JP3317099B2 - Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode - Google Patents

Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode

Info

Publication number
JP3317099B2
JP3317099B2 JP19016095A JP19016095A JP3317099B2 JP 3317099 B2 JP3317099 B2 JP 3317099B2 JP 19016095 A JP19016095 A JP 19016095A JP 19016095 A JP19016095 A JP 19016095A JP 3317099 B2 JP3317099 B2 JP 3317099B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy powder
producing
storage alloy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19016095A
Other languages
Japanese (ja)
Other versions
JPH0931501A (en
Inventor
剛平 鈴木
忠雄 木村
英雄 浅香
誠二 山口
宏夢 松田
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19016095A priority Critical patent/JP3317099B2/en
Publication of JPH0931501A publication Critical patent/JPH0931501A/en
Application granted granted Critical
Publication of JP3317099B2 publication Critical patent/JP3317099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金粉末とその
製造法、および水素吸蔵合金粉末を用いてなる水素吸蔵
電極の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy powder and a method for producing the same, and a method for producing a hydrogen storage electrode using the hydrogen storage alloy powder.

【0002】[0002]

【従来の技術】水素吸蔵合金は、電気化学的に水素の吸
蔵・放出が可能な、ニッケル(以下、Niと称す)を構
成元素中に有する系を中心に、ニッケル−水素蓄電池の
電極材料として用いられている。通常約100μm以下
の水素吸蔵合金粉末が電極材料として用いられている
が、このような水素吸蔵合金粉末を得るための製造法と
して、高周波溶解炉により水素吸蔵合金の溶湯を作製
し、これを鋳造して合金塊とした後、この合金塊を機械
的に粉砕する方法(以降、鋳造粉砕法と称す)が、安定
した特性を有する合金粉末を多量に製造できる方法とし
て、最も頻繁に用いられている。この水素吸蔵合金粉末
を結着剤、増粘剤等と混練したものを、導電性三次元多
孔体に充填するか、あるいはパンチングメタルなどの二
次元多孔体上に塗着して水素吸蔵電極を作製し、この電
極を負極として従来から用いられているニッケル極を正
極として組み合わせてニッケル−水素蓄電池を構成して
いる。
2. Description of the Related Art A hydrogen storage alloy is mainly used as a material for an electrode of a nickel-hydrogen storage battery, mainly for a system having nickel (hereinafter referred to as Ni) as a constituent element capable of electrochemically storing and releasing hydrogen. Used. Usually, a hydrogen storage alloy powder having a size of about 100 μm or less is used as an electrode material. As a manufacturing method for obtaining such a hydrogen storage alloy powder, a molten metal of a hydrogen storage alloy is prepared by a high-frequency melting furnace and cast. The method of mechanically pulverizing this alloy ingot after it is made into an alloy ingot (hereinafter referred to as a casting pulverization method) is the most frequently used method for producing a large amount of alloy powder having stable characteristics. I have. The hydrogen storage alloy powder kneaded with a binder, a thickener and the like is filled in a conductive three-dimensional porous body, or is coated on a two-dimensional porous body such as a punching metal to form a hydrogen storage electrode. The nickel-hydrogen storage battery is constructed by combining the electrode and the conventional negative electrode as a positive electrode.

【0003】このニッケル−水素蓄電池は、充放電サイ
クルの繰り返しにより容量が次第に低下する。その原因
の1つとして、電解液および過充電時に正極から発生す
る酸素ガスが水素吸蔵合金粉末の表面を酸化・溶出さ
せ、負極の充電受入れ性を低下させることがあげられ
る。この酸化・溶出を抑制するために、例えば水素吸蔵
合金粉末の表面にNi、銅(以下、Cuと称す)等をメ
ッキなどにより被覆し、電池構成する方法が提案されて
きた。
[0003] The capacity of this nickel-hydrogen storage battery gradually decreases due to repetition of charge / discharge cycles. One of the causes is that the electrolyte solution and oxygen gas generated from the positive electrode at the time of overcharging oxidize and elute the surface of the hydrogen storage alloy powder, thereby lowering the charge acceptability of the negative electrode. In order to suppress the oxidation and elution, for example, a method of forming a battery by coating the surface of a hydrogen storage alloy powder with Ni, copper (hereinafter, referred to as Cu) or the like by plating or the like has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、この方法は高
価でかつ被覆条件の制御が困難な上、酸化・溶出抑制に
有効な被覆量が合金粉末に対して10重量%以上である
ので単位重量当たりのエネルギー密度が大幅に低下する
など、工業的な実用性に乏しかった。よって、従来は水
素吸蔵合金粉末の酸化・溶出を抑制し、ニッケル−水素
蓄電池の寿命を伸長させる実用的な方法が存在しなかっ
た。
However, this method is expensive, it is difficult to control the coating conditions, and the coating amount effective for suppressing oxidation and elution is 10% by weight or more based on the alloy powder. It was poor in industrial practicality, for example, the energy density per hit was greatly reduced. Therefore, there has been no practical method for suppressing oxidation and elution of the hydrogen storage alloy powder and extending the life of the nickel-hydrogen storage battery.

【0005】本発明は長寿命なニッケル−水素蓄電池を
提供するに当たり、実用的な方法で容量低下の主因であ
る合金粉末の酸化・溶出を抑制しうる水素吸蔵合金粉末
の製造法、および水素吸蔵電極の製造法を提供すること
を目的とするものである。
The present invention provides a long-life nickel-hydrogen storage battery, a method for producing a hydrogen-absorbing alloy powder capable of suppressing oxidation and elution of an alloy powder, which is a main cause of capacity reduction, by a practical method, and hydrogen storage. An object of the present invention is to provide a method for manufacturing an electrode.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、スカンジウム(以下、Scと称す)の酸化
物あるいは水酸化物の少なくとも1種により水素吸蔵合
金の表面層が少なくとも部分的に被覆された構成であ
る。
According to the present invention, in order to achieve the above object, the surface layer of the hydrogen storage alloy is at least partially formed of at least one of scandium (hereinafter referred to as Sc ) oxide or hydroxide. It is a configuration covered with.

【0007】また、上記酸化物あるいは水酸化物の被覆
量は、金属換算で0.1〜1重量%、および合金粉末の
平均粒径は、10〜75μmであることが好ましい。
The coating amount of the oxide or hydroxide is preferably 0.1 to 1% by weight in terms of metal, and the average particle size of the alloy powder is preferably 10 to 75 μm.

【0008】ScおよびYの酸化物あるいは水酸化物を
水素吸蔵合金粉末の表面層に被覆する方法としては、以
下に示す3つの方法のいずれかがよい。
As a method for coating the surface layer of the hydrogen storage alloy powder with the oxides or hydroxides of Sc and Y, any of the following three methods is preferable.

【0009】第1は、ScおよびYの少なくとも1種を
合金表面に金属状態で被覆し、この合金粉末をアルカリ
水溶液中に浸漬(以下アルカリ浸漬と称す)する方法で
ある。ここで、ScおよびYを被覆する方法として還元
−拡散反応がよい。また浸漬するアルカリ水溶液の液
温、比重、浸漬時間は、それぞれ45〜90℃、1.1
以上、10分〜24時間が好ましい。
The first is a method in which at least one of Sc and Y is coated on an alloy surface in a metal state, and the alloy powder is immersed in an alkaline aqueous solution (hereinafter referred to as alkaline immersion). Here, a reduction-diffusion reaction is preferable as a method of coating Sc and Y. The temperature, specific gravity, and immersion time of the alkaline aqueous solution to be immersed were 45 to 90 ° C. and 1.1, respectively.
As described above, 10 minutes to 24 hours are preferable.

【0010】第2は、ScおよびYの酸化物あるいは水
酸化物の少なくとも1種を水素吸蔵合金粉末の表面に熱
拡散させる方法である。
A second method is to thermally diffuse at least one of oxides and hydroxides of Sc and Y to the surface of the hydrogen storage alloy powder.

【0011】第3は、ScおよびYの少なくとも1種を
被覆した水素吸蔵合金粉末を作製し、この合金粉末を用
いて電極成型後、アルカリ浸漬する方法である。ここで
浸漬するアルカリ水溶液の液温、比重、浸漬時間は、そ
れぞれ45〜90℃、1.1以上、10分〜24時間が
好ましい。
A third method is to prepare a hydrogen-absorbing alloy powder coated with at least one of Sc and Y, form an electrode using the alloy powder, and immerse in an alkali. The temperature, specific gravity, and immersion time of the alkaline aqueous solution to be immersed here are preferably 45 to 90 ° C, 1.1 or more, and 10 minutes to 24 hours, respectively.

【0012】[0012]

【作用】本発明は上記構成により、合金粉末の表面層に
被覆されたScおよびYの酸化物あるいは水酸化物が合
金粉末の保護被膜として作用し、合金の耐酸化・溶出性
が向上し、サイクル寿命等の特性が向上するものであ
る。
According to the present invention, the oxides or hydroxides of Sc and Y coated on the surface layer of the alloy powder act as a protective coating for the alloy powder, and the oxidation resistance and elution of the alloy are improved. Characteristics such as cycle life are improved.

【0013】ScおよびYの酸化物あるいは水酸化物の
合金粉末への被覆量の制御は、従来提案されていたN
i、Cu等のメッキなどと比較して容易であり実用性が
高い。また保護被膜として有効な酸化物あるいは水酸化
物は、合金に対して0.1〜1重量%であり、メッキな
どと比較して比較的安価である。
The control of the amount of oxide or hydroxide of Sc and Y coated on the alloy powder has been proposed in the prior art.
It is easier and more practical than plating of i, Cu or the like. The oxide or hydroxide effective as a protective coating is 0.1 to 1% by weight of the alloy and is relatively inexpensive as compared with plating or the like.

【0014】Y23を水素吸蔵合金粉末と共存させる方
法としては、合金ペーストに混入したりY塩溶液に含浸
する方法がある。これと比較して、必要最小限のYの酸
化物あるいは水酸化物を合金粉末表面上に均質に被覆さ
せる方法としては、本発明の方がより有効であると考え
られる。
[0014] The Y 2 O 3 as a method of coexisting with the hydrogen storage alloy powder, a method of impregnating the mixed or Y salt solution alloy paste. Compared with this, the present invention is considered to be more effective as a method for uniformly coating the required minimum amount of the oxide or hydroxide of Y on the surface of the alloy powder.

【0015】[0015]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0016】(実施例1)ミッシュメタル(Mm:軽希
土類元素の混合物)、Ni、Al、Mn、Coを所定の
割合で混合し、高周波溶解法にてMmNi3.55Al0.3
Mn0.4Co0.75合金塊を作製し、これを粉砕して平均
粒径30μmの水素吸蔵合金粉末を得た。この合金粉末
を80℃の水酸化カリウム水溶液(比重1.25)に1
時間浸漬(すなわちアルカリ浸漬)して水洗・乾燥した
後に、この合金粉末に対して結着剤としてスチレン−ブ
タジエン共重合性ゴム(SBR)0.7重量%および増
粘剤としてカルボキシメチルセルロース(CMC)0.
1重量%を添加し、水と混練して合金ペーストとした。
この合金ペーストを集電体であるパンチングメタル(細
孔を穿った鉄板の表面にニッケルめっきを施したもの)
に塗着して乾燥・加圧を行い、水素吸蔵電極(負極)を
作製した。この負極を、セパレータを介して公知のニッ
ケル正極(1.5Ah相当)と組合わせて、比重1.2
5の水酸化カリウム水溶液を電解液として、正極容量規
制の円筒密閉型ニッケル−水素蓄電池を組立てた。これ
を電池Aとする。
Example 1 Mish metal (Mm: mixture of light rare earth elements), Ni, Al, Mn, and Co were mixed at a predetermined ratio, and MmNi 3.55 Al 0.3 was obtained by a high frequency melting method.
An Mn 0.4 Co 0.75 alloy lump was prepared and pulverized to obtain a hydrogen storage alloy powder having an average particle diameter of 30 μm. This alloy powder is placed in an aqueous potassium hydroxide solution (specific gravity: 1.25) at 80 ° C. for 1 hour.
After immersion for a time (ie, alkali immersion), washing and drying, 0.7% by weight of styrene-butadiene copolymerizable rubber (SBR) as a binder and carboxymethylcellulose (CMC) as a thickener are added to the alloy powder. 0.
1% by weight was added and kneaded with water to obtain an alloy paste.
Punching metal as a current collector using this alloy paste (iron plate with perforated nickel plate on its surface)
Then, drying and pressurization were performed to produce a hydrogen storage electrode (negative electrode). This negative electrode was combined with a known nickel positive electrode (corresponding to 1.5 Ah) via a separator to obtain a specific gravity of 1.2.
Using a potassium hydroxide aqueous solution of No. 5 as an electrolytic solution, a cylindrical sealed nickel-hydrogen storage battery with positive electrode capacity regulation was assembled. This is called battery A.

【0017】電池Aと同様にして得られた水素吸蔵合金
粉末(平均粒径30μm)に対して0.5重量%(Sc
金属換算)のSc23とこれを金属に還元しうる充分量
のCa粉末を混合し、円筒形にプレス成型した。この成
型物をAr雰囲気下で900℃まで昇温し、還元拡散反
応を行わせた後室温まで徐冷し、成型物を解砕して繰返
し水洗を行った後、電池Aと同条件のアルカリ浸漬を行
い、同様の電池を構成した。これを電池Bとする。ま
た、Sc23に替えてY23を用いて構成した電池をC
とする。
With respect to the hydrogen storage alloy powder (average particle size 30 μm) obtained in the same manner as the battery A, 0.5% by weight (Sc
This and Sc 2 O 3 in terms of a metal) were mixed Ca powder a sufficient amount capable of reducing the metal, and press-molded into a cylindrical shape. This molded product was heated to 900 ° C. in an Ar atmosphere, allowed to undergo a reduction diffusion reaction, gradually cooled to room temperature, crushed and repeatedly washed with water. The battery was immersed to form a similar battery. This is called battery B. In addition, a battery constituted by using Y 2 O 3 instead of Sc 2 O 3
And

【0018】続いて、電池Aと同様にして得られた水素
吸蔵合金粉末(平均粒径30μm)に対して0.5重量
%(Y金属換算)のY23を混合し、円筒形にプレス成
型した。この成型物をAr雰囲気下で900℃まで昇温
した後室温まで徐冷し、成型物を解砕して電池Aと同様
の電池を構成した。これを電池Dとする。
Subsequently, 0.5% by weight (in terms of Y metal) of Y 2 O 3 was mixed with the hydrogen-absorbing alloy powder (average particle size 30 μm) obtained in the same manner as the battery A, and the mixture was formed into a cylindrical shape. Press molded. The temperature of the molded product was increased to 900 ° C. in an Ar atmosphere, then gradually cooled to room temperature, and the molded product was crushed to form a battery similar to Battery A. This is called battery D.

【0019】さらに、電池Aと同様にして得られた水素
吸蔵合金粉末(平均粒径30μm)に対して0.5重量
%(Y金属換算)のY23とCa粉末を混合し、円筒形
にプレス成型した。この成型物をAr雰囲気下で900
℃まで昇温した後室温まで徐冷し、成型物を解砕して繰
返し水洗を行った。この合金粉末を用いてまず電池Aと
同様の水素吸蔵電極を作製し、その後に電池Aと同条件
のアルカリ浸漬を水素吸蔵電極に対して行って構成した
電池をEとする。
Further, 0.5% by weight (in terms of Y metal) of Y 2 O 3 and Ca powder were mixed with the hydrogen storage alloy powder (average particle diameter 30 μm) obtained in the same manner as in the battery A, and Press molded into a shape. This molded product is 900
After the temperature was raised to ℃, the mixture was gradually cooled to room temperature, and the molded product was crushed and washed repeatedly with water. Using this alloy powder, a hydrogen storage electrode similar to that of the battery A was first produced, and then a battery E constituted by subjecting the hydrogen storage electrode to alkali immersion under the same conditions as the battery A was designated as E.

【0020】これらA〜Eの各電池について、充電は
1.5Aで1.5時間、休止1時間、放電は1.5A
(終止電圧1V)で充放電を繰返した。これら電池の放
電容量のサイクル変化(〜500サイクル)を図1に示
す。
Each of the batteries A to E was charged at 1.5 A for 1.5 hours, paused for 1 hour, and discharged at 1.5 A.
(End voltage: 1 V) Charge / discharge was repeated. FIG. 1 shows the cycle change (up to 500 cycles) of the discharge capacity of these batteries.

【0021】電池Aは、充放電を繰返す毎に容量低下が
著しく進んだ。500サイクル後の電池Aを分析した結
果、正極からAl酸化物が、セパレータからMn酸化物
が、さらに負極からLa・Ce酸化物が検出された。す
なわち、充放電の繰返しに伴って合金の溶出が進行して
溶解度の大きいAl(AlO2 -)が正極に、溶解度の小
さいMnがセパレータに析出し、電解液および過充電時
に正極から発生する酸素ガスにより合金粉末の酸化(特
にLa、Ce)が進行したと考えられる。結果として合
金成分の変質が水素吸蔵量を減少させ、さらに合金表面
の過剰な酸化が水素吸蔵反応を阻害(少量の表面酸化物
は保護被膜として働くと考えられる)して、負極の充電
受入れ性が低下し、容量低下が進んだと考えられる。
[0021] The capacity of the battery A significantly decreased every time charge and discharge were repeated. As a result of analyzing the battery A after 500 cycles, Al oxide was detected from the positive electrode, Mn oxide was detected from the separator, and La · Ce oxide was detected from the negative electrode. That is, the elution of the alloy progresses with the repetition of charge and discharge, and Al (AlO 2 ) with high solubility precipitates on the positive electrode and Mn with low solubility precipitates on the separator, and the electrolyte and oxygen generated from the positive electrode during overcharge It is considered that the oxidation of the alloy powder (particularly La and Ce) proceeded by the gas. As a result, the alteration of the alloy components reduces the amount of hydrogen storage, and excessive oxidation of the alloy surface inhibits the hydrogen storage reaction (a small amount of surface oxide is considered to work as a protective film), and the charge acceptability of the negative electrode Is considered to have decreased, and the capacity has decreased.

【0022】これに対し、電池B〜Eは電池Aと比較し
て長寿命であった。500サイクル後の電池B〜Eを同
様に分析した結果、正極のAl酸化物、セパレータのM
n酸化物、負極のLa・Ce酸化物ともに検出量が電池
Aを大幅に下回った。また2次電子像(SEM)および
蛍光X線分析から、電池B〜Eの水素吸蔵合金の表面
に、Sc23およびY23が部分的に被覆していること
が確認できた。よって合金粉末を被覆したSc23およ
びY23が合金粉末の保護被膜として作用することによ
り、合金の腐食反応が阻害されてAl・Mnの溶出およ
びLa・Ceの酸化が抑制された。以上のように、本実
施例により、ニッケル−水素蓄電池の寿命を従来より伸
長することができた。
On the other hand, the batteries B to E had a longer life than the battery A. As a result of similarly analyzing the batteries B to E after 500 cycles, the positive electrode Al oxide and the separator M
Both the n oxide and the La / Ce oxide of the negative electrode had significantly lower detection amounts than the battery A. Also from the secondary electron image (SEM) and X-ray fluorescence analysis, the surface of the hydrogen storage alloy of the battery B to E, Sc 2 O 3 and Y 2 O 3 was confirmed to be partially covered. Accordingly, Sc 2 O 3 and Y 2 O 3 coated with the alloy powder act as protective coatings of the alloy powder, thereby inhibiting the corrosion reaction of the alloy and suppressing the elution of Al · Mn and the oxidation of La · Ce. . As described above, according to the present embodiment, the life of the nickel-metal hydride storage battery can be extended as compared with the related art.

【0023】なお、本実施例ではScあるいはYを合金
粉末表面に被覆する方法として還元拡散反応(電池B、
C、E)を示したが、鋳造粉砕法などによりScあるい
はYが豊富な相を水素吸蔵合金表面に現出させる方法も
同様の効果が得られた。また電池B〜Eにおいて、Y2
3、Y(OH)3、Sc23、あるいはSc(OH)3
の何れを混合した場合も、本実施例と同様の効果が得ら
れた。さらには電池B、C、Eにおいて、アルカリ浸漬
条件により合金表面に被覆したYおよびScの形態が水
酸化物となった場合も、同様の効果が得られた。
In this embodiment, as a method of coating Sc or Y on the surface of the alloy powder, a reduction diffusion reaction (battery B,
C and E), the same effect was obtained by a method in which a phase rich in Sc or Y was revealed on the surface of the hydrogen storage alloy by a casting and pulverizing method or the like. In the batteries B to E, Y 2
O 3 , Y (OH) 3 , Sc 2 O 3 , or Sc (OH) 3
In any case, the same effect as in the present embodiment was obtained. Further, in the batteries B, C, and E, the same effect was obtained when the form of Y and Sc coated on the alloy surface under the alkali immersion condition was changed to hydroxide.

【0024】(実施例2)表1に示す条件に従い、電池
Cと同様の製造法で作製した電池F〜BBについて、充
電は1.5Aで1.5時間、休止1時間、放電は1.5
A(終止電圧1V)で充放電を繰返した。これら電池の
放電容量のサイクル変化(〜500サイクル)を、電池
A、Cの結果とともに図2〜6に示す。
(Example 2) According to the conditions shown in Table 1, batteries F to BB produced by the same method as Battery C were charged at 1.5 A for 1.5 hours, paused for 1 hour, and discharged for 1. 5
Charge and discharge were repeated at A (final voltage 1 V). The change in the discharge capacity of these batteries (up to 500 cycles) is shown in FIGS.

【0025】[0025]

【表1】 [Table 1]

【0026】被覆させるY量に関しては、0.05重量
%(電池F)の場合には短寿命で、1.5重量%(電池
H)の場合には初期から低容量であった。この原因とし
て、0.05重量%の場合にはアルカリ浸漬後のY酸化
物あるいは水酸化物の生成量が不足したために保護被膜
としての作用が不十分で、1.5重量%の場合にはY酸
化物あるいは水酸化物の生成量が過剰であったために電
極の導電性が低下したことが考えられる。以上の結果か
ら、被覆させるY量は合金に対して0.1〜1重量%が
好ましい。
The amount of Y to be coated was short in the case of 0.05% by weight (battery F), and was low from the beginning in the case of 1.5% by weight (battery H). The reason for this is that in the case of 0.05% by weight, the amount of Y oxide or hydroxide formed after immersion in alkali was insufficient, so that the effect as a protective coating was insufficient. It is considered that the conductivity of the electrode was lowered due to the excessive amount of Y oxide or hydroxide produced. From the above results, the amount of Y to be coated is preferably 0.1 to 1% by weight based on the alloy.

【0027】合金粉末の平均粒径に関しては、7μm
(電池J)の場合には短寿命で、100μm(電池N)
の場合には初期から低容量であった。原因として、7μ
mの場合には合金粉末の表面積が大きいために酸化・溶
出反応が進行しやすく、100μmの場合には合金粉末
の表面積が小さいために電極反応が進行しにくいことが
考えられる。結果的に、合金粉末の平均粒径は10〜7
5μmが好ましい。
Regarding the average particle size of the alloy powder, 7 μm
(Battery J) has a short life and 100 μm (Battery N)
In the first case, the capacity was low from the beginning. The cause is 7μ
In the case of m, the oxidation / elution reaction is likely to proceed due to the large surface area of the alloy powder, and in the case of 100 μm, the electrode reaction is unlikely to proceed due to the small surface area of the alloy powder. As a result, the average particle size of the alloy powder is 10 to 7
5 μm is preferred.

【0028】アルカリ浸漬条件に関しては、KOH水溶
液の液温が30℃(電池O)および95℃(電池S)、
比重が1.05(電池T)、浸漬時間が5分(電池X)
および30時間(電池BB)の場合に短寿命であった。
原因として、電池O、T、Xでは合金表面でのY酸化物
あるいは水酸化物生成反応が不十分であったために合金
の腐食反応が進行したこと、電池S、BBではY酸化物
あるいは水酸化物生成反応以外に合金成分の溶出が過度
に起こったことが考えられる。結果的に、アルカリ浸漬
の液温は45〜90℃、比重は1.1以上、浸漬時間は
10分〜24時間が好ましい。
With respect to the alkaline immersion conditions, the temperature of the KOH aqueous solution was 30 ° C. (battery O) and 95 ° C. (battery S).
Specific gravity 1.05 (battery T), immersion time 5 minutes (battery X)
And 30 hours (battery BB).
The cause was that the corrosion reaction of the alloy progressed due to insufficient formation reaction of the Y oxide or hydroxide on the alloy surface in the batteries O, T, and X, and the Y oxide or hydroxide in the batteries S, BB. It is considered that the elution of the alloy components occurred excessively in addition to the product formation reaction. As a result, the liquid temperature of the alkali immersion is preferably 45 to 90 ° C., the specific gravity is 1.1 or more, and the immersion time is preferably 10 minutes to 24 hours.

【0029】なお、本実施例ではYを表面に被覆した水
素吸蔵合金粉末をアルカリ浸漬した場合を示したが、S
cおよびYの酸化物あるいは水酸化物を水素吸蔵合金粉
末の表面に熱拡散させた場合や、ScあるいはYを表面
に被覆した水素吸蔵合金粉末を用いて電極を成型した後
にアルカリ浸漬した場合でも、酸化物あるいは水酸化物
の被覆量、合金粉末の平均粒径およびアルカリ浸漬条件
の好ましい範囲は同一であった。
In this embodiment, the case where the hydrogen-absorbing alloy powder coated on the surface with Y is immersed in alkali is shown.
Even when the oxide or hydroxide of c and Y is thermally diffused to the surface of the hydrogen storage alloy powder, or when the electrode is molded using the hydrogen storage alloy powder coated on the surface of Sc or Y, and then alkali-immersed. The preferred ranges of the coating amount of the oxide or hydroxide, the average particle size of the alloy powder, and the conditions of alkali immersion were the same.

【0030】[0030]

【発明の効果】以上のように本発明によれば、サイクル
寿命等の特性に優れたニッケル−水素蓄電池用水素吸蔵
合金粉末を提供することができる。また、サイクル寿命
等の特性に優れた水素吸蔵電極を安価に製造できる製造
法を提供することができる。
As described above, according to the present invention, it is possible to provide a hydrogen storage alloy powder for a nickel-hydrogen storage battery having excellent characteristics such as cycle life. Further, it is possible to provide a manufacturing method capable of inexpensively manufacturing a hydrogen storage electrode having excellent characteristics such as cycle life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例と比較例の水素吸蔵電極との
寿命特性との関係を示す図
FIG. 1 is a diagram showing a relationship between life characteristics of an embodiment of the present invention and a hydrogen storage electrode of a comparative example.

【図2】同、被覆するY量と寿命特性との関係を示す図FIG. 2 is a diagram showing the relationship between the amount of Y to be coated and the life characteristics.

【図3】同、合金粉末の平均粒径と寿命特性との関係を
示す図
FIG. 3 is a diagram showing the relationship between the average particle size of the alloy powder and the life characteristics.

【図4】同、アルカリ浸漬条件(KOH水溶液の液温)
と寿命特性との関係を示す図
FIG. 4 Same alkaline immersion conditions (liquid temperature of KOH aqueous solution)
Diagram showing the relationship between the characteristics and the life characteristics

【図5】同、アルカリ浸漬条件(KOH水溶液の比重)
と寿命特性との関係を示す図
FIG. 5: Alkaline immersion conditions (specific gravity of KOH aqueous solution)
Diagram showing the relationship between the characteristics and the life characteristics

【図6】同、アルカリ浸漬条件(浸漬時間)と寿命特性
との関係を示す図
FIG. 6 is a diagram showing a relationship between alkaline immersion conditions (immersion time) and life characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 誠二 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 松田 宏夢 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 生駒 宗久 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−215765(JP,A) 特開 昭64−24001(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/38 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Seiji Yamaguchi 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-company (72) Inventor Munehisa Ikoma 1006, Kazuma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-6-215765 (JP, A) JP-A 64-24001 (JP, A (58) Fields surveyed (Int. Cl. 7 , DB name) H01M 4/24-4/38

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Scの酸化物あるいは水酸化物の少なくと
も1種により表面層が少なくとも部分的に被覆された水
素吸蔵合金粉末。
1. A S c hydrogen absorbing alloy powder surface layer by at least one oxide or hydroxide is at least partially covered in.
【請求項2】上記酸化物あるいは水酸化物の被覆量が合
金に対して金属換算で0.1〜1重量%である請求項1
記載の水素吸蔵合金粉末。
2. The coating amount of said oxide or hydroxide is 0.1 to 1% by weight in terms of metal based on the alloy.
The hydrogen storage alloy powder as described in the above.
【請求項3】平均粒径が10〜75μmである請求項1
記載の水素吸蔵合金粉末。
3. An average particle size of 10 to 75 μm.
The hydrogen storage alloy powder as described in the above.
【請求項4】ScおよびYの少なくとも1種を水素吸蔵
合金表面に金属状態で被覆する工程と、この合金粉末を
アルカリ水溶液中に浸漬する工程とからなる水素吸蔵合
金粉末の製造法。
4. A method for producing a hydrogen storage alloy powder comprising the steps of: coating at least one of Sc and Y on the surface of a hydrogen storage alloy in a metallic state; and immersing the alloy powder in an alkaline aqueous solution.
【請求項5】ScおよびYの合金表面への被覆を還元−
拡散反応にて行う請求項4記載の水素吸蔵合金粉末の製
造法。
5. The coating of Sc and Y on the alloy surface is reduced.
The method for producing a hydrogen storage alloy powder according to claim 4, wherein the method is carried out by a diffusion reaction.
【請求項6】浸漬するアルカリ水溶液の液温は45〜9
0℃、比重は1.1以上、浸漬時間は10分〜24時間
である請求項4記載の水素吸蔵合金粉末の製造法。
6. The solution temperature of the alkaline aqueous solution to be immersed is 45-9.
The method for producing a hydrogen storage alloy powder according to claim 4, wherein the immersion time is 0 ° C, the specific gravity is 1.1 or more, and the immersion time is 10 minutes to 24 hours.
【請求項7】ScおよびYの酸化物あるいは水酸化物の
少なくとも1種を水素吸蔵合金粉末の表面に熱拡散させ
ることを特徴とする水素吸蔵合金粉末の製造法。
7. A method for producing a hydrogen storage alloy powder, wherein at least one of oxides and hydroxides of Sc and Y is thermally diffused to the surface of the hydrogen storage alloy powder.
【請求項8】ScおよびYの少なくとも1種を水素吸蔵
合金表面に金属状態で被覆する工程と、この合金粉末を
用いて電極を成型する工程と、この電極をアルカリ水溶
液中に浸漬する工程とからなる水素吸蔵電極の製造法。
8. A step of coating at least one of Sc and Y on the surface of the hydrogen storage alloy in a metal state, a step of molding an electrode using the alloy powder, and a step of immersing the electrode in an aqueous alkaline solution. A method for producing a hydrogen storage electrode comprising:
【請求項9】浸漬するアルカリ水溶液の液温は45〜9
0℃、比重は1.1以上、浸漬時間は10分〜24時間
である請求項8記載の水素吸蔵電極の製造法。
9. The liquid temperature of the alkaline aqueous solution to be immersed is 45-9.
9. The method for producing a hydrogen storage electrode according to claim 8, wherein the immersion time is 10 minutes to 24 hours.
JP19016095A 1995-07-26 1995-07-26 Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode Expired - Fee Related JP3317099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19016095A JP3317099B2 (en) 1995-07-26 1995-07-26 Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19016095A JP3317099B2 (en) 1995-07-26 1995-07-26 Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH0931501A JPH0931501A (en) 1997-02-04
JP3317099B2 true JP3317099B2 (en) 2002-08-19

Family

ID=16253430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19016095A Expired - Fee Related JP3317099B2 (en) 1995-07-26 1995-07-26 Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP3317099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114875B2 (en) * 2005-11-16 2013-01-09 パナソニック株式会社 Alkaline storage battery, electrode composite material, and method for producing the same

Also Published As

Publication number Publication date
JPH0931501A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JP5241188B2 (en) Alkaline storage battery system
JP5642577B2 (en) Alkaline storage battery and alkaline storage battery system
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP3661190B2 (en) Hydrogen storage electrode and manufacturing method thereof
JP3214341B2 (en) Manufacturing method of hydrogen storage alloy for batteries
JP2988479B1 (en) Alkaline storage battery, hydrogen storage alloy electrode and method for producing the same
JP4667513B2 (en) Hydrogen storage alloy powder and surface treatment method thereof, negative electrode for alkaline storage battery, and alkaline storage battery
JP5169050B2 (en) Negative electrode active material for nickel metal hydride battery, nickel metal hydride battery, and method for treating negative electrode active material for nickel metal hydride battery
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
CN109830676A (en) Rechargeable uses for nickel-hydrogen battery high capacity and long-life La-Mg-Ni type cathode hydrogen storage material and preparation method thereof
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode
JP4743997B2 (en) Hydrogen storage alloy electrode
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JP5278411B2 (en) Hydrogen storage alloy powder and nickel metal hydride storage battery using the same.
JP5334498B2 (en) Alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP5979542B2 (en) Alloy powder for electrode, negative electrode for alkaline storage battery and alkaline storage battery using the same
JP4997702B2 (en) Hydrogen storage alloy powder, treatment method thereof, and alkaline storage battery using the same
JP2010182684A (en) Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery
WO2020179752A1 (en) Negative electrode active material powder, negative electrode and nickel hydrogen secondary battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP2000200612A (en) Rectangular alkaline secondary battery
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JP5991525B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees