JPH0729569A - Manufacture of hydrogen storage alloy electrode - Google Patents

Manufacture of hydrogen storage alloy electrode

Info

Publication number
JPH0729569A
JPH0729569A JP5198864A JP19886493A JPH0729569A JP H0729569 A JPH0729569 A JP H0729569A JP 5198864 A JP5198864 A JP 5198864A JP 19886493 A JP19886493 A JP 19886493A JP H0729569 A JPH0729569 A JP H0729569A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
battery
storage alloy
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5198864A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Koji Yamamura
康治 山村
Hajime Seri
肇 世利
Yoichiro Tsuji
庸一郎 辻
Naoko Maekawa
奈緒子 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5198864A priority Critical patent/JPH0729569A/en
Publication of JPH0729569A publication Critical patent/JPH0729569A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the initial characteristics of an electrode containing a hydrogen storage alloy, the gas absorption characteristics thereof during electric charging, and cycle life thereof by immersing the electrode into an aqueous solution of alkali for a specified time period after the electrode has been electrically charged. CONSTITUTION:After the step of electrically charging an electrode containing a hydrogen storage alloy, this electrode is immersed in an aqueous solution of alkali such as caustic alkali solution, kept at a temperature of 95 to 120 deg., for a specified time period. As a result, the surface of the electrode which is necessary for electric charging and discharging is reformed and, during the electric charging and discharging after the formation of the battery, it is possible to suppress the elution and precipitation of fusible metal. Accordingly the initial characteristics and the gas absorption characteristics are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉形ニッケル−水素
蓄電池などに用いる水素吸蔵合金電極の製造法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy electrode used in a sealed nickel-hydrogen storage battery or the like.

【0002】[0002]

【従来の技術】各種の電源として広く使われているアル
カリ蓄電池は、高信頼性が期待でき、小形軽量化も可能
であるなどの理由から、小形電池は各種ポ−タブル機器
用に、また大形電池は産業用にそれぞれ使われてきた。
このアルカリ蓄電池において、正極としては一部空気極
や酸化銀極なども取り上げられているが、ほとんどの場
合はニッケル電極である。ニッケル電極は、ポケット式
から焼結式に代わって特性が向上し、さらに密閉化が可
能になるとともに用途も広がった。一方、負極としては
カドミウムの他に亜鉛、鉄、水素などが対象となってい
る。しかし、現在のところカドミウム電極が主体であ
る。ところが、一層の高エネルギ−密度を達成するため
に、金属水素化物つまり水素吸蔵合金を負極を使ったニ
ッケル−水素蓄電池が注目され、水素吸蔵合金電極につ
いて製法などに多くの提案がされている。たとえば、水
素吸蔵合金粉末の酸化や成型性を改善するために、この
合金粉末の表面にニッケルや銅をメッキして表面に多孔
性の金属層を形成する技術がよく知られている。さら
に、合金製造後に合金の均質化のために高温で熱処理す
る方法、あるいは合金粉末中の完全な合金になっていな
いアルカリ溶液に可溶性の金属を溶解除去することによ
り長寿命化を図る目的で、合金粉末またはこれを組み込
んだ電極をアルカリにより処理する方法などがある。そ
のほかにも各種の添加剤など、性能の安定性や寿命向上
のための手段が種々講じられている。
2. Description of the Related Art Alkaline storage batteries that are widely used as various power sources are expected to have high reliability and can be made compact and lightweight. Shape batteries have been used for industrial purposes.
In this alkaline storage battery, an air electrode, a silver oxide electrode, and the like are partially taken as the positive electrode, but in most cases, the nickel electrode is used. Nickel electrode has improved its characteristics from the pocket type to the sintered type, and has become possible to be hermetically sealed and expanded its applications. On the other hand, as the negative electrode, in addition to cadmium, zinc, iron, hydrogen, etc. are targeted. However, at present, the cadmium electrode is mainly used. However, in order to achieve an even higher energy density, a nickel-hydrogen storage battery using a metal hydride, that is, a hydrogen storage alloy as a negative electrode has been receiving attention, and many proposals have been made for a method for manufacturing a hydrogen storage alloy electrode. For example, in order to improve the oxidization and moldability of the hydrogen storage alloy powder, a technique of plating nickel or copper on the surface of the alloy powder to form a porous metal layer on the surface is well known. Furthermore, a method of heat treatment at a high temperature for homogenizing the alloy after manufacturing the alloy, or for the purpose of prolonging the life by dissolving and removing the soluble metal in the alkaline solution which is not a complete alloy in the alloy powder, There is a method of treating the alloy powder or the electrode incorporating the alloy powder with an alkali. In addition to this, various means such as various additives have been taken to improve the stability of the performance and the life.

【0003】水素吸蔵合金電極の製法としては、合金粉
末を焼結する方式と、発泡状もしくは繊維状の金属多孔
体またはパンチングメタルなどに合金粉末のペーストを
充填または塗着する方式のペ−スト式がある。用いる水
素吸蔵合金としては、希土類系のMmNi5をベースと
した多元系合金が主である。これについてはさらに高容
量にすることが望まれている。また、Zr(Ti)−N
iをベースとするAB2系合金は、最終的には高容量に
なるが、充放電サイクルの初期における放電特性にやや
問題を残しいてる。そのほかに密閉形電池で要求される
充放電サイクル初期における水素吸蔵合金電極の放電特
性と充電時におけるガス吸収性が重要である。
As a method for producing a hydrogen storage alloy electrode, a method of sintering alloy powder and a method of filling or coating a paste of alloy powder on a foamed or fibrous porous metal body or punching metal or the like. There is a formula. The hydrogen storage alloy used is mainly a multi-element alloy based on rare earth MmNi 5 . Regarding this, it is desired to further increase the capacity. In addition, Zr (Ti) -N
The AB2-based alloy based on i has a high capacity in the end, but it has some problems in the discharge characteristics in the initial stage of the charge / discharge cycle. In addition, the discharge characteristics of the hydrogen storage alloy electrode at the beginning of the charge / discharge cycle and the gas absorption at the time of charging, which are required for the sealed battery, are important.

【0004】[0004]

【発明が解決しようとする課題】水素吸蔵合金極の容量
向上、性能の安定性や寿命向上のための手段として、水
素吸蔵合金粉末をアルカリ溶液に浸漬するアルカリ処理
が行われる場合がある。その主な目的は、合金製造時に
偏析などで所望の合金になっていない金属で、電極構成
後電池内で溶解する可能性のある金属をあらかじめ除去
することである。したがって、この目的のためのアルカ
リ溶液浸漬は、溶解金属を溶解し、所望合金領域を破壊
しないためにも苛酷な条件とするのは好ましくない。し
かし、電極にしてからアルカリ溶液に浸漬する場合は、
酸化が含まれ、不純物の除去よりさらに苛酷でもよい。
たとえばZr(Ti)−NiをベースとするAB2系合
金の場合、この処理により表面は金属色から完全に黒褐
色に変化する。このことで充放電サイクル初期における
放電特性改良の効果が得られる。その理由として、合金
の表面がアルカリにより酸化され、アルカリに対する濡
れ易さがいちじるしく向上することがあげられる。一
方、初期特性の比較的優れたMm−Ni系の場合も、電
極構成後のアルカリ処理により、合金表面は黒褐色とな
り、利用率が向上し、不純物の除去効果も加算されてガ
ス吸収性も改善される。
As a means for improving the capacity of the hydrogen storage alloy electrode, stability of performance, and improvement of life, there is a case where an alkali treatment is carried out by immersing the hydrogen storage alloy powder in an alkaline solution. Its main purpose is to remove in advance a metal that has not been formed into a desired alloy due to segregation or the like at the time of alloy production and may dissolve in the battery after the electrode is formed. Therefore, it is not preferable to immerse the alkaline solution for this purpose under severe conditions in order to dissolve the molten metal and not destroy the desired alloy region. However, when making it into an electrode and then immersing it in an alkaline solution,
Oxidation is included and may be more severe than removal of impurities.
For example, in the case of an AB 2 -based alloy based on Zr (Ti) -Ni, this treatment causes the surface to completely change from metallic color to blackish brown. As a result, the effect of improving the discharge characteristics at the beginning of the charge / discharge cycle can be obtained. The reason is that the surface of the alloy is oxidized by the alkali and the wettability with the alkali is remarkably improved. On the other hand, even in the case of the Mm-Ni system, which has relatively excellent initial characteristics, the alkali treatment after the electrode configuration makes the alloy surface blackish brown, improving the utilization rate and adding the effect of removing impurities to improve the gas absorption. To be done.

【0005】ところが、この電極構成後のアルカリ処理
のみでは、電極内部においては粉末の処理にみられる偏
析などにより所望の合金になっていない金属で、電極構
成後電池内で溶解する可能性のある金属をあらかじめ除
去する効果はほとんど期待できない。また、初めから粉
末の状態において電極を処理するときのような苛酷なア
ルカリ処理を行うと、個々の粒子全てが酸化を受けるの
で、電極としての性能はむしろ劣化する。従って本発明
は、前述のようなアルカリ処理を改良して水素吸蔵合金
電極の初期特性、充電時におけるガス吸収性、およびサ
イクル寿命を向上することを目的とする。
However, only with the alkali treatment after the electrode construction, there is a possibility that a metal that does not form a desired alloy due to segregation or the like seen in the powder treatment inside the electrode may dissolve in the battery after the electrode construction. The effect of removing the metal in advance can hardly be expected. Further, if a harsh alkali treatment such as when treating the electrode in the powder state from the beginning is performed, all the individual particles are oxidized, so that the performance as the electrode is rather deteriorated. Therefore, an object of the present invention is to improve the alkaline treatment as described above to improve the initial characteristics of the hydrogen storage alloy electrode, the gas absorbability during charging, and the cycle life.

【0006】[0006]

【課題を解決するための手段】本発明は、水素吸蔵合金
を含む電極を充電する工程あるいは充放電する工程の後
にアルカリ処理することを特徴とする。このアルカリ処
理は、90〜120℃程度の温度において行う。なお、
アルカリ処理の時間は0.5〜5時間程度でよい。ま
た、アルカリとしては比重1.30(20℃)以上の苛
性カリ水溶液が好ましいが、苛性ソ−ダ、水酸化リチウ
ムなどの苛性アルカリ水溶液も有効である。
The present invention is characterized in that an alkali treatment is carried out after a step of charging or charging an electrode containing a hydrogen storage alloy. This alkali treatment is performed at a temperature of about 90 to 120 ° C. In addition,
The time for the alkali treatment may be about 0.5 to 5 hours. As the alkali, a caustic potash aqueous solution having a specific gravity of 1.30 (20 ° C.) or higher is preferable, but caustic soda, lithium hydroxide or the like caustic aqueous solution is also effective.

【0007】なお、水素吸蔵合金電極製造時に電気抵抗
の低いポリビニルアルコ−ルやカルボキシメチルセルロ
−スなどの結着剤を用いた場合、アルカリ処理時に結着
剤が破壊したり溶出したりするが、電極製造時の加圧が
十分であれば、電極を捲回しても合金の粉末の脱落のお
それはない。しかし、あらためて結着剤を添加してもよ
い。また、充電時におけるガス吸収性を向上させるため
に、アルカリ処理後、電極の表面に撥水性樹脂粉末を塗
着することはきわめて有効である。
When a binder such as polyvinyl alcohol or carboxymethyl cellulose having a low electric resistance is used during the production of the hydrogen storage alloy electrode, the binder is destroyed or eluted during the alkali treatment. If the pressure applied during electrode production is sufficient, there is no risk of the alloy powder falling off even if the electrode is wound. However, a binder may be added again. In addition, in order to improve the gas absorbability during charging, it is extremely effective to coat the surface of the electrode with a water-repellent resin powder after the alkali treatment.

【0008】[0008]

【作用】本発明は、水素吸蔵合金が充電によって微粉化
することを利用したものである。すなわち、電極にした
後充電を行って電極として働く粒子面を作り、その後ア
ルカリによる処理を行うことによって、実際に充放電に
必要な表面の改質を行い、後の電池構成後の充放電時に
可溶性金属の溶出、析出などが生じるのを抑制するもの
である。本発明によれば、初期特性およびガス吸収特性
に優れた水素吸蔵合金電極が得られる。なお、アルカリ
処理後、電極の表面に撥水性樹脂粉末を塗着すると、ア
ルカリ処理との相乗効果により充電時におけるガス吸収
性を向上させる上できわめて有効である。
The present invention utilizes the fact that the hydrogen storage alloy is pulverized by charging. That is, after forming an electrode, charging is performed to form a particle surface that functions as an electrode, and then treatment with an alkali is performed to modify the surface necessary for actual charging / discharging. It suppresses elution and precipitation of soluble metals. According to the present invention, a hydrogen storage alloy electrode having excellent initial characteristics and gas absorption characteristics can be obtained. In addition, applying the water-repellent resin powder on the surface of the electrode after the alkali treatment is extremely effective in improving gas absorption at the time of charging due to a synergistic effect with the alkali treatment.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。水素吸蔵
合金としてAB2系合金の一つであるZrMn0.5Cr
0.20.1Ni1.2を粉砕し、360メッシュのふるいを
通過する粉末にポリビニルアルコ−ルの2重量%水溶液
を加えてペーストを作り、このペ−ストを多孔度95
%、厚さ1.0mmの発泡状ニッケル板に充填する。こ
の電極を幅33mm、長さ210mmに裁断し、リ−ド
板をスポット溶接により取り付けた後、100トンの加
圧機で加圧し、さらにロ−ラプレス機を通して厚さ0.
49mmに調整する。
EXAMPLES Examples of the present invention will be described below. ZrMn 0.5 Cr which is one of AB 2 type alloys as a hydrogen storage alloy
0.2 V 0.1 Ni 1.2 was crushed, and a 2% by weight aqueous solution of polyvinyl alcohol was added to the powder which passed through a 360-mesh sieve to make a paste.
%, 1.0 mm thick foamed nickel plate. This electrode was cut into a width of 33 mm and a length of 210 mm, and a lead plate was attached by spot welding. Then, the electrode was pressed with a 100 ton press and further passed through a roller press to a thickness of 0.
Adjust to 49 mm.

【0010】その後苛性カリの30重量%水溶液中25
℃において、負極として1.5Aの電流で5時間充電
し、1Aでほぼ完全放電になるまで放電する。これをそ
のまま110〜114℃に温度をあげて1時間保持す
る。その結果、黒色沈澱があり、電極面が金属色から黒
褐色に変化する。この電極をAとする。
Then 25 in a 30% by weight aqueous solution of caustic potash
At 0 ° C., the negative electrode is charged at a current of 1.5 A for 5 hours and discharged at 1 A until it is almost completely discharged. The temperature is raised as it is to 110 to 114 ° C. and kept for 1 hour. As a result, there is a black precipitate, and the electrode surface changes from metallic color to blackish brown. This electrode is designated as A.

【0011】比較のために、上記と同じ水素吸蔵合金粉
末を用い、これを80〜82℃においてアルカリ処理し
た後、上記と同様に発泡ニッケル板に充填して構成した
電極をBとする。また、上記と同じ水素吸蔵合金粉末を
用いて上記と同様にして電極を構成した後、110〜1
14℃でアルカリ処理した水素吸蔵合金電極をCとす
る。
For comparison, the same hydrogen storage alloy powder as described above is used, and after being alkali-treated at 80 to 82 ° C., an electrode formed by filling a foam nickel plate in the same manner as above is designated as B. In addition, after the electrode is formed in the same manner as above using the same hydrogen storage alloy powder as described above, 110 to 1
Let C be the hydrogen storage alloy electrode treated with alkali at 14 ° C.

【0012】まず、3者の負極としての特性を調べるた
めに、負極律則になるように十分容量の大きい焼結式ニ
ッケル電極を対極として用い、密閉形電池を想定して、
両電極間に挟んだセパレータには比重1.26の苛性カ
リ水溶液に20g/lの水酸化リチウムを溶解した電解
液を含浸させた。5時間率で負極容量の140%定電流
充電し、0.5Aで0.9Vまで定電流放電する充放電
を繰り返したところ、電極Aの放電容量密度は1サイク
ル目305mAh/g、2サイクル目359mAh/
g、3サイクル目367mAh/gで以後ほぼ一定にな
った。ところが電極Bは、1サイクル目241mAh/
g、3サイクル目298mAh/g、5サイクル目34
4mAh/g、8サイクル以後ほぼ一定で360mAh
/gであった。また、電極Cは、1サイクル目297m
Ah/g、3サイクル目332mAh/g、5サイクル
目354mAh/g、6サイクル以後ほぼ一定で365
mAh/gであった。この結果から電極Aはサイクル初
期特性が向上し、利用率も高いことがわかる。
First, in order to investigate the characteristics of the three types of negative electrodes, a sintered nickel electrode having a sufficiently large capacity so as to satisfy the negative electrode law was used as a counter electrode, and a sealed battery was assumed.
The separator sandwiched between both electrodes was impregnated with an electrolytic solution prepared by dissolving 20 g / l of lithium hydroxide in a caustic potash solution having a specific gravity of 1.26. When a constant current charge of 140% of the negative electrode capacity was performed at a rate of 5 hours and a constant current discharge at 0.5 A to 0.9 V was repeated, the discharge capacity density of the electrode A was 305 mAh / g at the first cycle and 305 mAh / g at the second cycle. 359 mAh /
At 367th cycle 367 mAh / g, it became almost constant thereafter. However, the electrode B is 241 mAh / in the first cycle.
g, 3rd cycle 298 mAh / g, 5th cycle 34
4mAh / g, almost constant after 8 cycles, 360mAh
/ G. Also, the electrode C is 297 m in the first cycle.
Ah / g, 3rd cycle 332 mAh / g, 5th cycle 354 mAh / g, almost constant after 6th cycle 365
It was mAh / g. From these results, it can be seen that the electrode A has improved cycle initial characteristics and a high utilization rate.

【0013】つぎに、上記の各水素吸蔵合金電極と、公
知のニッケル電極、親水処理したポリプロピレン不織布
セパレ−タ、比重1.25の苛性カリ水溶液に25g/
lの水酸化リチウムを溶解した電解液を用いて、Sub
C型の密閉形ニッケル−水素蓄電池を構成した。公称容
量は3.0Ahであり、正極に対する負極の容量は15
0%である。なお、いずれの水素吸蔵合金極もガス吸収
特性向上を目的に電極面に市販の4フッ化エチレン−6
フッ化プロピレン共重合樹脂粉末を0.5〜0.6mg
/cm2塗着している。この電極Aを用いた電池をa、
比較の電極Bを用いた電池をb、電極Cを用いた電池を
cとする。
Then, 25 g / each of the above hydrogen storage alloy electrodes, a known nickel electrode, a hydrophilic polypropylene non-woven separator and a caustic potash aqueous solution having a specific gravity of 1.25 were used.
Using an electrolyte solution in which 1 part of lithium hydroxide is dissolved,
A C-type sealed nickel-hydrogen storage battery was constructed. The nominal capacity is 3.0 Ah, and the capacity of the negative electrode with respect to the positive electrode is 15
It is 0%. It should be noted that any of the hydrogen storage alloy electrodes has a commercially available tetrafluoroethylene-6 on the electrode surface for the purpose of improving gas absorption characteristics.
0.5-0.6 mg of fluorinated propylene copolymer resin powder
/ Cm 2 is applied. A battery using this electrode A is
A battery using the comparative electrode B is referred to as b, and a battery using the electrode C is referred to as c.

【0014】まず、サイクル初期の放電電圧と容量を比
較した。8時間率で容量の150%定電流充電し、0.
5Aで0.9Vまで定電流放電する充放電を行ったとこ
ろ、電池aは1サイクル目で平均電圧は1.24Vであ
り、2サイクル以降1.25V、放電容量は2サイクル
以後ほぼ一定で2.95〜3.00Ahであった。とこ
ろが、電池bは、1サイクル目の平均電圧は1.18V
であり、放電容量が向上してほぼ一定になるまでに8サ
イクルを要し、平均電圧は15サイクルでもaよりやや
低い。電池cは、ほぼ電池aと同じ1サイクル目の平均
電圧は1.22Vであり、放電容量が向上してほぼ一定
になるまでに3サイクルを要し、容量は2.4〜2.6
Ah、平均電圧は25サイクルで電池aよりやや低かっ
た。
First, the discharge voltage and capacity at the beginning of the cycle were compared. Charged at a constant current of 150% of capacity at a rate of 8 hours,
When the battery was charged and discharged by constant current discharge up to 0.9 V at 5 A, the average voltage of the battery a was 1.24 V in the first cycle, 1.25 V after 2 cycles, and the discharge capacity was almost constant after 2 cycles. It was 0.95 to 3.00 Ah. However, in the battery b, the average voltage in the first cycle is 1.18V.
Therefore, it takes 8 cycles until the discharge capacity is improved and becomes almost constant, and the average voltage is slightly lower than a even at 15 cycles. Battery c has an average voltage of 1.22 V in the first cycle, which is almost the same as battery a, and it takes 3 cycles until the discharge capacity improves and becomes almost constant, and the capacity is 2.4 to 2.6.
Ah, the average voltage was 25 cycles, which was slightly lower than that of the battery a.

【0015】つぎに、各電池それぞれ10セルを用い、
急速充電特性を調べた。周囲温度を0℃とし、まず1.
0C充電を行ったところ、容量の140%充電時におけ
る電池内圧力は、電池aは1.0kg/cm2、電池b
は3.7kg/cm2、電池cは1.6kg/cm2であ
った。また、1.3C充電により容量の140%充電時
における電池内圧力は、電池aは2.5kg/cm2
電池bは5.2kg/cm2、電池cは3.1kg/c
2であった。つぎに、各電池それぞれ10セルを用
い、周囲温度40℃において0.75Cで容量の130
%を定電流充電し、1.0Cで0.9Vまで定電流放電
する条件で寿命特性を比較した。その結果、放電容量
は、300サイクルでは電池a、cとも初期の97%を
示しているのに対して、電池bは91%、500サイク
ルで電池aは90%であったのに電池bは75%、電池
cは82%であった。以上の結果から明らかなように、
電池aは急速充電特性に優れ、しかも長寿命であること
がわかる。
Next, using 10 cells for each battery,
The quick charge characteristics were investigated. The ambient temperature is set to 0 ° C., and 1.
When the battery was charged at 0C, the internal pressure of the battery when it was charged to 140% of its capacity was 1.0 kg / cm 2 for battery a and b for battery b.
Was 3.7 kg / cm 2 and the battery c was 1.6 kg / cm 2 . In addition, the battery internal pressure at the time of charging 140% of the capacity by charging 1.3C is 2.5 kg / cm 2 for the battery a,
Battery b is 5.2 kg / cm 2 , battery c is 3.1 kg / c
It was m 2 . Next, 10 cells of each battery were used, and the capacity was 130 at a temperature of 0.75C at an ambient temperature of 40 ° C.
%, And the life characteristics were compared under the conditions of constant current charging of 1.0% and constant current discharging to 0.9 V at 1.0 C. As a result, the discharge capacities of the batteries a and c at 300 cycles were 97% of the initial values, whereas the discharge capacity was 91% for the battery b and 90% for the battery a at 500 cycles, but the battery b was 90%. It was 75% and battery c was 82%. As is clear from the above results,
It can be seen that the battery a is excellent in rapid charging characteristics and has a long life.

【0016】[0016]

【発明の効果】以上のように本発明によれば、初期特
性、急速充電特性および寿命の優れた密閉形ニッケル−
水素蓄電池を与える水素吸蔵合金電極を得ることができ
る。
As described above, according to the present invention, a sealed nickel-metal alloy having excellent initial characteristics, rapid charging characteristics and long life is provided.
It is possible to obtain a hydrogen storage alloy electrode that provides a hydrogen storage battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 庸一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 前川 奈緒子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoichiro Tsuji 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Naoko Maekawa 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を含む電極を充電する工程
と充電後に95〜120℃のアルカリ水溶液に浸漬する
工程を有することを特徴とする水素吸蔵合金電極の製造
法。
1. A method for producing a hydrogen storage alloy electrode, comprising a step of charging an electrode containing a hydrogen storage alloy and a step of immersing the electrode in a 95 to 120 ° C. alkaline aqueous solution after charging.
【請求項2】 水素吸蔵合金を含む電極を充放電する工
程と、充放電後に95〜120℃のアルカリ水溶液に浸
漬する工程を有することを特徴とする水素吸蔵合金電極
の製造法。
2. A method for producing a hydrogen storage alloy electrode, comprising: a step of charging / discharging an electrode containing a hydrogen storage alloy; and a step of immersing in an alkaline aqueous solution at 95 to 120 ° C. after charging / discharging.
JP5198864A 1993-07-15 1993-07-15 Manufacture of hydrogen storage alloy electrode Pending JPH0729569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5198864A JPH0729569A (en) 1993-07-15 1993-07-15 Manufacture of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5198864A JPH0729569A (en) 1993-07-15 1993-07-15 Manufacture of hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH0729569A true JPH0729569A (en) 1995-01-31

Family

ID=16398198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5198864A Pending JPH0729569A (en) 1993-07-15 1993-07-15 Manufacture of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH0729569A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911243B2 (en) 1996-12-31 2005-06-28 3M Innovative Properties Company Adhesives having a microreplicated topography and methods of making and using same
US10106707B2 (en) 2013-06-06 2018-10-23 3M Innovative Properties Company Method for preparing structured adhesive articles
US10308004B2 (en) 2013-06-06 2019-06-04 3M Innovative Properties Company Method for preparing structured adhesive articles
US10316226B2 (en) 2013-06-06 2019-06-11 3M Innovative Properties Company Method for preparing structured laminating adhesive articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911243B2 (en) 1996-12-31 2005-06-28 3M Innovative Properties Company Adhesives having a microreplicated topography and methods of making and using same
US10106707B2 (en) 2013-06-06 2018-10-23 3M Innovative Properties Company Method for preparing structured adhesive articles
US10308004B2 (en) 2013-06-06 2019-06-04 3M Innovative Properties Company Method for preparing structured adhesive articles
US10316226B2 (en) 2013-06-06 2019-06-11 3M Innovative Properties Company Method for preparing structured laminating adhesive articles

Similar Documents

Publication Publication Date Title
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JPH0479474B2 (en)
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0513077A (en) Manufacture of hydrogen storage alloy electrode
JPH0729568A (en) Manufacture of hydrogen storage alloy electrode
JP3189361B2 (en) Alkaline storage battery
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH06290775A (en) Manufacture of hydrogen storage alloy pole for battery
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode
JP2000149956A (en) Hydride secondary battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JP2001196092A (en) Sealed nickel-hydrogen battery and manufacturing method therefor