloy powder to form an electrode (for example, JP-A-53-33332), a paste containing a polymer binder Is applied to a perforated steel sheet plated with Ni to form an electrode (for example, Japanese Patent Application Laid-Open No. 61-163569).
And the like have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら最近の各
種ポータブル機器の急速な小型化・高性能化に伴い、電
池に対してより一層の高エネルギー密度化・高性能化が
望まれている。焼結式の場合、焼結の際に水素吸蔵合金
粉末表面が酸化されて不動態化し、電極の導電率の低下
が起こって、放電電圧の低下を招く課題がある。また三
次元金属多孔体に充填する方法の場合では、基板である
ニッケルの三次元多孔体が高価であることに加えて、集
電構造上、電極容量に寄与しない部分が多くなるため、
電極容量を十分大きくすることができず、エネルギー密
度が低いという課題がある。また高分子結着剤を水素吸
蔵合金粉末に加えて調整したペーストをNiめっきした
穿孔鋼板に塗着させる方法は、三次元多孔体と比較して
基板コストが安いことから、総厚みが60〜80μmの
Niめっきした穿孔鋼板を用いる方法が、ニッケル−水
素蓄電池の主流になりつつあるが、電極容量に寄与しな
い芯材部分の体積は負極全体の約15%を占めている。
However, with recent rapid miniaturization and high performance of various portable devices, there is a demand for higher energy density and higher performance of batteries. In the case of the sintering method, the surface of the hydrogen storage alloy powder is oxidized and passivated during sintering, causing a problem that the conductivity of the electrode is reduced and the discharge voltage is reduced. In the case of the method of filling the three-dimensional metal porous body, in addition to the fact that the three-dimensional porous body of nickel as the substrate is expensive, in addition to the current collecting structure, there are many portions that do not contribute to the electrode capacity,
There is a problem that the electrode capacity cannot be sufficiently increased and the energy density is low. In addition, a method in which a paste prepared by adding a polymer binder to the hydrogen storage alloy powder and applying the paste to a Ni-plated perforated steel sheet is less expensive than a three-dimensional porous body. The method using a perforated steel sheet plated with Ni of 80 μm is becoming the mainstream of nickel-hydrogen storage batteries, but the volume of the core material portion that does not contribute to the electrode capacity occupies about 15% of the entire negative electrode.

【0005】本発明は、このような負極芯材にNiめっ
きした穿孔鋼板を用いた場合の課題を解決するものであ
り、負極芯材であるNiめっきした穿孔鋼板の負極全体
に占める体積を削減し、これまでよりも高エネルギー密
度のアルカリ蓄電池を提供することを主たる目的とす
る。
The present invention solves the problem of using a perforated steel sheet plated with Ni for such a negative electrode core material, and reduces the volume of the Ni-plated perforated steel sheet as the negative electrode core material in the entire negative electrode. Another object of the present invention is to provide an alkaline storage battery having a higher energy density than before.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、負極芯材として総厚みが20〜50μmの
Niめっきした穿孔鋼板を用いたものであり、好ましく
はこの芯材を500〜700℃で一定時間熱処理し、あ
る一定以上の引張強度と展性(ビッカース硬度)をもた
せて、電極容量に寄与しない部分の体積を削減したもの
であり、これによりアルカリ蓄電池の高エネルギー密度
化を行うことができる。
In order to achieve the above-mentioned object, the present invention uses a perforated steel sheet having a total thickness of 20 to 50 μm and plated with Ni as a negative electrode core material. Heat treatment at a temperature of up to 700 ° C. for a certain time to reduce the volume of a part that does not contribute to the electrode capacity by providing a certain tensile strength and malleability (Vickers hardness), thereby increasing the energy density of the alkaline storage battery. It can be performed.

【0007】[0007]

【発明の実施の形態】これまで総厚さ60〜80μmの
Niめっきした穿孔鋼板が用いられていた理由としては
次の点があげられる。1つは芯材を薄くした場合、当然
引張強度の低下が起こり、ペーストの塗着やその後の活
物質充填密度を高めるためのプレスや渦巻状極板群群の
構成時等、引張応力が働く工程にて極板が切れてしまう
恐れがあった。つまり、芯材としてある一定以上の引張
強度を保つためには総厚みを60〜80μmにする必要
があった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Ni-plated perforated steel sheets having a total thickness of 60 to 80 μm have been used for the following reasons. One is that when the core material is made thinner, the tensile strength naturally decreases, and tensile stress acts when applying a paste or forming a group of spirally-shaped electrode plates to increase the packing density of the active material thereafter. There was a risk that the electrode plate would be cut during the process. That is, in order to maintain a certain or more tensile strength as the core material, the total thickness had to be 60 to 80 μm.

【0008】しかしながら、引張強度が低くても極板
(芯材)に展性があれば、その切れを抑制することが可
能である。例えば芯材に熱処理を施すことにより、芯材
素地のFeの再結晶化を行い、ビッカース硬度と相関の
ある展性を高めれば、従来よりも芯材の薄型化が可能で
ある。しかしこれを最適な条件で実施しなければ、芯材
の湾曲の発生、芯材抵抗の増加が起こり、不均一なペー
スト塗着の原因となったり、電池性能の低下を招く。
[0008] However, even if the tensile strength is low, if the electrode plate (core material) has malleability, it is possible to suppress the breakage. For example, by subjecting the core material to a heat treatment to recrystallize Fe of the core material and to enhance the malleability correlated with the Vickers hardness, the core material can be made thinner than before. However, if this is not performed under optimal conditions, the core material may be curved and the core material resistance may increase, causing uneven paste application and lowering battery performance.

【0009】請求項1記載の本発明は、総厚さ20〜5
0μmのNiめっきした穿孔鋼板を500〜700℃の
温度で一定時間熱処理することにより、芯材にある一定
以上の引張強度と展性(ビッカース硬度)をもたせて前
述した課題を解決したものである。その結果、負極芯材
であるNiめっきした穿孔鋼板の負極における占有体積
を削減し、従来よりも高エネルギー密度のアルカリ蓄電
池を提供することを可能にしたものである。
The present invention according to claim 1 has a total thickness of 20 to 5 mm.
The present invention solves the above-mentioned problems by providing a core material with a certain or more tensile strength and malleability (Vickers hardness) by heat-treating a perforated steel sheet plated with Ni of 0 μm at a temperature of 500 to 700 ° C. for a certain time. . As a result, the volume occupied by the Ni-plated perforated steel plate, which is the negative electrode core material, in the negative electrode is reduced, and an alkaline storage battery having a higher energy density than before can be provided.

【0010】さらに請求項4記載の本発明は、負極活物
質である水素吸蔵合金粉末の粒子径とNiめっきした穿
孔鋼板の厚みの比を1:1〜2.5にすることによっ
て、Niめっき鋼板の薄型化による占有体積の削減と、
水素吸蔵合金粉末の反応性を高めることを可能にしたも
のである。つまりNiめっきした穿孔鋼板の厚みと水素
吸蔵合金粉末の平均粒子径とを最適化することにより、
ニッケル−水素蓄電池のさらなる高エネルギー密度化が
可能となる。
Further, according to the present invention, the ratio of the particle size of the hydrogen-absorbing alloy powder as the negative electrode active material to the thickness of the Ni-plated perforated steel sheet is set to 1: 1 to 2.5, so that Ni plating Reduction of occupied volume by thinning steel sheets,
This makes it possible to increase the reactivity of the hydrogen storage alloy powder. In other words, by optimizing the thickness of the Ni-plated perforated steel sheet and the average particle diameter of the hydrogen storage alloy powder,
It is possible to further increase the energy density of the nickel-hydrogen storage battery.

【0011】[0011]

【実施例】以下、本発明における詳細について実施例に
基づいて説明するが、本発明は下記実施例により何ら限
定されるものではなく、その要点を変更しない範囲にお
いて適宜変更して実施することが可能なものである。 (実施例1)表面に0.5〜3μm、ここでは1μmの
Niめっきを施した総厚みが35μmのNiめっきした
穿孔鋼板を200℃〜750℃、好ましくは550℃の
温度で0〜10時間熱処理を行った。このようにして作
製した穿孔Niめっき鋼板に市販の水素吸蔵合金(Mm
Ni5 タイプの一つであるMmNi3.7 Mn0.4 Al
0.3 Co0.6 の組成)を粉砕し、平均粒子径を20μm
とした後、この水素吸蔵合金粉末100重量部に増粘剤
としてCMCを0.15重量部、導電剤としてカーボン
ブラックを0.3重量部、結着剤としてスチレン−ブタ
ジエン共重合体を0.8重量部、分散剤として水を添加
して調整したペーストを塗着し、所定の厚みにプレス
し、4/5Aサイズ用極板に裁断し、負極板を作製し
た。
EXAMPLES The details of the present invention will be described in the following examples.
The present invention will be described based on the following examples.
It is not specified and within the scope that does not change the gist
It is possible to change and implement as appropriate. (Example 1) 0.5 to 3 μm on the surface, here 1 μm
Ni-plated Ni-plated with a total thickness of 35 μm
The perforated steel plate is heated to 200 ° C to 750 ° C, preferably 550 ° C.
Heat treatment was performed at a temperature for 0 to 10 hours. Work in this way
Commercially available hydrogen storage alloy (Mm
NiFiveMmNi, one of the types3.7Mn0.4Al
0.3Co0.6), And the average particle diameter is 20 μm
After that, 100 parts by weight of the hydrogen storage alloy powder was added to a thickener.
0.15 parts by weight of CMC and carbon as a conductive agent
0.3 parts by weight of black, styrene-buta as a binder
0.8 part by weight of diene copolymer, water added as dispersant
Apply the adjusted paste and press to the specified thickness
And cut into 4 / 5A size plates to produce negative plates
Was.

【0012】このような負極板と水酸化ニッケルを主体
とする正極を、ポリプロピレン製の不織布セパレータを
介して、渦巻状に群構成し電池外装缶に収納した。図1
に負極芯材に用いたNiめっきした穿孔鋼板の熱処理温
度と塗着したペーストの脱落率との関係を示す。500
℃未満の熱処理では脱落率は非常に高く、熱処理しなか
った場合と同等レベルである。
The negative electrode plate and the positive electrode mainly composed of nickel hydroxide were spirally grouped through a polypropylene nonwoven fabric separator and housed in a battery outer can. FIG.
Fig. 2 shows the relationship between the heat treatment temperature of the Ni-plated perforated steel sheet used for the negative electrode core material and the falling rate of the applied paste. 500
In the case of heat treatment at a temperature lower than ℃, the dropout rate is extremely high, which is the same level as the case without heat treatment.

【0013】図2に穿孔Niめっき鋼板の熱処理温度と
引張試験での伸び率、ビッカース硬度(HV)との関係
を示す。500℃未満の熱処理では伸び率は5%未満で
あり、450℃においても熱処理をしなかった場合とほ
とんど同じである。ビッカース硬度も伸び率とほぼ同じ
挙動を示す。つまり、Niめっきした穿孔鋼板に水素吸
蔵合金を塗着後、所定の厚みにするためにプレスを行う
際、当然のことながら極板に加圧力と引張応力が加わ
る。この時500℃未満の熱処理では、極板のうち水素
吸蔵合金は伸びようとするが、Niめっきした穿孔鋼板
は伸びることができないため、水素吸蔵合金とNiめっ
きした穿孔鋼板との間にズレが生じる。このズレによっ
て群構成を行った際、水素吸蔵合金が穿孔Niめっき鋼
板から脱落しやすくなると考えられる。従って正常な極
板を得るためには、穿孔Niめっき鋼板を500℃以上
で熱処理を行う必要がある。但し図3に示すように、7
00℃以上のような高温で処理を行った場合は、Feの
Niめっき層への拡散が進行し、芯材としての導電性低
下と電気抵抗の増大が起こる。従って熱処理温度として
は500℃〜700℃、穿孔Niめっき鋼板のビッカー
ス硬度(HV)は70〜130が好ましい。
FIG. 2 shows the relationship between the heat treatment temperature of a perforated Ni-plated steel sheet, the elongation percentage in a tensile test, and Vickers hardness (HV). The elongation is less than 5% in the heat treatment at a temperature lower than 500 ° C., which is almost the same as that in the case where the heat treatment is not performed at 450 ° C. Vickers hardness also shows almost the same behavior as elongation. In other words, when applying a hydrogen storage alloy to a Ni-plated perforated steel sheet and then pressing it to a predetermined thickness, pressure and tensile stress are naturally applied to the electrode plates. At this time, in the heat treatment at a temperature of less than 500 ° C., the hydrogen storage alloy among the electrode plates tends to expand, but the Ni-plated perforated steel plate cannot be expanded, so that a gap between the hydrogen storage alloy and the Ni-plated perforated steel plate occurs. Occurs. It is considered that the hydrogen storage alloy is likely to fall off from the perforated Ni-plated steel sheet when the group is formed due to the deviation. Therefore, in order to obtain a normal electrode plate, it is necessary to heat-treat the perforated Ni-plated steel sheet at 500 ° C. or higher. However, as shown in FIG.
When the treatment is performed at a high temperature such as 00 ° C. or more, the diffusion of Fe into the Ni plating layer progresses, and the conductivity as the core material decreases and the electric resistance increases. Therefore, the heat treatment temperature is preferably 500 ° C. to 700 ° C., and the Vickers hardness (HV) of the perforated Ni-plated steel sheet is preferably 70 to 130.

【0014】次に温度を550℃に固定し、熱処理時間
の検討を行った。図4に550℃での熱処理時間とペー
ストの脱落率、図5に引張試験での伸び率、及びビッカ
ース硬度との関係を示す。いずれの場合も2時間以上の
熱処理によって一定の挙動を示している。この結果は5
00〜700℃の範囲ではいずれの場合も同じ挙動であ
り、熱処理時間としては2時間以上が好ましい。
Next, the temperature was fixed at 550 ° C., and the heat treatment time was examined. FIG. 4 shows the relationship between the heat treatment time at 550 ° C. and the detachment rate of the paste, and FIG. 5 shows the relationship between the elongation rate in a tensile test and Vickers hardness. In each case, a constant behavior is shown by heat treatment for 2 hours or more. The result is 5
In the range of 00 to 700 ° C., the behavior is the same in any case, and the heat treatment time is preferably 2 hours or more.

【0015】穿孔鋼板へのNiめっきは、放置による錆
びの発生防止及び電池内のアルカリ電解液に対する安定
化のために必要である。(表1)は高温多湿下で放置し
た際に錆びが発生するまでの期間を示したものである。
Niめっきを行っていない場合、2日後にはほとんど錆
びが発生しているが、0.5μm以上のNiめっきで
は、3ヵ月以上錆発生が認められなかった。但しNiめ
っきが厚くなるとその体積だけ活物質を塗着することが
できる体積が減少するため、Niめっき厚としてはでき
るだけ薄い方がよく、0.5〜3μm程度が望ましい。
The Ni plating on the perforated steel sheet is necessary for preventing rust from occurring upon standing and stabilizing the alkaline electrolyte in the battery. (Table 1) shows a period until rusting occurs when left under high temperature and high humidity.
When Ni plating was not performed, rust almost occurred after 2 days, but no rust was observed for 3 months or more with Ni plating of 0.5 μm or more. However, as the Ni plating becomes thicker, the volume in which the active material can be applied is reduced by that volume. Therefore, the Ni plating thickness is preferably as thin as possible, and preferably about 0.5 to 3 μm.

【0016】[0016]

【表1】 [Table 1]

【0017】次に比重1.30のKOHに30g/lの
水酸化リチウムを溶解した電解液を注入して、定格容量
2000mAhの4/5Aサイズのニッケル−水素蓄電
池を組み立てた。この電池を周囲温度25℃で12時間
放置後、初充放電(充電:0.1Cで15時間、放電:
0.2Cで5時間)を行い、本実施例に基づく電池Aを
得た。また比較のため従来から使用されている60μm
の穿孔Niめっき鋼板を用いて同様な方法で作製した電
池を比較例の電池Bとする。
Next, an electrolytic solution in which 30 g / l of lithium hydroxide was dissolved in KOH having a specific gravity of 1.30 was injected to assemble a 4/5 A nickel-hydrogen storage battery having a rated capacity of 2000 mAh. After the battery was left at an ambient temperature of 25 ° C. for 12 hours, it was initially charged and discharged (charge: 0.1 C for 15 hours, discharge:
(0.2 C for 5 hours) to obtain a battery A based on this example. For comparison, 60 μm conventionally used
A battery manufactured in the same manner using the perforated Ni-plated steel sheet of Example 1 is referred to as a battery B of a comparative example.

【0018】このような電池AとBを0.1Cで15時
間充電し、その後0.2Cで1.0Vまで放電した際の
放電容量を(表2)に示す。本実施例に基づく電池Aで
は、負極板に使用している穿孔Niめっき鋼板の薄型化
により高容量化が可能となった。
The discharge capacities when the batteries A and B were charged at 0.1 C for 15 hours and then discharged at 0.2 C to 1.0 V are shown in Table 2. In the battery A according to the present embodiment, a high capacity was made possible by reducing the thickness of the perforated Ni-plated steel sheet used for the negative electrode plate.

【0019】[0019]

【表2】 [Table 2]

【0020】(実施例2)次に表面に1μmのめっきを
施した厚みが35μmの穿孔鋼板を550℃で4時間熱
処理した後、実施例1と同様な方法で各種粒子径の水素
吸蔵合金からなるペーストを塗着し、極板を作製した。
このようにして作製した負極板を用いて、実施例1と同
様な方法で電池を組立て、初充放電を行い、4/5Aサ
イズのニッケル−水素蓄電池を得た。
Example 2 Next, a 35 μm-thick perforated steel sheet having a surface plated with 1 μm was heat-treated at 550 ° C. for 4 hours, and then hydrogen-absorbing alloys having various particle diameters were produced in the same manner as in Example 1. Was applied to form an electrode plate.
Using the negative electrode plate thus produced, a battery was assembled in the same manner as in Example 1, and the battery was initially charged and discharged to obtain a 4/5 A nickel-hydrogen storage battery.

【0021】図6は芯材厚み/水素吸蔵合金粉末の粒子
径比と電池内圧の関係を示したものである。なお電池内
圧は1Cで1.5時間充電を行った際の値である。芯材
厚み/水素吸蔵合金粉末の粒子径比が2.5以上から電
池内圧は上昇している。この原因としては次のように考
えられる。通常、極板の両側の水素吸蔵合金は芯材の穿
孔部によって水素吸蔵合金粒子を介して、水素が移動し
反応することができる。従って図7(b)の模式図に示
すように、芯材の厚みが60μmで芯材厚み/水素吸蔵
合金粉末の粒子径の比が大きくなると、穿孔部に位置す
る水素吸蔵合金粉末粒子の量が増加し、それだけ反応性
が低下する。一方、図7(a)に示すように芯材の厚み
が35μmの場合は穿孔部に位置する合金粒子の量は少
なく反応性は良好になる。
FIG. 6 shows the relationship between the core material thickness / particle diameter ratio of the hydrogen storage alloy powder and the internal pressure of the battery. Note that the battery internal pressure is a value obtained when the battery was charged at 1 C for 1.5 hours. Since the ratio of the core material thickness to the particle diameter of the hydrogen storage alloy powder is 2.5 or more, the battery internal pressure increases. The cause is considered as follows. Normally, hydrogen can move and react in the hydrogen storage alloy on both sides of the electrode plate through the hydrogen storage alloy particles through the perforated portion of the core material. Therefore, as shown in the schematic diagram of FIG. 7B, when the thickness of the core material is 60 μm and the ratio of the thickness of the core material to the particle diameter of the hydrogen storage alloy powder is increased, the amount of the hydrogen storage alloy powder particles located in the perforated portion is increased. And the reactivity decreases accordingly. On the other hand, as shown in FIG. 7A, when the thickness of the core material is 35 μm, the amount of alloy particles located in the perforated portion is small, and the reactivity becomes good.

【0022】この傾向は厚さ35μmの芯材だけでな
く、他の厚みの場合でも同様な傾向であり、芯材の厚み
そのものによらず、芯材厚み/水素吸蔵合金粉末の粒子
径比に依存するものである。しかしながら本実施例のよ
うにNiめっきした穿孔鋼板の厚みを35μm、水素吸
蔵合金粉末の平均粒子径を20μmとした場合は容量、
その他の電池特性から最も好ましい。
This tendency is the same not only in the case of a core material having a thickness of 35 μm but also in other thicknesses. It depends. However, when the thickness of the Ni-plated perforated steel sheet was 35 μm and the average particle diameter of the hydrogen storage alloy powder was 20 μm as in this example, the capacity was
Most preferable from other battery characteristics.

【0023】このように芯材の厚みと水素吸蔵合金粉末
の平均粒子径を最適化することにより、水素吸蔵合金の
反応性を向上させ、高容量化が可能となる。なお実施例
においてはニッケル−水素蓄電池を用いて説明したが、
ニッケル−カドミウム蓄電池を用いても同様の効果が得
られる。
By optimizing the thickness of the core material and the average particle size of the hydrogen storage alloy powder in this way, the reactivity of the hydrogen storage alloy can be improved and the capacity can be increased. Although the embodiment has been described using a nickel-hydrogen storage battery,
Similar effects can be obtained by using a nickel-cadmium storage battery.

【0024】[0024]

【発明の効果】以上のように本発明はアルカリ蓄電池の
負極芯材として、500〜700℃で熱処理した総厚さ
が20〜50μmのNiめっきした穿孔鋼板を用いるこ
とによって、電極容量に寄与しない部分の占有体積を削
減し、アルカリ蓄電池の高エネルギー密度化を可能にし
たものである。
As described above, the present invention does not contribute to the electrode capacity by using a Ni-plated perforated steel sheet having a total thickness of 20 to 50 μm heat-treated at 500 to 700 ° C. as the negative electrode core material of the alkaline storage battery. The occupied volume of the portion is reduced, and the energy density of the alkaline storage battery can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における負極芯材の熱処理温度
と極板脱落率の関係を示す図
FIG. 1 is a diagram showing a relationship between a heat treatment temperature of a negative electrode core material and an electrode plate falling rate in an example of the present invention.

【図2】同負極芯材の熱処理温度と伸び率およびビッカ
ース硬度の関係を示す図
FIG. 2 is a graph showing the relationship between the heat treatment temperature, elongation, and Vickers hardness of the negative electrode core material.

【図3】同負極芯材の熱処理温度と電気抵抗との関係を
示す図
FIG. 3 is a diagram showing a relationship between a heat treatment temperature and an electric resistance of the negative electrode core material.

【図4】同負極芯材の熱処理時間とペースト脱落率との
関係を示す図
FIG. 4 is a diagram showing a relationship between a heat treatment time of the negative electrode core material and a paste falling rate.

【図5】同負極芯材の熱処理時間と伸び率およびビッカ
ース硬度との関係を示す図
FIG. 5 is a graph showing the relationship between heat treatment time, elongation, and Vickers hardness of the negative electrode core material.

【図6】同負極芯材厚み/合金粒子径比と電池内圧力と
の関係を示す図
FIG. 6 is a diagram showing the relationship between the thickness of the negative electrode core material / alloy particle diameter and the internal pressure of the battery.

【図7】同負極芯材の厚み/合金粒子径比を表す模式図FIG. 7 is a schematic diagram showing the thickness / alloy particle diameter ratio of the negative electrode core material.

フロントページの続き (72)発明者 高野 隆 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued on the front page (72) Inventor Takashi Takano 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正・負極、セパレータ及びアルカリ電解液
からなるアルカリ蓄電池であって、負極の芯材は総厚み
が20〜50μmのNiめっきした穿孔鋼板を500〜
700℃の温度で熱処理したものであるアルカリ蓄電
池。
An alkaline storage battery comprising a positive electrode, a negative electrode, a separator and an alkaline electrolyte, wherein the core material of the negative electrode is a Ni-plated perforated steel sheet having a total thickness of 20 to 50 μm.
An alkaline storage battery that has been heat-treated at a temperature of 700 ° C.
【請求項2】負極芯材はそのビッカース硬度(HV)が
70〜130HVである請求項1記載のアルカリ蓄電
池。
2. The alkaline storage battery according to claim 1, wherein the negative electrode core material has a Vickers hardness (HV) of 70 to 130 HV.
【請求項3】負極芯材は鋼板表面に0.5〜3μmの厚
さのNiめっきが施されたものである請求項1記載のア
ルカリ蓄電池。
3. The alkaline storage battery according to claim 1, wherein the negative electrode core material has a steel plate surface plated with Ni having a thickness of 0.5 to 3 μm.
【請求項4】正・負極、セパレータ及びアルカリ電解液
からなるニッケル−水素蓄電池であって、負極の芯材は
総厚みが20〜50μmのNiめっきした穿孔鋼板から
なり、負極活物質である水素吸蔵合金の平均粒子径とこ
の芯材の厚みとの比が1:1〜2.5にあるニッケル−
水素蓄電池。
4. A nickel-hydrogen storage battery comprising a positive / negative electrode, a separator and an alkaline electrolyte, wherein the core material of the negative electrode is a perforated steel sheet plated with Ni having a total thickness of 20 to 50 μm, Nickel whose ratio between the average particle diameter of the storage alloy and the thickness of the core material is 1: 1 to 2.5.
Hydrogen storage battery.
JP34299296A 1996-12-24 1996-12-24 Alkaline storage battery Expired - Fee Related JP3478030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34299296A JP3478030B2 (en) 1996-12-24 1996-12-24 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34299296A JP3478030B2 (en) 1996-12-24 1996-12-24 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH10188994A true JPH10188994A (en) 1998-07-21
JP3478030B2 JP3478030B2 (en) 2003-12-10

Family

ID=18358107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34299296A Expired - Fee Related JP3478030B2 (en) 1996-12-24 1996-12-24 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3478030B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038834A1 (en) * 2000-11-13 2002-05-16 Matsushita Electric Industrial Co., Ltd. Porous nickel foil for alkaline battery cathode, production method therefor and production device therefor
JP2007311095A (en) * 2006-05-17 2007-11-29 Sanyo Electric Co Ltd Alkaline storage battery
JP2007323892A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Alkaline storage battery
JP2008186658A (en) * 2007-01-29 2008-08-14 Sanyo Electric Co Ltd Nickel-hydrogen secondary battery
WO2021149489A1 (en) * 2020-01-23 2021-07-29 三洋電機株式会社 Secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038834A1 (en) * 2000-11-13 2002-05-16 Matsushita Electric Industrial Co., Ltd. Porous nickel foil for alkaline battery cathode, production method therefor and production device therefor
CN100400715C (en) * 2000-11-13 2008-07-09 松下电器产业株式会社 Multi-porous Ni foil for cathode of alkaline battery method for mfg. Ni foil and mfg. device thereof
US7998329B2 (en) 2000-11-13 2011-08-16 Panasonic Corporation Porous nickel foil for negative electrode of alkaline battery, production method therefor and production device therefor
JP2007311095A (en) * 2006-05-17 2007-11-29 Sanyo Electric Co Ltd Alkaline storage battery
JP2007323892A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Alkaline storage battery
JP2008186658A (en) * 2007-01-29 2008-08-14 Sanyo Electric Co Ltd Nickel-hydrogen secondary battery
WO2021149489A1 (en) * 2020-01-23 2021-07-29 三洋電機株式会社 Secondary battery
CN114946053A (en) * 2020-01-23 2022-08-26 三洋电机株式会社 Secondary battery

Also Published As

Publication number Publication date
JP3478030B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
US5935732A (en) Hydrogen absorbing electrode and its manufacturing method
JP3478030B2 (en) Alkaline storage battery
JPH05205746A (en) Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery
CN1211089A (en) Alkaline storage battery
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
JPH0580106B2 (en)
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3113345B2 (en) Hydrogen storage alloy electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH05283071A (en) Activation of metal hydride storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2925695B2 (en) Method for manufacturing metal hydride storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH01134862A (en) Alkaline zinc storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JPH06338344A (en) Sealed nickel-metal hydride alkaline storage battery
JP4552238B2 (en) Method for producing hydrogen storage alloy electrode
JP3070081B2 (en) Sealed alkaline storage battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP2003068291A (en) Formation method for gas tight nickel - hydrogen storage battery
JPH0850919A (en) Manufacture of nickel metal hydride cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees