JP5322392B2 - Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery - Google Patents

Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery Download PDF

Info

Publication number
JP5322392B2
JP5322392B2 JP2007022271A JP2007022271A JP5322392B2 JP 5322392 B2 JP5322392 B2 JP 5322392B2 JP 2007022271 A JP2007022271 A JP 2007022271A JP 2007022271 A JP2007022271 A JP 2007022271A JP 5322392 B2 JP5322392 B2 JP 5322392B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
nickel
electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007022271A
Other languages
Japanese (ja)
Other versions
JP2008192320A (en
Inventor
周平 吉田
吉宣 片山
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007022271A priority Critical patent/JP5322392B2/en
Publication of JP2008192320A publication Critical patent/JP2008192320A/en
Application granted granted Critical
Publication of JP5322392B2 publication Critical patent/JP5322392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、水素吸蔵合金を負極活物質とする水素吸蔵合金電極、および水素吸蔵合金電極の製造方法、ならびにこの水素吸蔵合金電極を用いたアルカリ蓄電池に関する。   The present invention relates to a hydrogen storage alloy electrode using a hydrogen storage alloy as a negative electrode active material, a method for producing the hydrogen storage alloy electrode, and an alkaline storage battery using the hydrogen storage alloy electrode.

近年、アルカリ蓄電池においては、高出力で環境安全性にも優れているという点から、負極活物質に水素吸蔵合金を用いたニッケル−水素蓄電池が注目されるようになった。この種のニッケル−水素蓄電池の負極に用いられる水素吸蔵合金は、従来においては、LaNi5型希土類水素吸蔵合金の一部をアルミニウム(Al)やマンガン(Mn)等の元素で置換したものが用いられていた。また、近年においては、特許文献1(特開平11−162459号公報)に示されるように、希土類元素、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)を主要構成元素とする水素吸蔵合金が提案されるようになった。 In recent years, nickel-hydrogen storage batteries using a hydrogen storage alloy as a negative electrode active material have attracted attention as alkaline storage batteries because of high output and excellent environmental safety. Conventionally, a hydrogen storage alloy used for the negative electrode of this type of nickel-hydrogen storage battery is one in which a part of a LaNi 5 type rare earth hydrogen storage alloy is replaced with an element such as aluminum (Al) or manganese (Mn). It was done. In recent years, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 11-162459), a hydrogen storage alloy containing rare earth elements, nickel (Ni), magnesium (Mg), and aluminum (Al) as main constituent elements. Came to be proposed.

この希土類元素、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)を主要構成元素とする水素吸蔵合金は、従来のLaNi5型希土類水素吸蔵合金に比べて、体積当りの容量および質量当りの容量のいずれもが高容量である。その上、活性化が速く、しかも低温放電特性にも優れているという特徴を有していることから、高出力化の用途において期待されるようになった。また、その他の高出力化の手法としては、例えば、特許文献2(特開2000−82491号公報)や特許文献3(特開2000−030699号公報)などが提案されるようになった。 This hydrogen storage alloy mainly composed of rare earth elements, nickel (Ni), magnesium (Mg), and aluminum (Al) has a capacity per volume and a mass per mass as compared with conventional LaNi 5 type rare earth hydrogen storage alloys. All of the capacities are high capacity. In addition, since it has a feature that it is activated quickly and is excellent in low-temperature discharge characteristics, it has come to be expected in applications of high output. In addition, as other techniques for increasing the output, for example, Patent Document 2 (Japanese Patent Laid-Open No. 2000-82491) and Patent Document 3 (Japanese Patent Laid-Open No. 2000-030699) have been proposed.

ここで、特許文献2にて提案された高出力化の手法においては、電極面積を増大化することが提案されている。これは、正極と負極の対内面積を大きくすれば、両極間に流れる電流の電流密度は均一化される。このため、この種の電池を高い放電率で作動させても電極群における極板抵抗が増大することが防止できる。これにより、作動電圧が低下することがないため、大きな放電電流を取り出せるという着想に基づいている。
また、特許文献3にて提案された高出力化の手法においては、水素吸蔵合金電極にニッケルフレークまたはニッケル短繊維を添加することが提案されている。これは、水素吸蔵合金電極内に導電性を付与することで、水素吸蔵合金電極内での接触抵抗を低減させ、水素吸蔵合金電極での抵抗を低減させるという着想に基づいている。
Here, in the high output technique proposed in Patent Document 2, it is proposed to increase the electrode area. This is because if the inner area of the positive electrode and the negative electrode is increased, the current density of the current flowing between the two electrodes is made uniform. For this reason, even if this type of battery is operated at a high discharge rate, the electrode plate resistance in the electrode group can be prevented from increasing. Thereby, since the operating voltage does not decrease, it is based on the idea that a large discharge current can be taken out.
Further, in the technique for increasing the output proposed in Patent Document 3, it has been proposed to add nickel flakes or nickel short fibers to the hydrogen storage alloy electrode. This is based on the idea that by providing conductivity in the hydrogen storage alloy electrode, the contact resistance in the hydrogen storage alloy electrode is reduced and the resistance in the hydrogen storage alloy electrode is reduced.

ところで、一般的な水素吸蔵合金は、AB2型構造あるいはAB5型構造であるが、中でも、希土類元素、ニッケル、マグネシウムからなる水素吸蔵合金は、AB2型構造ユニットとAB5型構造ユニットとの組合せで種々の結晶構造をとることが知られている。例えば、特許文献4(特開2002−164045号公報)においては、AB2型構造とAB5型構造とが2層を周期として積み重なりあった六方晶系の結晶構造(2H)を有しているCe2Ni7型構造水素吸蔵合金は水素の吸蔵・放出のサイクル寿命特性を向上させると報告されている。
特開平11−162459号公報 特開2000−82491号公報 特開2000−30699号公報 特開2002−164045号公報
By the way, a general hydrogen storage alloy has an AB 2 type structure or an AB 5 type structure. Among them, a hydrogen storage alloy composed of rare earth elements, nickel, and magnesium has an AB 2 type structure unit and an AB 5 type structure unit. It is known that various combinations of crystal structures are taken. For example, in Patent Document 4 (Japanese Patent Laid-Open No. 2002-164045), an AB 2 type structure and an AB 5 type structure have a hexagonal crystal structure (2H) in which two layers are stacked in a cycle. It is reported that the Ce 2 Ni 7 type structure hydrogen storage alloy improves the cycle life characteristics of hydrogen storage / release.
Japanese Patent Laid-Open No. 11-162459 JP 2000-82491 A JP 2000-30699 A JP 2002-164045 A

しかしながら、特許文献1にて提案された希土類元素、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)を主要構成元素とする水素吸蔵合金は、種々の結晶相から構成されている。このため、従来のLaNi5型希土類水素吸蔵合金と比較すると、その境界相の存在により表面積が増大しており、水素吸蔵合金表面での反応抵抗低減効果が期待できるが、高出力化の用途に用いるには不十分であった。その解決策として、水素吸蔵合金中のニッケル量を増大させて、反応活性点を増大させることが考えられるが、ニッケル量を一定値以上に増大させると、水素吸蔵合金の構造が変化するだけではなく、偏析相が発現するという新たな問題が出現することとなった。 However, the hydrogen storage alloy mainly composed of rare earth elements, nickel (Ni), magnesium (Mg), and aluminum (Al) proposed in Patent Document 1 is composed of various crystal phases. For this reason, compared with the conventional LaNi 5 type rare earth hydrogen storage alloy, the surface area is increased due to the presence of the boundary phase, and an effect of reducing the reaction resistance on the surface of the hydrogen storage alloy can be expected. Insufficient to use. As a solution, it is conceivable to increase the amount of nickel in the hydrogen storage alloy to increase the reaction active point. However, if the amount of nickel is increased to a certain value or more, the structure of the hydrogen storage alloy only changes. However, a new problem that a segregation phase appears was brought about.

また、特許文献2にて提案されるように、希土類元素、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)を主要構成元素とする水素吸蔵合金からなる水素吸蔵合金電極の電極面積を従来の範囲を遥かに越えた面積以上に増大させると、出力特性における優位性が認められなくなることが分かった。これは、一般的に、電極面積の増大・薄型化に伴い巻取体(渦巻状電極群)は高緊縛化される。この高緊縛化に伴い、セパレータに十分な電解液を保持できない部分が形成されるようになって、水素吸蔵合金電極に電解液の不均一部分が生じる。特に、希土類元素、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)を主要構成元素とする水素吸蔵合金は、従来のLaNi5型希土類水素吸蔵合金に比べて酸化されやすく、電解液の消費量が多い。このため、水素吸蔵合金電極に電解液の不均一分布が顕著に生じるようになって、電極面積増大化による反応抵抗低減効果を相殺していると考えられる。 Further, as proposed in Patent Document 2, the electrode area of a hydrogen storage alloy electrode made of a hydrogen storage alloy having rare earth elements, nickel (Ni), magnesium (Mg), and aluminum (Al) as main constituent elements is conventionally set. It has been found that when the area is increased beyond the range, the superiority in the output characteristics is not recognized. In general, the winding body (spiral electrode group) is highly bound as the electrode area increases and becomes thinner. With this high binding, a portion that cannot hold a sufficient electrolyte in the separator is formed, and a non-uniform portion of the electrolyte is generated in the hydrogen storage alloy electrode. In particular, hydrogen storage alloys containing rare earth elements, nickel (Ni), magnesium (Mg), and aluminum (Al) as main constituent elements are more easily oxidized than conventional LaNi 5 type rare earth hydrogen storage alloys, and the consumption of electrolyte Large amount. For this reason, it is considered that the non-uniform distribution of the electrolytic solution is remarkably generated in the hydrogen storage alloy electrode, and the reaction resistance reduction effect due to the increase in the electrode area is offset.

さらに、特許文献3のニッケルフレークまたはニッケル短繊維の添加効果を検討したところ、明確な低温での出力向上効果が認められないことが分かった。これは、低温放電時には水素吸蔵合金表面での反応抵抗が著しく高くなるため、水素吸蔵合金電極内の接触抵抗が多少低減しても、水素吸蔵合金電極における電極抵抗低減効果が認められないと考えられる。以上のことより、ある一定面積以上に水素吸蔵合金電極の面積拡大を行った際に、希土類元素、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)を主要構成元素とする水素吸蔵合金を用いた水素吸蔵合金電極においては、低温での出力特性の底上げさせることが必要であることが明らかになった。
また、特許文献4にて提案された構造の水素吸蔵合金では、放電特性(特に、低温でのアシスト出力)が不十分で、従来の範囲を遥かに越えた高出力用途としては満足できる性能を有していない。
Further, when the effect of adding nickel flakes or short nickel fibers in Patent Document 3 was examined, it was found that a clear output improvement effect at a low temperature was not recognized. This is because the reaction resistance on the surface of the hydrogen storage alloy becomes extremely high during low-temperature discharge, so even if the contact resistance in the hydrogen storage alloy electrode is somewhat reduced, the electrode resistance reduction effect on the hydrogen storage alloy electrode is not recognized. It is done. From the above, when the area of the hydrogen storage alloy electrode is expanded beyond a certain area, a hydrogen storage alloy containing rare earth elements, nickel (Ni), magnesium (Mg), and aluminum (Al) as main constituent elements is obtained. It became clear that it was necessary to raise the output characteristics at low temperatures in the hydrogen storage alloy electrode used.
Moreover, the hydrogen storage alloy having the structure proposed in Patent Document 4 has insufficient discharge characteristics (especially assist output at low temperature), and has satisfactory performance as a high output application far exceeding the conventional range. I don't have it.

そこで、本発明は上記した問題を解決するためになされたものであって、従来の範囲を遥かに越えた電極の面積の拡大を行っても、低温での出力特性を向上させることが可能な水素吸蔵合金電極を提供するとともに、その製造方法ならびこのような水素吸蔵合金電極を備えたアルカリ蓄電池を提供することを目的とする。   Therefore, the present invention has been made to solve the above problems, and it is possible to improve the output characteristics at a low temperature even if the electrode area is far beyond the conventional range. An object of the present invention is to provide a hydrogen storage alloy electrode and a production method thereof and an alkaline storage battery including such a hydrogen storage alloy electrode.

本発明の水素吸蔵合金電極は、水素吸蔵合金電極の電極容量X(Ah)に対する表面積Y(cm2)の割合Y/X(cm2/Ah)が70cm2/Ah以上(Y/X≧70cm2/Ah)であるとともに、負極活物質となる水素吸蔵合金は、少なくとも希土類元素、ニッケル、マグネシウム、アルミニウムを含み、該水素吸蔵合金の母結晶相はCe 2 Ni 7 結晶相、Ce 5 Co 19 結晶相、Pr 5 Co 19 結晶相から少なくとも2つ以上含有した結晶相からなり、水素吸蔵合金の質量に対してニッケルフレークあるいはニッケル短繊維の添加量が0.5質量%以上となるように添加されていることを特徴とする。
In the hydrogen storage alloy electrode of the present invention, the ratio Y / X (cm 2 / Ah) of the surface area Y (cm 2 ) to the electrode capacity X (Ah) of the hydrogen storage alloy electrode is 70 cm 2 / Ah or more (Y / X ≧ 70 cm). 2 / Ah), and the hydrogen storage alloy serving as the negative electrode active material contains at least a rare earth element, nickel, magnesium, and aluminum. The mother crystal phase of the hydrogen storage alloy is a Ce 2 Ni 7 crystal phase, Ce 5 Co 19. It consists of a crystal phase and a crystal phase containing at least two of Pr 5 Co 19 crystal phases, and is added so that the amount of nickel flakes or nickel short fibers added is 0.5 mass% or more with respect to the mass of the hydrogen storage alloy. It is characterized by being.

ここで、水素吸蔵合金電極にニッケルフレークあるいはニッケル短繊維を添加すると、これらは導電剤として作用して水素吸蔵合金電極内での水素吸蔵合金間の接触抵抗を低減させる効果はある。ところが、水素吸蔵合金電極の電極容量X(Ah)に対する表面積Y(cm2)の割合Y/X(cm2/Ah)が70cm2/Ah以上(Y/X≧70cm2/Ah)である従来の範囲を遥かに超えた面積を有する水素吸蔵合金電極においては、希土類元素、ニッケル、マグネシウム、アルミニウムを主要構成元素とする水素吸蔵合金に、ニッケルフレークあるいはニッケル短繊維を水素吸蔵合金の質量に対して0.5質量%以上添加すると、接触抵抗低減効果に加えて、水素吸蔵合金表面の活性度が向上するようになる。つまり触媒的な作用により、低温時における反応抵抗の増加を抑制することができるようになり、単なる接触抵抗低減効果のみではなし得なかった低温度領域における高出力化を達成可能となる。 Here, when nickel flakes or nickel short fibers are added to the hydrogen storage alloy electrode, these act as a conductive agent and have an effect of reducing the contact resistance between the hydrogen storage alloys in the hydrogen storage alloy electrode. However, the ratio Y / X (cm 2 / Ah) of the surface area Y (cm 2 ) to the electrode capacity X (Ah) of the hydrogen storage alloy electrode is 70 cm 2 / Ah or more (Y / X ≧ 70 cm 2 / Ah). In the hydrogen storage alloy electrode having an area far exceeding the range, the hydrogen storage alloy containing rare earth elements, nickel, magnesium and aluminum as the main constituent elements, nickel flakes or nickel short fibers relative to the mass of the hydrogen storage alloy If 0.5 mass% or more is added, the activity of the hydrogen storage alloy surface is improved in addition to the effect of reducing the contact resistance. In other words, an increase in reaction resistance at a low temperature can be suppressed by a catalytic action, and high output in a low temperature region that cannot be achieved only by a contact resistance reduction effect can be achieved.

この場合、水素吸蔵合金の母結晶相はCe 2 Ni 7 結晶相、Ce 5 Co 19 結晶相、Pr 5 Co 19 結晶相から少なくとも2つ以上含有した結晶相からなる。また、添加するニッケルフレークあるいはニッケル短繊維の見掛け密度が0.8g/cm3以上でかつ1.5g/cm3以下で、長径が10μm以上でかつ短経が5μm以下であるのが望ましい。その理由は、見掛け密度が0.8g/cm3未満で、長径および短経が5μm〜10μmのニッケルフレークあるいはニッケル短繊維を用いると、むしろ放電特性(出力特性)の低下が認められたからである。これは、見掛け密度が0.8g/cm3未満のニッケルフレークあるいはニッケル短繊維は水素吸蔵合金表面への担持あるいは接触が不充分となって、触媒作用をなさなくなるばかりでなく、逆に、ニッケルフレークあるいはニッケル短繊維が接触抵抗となって、放電特性の低下をもたらしたと推察される。
In this case, the host crystal phase of the hydrogen storage alloy is Ce 2 Ni 7 crystal phase, Ce 5 Co 19 crystal phase, Pr 5 Co 19 ing a crystalline phase which contains at least two or more from the crystal phase. The apparent density of the added nickel flakes or nickel short fibers is preferably 0.8 g / cm 3 or more and 1.5 g / cm 3 or less, the long diameter is 10 μm or more, and the short diameter is 5 μm or less. The reason is that when nickel flakes or short nickel fibers having an apparent density of less than 0.8 g / cm 3 and a long diameter and short diameter of 5 μm to 10 μm are used, a decrease in discharge characteristics (output characteristics) was observed. . This is because nickel flakes or short nickel fibers having an apparent density of less than 0.8 g / cm 3 are not supported or contacted on the surface of the hydrogen storage alloy and do not perform catalytic action. It is presumed that flakes or nickel short fibers became contact resistance, resulting in deterioration of discharge characteristics.

このような水素吸蔵合金電極を製造するにあたっては、スラリー作製時に、水溶性結着剤にニッケルフレークあるいはニッケル短繊維を混合した溶液に水素吸蔵合金粉末を混合して水素吸蔵合金粉末混合工程と、水素吸蔵合金粉末が混合された溶液に非水溶性結着剤を混合する非水溶性結着剤混合工程と、非水溶性結着剤が混合された溶液の粘度を調整する粘度調整工程とを備えるのが望ましい。   In producing such a hydrogen storage alloy electrode, at the time of slurry preparation, a hydrogen storage alloy powder mixing step by mixing the hydrogen storage alloy powder into a solution in which nickel flakes or nickel short fibers are mixed in a water-soluble binder, A water-insoluble binder mixing step of mixing a water-insoluble binder into the solution mixed with the hydrogen storage alloy powder, and a viscosity adjusting step of adjusting the viscosity of the solution in which the water-insoluble binder is mixed. It is desirable to prepare.

これは、ニッケルフレークあるいはニッケル短繊維を、非水溶性結着剤を混合する工程や粘度調整する工程に添加すると、ニッケルフレークあるいはニッケル短繊維は微粉末なために不均一な拡散や合金表面からの分離などが生じる。このため、本発明においては、水溶性結着剤にニッケルフレークあるいはニッケル短繊維を混合した溶液に水素吸蔵合金粉末を混合するようにしている。これにより、水素吸蔵合金粉末表面ヘニッケルフレークあるいはニッケル短繊維を均一に担持させることが可能となり、本発明の効果を十分に発揮することが可能となる。   This is because when nickel flakes or nickel short fibers are added to the step of mixing a water-insoluble binder or the step of adjusting the viscosity, the nickel flakes or nickel short fibers are fine powders, resulting in uneven diffusion and the surface of the alloy. Separation occurs. Therefore, in the present invention, the hydrogen storage alloy powder is mixed with a solution obtained by mixing nickel flakes or nickel short fibers with a water-soluble binder. Thereby, it becomes possible to uniformly support nickel flakes or nickel short fibers on the surface of the hydrogen storage alloy powder, and the effects of the present invention can be sufficiently exhibited.

以上のように、本発明においては、従来の範囲を超える電極面積を有する水素吸蔵合金電極において、水素吸蔵合金の構造を規定し、ニッケルフレークあるいはニッケル短繊維を一定量添加することにより、従来の範囲を遥かに超えた高出力特性を有することが可能となる。   As described above, in the present invention, in the hydrogen storage alloy electrode having an electrode area exceeding the conventional range, the structure of the hydrogen storage alloy is defined, and by adding a certain amount of nickel flakes or nickel short fibers, It becomes possible to have high output characteristics far exceeding the range.

ついで、本発明の実施の形態を以下の図1〜図2に基づいて詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1は本発明のアルカリ蓄電池を模式的に示す断面図である。図2はニッケル(Ni)の添加量(質量%)と、−10℃でのアシスト出力DCR(mΩ)の関係を示すグラフである。   Next, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 2 below. However, the present invention is not limited to this, and may be appropriately modified and implemented without departing from the scope of the present invention. be able to. In addition, FIG. 1 is sectional drawing which shows typically the alkaline storage battery of this invention. FIG. 2 is a graph showing the relationship between the amount of nickel (Ni) added (% by mass) and the assist output DCR (mΩ) at −10 ° C.

1.水素吸蔵合金
Ln(Yを含む希土類元素)、Mg、Ni、Co、AlあるいはLn(Yを含む希土類元素)、Mg、Ni、Alを所定のモル比の割合で混合した後、これらの混合物をアルゴンガス雰囲気の高周波誘導炉に投入して溶解させた後、冷却して水素吸蔵合金のインゴットを作製した。これらの水素吸蔵合金について、DSC(示差走査熱量計)を用いて融点を測定した後、これらの水素吸蔵合金の融点よりも30℃たけ低い温度で12時間の熱処理を行った。この後、各水素吸蔵合金を不活性雰囲気中で機械的に粉砕して、平均粒径が25μmの水素吸蔵合金粉末a,b,cを得た。この場合、組成式がLn0.9Mg0.1Ni3.2Co0.1Al0.2で表されるものを水素吸蔵合金aとし、Ln0.9Mg0.1Ni3.5Al0.2で表されるものを水素吸蔵合金bとし、Ln0.9Mg0.1Ni3.7Al0.1で表されるものを水素吸蔵合金cとした。
1. After mixing hydrogen storage alloy Ln (rare earth element including Y), Mg, Ni, Co, Al or Ln (rare earth element including Y), Mg, Ni, and Al at a predetermined molar ratio, these mixtures are mixed. After putting it into a high frequency induction furnace in an argon gas atmosphere and dissolving it, it was cooled to produce a hydrogen storage alloy ingot. About these hydrogen storage alloys, after measuring melting | fusing point using DSC (differential scanning calorimeter), it heat-processed for 12 hours at the temperature 30 degreeC lower than melting | fusing point of these hydrogen storage alloys. Thereafter, each hydrogen storage alloy was mechanically pulverized in an inert atmosphere to obtain hydrogen storage alloy powders a, b, and c having an average particle size of 25 μm. In this case, a compositional formula represented by Ln 0.9 Mg 0.1 Ni 3.2 Co 0.1 Al 0.2 is a hydrogen storage alloy a, a composition represented by Ln 0.9 Mg 0.1 Ni 3.5 Al 0.2 is a hydrogen storage alloy b, and Ln 0.9 The material represented by Mg 0.1 Ni 3.7 Al 0.1 was designated as hydrogen storage alloy c.

ついで、これらの水素吸蔵合金粉末a,b,cを粉末X線回折法にて結晶構造の同定を以下のようにして行った。即ち、Cu−Kα管をX線源とするX線回折測定装置を用い、スキャンスピードを1°/min、管電圧を40kV、管電流を300mA、スキャンステップを1°、測定角度を20〜50Θ/degreeでX線回折測定を行った。得られたXRDプロファイルよりJCPDSカードチャートを用いて、各水素吸蔵合金粉末a,bの結晶構造を同定した。その結果を下記の表1に示すが、表1には組成式がLn0.9Mg0.1Ni3.7Al0.1で表されるものを水素吸蔵合金cとし、MmNi4.3Co0.6Al0.3Mn0.2で表されるものを水素吸蔵合金dの結果も併せて示している。

Figure 0005322392
Subsequently, the crystal structures of these hydrogen storage alloy powders a, b, and c were identified by powder X-ray diffraction as follows. That is, using an X-ray diffraction measurement apparatus using a Cu-Kα tube as an X-ray source, the scan speed is 1 ° / min, the tube voltage is 40 kV, the tube current is 300 mA, the scan step is 1 °, and the measurement angle is 20 to 50Θ. X-ray diffraction measurement was performed at / degree. The crystal structure of each hydrogen storage alloy powder a, b was identified from the obtained XRD profile using a JCPDS card chart. The results are shown in the following Table 1. In Table 1, a compositional formula represented by Ln 0.9 Mg 0.1 Ni 3.7 Al 0.1 is a hydrogen storage alloy c, and is represented by MmNi 4.3 Co 0.6 Al 0.3 Mn 0.2. The result of the hydrogen storage alloy d is also shown.
Figure 0005322392

上記表1の結果から明らかなように、組成式がLn0.9Mg0.1Ni3.2Co0.1Al0.2で表される水素吸蔵合金aはCe2Ni7型結晶相とCe5Co19型結晶相から構成され、Ln0.9Mg0.1Ni3.5Al0.2で表される水素吸蔵合金bはCe2Ni7型結晶相とCe5Co19型結晶相とPr5Co19型結晶相とから構成され、Ln0.9Mg0.1Ni3.7Al0.1で表される水素吸蔵合金cはCe5Co19型結晶相とPr5Co19型結晶相とから構成されていることが分かる。一方、Ln0.9Mg0.1Ni3.7Al0.1で表される水素吸蔵合金dはLaNi5型結晶相のみから構成されていることが分かる。
即ち、希土類元素、ニッケル、マグネシウムからなる水素吸蔵合金合金a,b,cはCe2Ni7型結晶相、Ce5Co19型結晶相、Pr5Co19型結晶相から少なくとも1つ以上の結晶相から構成されていることが分かる。
As is clear from the results in Table 1 above, the hydrogen storage alloy a whose composition formula is Ln 0.9 Mg 0.1 Ni 3.2 Co 0.1 Al 0.2 is composed of a Ce 2 Ni 7 type crystal phase and a Ce 5 Co 19 type crystal phase. The hydrogen storage alloy b represented by Ln 0.9 Mg 0.1 Ni 3.5 Al 0.2 is composed of a Ce 2 Ni 7 type crystal phase, a Ce 5 Co 19 type crystal phase, and a Pr 5 Co 19 type crystal phase, and Ln 0.9 Mg It can be seen that the hydrogen storage alloy c represented by 0.1 Ni 3.7 Al 0.1 is composed of a Ce 5 Co 19 type crystal phase and a Pr 5 Co 19 type crystal phase. On the other hand, it can be seen that the hydrogen storage alloy d represented by Ln 0.9 Mg 0.1 Ni 3.7 Al 0.1 is composed of only a LaNi 5 type crystal phase.
That is, the hydrogen storage alloy alloys a, b, and c made of rare earth element, nickel, and magnesium are at least one crystal from the Ce 2 Ni 7 type crystal phase, the Ce 5 Co 19 type crystal phase, and the Pr 5 Co 19 type crystal phase. It can be seen that it is composed of phases.

2.水素吸蔵合金電極
CMC(カルボキシメチルセルロース)を水(あるいは純水)に溶解させた水溶性結着剤に見掛け密度が0.8g/cm3以上でかつ1.5g/cm3以下で、長径が10μm以上で、短径が5μm以下のニッケルフレークあるいはニッケル短繊維を所定量添加した後、上述した水素吸蔵合金粉末を混合して混練した。ついで、非水溶性結着剤としてのSBR(スチレンブタジエンラテックス)と水(あるいは純水)を加えて混合して、スラリー密度が3.0g/cm3となるように粘度調整して水素吸蔵合金スラリーを作製した。この場合、CMC(カルボキシメチルセルロース)は水素吸蔵合金粉末の質量に対して0.1質量%、SBR(スチレンブタジエンラテックス)は水素吸蔵合金粉末の質量に対して1.0質量%となるように調整した。ここで、ニッケルフレークあるいはニッケル短繊維の見掛け密度は、JIS Z 2504の方法で10回測定して最大最小となる値である。なお、ニッケルフレークあるいはニッケル短繊維の長径および短径はSEM観察によって測定した値である。
2. Hydrogen storage alloy electrode Water-soluble binder in which CMC (carboxymethylcellulose) is dissolved in water (or pure water) has an apparent density of 0.8 g / cm 3 or more and 1.5 g / cm 3 or less and a major axis of 10 μm. As described above, after adding a predetermined amount of nickel flakes or nickel short fibers having a minor axis of 5 μm or less, the above-described hydrogen storage alloy powder was mixed and kneaded. Subsequently, SBR (styrene butadiene latex) as a water-insoluble binder and water (or pure water) are added and mixed to adjust the viscosity so that the slurry density becomes 3.0 g / cm 3, and then the hydrogen storage alloy. A slurry was prepared. In this case, CMC (carboxymethylcellulose) is adjusted to 0.1 mass% with respect to the mass of the hydrogen storage alloy powder, and SBR (styrene butadiene latex) is adjusted to 1.0 mass% with respect to the mass of the hydrogen storage alloy powder. did. Here, the apparent density of the nickel flakes or the nickel short fibers is a value that becomes the maximum and minimum when measured ten times by the method of JIS Z 2504. The major axis and minor axis of nickel flakes or nickel short fibers are values measured by SEM observation.

この後、Niメッキ軟鋼材製の多孔性基板(パンチングメタル)からなる負極芯体を用意し、この負極芯体に、充填密度が5.0g/cm3となるように水素吸蔵合金スラリーを塗着し、乾燥させた後、所定の厚みになるように圧延した。この後、所定の寸法になるように切断して、水素吸蔵合金電極11(a1〜a6,b1,b2,c1,c2,d1,d2)をそれぞれ作製した。 Thereafter, a negative electrode core made of a Ni-plated mild steel porous substrate (punching metal) is prepared, and a hydrogen storage alloy slurry is applied to the negative electrode core so that the filling density is 5.0 g / cm 3. After wearing and drying, it was rolled to a predetermined thickness. Then, it cut | disconnected so that it might become a predetermined dimension, and produced the hydrogen storage alloy electrode 11 (a1-a6, b1, b2, c1, c2, d1, d2), respectively.

ここで、水素吸蔵合金aを用い、ニッケルフレークあるいはニッケル短繊維が無添加で、電極容量X(Ah)が10.8Ahで、電極表面積Y(cm2)が760cm2のものを水素吸蔵合金電極a1とした。また、水素吸蔵合金aを用い、ニッケルフレークあるいはニッケル短繊維の添加量が0.5質量%で、電極容量X(Ah)が10.8Ahで、電極表面積Y(cm2)が760cm2のものを水素吸蔵合金電極a2とした。また、水素吸蔵合金aを用い、ニッケルフレークあるいはニッケル短繊維の添加量が1.0質量%で、電極容量X(Ah)が10.8Ahで、電極表面積Y(cm2)が760cm2のものを水素吸蔵合金電極a3とした。また、水素吸蔵合金aを用い、ニッケルフレークあるいはニッケル短繊維の添加量が2.0質量%で、電極容量X(Ah)が10.8Ahで、電極表面積Y(cm2)が760cm2のものを水素吸蔵合金電極a4とした。 Here, a hydrogen storage alloy electrode using a hydrogen storage alloy a with no addition of nickel flakes or short nickel fibers, an electrode capacity X (Ah) of 10.8 Ah, and an electrode surface area Y (cm 2 ) of 760 cm 2 a1. Also, using hydrogen storage alloy a, the addition amount of nickel flakes or short nickel fibers is 0.5 mass%, the electrode capacity X (Ah) is 10.8 Ah, and the electrode surface area Y (cm 2 ) is 760 cm 2 Was used as a hydrogen storage alloy electrode a2. Also, using hydrogen storage alloy a, the amount of nickel flakes or nickel short fibers added is 1.0 mass%, the electrode capacity X (Ah) is 10.8 Ah, and the electrode surface area Y (cm 2 ) is 760 cm 2 Was used as a hydrogen storage alloy electrode a3. Also, using hydrogen storage alloy a, the amount of nickel flakes or short nickel fibers added is 2.0 mass%, the electrode capacity X (Ah) is 10.8 Ah, and the electrode surface area Y (cm 2 ) is 760 cm 2 Was used as a hydrogen storage alloy electrode a4.

また、水素吸蔵合金aを用い、ニッケルフレークあるいはニッケル短繊維が無添加で、電極容量X(Ah)が5.8Ahで、電極表面積Y(cm2)が230cm2のものを水素吸蔵合金電極a5とし、水素吸蔵合金aを用い、ニッケルフレークあるいはニッケル短繊維の添加量が0.5質量%で、電極容量X(Ah)が5.8Ahで、電極表面積Y(cm2)が230cm2のものを水素吸蔵合金電極a6とした。 Further, a hydrogen storage alloy electrode a5 using a hydrogen storage alloy a, having no nickel flakes or short nickel fibers, an electrode capacity X (Ah) of 5.8 Ah, and an electrode surface area Y (cm 2 ) of 230 cm 2. And hydrogen storage alloy a, the addition amount of nickel flakes or short nickel fibers is 0.5 mass%, the electrode capacity X (Ah) is 5.8 Ah, and the electrode surface area Y (cm 2 ) is 230 cm 2 Was a hydrogen storage alloy electrode a6.

また、水素吸蔵合金bを用い、ニッケルフレークあるいはニッケル短繊維が無添加で、電極容量X(Ah)が10.8Ahで、電極表面積Y(cm2)が760cm2のものを水素吸蔵合金電極b1とし、水素吸蔵合金bを用い、ニッケルフレークあるいはニッケル短繊維の添加量が0.5質量%で、電極容量X(Ah)が10.8Ahで、電極表面積Y(cm2)が760cm2のものを水素吸蔵合金電極b2とした。 Also, a hydrogen storage alloy electrode b1 using a hydrogen storage alloy b, having no nickel flakes or short nickel fibers, an electrode capacity X (Ah) of 10.8 Ah, and an electrode surface area Y (cm 2 ) of 760 cm 2. The hydrogen storage alloy b is used, the amount of nickel flakes or short nickel fibers added is 0.5 mass%, the electrode capacity X (Ah) is 10.8 Ah, and the electrode surface area Y (cm 2 ) is 760 cm 2 Was used as a hydrogen storage alloy electrode b2.

また、水素吸蔵合金cを用い、ニッケルフレークあるいはニッケル短繊維が無添加で、電極容量X(Ah)が10.8Ahで、電極表面積Y(cm2)が760cm2のものを水素吸蔵合金電極c1とし、水素吸蔵合金cを用い、ニッケルフレークあるいはニッケル短繊維の添加量が0.5質量%で、電極容量X(Ah)が10.8Ahで、電極表面積Y(cm2)が760cm2のものを水素吸蔵合金電極c2とした。 Further, a hydrogen storage alloy electrode c1 using a hydrogen storage alloy c, having no nickel flakes or nickel short fibers added, an electrode capacity X (Ah) of 10.8 Ah, and an electrode surface area Y (cm 2 ) of 760 cm 2. A hydrogen storage alloy c, an addition amount of nickel flakes or short nickel fibers of 0.5 mass%, an electrode capacity X (Ah) of 10.8 Ah, and an electrode surface area Y (cm 2 ) of 760 cm 2 Was used as a hydrogen storage alloy electrode c2.

さらに、水素吸蔵合金dを用い、ニッケルフレークあるいはニッケル短繊維が無添加で、電極容量X(Ah)が10.8Ahで、電極表面積Y(cm2)が760cm2のものを水素吸蔵合金電極d1とし、水素吸蔵合金dを用い、ニッケルフレークあるいはニッケル短繊維の添加量が0.5質量%で、電極容量X(Ah)が10.8Ahで、電極表面積Y(cm2)が760cm2のものを水素吸蔵合金電極d2とした。
そして、これらの水素吸蔵合金電極a1〜a6,b1,b2,c1,c2,d1,d2の内容を表に示すと、下記の表2に示すようになる。

Figure 0005322392
Further, a hydrogen storage alloy electrode d1 using a hydrogen storage alloy d, having no nickel flakes or short nickel fibers, an electrode capacity X (Ah) of 10.8 Ah, and an electrode surface area Y (cm 2 ) of 760 cm 2. A hydrogen storage alloy d, nickel flakes or short nickel fibers added in an amount of 0.5 mass%, an electrode capacity X (Ah) of 10.8 Ah, and an electrode surface area Y (cm 2 ) of 760 cm 2 Was used as a hydrogen storage alloy electrode d2.
The contents of these hydrogen storage alloy electrodes a1 to a6, b1, b2, c1, c2, d1, and d2 are shown in Table 2 below.
Figure 0005322392

3.ニッケル電極
多孔度が約85%の多孔性ニッケル焼結基板を比重が1.75の硝酸ニッケルと硝酸コバルトの混合水溶液に浸漬して、多孔性ニッケル焼結基板の細孔内にニッケル塩およびコバルト塩を保持させた。この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、ニッケル塩およびコバルト塩をそれぞれ水酸化ニッケルおよび水酸化コバルトに転換させた。
3. Nickel electrode A porous nickel sintered substrate having a porosity of about 85% is immersed in a mixed aqueous solution of nickel nitrate and cobalt nitrate having a specific gravity of 1.75, and nickel salt and cobalt are placed in the pores of the porous nickel sintered substrate. Salt was retained. Thereafter, the porous nickel sintered substrate was immersed in a 25% by mass sodium hydroxide (NaOH) aqueous solution to convert the nickel salt and the cobalt salt into nickel hydroxide and cobalt hydroxide, respectively.

ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板の細孔内に水酸化ニッケルを主成分とする活物質を充填した。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板の細孔内に水酸化ニッケルを主体とする活物質の充填密度が2.5g/cm3になるように充填した。この後、室温で乾燥させた後、所定の寸法に切断してニッケル電極12を作製した。 Next, after sufficiently washing with water to remove the alkaline solution, drying was performed, and the active material mainly composed of nickel hydroxide was filled into the pores of the porous nickel sintered substrate. Such an active material filling operation is repeated a predetermined number of times (for example, 6 times) so that the filling density of the active material mainly composed of nickel hydroxide in the pores of the porous sintered substrate becomes 2.5 g / cm 3. Filled. Then, after making it dry at room temperature, it cut | disconnected to the predetermined dimension and the nickel electrode 12 was produced.

4.ニッケル−水素蓄電池
この後、上述のようにして作製した水素吸蔵合金電極11とニッケル電極12とを用い、これらの間に、ポリプロピレン製不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の下部には水素吸蔵合金電極11の芯体露出部11cが露出しており、その上部にはニッケル電極12の芯体露出部12cが露出している。ついで、得られた渦巻状電極群の下端面に露出する芯体露出部11cに負極集電体14を溶接するとともに、渦巻状電極群の上端面に露出するニッケル電極12の芯体露出部12cの上に正極集電体15を溶接して、電極体とした。
4). Nickel-hydrogen storage battery Thereafter, the hydrogen storage alloy electrode 11 and the nickel electrode 12 produced as described above are used, and a separator 13 made of a polypropylene nonwoven fabric is interposed between them to be spirally wound. The electrode group was produced. The core exposed portion 11c of the hydrogen storage alloy electrode 11 is exposed at the lower part of the spiral electrode group thus produced, and the core exposed part 12c of the nickel electrode 12 is exposed at the upper portion thereof. ing. Next, the negative electrode current collector 14 is welded to the core exposed portion 11c exposed at the lower end surface of the obtained spiral electrode group, and the core exposed portion 12c of the nickel electrode 12 exposed at the upper end surface of the spiral electrode group. A positive electrode current collector 15 was welded onto the electrode body to obtain an electrode body.

ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)17内に収納した後、負極集電体14を外装缶17の内底面に溶接した。一方、正極集電体15より延出する集電リード部15aを正極端子を兼ねるとともに外周部に絶縁ガスケット19が装着された封口体18の底部に溶接する。なお、封口体18には正極キャップ18aが設けられていて、この正極キャップ18a内に所定の圧力になると変形する弁体18bとスプリング18cよりなる圧力弁(図示せず)が配置されている。   Next, after the obtained electrode body was accommodated in a bottomed cylindrical outer can in which nickel was plated on iron (the outer surface of the bottom surface becomes a negative external terminal) 17, the negative electrode current collector 14 was attached to the outer can 17. Welded to the inner bottom. On the other hand, the current collecting lead portion 15a extending from the positive electrode current collector 15 serves as a positive electrode terminal and is welded to the bottom portion of the sealing body 18 having the insulating gasket 19 attached to the outer peripheral portion. The sealing body 18 is provided with a positive electrode cap 18a, and a pressure valve (not shown) composed of a valve body 18b and a spring 18c, which are deformed when a predetermined pressure is reached, is disposed in the positive electrode cap 18a.

ついで、外装缶17の上部外周部に環状溝部17aを形成した後、電解液を注液し、外装缶17の上部に形成された環状溝部17aの上に封口体18の外周部に装着された絶縁ガスケット19を載置する。この後、外装缶17の開口端縁17bをかしめることにより、ニッケル−水素蓄電池10(A1〜A6,B1,B2,C1,C2,D1,D2)が作製される。この場合、外装缶17内に30質量%の水酸化カリウム(KOH)水溶液からなるアルカリ電解液を電池容量(Ah)当り2.5g(2.5g/Ah)となるように注入した。   Next, after forming an annular groove portion 17 a on the upper outer peripheral portion of the outer can 17, an electrolytic solution was injected, and the outer peripheral portion of the sealing body 18 was mounted on the annular groove portion 17 a formed on the upper portion of the outer can 17. An insulating gasket 19 is placed. Thereafter, the nickel-hydrogen storage battery 10 (A1 to A6, B1, B2, C1, C2, D1, D2) is manufactured by caulking the opening edge 17b of the outer can 17. In this case, an alkaline electrolyte composed of a 30% by mass potassium hydroxide (KOH) aqueous solution was poured into the outer can 17 so as to be 2.5 g (2.5 g / Ah) per battery capacity (Ah).

ここで、水素吸蔵合金電極a1を用いたものを電池A1とし、水素吸蔵合金電極a2を用いたものを電池A2とし、水素吸蔵合金電極a3を用いたものを電池A3とし、水素吸蔵合金電極a4を用いたものを電池A4とし、水素吸蔵合金電極a5を用いたものを電池A5とし、水素吸蔵合金電極a6を用いたものを電池A6とした。また、水素吸蔵合金電極b1を用いたものを電池B1とし、水素吸蔵合金電極b2を用いたものを電池B2とした。また、水素吸蔵合金電極c1を用いたものを電池C1とし、水素吸蔵合金電極c2を用いたものを電池C2とした。さらに、水素吸蔵合金電極d1を用いたものを電池D1とし、水素吸蔵合金電極d2を用いたものを電池D2とした。   Here, a battery using the hydrogen storage alloy electrode a1 is referred to as a battery A1, a battery using the hydrogen storage alloy electrode a2 is referred to as a battery A2, a battery using the hydrogen storage alloy electrode a3 is referred to as a battery A3, and a hydrogen storage alloy electrode a4. A battery using A was used as battery A4, a battery using hydrogen storage alloy electrode a5 was used as battery A5, and a battery using hydrogen storage alloy electrode a6 was used as battery A6. The battery using the hydrogen storage alloy electrode b1 is referred to as a battery B1, and the battery using the hydrogen storage alloy electrode b2 is referred to as a battery B2. The battery using the hydrogen storage alloy electrode c1 was designated as battery C1, and the battery using the hydrogen storage alloy electrode c2 was designated as battery C2. Further, a battery using the hydrogen storage alloy electrode d1 was designated as a battery D1, and a battery using the hydrogen storage alloy electrode d2 was designated as a battery D2.

5.出力特性の測定
ついで、出力特性の測定を以下のようにして行った。この場合、上述のようにして作製した電池10(A1〜A6,B1,B2,C1,C2,D1,D2)を用いて、まず、25℃の温度雰囲で、1Itの充電々流でSOC(State Of Charge:充電深度)の120%まで充電し、1時間休止した。ついで、70℃の温度雰囲中に24時間放置(熟成)した後、45℃の温度雰囲で1Itの放電々流で電池電圧が0.3Vになるまで放電させた。ついで、このような充電→休止→熟成→放電のサイクルを2サイクル繰り返して、これらの各電池A1〜A6,B1,B2,C1,C2,D1,D2を活性化した。
5. Measurement of output characteristics The output characteristics were then measured as follows. In this case, using the battery 10 (A1 to A6, B1, B2, C1, C2, D1, D2) manufactured as described above, first, the SOC is charged at a charging current of 1 It in a temperature atmosphere of 25 ° C. The battery was charged to 120% of (State Of Charge: depth of charge) and rested for 1 hour. Next, after standing (aging) for 24 hours in a temperature atmosphere at 70 ° C., the battery was discharged in a temperature atmosphere of 45 ° C. with a discharge current of 1 It until the battery voltage became 0.3V. Then, the battery A1 to A6, B1, B2, C1, C2, D1, and D2 were activated by repeating such a cycle of charging → pause → ripening → discharging for two cycles.

ここで、電池における水素吸蔵合金の放電性への寄与は低温ほど大きいため、低温にて放電特性(出力特性)の評価を以下のようにして行った。即ち、(1)25℃の温度雰囲で、1Itの充電々流でSOC(State Of Charge:充電深度)の50%まで充電した後、(2)1時間休止した。ついで、(3)−10℃の温度雰囲中で、任意の充電レートで20秒間充電した後、(4)30分間休止した。ついで、(5)−10℃の温度雰囲中で、任意の放電レートで10秒間放電させた。(6)この後、25℃の温度雰囲で、30分間休止させた。   Here, since the contribution of the hydrogen storage alloy in the battery to the discharge performance increases as the temperature decreases, the discharge characteristics (output characteristics) were evaluated at a low temperature as follows. That is, (1) after charging to 50% of SOC (State Of Charge) in a temperature atmosphere of 25 ° C. with a charging current of 1 It, and (2) resting for 1 hour. Next, (3) after charging for 20 seconds at an arbitrary charging rate in a temperature atmosphere of −10 ° C., (4) resting for 30 minutes. Subsequently, (5) discharge was performed at an arbitrary discharge rate for 10 seconds in a temperature atmosphere of −10 ° C. (6) Then, it was made to rest for 30 minutes in the temperature atmosphere of 25 degreeC.

この場合、(3)の充電レートにおいては、0.8It→1.7It→2.5It→3.3It→4.2Itの順で充電電流を増加させ、(5)の放電レートにおいては、1.7It→3.3It→5.0It→6.7It→8.3Itの順で放電電流を増加させるようにして、上記(3)〜(6)の処理を繰り返した。そして、各放電レート(充電レート)で10秒間経過時点での各電池A1〜A6,B1,B2,C1,C2,D1,D2の電池電圧をそれぞれ測定した。そして、各放電レート(充電レート)を横軸(x軸)にプロットし、得られた電圧(V)を縦軸(y軸)にプロットして、V−I特性を求め、求めたV−I特性を最小二乗法で直線回帰し、その傾きを−10℃でのアシスト出力DCR(mΩ)として求めると、下記の表3に示すような結果が得られた。   In this case, at the charge rate of (3), the charge current is increased in the order of 0.8 It → 1.7 It → 2.5 It → 3.3 It → 4.2 It, and at the discharge rate of (5), 1 The above processes (3) to (6) were repeated such that the discharge current was increased in the order of .7 It → 3.3 It → 5.0 It → 6.7 It → 8.3 It. And the battery voltage of each battery A1-A6, B1, B2, C1, C2, D1, D2 when 10 seconds passed at each discharge rate (charge rate) was measured. Then, each discharge rate (charge rate) is plotted on the horizontal axis (x-axis), and the obtained voltage (V) is plotted on the vertical axis (y-axis) to obtain the VI characteristic, and the obtained V− When the I characteristic was linearly regressed by the method of least squares and the slope was determined as the assist output DCR (mΩ) at −10 ° C., the results shown in Table 3 below were obtained.

なお、求められた−10℃でのアシスト出力DCR(mΩ)において、アシスト出力DCR(mΩ)の低下は放電特性(出力特性)の向上を示し、アシスト出力DCR(mΩ)の増加は放電特性(出力特性)の低下を示すこととなる。

Figure 0005322392
In the calculated assist output DCR (mΩ) at −10 ° C., a decrease in the assist output DCR (mΩ) indicates an improvement in discharge characteristics (output characteristics), and an increase in the assist output DCR (mΩ) indicates discharge characteristics ( The output characteristics will be degraded.
Figure 0005322392

上記表3の結果から明らかなように、水素吸蔵合金電極の電極容量X(Ah)に対する表面積Y(cm2)の割合(Y/X)が40(cm2/Ah)となるように作製された水素吸蔵合金電極a5を備えた電池A5と、水素吸蔵合金電極a6を備えた電池A6とを比較しても、どちらも−10℃でのアシスト出力DCR(mΩ)において差異が少なく、ニッケルフレークあるいはニッケル短繊維の添加による−10℃でのアシスト出力DCR(mΩ)の低減効果が認められないことが分かる。 As is apparent from the results in Table 3, the ratio (Y / X) of the surface area Y (cm 2 ) to the electrode capacity X (Ah) of the hydrogen storage alloy electrode is 40 (cm 2 / Ah). Even when the battery A5 provided with the hydrogen storage alloy electrode a5 and the battery A6 provided with the hydrogen storage alloy electrode a6 were compared, there was little difference in the assist output DCR (mΩ) at −10 ° C. Or it turns out that the reduction effect of assist output DCR (m (ohm)) at -10 degreeC by addition of a nickel short fiber is not recognized.

一方、水素吸蔵合金aを用い、かつY/Xが70(cm2/Ah)となるように作製された水素吸蔵合金電極a1〜a4を備えた電池A1〜A4においては、ニッケルフレークあるいはニッケル短繊維を添加した方(水素吸蔵合金電極a2〜a4を備えた電池A2〜A4)が、−10℃でのアシスト出力DCR(mΩ)が低減することが、即ち、低温での放電特性(出力特性)が向上することが分かる。
このことから、水素吸蔵合金電極の電極容量X(Ah)に対する表面積Y(cm2)の割合(Y/X)が70(cm2/Ah)以上、即ち、従来の範囲を遥かに超えた面積を有する水素吸蔵合金電極を用いるのが望ましいということができる。
On the other hand, in the batteries A1 to A4 including the hydrogen storage alloy electrodes a1 to a4 using the hydrogen storage alloy a and having Y / X of 70 (cm 2 / Ah), nickel flakes or nickel shorts are used. The fiber added (batteries A2 to A4 equipped with hydrogen storage alloy electrodes a2 to a4) has reduced assist output DCR (mΩ) at −10 ° C., that is, discharge characteristics at low temperature (output characteristics) ) Is improved.
From this, the ratio (Y / X) of the surface area Y (cm 2 ) to the electrode capacity X (Ah) of the hydrogen storage alloy electrode is 70 (cm 2 / Ah) or more, that is, an area far exceeding the conventional range. It can be said that it is desirable to use a hydrogen storage alloy electrode having

また、LaNi5型結晶相のみから構成されている水素吸蔵合金dを用いた水素吸蔵合金電極d1を備えた電池D1と、水素吸蔵合金電極d2を備えた電池D2とを比較しても、どちらも−10℃でのアシスト出力DCR(mΩ)において差異が少なく、ニッケルフレークあるいはニッケル短繊維の添加による−10℃でのアシスト出力DCR(mΩ)の低減効果が認められないことが分かる。 Even when comparing the battery D1 provided with the hydrogen storage alloy electrode d1 using the hydrogen storage alloy d composed only of the LaNi 5 type crystal phase with the battery D2 provided with the hydrogen storage alloy electrode d2, whichever It can be seen that there is little difference in the assist output DCR (mΩ) at −10 ° C., and the effect of reducing the assist output DCR (mΩ) at −10 ° C. due to the addition of nickel flakes or short nickel fibers is not recognized.

これらに対して、Ce2Ni7型結晶相とCe5Co19型結晶相から構成されている水素吸蔵合金aを用いた水素吸蔵合金電極a1を備えた電池A1と、水素吸蔵合金電極a2〜a4を備えた電池A2〜A4とを比較すると、ニッケルフレークあるいはニッケル短繊維を添加した方が、−10℃でのアシスト出力DCR(mΩ)が低減することが、即ち、低温での放電特性(出力特性)が向上することが分かる。 In contrast, a battery A1 including a hydrogen storage alloy electrode a1 using a hydrogen storage alloy a composed of a Ce 2 Ni 7 type crystal phase and a Ce 5 Co 19 type crystal phase, and a hydrogen storage alloy electrode a2 When comparing batteries A2 to A4 with a4, the addition of nickel flakes or nickel short fibers reduces the assist output DCR (mΩ) at −10 ° C., that is, discharge characteristics at low temperatures ( It can be seen that the output characteristics are improved.

また、Ce2Ni7型結晶相とCe5Co19型結晶相とPr5Co19型結晶相とから構成されている水素吸蔵合金bを用いた水素吸蔵合金電極b1を備えた電池B1と、水素吸蔵合金電極b2を備えた電池B2とを比較すると、ニッケルフレークあるいはニッケル短繊維を添加した方が、−10℃でのアシスト出力DCR(mΩ)が低減することが、即ち、低温での放電特性(出力特性)が向上することが分かる。 A battery B1 including a hydrogen storage alloy electrode b1 using a hydrogen storage alloy b composed of a Ce 2 Ni 7 type crystal phase, a Ce 5 Co 19 type crystal phase, and a Pr 5 Co 19 type crystal phase; When compared with the battery B2 having the hydrogen storage alloy electrode b2, the assist output DCR (mΩ) at −10 ° C. decreases when nickel flakes or nickel short fibers are added, that is, discharge at a low temperature. It can be seen that the characteristics (output characteristics) are improved.

さらに、Ce5Co19型結晶相とPr5Co19型結晶相とから構成されている水素吸蔵合金cを用いた水素吸蔵合金電極c1を備えた電池C1と、水素吸蔵合金電極c2を備えた電池C2とを比較すると、ニッケルフレークあるいはニッケル短繊維を添加した方が、−10℃でのアシスト出力DCR(mΩ)が低減することが、即ち、低温での放電特性(出力特性)が向上することが分かる。 Furthermore, the battery C1 provided with the hydrogen storage alloy electrode c1 using the hydrogen storage alloy c composed of the Ce 5 Co 19 type crystal phase and the Pr 5 Co 19 type crystal phase, and the hydrogen storage alloy electrode c2 were provided. When compared with the battery C2, the addition of nickel flakes or short nickel fibers reduces the assist output DCR (mΩ) at −10 ° C., that is, improves the discharge characteristics (output characteristics) at low temperatures. I understand that.

これは、水素吸蔵合金電極の電極容量X(Ah)に対する表面積Y(cm2)の割合(Y/X)が70(cm2/Ah)以上となる従来の範囲を遥かに超えた面積を有する水素吸蔵合金電極において、希土類元素、ニッケル、マグネシウム、アルミニウムを主要構成元素とする水素吸蔵合金と用いることによって、合金表面の活性度が向上し、つまり触媒的な作用により、低温における反応抵抗増加を抑制することができて低温度領域における高出力化か達成できたと考えられる。
これらのことから、希土類元素−ニッケルーマグネシウム系水素吸蔵合金の母結晶相は、少なくとも2つ以上の結晶相からなり、かつCe2Ni7型結晶相、Ce5Co19型結晶相、Pr5Co19型結晶相の少なくとも1つ以上の相からなりたっていることが望ましいということができる。
This has an area far exceeding the conventional range in which the ratio (Y / X) of the surface area Y (cm 2 ) to the electrode capacity X (Ah) of the hydrogen storage alloy electrode is 70 (cm 2 / Ah) or more. By using a hydrogen storage alloy electrode with a rare earth element, nickel, magnesium or aluminum as a main constituent element, the activity of the alloy surface is improved, that is, the reaction resistance is increased at a low temperature by a catalytic action. It is thought that it was possible to achieve a higher output in the low temperature region because of the suppression.
Therefore, the mother crystal phase of the rare earth element-nickel-magnesium-based hydrogen storage alloy is composed of at least two crystal phases, and is a Ce 2 Ni 7 type crystal phase, Ce 5 Co 19 type crystal phase, Pr 5 It can be said that it is desirable to consist of at least one phase of a Co 19 type crystal phase.

ここで、水素吸蔵合金aを用い、かつY/Xが70(cm2/Ah)となるように作製された水素吸蔵合金電極(a1〜a4)を備えた電池A1〜A4において、ニッケル(Ni)の添加量(質量%)を横軸(x軸)とし、−10℃でのアシスト出力DCR(mΩ)を縦軸(y軸)となるにしてグラフに表すと、図2に示すような結果が得られた。 Here, in the batteries A1 to A4 provided with hydrogen storage alloy electrodes (a1 to a4) using the hydrogen storage alloy a and having Y / X of 70 (cm 2 / Ah), nickel (Ni ) On the horizontal axis (x-axis) and assist output DCR (mΩ) at −10 ° C. on the vertical axis (y-axis), the graph is as shown in FIG. Results were obtained.

上記表3および図2の結果から明らかなように、ニッケルフレークあるいはニッケル短繊維の添加量(質量%)が増加するに伴い、−10℃でのアシスト出力DCR(mΩ)が低減することが、即ち、低温での放電特性(出力特性)が向上することが分かる。この場合、図2の結果から明らかなように、ニッケルフレークあるいはニッケル短繊維の添加量(質量%)が0.5質量%以上になると、アシスト出力DCR(mΩ)の低減効果が飽和することから、ニッケルフレークあるいはニッケル短繊維は水素吸蔵合金の質量に対して0.5質量%以上とするのが望ましいということができる。   As is apparent from the results of Table 3 and FIG. 2, the assist output DCR (mΩ) at −10 ° C. decreases as the addition amount (mass%) of nickel flakes or nickel short fibers increases. That is, it can be seen that the discharge characteristics (output characteristics) at low temperatures are improved. In this case, as is apparent from the results of FIG. 2, when the addition amount (mass%) of nickel flakes or short nickel fibers is 0.5 mass% or more, the effect of reducing the assist output DCR (mΩ) is saturated. In addition, it can be said that the nickel flakes or the nickel short fibers are desirably 0.5% by mass or more based on the mass of the hydrogen storage alloy.

6.ニッケルの見掛け密度の検討
ついで、水素吸蔵合金スラリー中に添加するニッケルフレークあるいはニッケル短繊維からなるニッケル繊維の見掛け密度についての検討した。そこで、上述と同様に、CMC(カルボキシメチルセルロース)を水(あるいは純水)に溶解させた水溶性結着剤に、見掛け密度が0.5g/cm3以上でかつ0.7g/cm3以下で、長径および短径が5〜10μmのニッケルフレークあるいはニッケル短繊維を、水素吸蔵合金の質量に対して2.0質量%だけ添加した後、水素吸蔵合金粉末aを添加および混合して混練した。ついで、非水溶性結着剤としてのSBR(スチレンブタジエンラテックス)と水(あるいは純水)を加えて混合して、スラリー密度が3.0g/cm3となるように粘度調整して水素吸蔵合金スラリーを作製した。
6). Next, the apparent density of nickel fibers made of nickel flakes or short nickel fibers added to the hydrogen storage alloy slurry was examined. Therefore, in the same manner as described above, the water-soluble binder in which CMC (carboxymethylcellulose) is dissolved in water (or pure water) has an apparent density of 0.5 g / cm 3 or more and 0.7 g / cm 3 or less. After adding 2.0 mass% of nickel flakes or nickel short fibers having a major axis and a minor axis of 5 to 10 μm to the mass of the hydrogen storage alloy, the hydrogen storage alloy powder a was added and mixed and kneaded. Subsequently, SBR (styrene butadiene latex) as a water-insoluble binder and water (or pure water) are added and mixed to adjust the viscosity so that the slurry density becomes 3.0 g / cm 3, and then the hydrogen storage alloy. A slurry was prepared.

得られた水素吸蔵合金スラリーを用いて、上述と同様にして水素吸蔵合金電極a7を作製し、この水素吸蔵合金電極a7を用いて、上述と同様にしてニッケル−水素蓄電池A7を作製した。ついで、得られたニッケル−水素蓄電池A7をを用いて、上述と同様にして−10℃でのアシスト出力DCR(mΩ)として求めると、下記の表4に示すような結果が得られた。なお、下記の表4には上述したニッケル−水素蓄電池A4の結果も併せて示している。

Figure 0005322392
Using the obtained hydrogen storage alloy slurry, a hydrogen storage alloy electrode a7 was prepared in the same manner as described above, and using this hydrogen storage alloy electrode a7, a nickel-hydrogen storage battery A7 was prepared in the same manner as described above. Subsequently, when the obtained nickel-hydrogen storage battery A7 was used as the assist output DCR (mΩ) at −10 ° C. in the same manner as described above, the results shown in Table 4 below were obtained. Table 4 below also shows the results of the above-described nickel-hydrogen storage battery A4.
Figure 0005322392

上記表4の結果から明らかなように、電池A7のように、ニッケルの見掛け密度が0.5g/cm3以上でかつ0.7g/cm3以下であるニッケルフレークあるいはニッケル短繊維を用いた場合、−10℃でのアシスト出力DCR(mΩ)は、電池A4に比較して大幅に増加していて、放電特性(出力特性)が大幅に低下していることが分かる。これは、ニッケルの見掛け密度が0.5g/cm3以上でかつ0.7g/cm3以下であると、水素吸蔵合金表面へのニッケルフレークあるいはニッケル短繊維の担持あるいは接触が不十分となって、触媒作用をなさないだけではなく、逆に、ニッケルフレークあるいはニッケル短繊維が接触抵抗となって、放電特性(出力特性)の低下をもたらしたと推察される。
このことから、ニッケルフレークあるいはニッケル短繊維の見掛け密度は0.8g/cm3以上でかつ1.5g/cm3以下であるものを用いるのが望ましいということができる。
As is clear from the results in Table 4 above, when nickel flakes or short nickel fibers having an apparent nickel density of 0.5 g / cm 3 or more and 0.7 g / cm 3 or less are used as in battery A7. It can be seen that the assist output DCR (mΩ) at −10 ° C. is significantly increased as compared with the battery A4, and the discharge characteristics (output characteristics) are greatly deteriorated. This is because when the apparent density of nickel is 0.5 g / cm 3 or more and 0.7 g / cm 3 or less, nickel flakes or nickel short fibers are not supported or contacted on the surface of the hydrogen storage alloy. In addition to not having a catalytic action, it is surmised that nickel flakes or short nickel fibers have contact resistance, resulting in a decrease in discharge characteristics (output characteristics).
From this, it can be said that it is desirable to use nickel flakes or nickel short fibers whose apparent density is 0.8 g / cm 3 or more and 1.5 g / cm 3 or less.

上述した実施の形態においては、本発明を円筒型のニッケル−水素蓄電池に適用する例について説明したが、本発明は円筒型のニッケル−水素蓄電池に限らず、各種の形状、構造のニッケル−カドミウム蓄電池に適用できる。   In the above-described embodiment, an example in which the present invention is applied to a cylindrical nickel-hydrogen storage battery has been described. However, the present invention is not limited to a cylindrical nickel-hydrogen storage battery, and nickel-cadmium having various shapes and structures. Applicable to storage batteries.

本発明のアルカリ蓄電池を模式的に示す断面図である。It is sectional drawing which shows the alkaline storage battery of this invention typically. ニッケル(Ni)の添加量(質量%)と、−10℃でのアシスト出力DCR(mΩ)の関係を示すグラフである。It is a graph which shows the relationship between the addition amount (mass%) of nickel (Ni) and assist output DCR (mΩ) at −10 ° C.

符号の説明Explanation of symbols

11…水素吸蔵合金電極、11c…芯体露出部、12…ニッケル電極、12c…芯体露出部、13…セパレータ、14…負極集電体、15…正極集電体、15a…集電リード、17…外装缶、17a…環状溝部、17b…開口端縁、18…封口体、18a…正極キャップ、18b…弁板、18c…スプリング、19…絶縁ガスケット DESCRIPTION OF SYMBOLS 11 ... Hydrogen storage alloy electrode, 11c ... Core body exposed part, 12 ... Nickel electrode, 12c ... Core body exposed part, 13 ... Separator, 14 ... Negative electrode collector, 15 ... Positive electrode collector, 15a ... Current collector lead, DESCRIPTION OF SYMBOLS 17 ... Exterior can, 17a ... Annular groove part, 17b ... Opening edge, 18 ... Sealing body, 18a ... Positive electrode cap, 18b ... Valve plate, 18c ... Spring, 19 ... Insulation gasket

Claims (4)

水素吸蔵合金を負極活物質とする水素吸蔵合金電極であって、
前記水素吸蔵合金電極の電極容量X(Ah)に対する表面積Y(cm2)の割合Y/X(cm2/Ah)が70cm2/Ah以上(Y/X≧70cm2/Ah)であるとともに、
前記水素吸蔵合金は、少なくとも希土類元素、ニッケル、マグネシウム、アルミニウムを含み、該水素吸蔵合金の母結晶相はCe 2 Ni 7 結晶相、Ce 5 Co 19 結晶相、Pr 5 Co 19 結晶相から少なくとも2つ以上含有した結晶相からなり、
前記水素吸蔵合金の質量に対してニッケルフレークあるいはニッケル短繊維の添加量が0.5質量%以上となるように添加されていることを特徴とする水素吸蔵合金電極。
A hydrogen storage alloy electrode using a hydrogen storage alloy as a negative electrode active material,
The ratio Y / X (cm 2 / Ah) of the surface area Y (cm 2 ) to the electrode capacity X (Ah) of the hydrogen storage alloy electrode is 70 cm 2 / Ah or more (Y / X ≧ 70 cm 2 / Ah),
The hydrogen storage alloy includes at least a rare earth element, nickel, magnesium, and aluminum, and a mother crystal phase of the hydrogen storage alloy is at least 2 from a Ce 2 Ni 7 crystal phase, a Ce 5 Co 19 crystal phase, and a Pr 5 Co 19 crystal phase. Consisting of a crystalline phase containing at least two,
A hydrogen storage alloy electrode, characterized in that the addition amount of nickel flakes or nickel short fibers is 0.5 mass% or more with respect to the mass of the hydrogen storage alloy.
前記ニッケルフレークあるいはニッケル短繊維は見掛け密度が0.8g/cmThe nickel flakes or nickel short fibers have an apparent density of 0.8 g / cm. 3Three 以上でかつ1.5g/cmAnd 1.5 g / cm 3Three 以下であることを特徴とする請求項1に記載の水素吸蔵合金電極。The hydrogen storage alloy electrode according to claim 1, wherein: 請求項1から請求項2のいずれかに記載の水素吸蔵合金電極の製造方法であって、A method for producing a hydrogen storage alloy electrode according to any one of claims 1 to 2,
スラリー作製時に、水溶性結着剤にニッケルフレークあるいはニッケル短繊維を混合した溶液に水素吸蔵合金粉末を混合して水素吸蔵合金粉末混合工程と、  At the time of slurry preparation, a hydrogen storage alloy powder mixing step by mixing a hydrogen storage alloy powder in a solution in which nickel flakes or nickel short fibers are mixed in a water-soluble binder,
前記水素吸蔵合金粉末が混合された溶液に非水溶性結着剤を混合する非水溶性結着剤混合工程と、  A water-insoluble binder mixing step of mixing a water-insoluble binder into the solution in which the hydrogen storage alloy powder is mixed;
前記非水溶性結着剤が混合された溶液の粘度を調整する粘度調整工程とを備えていることを特徴とする水素吸蔵合金電極の製造方法。  And a viscosity adjusting step for adjusting the viscosity of the solution mixed with the water-insoluble binder. A method for producing a hydrogen storage alloy electrode, comprising:
請求項1から請求項2のいずれかに記載の水素吸蔵合金電極と、正極と、セパレータと、アルカリ電解液とを外装缶内に備えるようにしたことを特徴とするアルカリ蓄電池。An alkaline storage battery comprising: the hydrogen storage alloy electrode according to claim 1, a positive electrode, a separator, and an alkaline electrolyte in an outer can.
JP2007022271A 2007-01-31 2007-01-31 Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery Active JP5322392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022271A JP5322392B2 (en) 2007-01-31 2007-01-31 Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022271A JP5322392B2 (en) 2007-01-31 2007-01-31 Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2008192320A JP2008192320A (en) 2008-08-21
JP5322392B2 true JP5322392B2 (en) 2013-10-23

Family

ID=39752238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022271A Active JP5322392B2 (en) 2007-01-31 2007-01-31 Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5322392B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241188B2 (en) * 2007-09-28 2013-07-17 三洋電機株式会社 Alkaline storage battery system
JP5247170B2 (en) * 2008-01-30 2013-07-24 三洋電機株式会社 Alkaline storage battery
WO2013015424A1 (en) 2011-07-28 2013-01-31 株式会社Gsユアサ Negative electrode for alkali storage battery, external container for alkali storage battery and alkali storage battery
JP6331463B2 (en) * 2014-02-25 2018-05-30 新日鐵住金株式会社 Negative electrode active material
CN111987292B (en) * 2020-08-14 2022-07-08 湖南格瑞普新能源有限公司 Nickel-hydrogen battery wet method cathode process added with short fibers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323469A (en) * 1997-06-17 1999-11-26 Toshiba Corp Hydrogen storage alloy and secondary battery
JPH11162459A (en) * 1997-11-28 1999-06-18 Toshiba Corp Nickel-hydrogen secondary battery
JP2000030699A (en) * 1998-07-10 2000-01-28 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
JPH11354124A (en) * 1998-06-08 1999-12-24 Toshiba Battery Co Ltd Alkaline secondary battery
JP2000082491A (en) * 1998-09-08 2000-03-21 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
JP3643731B2 (en) * 1999-07-02 2005-04-27 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage battery
JP4965761B2 (en) * 2000-09-29 2012-07-04 株式会社東芝 Hydrogen storage alloy and method for producing the same, and nickel-hydrogen secondary battery using the same
JP2002164045A (en) * 2000-11-27 2002-06-07 Toshiba Corp Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
JP4698291B2 (en) * 2005-05-31 2011-06-08 三洋電機株式会社 Alkaline storage battery

Also Published As

Publication number Publication date
JP2008192320A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5241188B2 (en) Alkaline storage battery system
JP5171114B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP5642577B2 (en) Alkaline storage battery and alkaline storage battery system
JP5196938B2 (en) Alkaline storage battery system
JP5636740B2 (en) Hydrogen storage alloy for alkaline storage battery and method for producing the same
JP5207750B2 (en) Alkaline storage battery
JP5425433B2 (en) Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2009054514A (en) Hydrogen storage alloy electrode, and alkaline storage battery using the same
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP2011233423A (en) Alkaline storage battery
JP5405167B2 (en) Alkaline storage battery system
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP5535684B2 (en) Hydrogen storage alloy for alkaline storage battery and hydrogen storage alloy electrode for alkaline storage battery using the same
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
JP4698291B2 (en) Alkaline storage battery
JP5717125B2 (en) Alkaline storage battery
JP5354970B2 (en) Hydrogen storage alloy and alkaline storage battery
JP5512176B2 (en) Alkaline storage battery and alkaline storage battery system
JP6024295B2 (en) Alkaline storage battery
JP5147235B2 (en) Nickel metal hydride storage battery
JP6105389B2 (en) Alkaline storage battery
JP5247170B2 (en) Alkaline storage battery
JP2013178882A (en) Alkaline storage battery
JP5334498B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R151 Written notification of patent or utility model registration

Ref document number: 5322392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250