JP2008084649A - Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method - Google Patents

Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method Download PDF

Info

Publication number
JP2008084649A
JP2008084649A JP2006262215A JP2006262215A JP2008084649A JP 2008084649 A JP2008084649 A JP 2008084649A JP 2006262215 A JP2006262215 A JP 2006262215A JP 2006262215 A JP2006262215 A JP 2006262215A JP 2008084649 A JP2008084649 A JP 2008084649A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
negative electrode
type structure
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006262215A
Other languages
Japanese (ja)
Inventor
Shuhei Yoshida
周平 吉田
Yoshinobu Katayama
吉宣 片山
Yoshihiro Masuda
喜裕 増田
Masao Takee
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006262215A priority Critical patent/JP2008084649A/en
Publication of JP2008084649A publication Critical patent/JP2008084649A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy for an alkaline storage battery capable of having a high output characteristic well over a conventional range; an alkaline storage battery having a negative electrode containing the hydrogen storage alloy as a negative electrode active material; and its manufacturing method. <P>SOLUTION: This hydrogen storage alloy for an alkaline storage battery has a mixed phase comprising at least a Ce<SB>2</SB>Ni<SB>7</SB>type structure and a Ce<SB>5</SB>Co<SB>19</SB>type structure. The Ce<SB>5</SB>Co<SB>19</SB>type structure has a trigonal crystalline structure 3R where AB<SB>2</SB>type structures and AB<SB>5</SB>type structures are stacked on one another by using three layers as a cycle, and a discharge characteristic can be improved by a selective catalyst action of a Ni-rich part of the Ce<SB>5</SB>Co<SB>19</SB>type structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ハイブリッド車(HEV:Hybrid Electric Vehicle)や電気自動車(PEV:Pure Electric Vehicle)等の大電流放電を要する用途に適した水素吸蔵合金負極を備えたアルカリ蓄電池およびその製造方法に関する。   The present invention relates to an alkaline storage battery including a hydrogen storage alloy negative electrode suitable for applications requiring a large current discharge, such as a hybrid vehicle (HEV: Hybrid Electric Vehicle) and an electric vehicle (PEV: Pure Electric Vehicle), and a manufacturing method thereof.

近年、ハイブリッド車(HEV)、電気自動車(PEV)などの高出力が求められる機器の電源用としてアルカリ蓄電池、特に、ニッケル−水素蓄電池が用いられるようになった。一般的に、ニッケル−水素蓄電池の負極に用いられる水素吸蔵合金は、LaNi5等のAB5型希土類水素吸蔵合金の一部をAl、Mn等の元素で置換したものが用いられている。これらのAB5型希土類水素吸蔵合金は、融点の低いAl、Mn等を含有しているため、結晶粒界や表面にAlリッチ相やMnリッチ相などの偏析相が生成し易いということが知られている。 In recent years, alkaline storage batteries, particularly nickel-hydrogen storage batteries, have come to be used as power sources for devices that require high output, such as hybrid vehicles (HEV) and electric vehicles (PEV). Generally, a hydrogen storage alloy used for the negative electrode of a nickel-hydrogen storage battery is obtained by substituting a part of an AB 5 type rare earth hydrogen storage alloy such as LaNi 5 with an element such as Al or Mn. Since these AB 5 type rare earth hydrogen storage alloys contain Al, Mn, etc. having a low melting point, it is known that segregation phases such as Al-rich phases and Mn-rich phases are likely to be generated at the grain boundaries and surfaces. It has been.

そして、生成した偏析相は充放電サイクルを繰り返すと、水素吸蔵合金の結晶格子の膨張や収縮により、大きな内部応力が発生するようになる。この大きな内部応力により、水素吸蔵合金が微粉化したり、あるいはAlやMn等の溶出による水素吸蔵合金の腐食が生じたりして、耐食性に問題があった。そこで、このような水素吸蔵合金を熱処理することによって、偏析相を生じなくして単一相化する方法が、例えば、特許文献1(特開昭62−31947号公報)等で種々検討されるようになった。   And when the produced segregation phase repeats charging and discharging cycles, a large internal stress is generated due to expansion and contraction of the crystal lattice of the hydrogen storage alloy. Due to this large internal stress, the hydrogen storage alloy was pulverized or the hydrogen storage alloy was corroded due to elution of Al, Mn, etc., and there was a problem in corrosion resistance. Therefore, various methods for heat-treating such a hydrogen storage alloy to form a single phase without causing a segregation phase will be studied in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 62-31947). Became.

ところが、特許文献1等にて提案された手法においては以下のような欠点があった。即ち、水素吸蔵合金を熱処理することによって単一相化した場合、偏析界面がないため、アルカリ電解液との接触面積が減少して、初期の活性化性能が低下するという問題があった。このため、従来の範囲を遥かに越えた高出力が求められているハイブリッド自動車(HEV)や電気自動車(PEV)の用途としては満足する充放電特性やサイクル寿命特性が得られないという問題が生じた。   However, the method proposed in Patent Document 1 has the following drawbacks. That is, when the hydrogen storage alloy is converted into a single phase by heat treatment, there is no segregation interface, so that there is a problem that the contact area with the alkaline electrolyte is reduced and the initial activation performance is lowered. For this reason, there arises a problem that satisfactory charge / discharge characteristics and cycle life characteristics cannot be obtained for applications of hybrid vehicles (HEV) and electric vehicles (PEV) that require high output far exceeding the conventional range. It was.

通常、一般的な水素吸蔵合金は、上述したようなAB5型構造あるいはAB2型構造であるが、AB2型構造ユニットとAB5型構造ユニットとを組合せることで種々の結晶構造をとることが知られている。これらのうち、AB2型構造とAB5型構造とが2層を周期として重なり合ったCe2Ni7型構造の水素吸蔵合金が、例えば特許文献2(特開2002−164045号公報)等で種々検討されるようになった。このCe2Ni7型構造の水素吸蔵合金は六方晶系の結晶構造(2H)を有しており、水素の吸蔵・放出のサイクル寿命特性を向上させることが可能である。
特開昭62−31947号公報 特開2002−164045号公報
Usually, a general hydrogen storage alloy has the AB 5 type structure or the AB 2 type structure as described above, but takes various crystal structures by combining the AB 2 type structure unit and the AB 5 type structure unit. It is known. Among these, a hydrogen storage alloy having a Ce 2 Ni 7 type structure in which an AB 2 type structure and an AB 5 type structure overlap each other with a period of two layers is disclosed in, for example, Patent Document 2 (Japanese Patent Laid-Open No. 2002-164045). It came to be considered. This Ce 2 Ni 7 type hydrogen storage alloy has a hexagonal crystal structure (2H) and can improve the cycle life characteristics of hydrogen storage / release.
Japanese Patent Laid-Open No. 62-31947 JP 2002-164045 A

ところが、上述した特許文献2等で提案されたCe2Ni7型構造の水素吸蔵合金は、放電特性(アシスト出力)が不十分で、従来の範囲を遥かに越えた高出力用途としては満足いく性能を有していないという問題があった。
そこで、本発明は上記した問題を解決するためになされたものであって、従来の範囲を遥かに越えた高出力特性を有することが可能なアルカリ蓄電池用水素吸蔵合金を得て、この水素吸蔵合金を負極活物質とした負極を備えて、放電特性が向上したアルカリ蓄電池およびその製造方法を提供することを目的とするものである。
However, the Ce 2 Ni 7 type hydrogen storage alloy proposed in Patent Document 2 and the like described above has insufficient discharge characteristics (assist output) and is satisfactory for high output applications far exceeding the conventional range. There was a problem of not having performance.
Accordingly, the present invention has been made to solve the above-described problems, and obtained a hydrogen storage alloy for an alkaline storage battery capable of having high output characteristics far exceeding the conventional range. An object of the present invention is to provide an alkaline storage battery having a negative electrode using an alloy as a negative electrode active material and having improved discharge characteristics, and a method for producing the same.

上記目的を達成するため、本発明のアルカリ蓄電池の負極活物資として用いられるアルカリ蓄電池用水素吸蔵合金は、少なくともCe2Ni7型構造とCe5Co19型構造からなる混合相を有することを特徴とする。ここで、Ce5Co19型構造の水素吸蔵合金はAB2型構造とAB5型構造とが3層を周期として積み重なり合った三方晶系の結晶構造(3R)をしており、Ce2Ni7型構造と比較して、単位格子のa軸、c軸が短くて結晶の格子体積が小さく、Niリッチな構造をとることが可能となる。 In order to achieve the above object, the hydrogen storage alloy for alkaline storage battery used as the negative electrode active material of the alkaline storage battery of the present invention has a mixed phase consisting of at least a Ce 2 Ni 7 type structure and a Ce 5 Co 19 type structure. And Here, the hydrogen storage alloy of Ce 5 Co 19 type structure has a trigonal crystal structure (3R) in which an AB 2 type structure and an AB 5 type structure are stacked with a period of three layers, and Ce 2 Ni Compared with the 7- type structure, the a-axis and c-axis of the unit cell are short, the crystal lattice volume is small, and a Ni-rich structure can be achieved.

このため、Ce2Ni7型構造とCe5Co19型構造からなる混合相を有する水素吸蔵合金は、Ce5Co19型構造におけるNiリッチ部の選択的触媒作用により、大きく放電性を向上させることが可能となる。これにより、Ce2Ni7型構造とCe5Co19型構造からなる混合相を有する水素吸蔵合金をアルカリ蓄電池の負極に用いることにより、放電特性(アシスト出力)が向上したアルカリ蓄電池を得ることが可能となる。 For this reason, a hydrogen storage alloy having a mixed phase composed of a Ce 2 Ni 7 type structure and a Ce 5 Co 19 type structure greatly improves discharge performance by the selective catalytic action of the Ni-rich portion in the Ce 5 Co 19 type structure. It becomes possible. Thus, an alkaline storage battery having improved discharge characteristics (assist output) can be obtained by using a hydrogen storage alloy having a mixed phase composed of a Ce 2 Ni 7 type structure and a Ce 5 Co 19 type structure for the negative electrode of the alkaline storage battery. It becomes possible.

このとき、Ce2Ni7型構造の構成比率をX(%)とし、Ce5Co19型構造の構成比率をY(%)とした場合、Ce5Co19型構造の構成比率Y(%)に対するCe2Ni7型構造の構成比率X(%)の構成比X/Yは15以下であるのが望ましい。これは、X/Yが15以下(X/Y≦15)であれば、放電出力が向上することが明らかになったからである。また、上記組成において作製された水素吸蔵合金において、LaNi5型構造の構成比率をZ(%)とした場合、Zは15%以下(Z≦15%)であることが望ましい。これは、LaNi5型構造の構成比率が15%より多い場合、LaNi5型構造の偏析相からAlなどの溶出酸化が生じて、水素吸蔵合金の腐食が大きくなり、耐食性が低下する問題が生じるからである。 In this case, the component ratio of the Ce 2 Ni 7 type structure and X (%), if the composition ratio of Ce 5 Co 19 type structure was Y (%), Ce 5 Co 19 type structure ratio of the structure Y (%) The composition ratio X / Y of the composition ratio X (%) of the Ce 2 Ni 7 type structure with respect to is preferably 15 or less. This is because it became clear that the discharge output is improved when X / Y is 15 or less (X / Y ≦ 15). Further, in the hydrogen storage alloy produced with the above composition, when the constituent ratio of the LaNi 5 type structure is Z (%), Z is preferably 15% or less (Z ≦ 15%). This is because, when the composition ratio of the LaNi 5 type structure is more than 15%, elution oxidation of Al or the like occurs from the segregation phase of the LaNi 5 type structure, and the corrosion of the hydrogen storage alloy increases and the corrosion resistance decreases. Because.

上記水素吸蔵合金を製造するにあたって、一般式が(R1-αNdα)1-βMgβNiε-γ-δAlγMδ(ただし、RはNdを除く希土類元素および4族元素から選ばれた元素、MはNi,Alを除く5族〜13族元素から選ばれた元素)と表される水素吸蔵合金を該水素吸蔵合金の融点温度Tm(℃)よりも30〜60℃低い温度Ta(Tm−60≦Ta≦Tm−30)℃で熱処理する熱処理工程を備えていることが望ましい。
これは、上記水素吸蔵合金を融点温度Tm−60℃より低い温度で熱処理をすると、AlやMgの不均一分散による偏析相を発生し、組織の均質化が妨げられ、耐食性の低下をもたらす原因となるからである。一方、融点温度Tm−30℃より高い温度で熱処理をすると、Mgは沸点が低いため、Mgヒュームが発生し、合金製造時の安全性に問題が生じるからである。
このため、水素吸蔵合金の融点温度Tmよりも30〜60℃低い温度Ta(Tm−60≦Ta≦Tm−30)℃で熱処理するのが望ましい。
In producing the hydrogen storage alloy, the general formula is (R 1- αNdα) 1- βMgβNiε - γ - δAlγMδ (where R is an element selected from rare earth elements other than Nd and Group 4 elements, M is Ni, Al A hydrogen-absorbing alloy expressed as a group selected from Group 5 to Group 13 elements) except for a melting point temperature Tm (° C.) of the hydrogen-absorbing alloy that is 30 to 60 ° C. lower than Ta (Tm−60 ≦ Ta ≦ Tm It is desirable to have a heat treatment step for heat treatment at −30) ° C.
This is because when the hydrogen storage alloy is heat-treated at a temperature lower than the melting point temperature Tm-60 ° C., a segregation phase due to non-uniform dispersion of Al or Mg is generated, and the homogenization of the structure is hindered, resulting in a decrease in corrosion resistance. Because it becomes. On the other hand, when heat treatment is performed at a temperature higher than the melting point temperature Tm-30 ° C., Mg has a low boiling point, so Mg fume is generated, which causes a problem in safety during alloy production.
For this reason, it is desirable to perform heat treatment at a temperature Ta (Tm-60 ≦ Ta ≦ Tm-30) ° C. that is 30 to 60 ° C. lower than the melting point temperature Tm of the hydrogen storage alloy.

ついで、本発明の実施の形態を以下の図1〜図2に基づいて詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1は本発明のアルカリ蓄電池を模式的に示す断面図である。図2はCe2Ni7型構造比率X(%)とCe5Co19型構造比率Y(%)との構成比X/Yに対する−10℃アシスト出力(A)との関係を示すグラフである。 Next, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 2 below. However, the present invention is not limited to this, and may be appropriately modified and implemented without departing from the scope of the present invention. be able to. In addition, FIG. 1 is sectional drawing which shows typically the alkaline storage battery of this invention. FIG. 2 is a graph showing the relationship between the -10 ° C. assist output (A) and the composition ratio X / Y between the Ce 2 Ni 7 type structure ratio X (%) and the Ce 5 Co 19 type structure ratio Y (%). .

1.水素吸蔵合金
Ni,Nd,Al,Mg,Co,Mn,La,Ce,Prなどの元素を下記の表1に示すような所定のモル比の割合で混合した後、これらの混合物をアルゴンガス雰囲気の高周波誘導炉に投入して溶解させた後、冷却して、水素吸蔵合金のインゴットを作製した。ついで、得られた水素吸蔵合金の融点(Tm)よりも30℃低い温度(Ta=Tm−30℃)で所定時間(この場合は12時間)の熱処理を行った。この後、これらの各水素吸蔵合金の塊を粗粉砕した後、不活性ガス雰囲気中で平均粒径が25μmになるまで機械的に粉砕して、水素吸蔵合金粉末a〜mを作製した。
1. Hydrogen storage alloy Ni, Nd, Al, Mg, Co, Mn, La, Ce, Pr and the like are mixed at a predetermined molar ratio as shown in Table 1 below, and then the mixture is mixed with an argon gas atmosphere. The high-frequency induction furnace was charged and dissolved, and then cooled to produce a hydrogen storage alloy ingot. Next, heat treatment was performed for a predetermined time (in this case, 12 hours) at a temperature (Ta = Tm-30 ° C.) 30 ° C. lower than the melting point (Tm) of the obtained hydrogen storage alloy. Thereafter, these hydrogen storage alloy ingots were roughly pulverized and then mechanically pulverized in an inert gas atmosphere until the average particle size became 25 μm to prepare hydrogen storage alloy powders a to m.

この場合、組成式がLa0.8Ce0.1Pr0.05Nd0.05Ni4.0Al0.3Co0.6Mn0.1で表されるものを水素吸蔵合金aとし、(La0.2Pr0.4Nd0.40.8Mg0.2Ni3.1Al0.2で表されるものを水素吸蔵合金bとした。また、Nd0.9Mg0.1Ni3.2Al0.2Co0.1で表されるものを水素吸蔵合金cとし、Nd0.9Mg0.1Ni3.3Al0.2で表されるものを水素吸蔵合金dとし、Nd0.9Mg0.1Ni3.4Al0.2で表されるものを水素吸蔵合金eとし、Nd0.9Mg0.1Ni3.5Al0.2で表されるものを水素吸蔵合金fとし、Nd0.9Mg0.1Ni3.6Al0.2で表されるものを水素吸蔵合金gとし、Nd0.9Mg0.1Ni3.7Al0.2で表されるものを水素吸蔵合金hとした。さらに、(La0.2Pr0.3Nd0.50.9Mg0.1Ni3.4Al0.2で表されるものを水素吸蔵合金iとし、(La0.2Pr0.3Nd0.50.8Mg0.2Ni3.3Al0.3で表されるものを水素吸蔵合金jとし、(La0.3Nd0.70.9Mg0.1Ni3.6Al0.1で表されるものを水素吸蔵合金kとし、(La0.3Nd0.70.9Mg0.1Ni3.3Al0.4で表されるものを水素吸蔵合金lとし、(La0.3Nd0.70.7Mg0.3Ni3.6Al0.1で表されるものを水素吸蔵合金mとした。 In this case, a compositional formula represented by La 0.8 Ce 0.1 Pr 0.05 Nd 0.05 Ni 4.0 Al 0.3 Co 0.6 Mn 0.1 is a hydrogen storage alloy a, and (La 0.2 Pr 0.4 Nd 0.4 ) 0.8 Mg 0.2 Ni 3.1 Al 0.2 What was represented was designated as hydrogen storage alloy b. Further, a material represented by Nd 0.9 Mg 0.1 Ni 3.2 Al 0.2 Co 0.1 is a hydrogen storage alloy c, a material represented by Nd 0.9 Mg 0.1 Ni 3.3 Al 0.2 is a hydrogen storage alloy d, and Nd 0.9 Mg 0.1 Ni 3.4 What is represented by Al 0.2 is hydrogen storage alloy e, what is represented by Nd 0.9 Mg 0.1 Ni 3.5 Al 0.2 is hydrogen storage alloy f, and what is represented by Nd 0.9 Mg 0.1 Ni 3.6 Al 0.2 The alloy represented by Nd 0.9 Mg 0.1 Ni 3.7 Al 0.2 was designated as hydrogen storage alloy h. Further, a material represented by (La 0.2 Pr 0.3 Nd 0.5 ) 0.9 Mg 0.1 Ni 3.4 Al 0.2 is a hydrogen storage alloy i, and a material represented by (La 0.2 Pr 0.3 Nd 0.5 ) 0.8 Mg 0.2 Ni 3.3 Al 0.3 A hydrogen storage alloy j, which is represented by (La 0.3 Nd 0.7 ) 0.9 Mg 0.1 Ni 3.6 Al 0.1 is a hydrogen storage alloy k, and is represented by (La 0.3 Nd 0.7 ) 0.9 Mg 0.1 Ni 3.3 Al 0.4 The hydrogen storage alloy 1 was used, and the one expressed by (La 0.3 Nd 0.7 ) 0.7 Mg 0.3 Ni 3.6 Al 0.1 was used as the hydrogen storage alloy m.

ついで、Cu−Kα管をX線源とするX線回折測定装置を用いる粉末X線回折法で結晶構造の同定を行った。この場合、スキャンスピード1°/min、管電圧40kV、管電流300mA、スキャンステップ1°、測定角度(2θ)20〜50°でX線回折測定を行った。得られたXRDプロファイルよりJCPDSカードチャートを用いて、各水素吸蔵合金a〜mの結晶構造を同定した。ここで、結晶構造の構成比は、ピーク強度値と42〜44°の最強強度値をXRDプロファイルに当てはめて算出した。   Next, the crystal structure was identified by a powder X-ray diffraction method using an X-ray diffraction measurement apparatus using a Cu-Kα tube as an X-ray source. In this case, X-ray diffraction measurement was performed at a scan speed of 1 ° / min, a tube voltage of 40 kV, a tube current of 300 mA, a scan step of 1 °, and a measurement angle (2θ) of 20 to 50 °. From the obtained XRD profile, the crystal structure of each of the hydrogen storage alloys a to m was identified using a JCPDS card chart. Here, the composition ratio of the crystal structure was calculated by applying the peak intensity value and the strongest intensity value of 42 to 44 ° to the XRD profile.

そして、各水素吸蔵合金a〜mの各Ce2Ni7型構造の構成比率をX(%)とし、Ce5Co19型構造の構成比率をY(%)とし、LaNi5型構造の構成比率をZ(%)とするとともに、Ce5Co19型構造に対するCe2Ni7型構造の構成比を(X/Y)を示すと、下記の表1に示すような結果が得られた。なお、下記の表1には、各水素吸蔵合金a〜mを一般式(R1-αNdα)1-βMgβNiε-γ-δAlγMδ(ただし、RはNdを除く希土類元素および4族元素から選ばれた元素、MはNi,Alを除く5族〜13族元素から選ばれた元素)で表した場合のα,β,γ,δ,εの値も示している。なお、εは後述するように、(R1-αNdα)1-βMgβNiε-γ-δAlγMδをA成分(R,Nd,Mg)とB成分(Ni,Al,M)で表した場合のB成分の全量を表し、A成分は1となるのでAB比を表すこととなる。

Figure 2008084649
The composition ratio of each Ce 2 Ni 7 type structure of each hydrogen storage alloy a to m is X (%), the composition ratio of the Ce 5 Co 19 type structure is Y (%), and the composition ratio of the LaNi 5 type structure And Z (%), and the composition ratio of the Ce 2 Ni 7 type structure to the Ce 5 Co 19 type structure is (X / Y), the results shown in Table 1 below were obtained. In Table 1 below, each hydrogen storage alloy a~m general formula (R 1- αNdα) 1- βMgβNiε - γ - δAlγMδ ( wherein, R is selected from rare earth elements and group IV elements excluding Nd The values of α, β, γ, δ, and ε in the case where the element, M is an element selected from Group 5 to Group 13 elements excluding Ni and Al) are also shown. As will be described later, ε is the B component when (R 1 -αNdα) 1 -βMgβNiε - γ - δAlγMδ is represented by A component (R, Nd, Mg) and B component (Ni, Al, M). This represents the total amount, and since the A component is 1, it represents the AB ratio.
Figure 2008084649

2.水素吸蔵合金負極
この後、得られた各水素吸蔵合金粉末(a〜m)100質量部に対し、非水溶性結着剤としてのSBR(スチレンブタジエンラテックス)を0.5質量部と水(あるいは純水)を加え、混練して、水素吸蔵合金スラリーを作製した。ついで、ニッケルメッキを施したパンチングメタルからなる負極芯体を用意し、この負極芯体に水素吸蔵合金スラリーを塗着し、乾燥させた後、所定の厚みで、充填密度が5.0g/cm3となるように圧延した。この後、所定の寸法(この場合は、負極表面積(短軸長×長軸長×2)が800cm2)になるように切断して、水素吸蔵合金負極11(a1〜m1)をそれぞれ作製した。
2. Hydrogen storage alloy negative electrode Thereafter, 0.5 parts by mass of SBR (styrene butadiene latex) as a water-insoluble binder with respect to 100 parts by mass of each obtained hydrogen storage alloy powder (am), and water (or Pure water) was added and kneaded to prepare a hydrogen storage alloy slurry. Next, a negative electrode core made of nickel-plated punching metal was prepared, and a hydrogen storage alloy slurry was applied to the negative electrode core, dried, and then filled at a predetermined thickness of 5.0 g / cm. Rolled to 3 Then, it cut | disconnected so that it might become a predetermined dimension (in this case, a negative electrode surface area (short-axis length x long-axis length x2) is 800 cm < 2 >), and produced the hydrogen storage alloy negative electrode 11 (a1-m1), respectively. .

ここで、水素吸蔵合金aを用いたものを水素吸蔵合金負極a1とし、水素吸蔵合金bを用いたものを水素吸蔵合金負極b1とした。また、水素吸蔵合金cを用いたものを水素吸蔵合金負極c1とし、水素吸蔵合金dを用いたものを水素吸蔵合金負極d1とし、水素吸蔵合金eを用いたものを水素吸蔵合金負極e1とし、水素吸蔵合金fを用いたものを水素吸蔵合金負極f1とし、水素吸蔵合金gを用いたものを水素吸蔵合金負極g1とし、水素吸蔵合金hを用いたものを水素吸蔵合金負極h1とした。さらに、水素吸蔵合金iを用いたものを水素吸蔵合金負極i1とし、水素吸蔵合金jを用いたものを水素吸蔵合金負極j1とし、水素吸蔵合金kを用いたものを水素吸蔵合金負極k1とし、水素吸蔵合金lを用いたものを水素吸蔵合金負極l1とし、水素吸蔵合金mを用いたものを水素吸蔵合金負極m1とした。   Here, what used the hydrogen storage alloy a was made into the hydrogen storage alloy negative electrode a1, and what used the hydrogen storage alloy b was made into the hydrogen storage alloy negative electrode b1. Also, a hydrogen storage alloy negative electrode c1 using the hydrogen storage alloy c, a hydrogen storage alloy negative electrode d1 using the hydrogen storage alloy d, and a hydrogen storage alloy negative electrode e1 using the hydrogen storage alloy e, A hydrogen storage alloy negative electrode f1 was prepared using the hydrogen storage alloy f, a hydrogen storage alloy negative electrode g1 using the hydrogen storage alloy g, and a hydrogen storage alloy negative electrode h1 using the hydrogen storage alloy h. Further, a hydrogen storage alloy negative electrode i1 using the hydrogen storage alloy i, a hydrogen storage alloy negative electrode j1 using the hydrogen storage alloy j, a hydrogen storage alloy negative electrode k1 using the hydrogen storage alloy k, The hydrogen storage alloy negative electrode 11 was used as the hydrogen storage alloy negative electrode 11, and the hydrogen storage alloy negative electrode m 1 was used as the hydrogen storage alloy m.

3.ニッケル−水素蓄電池
ついで、これらの水素吸蔵合金負極11(a1〜m1)を用いてニッケル−水素蓄電池を作製する例について、以下に説明する。まず、多孔度が約85%の多孔性ニッケル焼結基板を比重が1.75の硝酸ニッケルと硝酸コバルトの混合水溶液に浸漬して、多孔性ニッケル焼結基板の細孔内にニッケル塩およびコバルト塩を保持させた。この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、ニッケル塩およびコバルト塩をそれぞれ水酸化ニッケルおよび水酸化コバルトに転換させた。
3. Nickel-hydrogen storage battery Next, an example of producing a nickel-hydrogen storage battery using these hydrogen storage alloy negative electrodes 11 (a1 to m1) will be described below. First, a porous nickel sintered substrate having a porosity of about 85% is immersed in a mixed aqueous solution of nickel nitrate and cobalt nitrate having a specific gravity of 1.75, and nickel salt and cobalt are placed in the pores of the porous nickel sintered substrate. Salt was retained. Thereafter, the porous nickel sintered substrate was immersed in a 25% by mass sodium hydroxide (NaOH) aqueous solution to convert the nickel salt and the cobalt salt into nickel hydroxide and cobalt hydroxide, respectively.

ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板の細孔内に水酸化ニッケルを主成分とする活物質を充填した。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板の細孔内に水酸化ニッケルを主体とする活物質の充填密度が2.5g/cm3になるように充填した。この後、室温で乾燥させた後、所定の寸法に切断してニッケル正極12を作製した。 Next, after sufficiently washing with water to remove the alkaline solution, drying was performed, and the active material mainly composed of nickel hydroxide was filled into the pores of the porous nickel sintered substrate. Such an active material filling operation is repeated a predetermined number of times (for example, 6 times) so that the filling density of the active material mainly composed of nickel hydroxide in the pores of the porous sintered substrate becomes 2.5 g / cm 3. Filled. Then, after making it dry at room temperature, it cut | disconnected to the predetermined dimension and the nickel positive electrode 12 was produced.

この後、上述のようにして作製した水素吸蔵合金負極11とニッケル正極12とを用い、これらの間に、ポリプロピレン製不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の下部には水素吸蔵合金負極板11の芯体露出部11cが露出しており、その上部にはニッケル正極板12の芯体露出部12cが露出している。   Thereafter, the hydrogen storage alloy negative electrode 11 and the nickel positive electrode 12 produced as described above are used, and a separator 13 made of a polypropylene non-woven fabric is interposed between them to form a spiral electrode group. Produced. The core exposed portion 11c of the hydrogen storage alloy negative electrode plate 11 is exposed at the lower part of the spiral electrode group thus produced, and the core exposed part 12c of the nickel positive electrode plate 12 is exposed at the upper part. Exposed.

ついで、得られた渦巻状電極群の下端面に露出する芯体露出部11cに負極集電体14を溶接するとともに、渦巻状電極群の上端面に露出するニッケル正極12の芯体露出部12cの上に正極集電体15を溶接した。この後、正極集電体15の上部に円筒状の正極用リード16を溶接した。この場合、円筒状の正極用リード16には、正極集電体15の溶接電極挿入用の中心開口15bに対応する位置にこの開口15bに連通する開口16aが形成されている。   Next, the negative electrode current collector 14 is welded to the core exposed portion 11c exposed at the lower end surface of the obtained spiral electrode group, and the core exposed portion 12c of the nickel positive electrode 12 exposed at the upper end surface of the spiral electrode group. A positive electrode current collector 15 was welded to the top. Thereafter, a cylindrical positive electrode lead 16 was welded to the upper portion of the positive electrode current collector 15. In this case, the cylindrical positive electrode lead 16 is formed with an opening 16a communicating with the opening 15b at a position corresponding to the central opening 15b for inserting the welding electrode of the positive electrode current collector 15.

ついで、鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)17内に収納した後、開口16aおよび中心開口15bを通して図示しない溶接電極を挿入し、水素吸蔵合金負極11に溶接された負極集電体14を外装缶17の内底面に溶接した。ついで、外装缶17の上部内周側に防振リング19bを挿入し、外装缶17の上部外周側に溝入れ加工を施して防振リング19bの上端部に環状溝部17aを形成した。この後、外装缶17内に30質量%の水酸化カリウム(KOH)水溶液からなるアルカリ電解液を注入した。なお、アルカリ電解液の注液量は電池容量(Ah)当たり2.5g(2.5g/Ah)とした。   Next, after being accommodated in a bottomed cylindrical outer can made of nickel-plated iron (the outer surface of the bottom surface becomes a negative electrode external terminal) 17, a welding electrode (not shown) is inserted through the opening 16a and the central opening 15b, and hydrogen The negative electrode current collector 14 welded to the storage alloy negative electrode 11 was welded to the inner bottom surface of the outer can 17. Next, an anti-vibration ring 19b was inserted into the upper inner peripheral side of the outer can 17 and grooving was performed on the upper outer peripheral side of the outer can 17 to form an annular groove 17a at the upper end of the anti-vibration ring 19b. Thereafter, an alkaline electrolyte composed of a 30% by mass potassium hydroxide (KOH) aqueous solution was injected into the outer can 17. The amount of alkaline electrolyte injected was 2.5 g (2.5 g / Ah) per battery capacity (Ah).

さらに、この外装缶17の開口部の上部に、封口板18aの底面が正極用リード16の円筒部分に接触するように配置した。ここで、封口板18aの上部には正極キャップ(正極外部端子)18bが設けられており、この正極キャップ18b内には弁板18cとスプリング18dからなる弁体を備えており、封口板18aの中央にはガス抜き孔が形成されており、封口板18aと正極キャップ18bとで封口体18が形成されている。ついで、正極キャップ(正極外部端子)18bの上面に一方の溶接電極(図示せず)を配置するとともに、外装缶17の底面(負極外部端子)の下面に他方の溶接電極(図示せず)を配置した。   Further, the sealing plate 18 a is disposed above the opening of the outer can 17 so that the bottom surface of the sealing plate 18 a contacts the cylindrical portion of the positive electrode lead 16. Here, a positive electrode cap (positive electrode external terminal) 18b is provided on the upper portion of the sealing plate 18a, and a valve body including a valve plate 18c and a spring 18d is provided in the positive electrode cap 18b. A gas vent hole is formed in the center, and a sealing body 18 is formed by the sealing plate 18a and the positive electrode cap 18b. Next, one welding electrode (not shown) is arranged on the upper surface of the positive electrode cap (positive electrode external terminal) 18b, and the other welding electrode (not shown) is arranged on the lower surface of the bottom surface (negative electrode external terminal) of the outer can 17. Arranged.

この後、これらの一対の溶接電極間に所定の圧力を加えながら、これらの溶接電極間に電池の放電方向に所定の電圧を印加し、所定のパルス電流を流す通電処理を施した。この通電処理により、封口板18aの底面と正極用リード16の周側縁との接触部分が溶接されることとなる。このように、一対の溶接電極間に所定の圧力を加えながら、これらの溶接電極間に電圧を印加して、通電処理を施すことにより、円筒状の正極用リード16の高さ寸法にばらつきがあっても、円筒状の正極用リード16の周側縁と封口板18aの底面との間に接触点を形成することが可能となる。これにより、溶接強度に優れた溶接部を形成することができるようになる。   Thereafter, while applying a predetermined pressure between the pair of welding electrodes, a predetermined voltage was applied between the welding electrodes in the discharge direction of the battery, and an energization process was performed to flow a predetermined pulse current. By this energization process, the contact portion between the bottom surface of the sealing plate 18a and the peripheral side edge of the positive electrode lead 16 is welded. As described above, by applying a voltage between the welding electrodes while applying a predetermined pressure between the pair of welding electrodes and applying an energization process, the height of the cylindrical positive electrode lead 16 varies. Even if it exists, it becomes possible to form a contact point between the circumferential edge of the cylindrical positive electrode lead 16 and the bottom surface of the sealing plate 18a. Thereby, the welding part excellent in welding strength can be formed now.

ついで、封口体18の封口板18aの周縁に絶縁ガスケット19aを嵌着させ、プレス機を用いて封口体18に加圧力を加えて、絶縁ガスケット19aの下端が外装缶17の上部外周に設けられた環状溝部17aの位置になるまで封口体18を外装缶17内に押し込む。この後、外装缶17の開口端縁17bを内方にかしめて電池を封口することによりニッケル−水素蓄電池(A〜M)を組み立てた。なお、この封口時の加圧力により、円筒状の正極用リード16は押しつぶされ、その断面形状は円形が押しつぶされた楕円形状となる。   Next, an insulating gasket 19a is fitted on the periphery of the sealing plate 18a of the sealing body 18, and a pressure is applied to the sealing body 18 using a press, so that the lower end of the insulating gasket 19a is provided on the upper outer periphery of the outer can 17. The sealing body 18 is pushed into the outer can 17 until it reaches the position of the annular groove 17a. Then, nickel-hydrogen storage batteries (A to M) were assembled by caulking the opening edge 17b of the outer can 17 inward to seal the battery. The cylindrical positive electrode lead 16 is crushed by the applied pressure at the time of sealing, and the cross-sectional shape becomes an elliptical shape in which a circular shape is crushed.

ここで、水素吸蔵合金負極a1を用いたものを電池Aとし、水素吸蔵合金負極b1を用いたものを電池Bとした。また、水素吸蔵合金負極c1を用いたものを電池Cとし、水素吸蔵合金負極d1を用いたものを電池Dとし、水素吸蔵合金負極e1を用いたものを電池Eとし、水素吸蔵合金負極f1を用いたものを電池Fとし、水素吸蔵合金負極g1を用いたものを電池Gとし、水素吸蔵合金負極h1を用いたものを電池Hとした。さらに、水素吸蔵合金負極i1を用いたものを電池Iとし、水素吸蔵合金負極j1を用いたものを電池Jとし、水素吸蔵合金負極k1を用いたものを電池Kとし、水素吸蔵合金負極l1を用いたものを電池Lとし、水素吸蔵合金負極m1を用いたものを電池Mとした。   Here, a battery using the hydrogen storage alloy negative electrode a1 was designated as battery A, and a battery using the hydrogen storage alloy negative electrode b1 was designated as battery B. A battery using the hydrogen storage alloy negative electrode c1 is referred to as a battery C, a battery using the hydrogen storage alloy negative electrode d1 is referred to as a battery D, a battery using the hydrogen storage alloy negative electrode e1 is referred to as a battery E, and the hydrogen storage alloy negative electrode f1 is used. A battery F was used, a battery G was used using the hydrogen storage alloy negative electrode g1, and a battery H was used using the hydrogen storage alloy negative electrode h1. Further, a battery using the hydrogen storage alloy negative electrode i1 is referred to as a battery I, a battery using the hydrogen storage alloy negative electrode j1 is referred to as a battery J, a battery using the hydrogen storage alloy negative electrode k1 is referred to as a battery K, and the hydrogen storage alloy negative electrode l1 is used. The battery L was used, and the battery M using the hydrogen storage alloy negative electrode m1 was used.

4.電池試験
(1)出力特性評価
まず、上述のようにして作製した電池A〜Mを用いて、まず、25℃の温度雰囲で、1Itの充電々流でSOC(State Of Charge:充電深度)の120%まで充電し、1時間休止した。ついで、70℃の温度雰囲で24時間放置した後、45℃の温度雰囲で、1Itの放電々流で電池電圧が0.3Vになるまで放電させるサイクルを2サイクル繰り返して、これらの各電池A〜Mを活性化した。
4). Battery Test (1) Output Characteristic Evaluation First, using the batteries A to M manufactured as described above, first, SOC (State Of Charge) at a charging temperature of 1 It in a temperature atmosphere of 25 ° C. The battery was charged to 120% and rested for 1 hour. Next, after being left in a temperature atmosphere of 70 ° C. for 24 hours, a cycle of discharging the battery voltage to 0.3 V with a discharge current of 1 It in a temperature atmosphere of 45 ° C. was repeated two times. Cells A to M were activated.

活性化終了後、25℃の温度雰囲で、1Itの充電電流でSOC(State Of Charge :充電深度)の50%まで充電した後、1時間休止した。ついで、−10℃の温度雰囲で、任意の充電レートで20秒間充電させた後、30分間休止させた。この後、−10℃の温度雰囲で、任意の放電レートで10秒間放電させた後、25℃の温度雰囲で30分間休止させた。このような−10℃の温度雰囲で、任意の充電レートでの20秒間充電、30分の休止、任意の放電レートで10秒間放電、25℃の温度雰囲での30分の休止を繰り返した。   After the activation was completed, the battery was charged to 50% of SOC (State Of Charge) with a charging current of 1 It in a temperature atmosphere of 25 ° C., and then rested for 1 hour. Next, the battery was charged for 20 seconds at an arbitrary charging rate in a temperature atmosphere of −10 ° C., and then rested for 30 minutes. Thereafter, the battery was discharged at an arbitrary discharge rate for 10 seconds in a temperature atmosphere of −10 ° C., and then rested in a temperature atmosphere of 25 ° C. for 30 minutes. In such a temperature atmosphere of −10 ° C., charging for 20 seconds at an arbitrary charging rate, pause for 30 minutes, discharging for 10 seconds at an arbitrary discharge rate, and pause for 30 minutes at a temperature atmosphere of 25 ° C. It was.

この場合、任意の充電レートは、0.8It→1.7It→2.5It→3.3It→4.2Itの順で充電電流を増加させ、任意の放電レートは、1.7It→3.3It→5.0It→6.7It→8.3Itの順で放電電流を増加させ、各放電レートで10秒間経過時点での各電池A〜Mの電池電圧(V)を各電流毎にそれぞれ測定して、放電V−Iプロット近似曲線を求めた。ここで、求めたV−Iプロット近似曲線上の電池電圧が0.9V時の電流を放電特性指標としての放電出力(−10℃アシスト出力)として求めると、下記の表2に示すような結果となった。   In this case, an arbitrary charging rate increases charging current in the order of 0.8 It → 1.7 It → 2.5 It → 3.3 It → 4.2 It, and an arbitrary discharging rate is 1.7 It → 3.3 It. → 5.0 It → 6.7 It → 8.3 It increased the discharge current in the order, and measured the battery voltage (V) of each battery A to M at the time of 10 seconds at each discharge rate for each current. Then, a discharge VI plot approximate curve was obtained. Here, when the current when the battery voltage on the obtained VI plot approximate curve is 0.9 V is obtained as a discharge output (−10 ° C. assist output) as a discharge characteristic index, the results shown in Table 2 below are obtained. It became.

(2)耐食性評価
一般式(R1-αNdα)1-βMgβNiε-γ-δAlγMδ(ただし、RはNdを除く希土類元素および4族元素から選ばれた元素、MはNi,Alを除く5族〜13族元素から選ばれた元素)で表した水素吸蔵合金は、A成分(R,Nd,Mg)とB成分(Ni,Al,M)で成り立っている。一般的に耐食性指標として酸素濃度が用いられているが、これはA成分の酸化量を表しており、AB比(ε)が異なる合金を比較する場合、式量が異なるため酸素濃度は耐食性指標として適していない。そこで、A成分の酸化割合を合金失活率とし、耐食性の指標とする。出力特性評価後に各電池を解体して、これらの各電池から水素吸蔵合金を採取する。そして、超音波洗浄機を用い純水にて結着剤を除去し、乾燥後、酸素濃度を測定した。次いで、酸素濃度及びA成分の原子比率からA成分の酸化割合である合金失活率を算出すると下記の表2に示すような結果となった。

Figure 2008084649
(2) Corrosion resistance evaluation General formula (R1 - αNdα) 1- βMgβNiε - γ - δAlγMδ (where R is an element selected from rare earth elements other than Nd and Group 4 elements, M is Group 5 excluding Ni and Al) The hydrogen storage alloy represented by an element selected from Group 13 elements is composed of an A component (R, Nd, Mg) and a B component (Ni, Al, M). In general, the oxygen concentration is used as a corrosion resistance index. This represents the oxidation amount of the component A. When comparing alloys having different AB ratios (ε), the oxygen concentration is the corrosion resistance index because the formula weights are different. Not suitable as. Therefore, the oxidation ratio of the component A is used as an alloy deactivation rate and is used as an index of corrosion resistance. After evaluating the output characteristics, each battery is disassembled, and a hydrogen storage alloy is collected from each battery. Then, the binder was removed with pure water using an ultrasonic cleaner, and after drying, the oxygen concentration was measured. Next, when the alloy deactivation rate, which is the oxidation ratio of the A component, was calculated from the oxygen concentration and the atomic ratio of the A component, the results shown in Table 2 below were obtained.
Figure 2008084649

上記表2の結果から明らかなように、LaNi5構造を主相とする水素吸蔵合金aを負極a1に備えた電池Aは−10℃アシスト出力が大きい半面、水素吸蔵合金の失活率が大きいことが分かる。一方、Ce2Ni7構造を主相とする水素吸蔵合金bを負極b1に備えた電池Bは水素吸蔵合金の失活率が小さい半面、−10℃アシスト出力が小さいことが分かる。即ち、放電特性と耐食性はトレードオフの関係を有することが分かる。
これらに対して、Ce2Ni7型構造とCe5Co19型構造からなる混合相を有する水素吸蔵合金cを負極c1に備えた電池Cは放電出力と耐食性のバランスがとれており、放電特性が優れていることが分かる。これは、Ce5Co19型構造のNiリッチ部位による反応抵抗低減効果によるものと考えられることから、Ce2Ni7型構造とCe5Co19型構造からなる混合層は積層不整であってもよい。
As is clear from the results in Table 2 above, the battery A provided with the hydrogen storage alloy a having the main phase of LaNi 5 in the negative electrode a1 has a large assist power of −10 ° C., but the deactivation rate of the hydrogen storage alloy is large. I understand that. On the other hand, it can be seen that the battery B provided with the hydrogen storage alloy b having the Ce 2 Ni 7 structure as the main phase in the negative electrode b1 has a small deactivation rate of the hydrogen storage alloy, but has a small −10 ° C. assist output. That is, it can be seen that the discharge characteristics and the corrosion resistance have a trade-off relationship.
On the other hand, the battery C provided with the hydrogen storage alloy c having a mixed phase composed of a Ce 2 Ni 7 type structure and a Ce 5 Co 19 type structure in the negative electrode c1 has a balance between discharge output and corrosion resistance, and discharge characteristics. It turns out that is excellent. This is considered to be due to the reaction resistance reduction effect due to the Ni-rich portion of the Ce 5 Co 19 type structure. Therefore, even if the mixed layer composed of the Ce 2 Ni 7 type structure and the Ce 5 Co 19 type structure is laminated irregularly. Good.

ここで、電池C〜Hを用いて、Ce2Ni7型構造の構成比率X(%)とCe5Co19型構造の構成比率Y(%)との構成比X/Yに対する−10℃アシスト出力(A)との関係を求めると、図2に示すような結果が得られた。図2の結果から明らかなように、Ce2Ni7型構造の構成比率X(%)とCe5Co19型構造の構成比率Y(%)との構成比X/Yが15以下(X/Y≦15)であれば、−10℃アシスト出力(A)、即ち、放電出力が向上することが分かる。 Here, using the batteries C to H, −10 ° C. assist for the composition ratio X / Y of the composition ratio X (%) of the Ce 2 Ni 7 type structure and the composition ratio Y (%) of the Ce 5 Co 19 structure. When the relationship with the output (A) was obtained, a result as shown in FIG. 2 was obtained. As is clear from the results of FIG. 2, the composition ratio X / Y between the composition ratio X (%) of the Ce 2 Ni 7 type structure and the composition ratio Y (%) of the Ce 5 Co 19 structure is 15 or less (X / If Y ≦ 15), it can be seen that the −10 ° C. assist output (A), that is, the discharge output is improved.

また、上記表1,表2の結果を総合勘案すると、(R1-αNdα)1-βMgβNiε-γ-δAlγMδ(但し、RはNdを除く希土類元素および4族元素から選ばれた元素、MはNi,Al,Coを除く5族〜13族の元素)と表され、A成分が(R1-αNdα)1-βMgβで、B成分がNiε-γ-δAlγMδとなる水素吸蔵合金において、Ndのモル比(α)は0.5以上、1.0以下(0.5≦α≦1.0)で、Mgのモル比(β)は0.1以上、0.2以下(0.1≦β≦0.2)で、Alのモル比(γ)は0.1以上、0.3以下(0.1≦γ≦0.3)で、B成分全体のモル比(ε)、即ちB/A比は3.5以上、3.9以下(3.5≦ε≦3.9)であるのが望ましいということが分かる。 In addition, considering the results in Tables 1 and 2 above, (R 1- αNdα) 1- βMgβNiε - γ - δAlγMδ (where R is an element selected from rare earth elements other than Nd and Group 4 elements, M is In a hydrogen storage alloy expressed as “Group 5 to Group 13 elements excluding Ni, Al, and Co”, the A component is (R 1− αNdα) 1- βMgβ, and the B component is Niε - γ - δAlγMδ. The molar ratio (α) is 0.5 or more and 1.0 or less (0.5 ≦ α ≦ 1.0), and the molar ratio (β) of Mg is 0.1 or more and 0.2 or less (0.1 ≦ β ≦ 0.2), the molar ratio (γ) of Al is 0.1 or more and 0.3 or less (0.1 ≦ γ ≦ 0.3), and the molar ratio (ε) of the entire B component, that is, B It can be seen that the / A ratio is preferably 3.5 or more and 3.9 or less (3.5 ≦ ε ≦ 3.9).

5.水素吸蔵合金の熱処理温度の検討
ついで、水素吸蔵合金の熱処理温度について以下に検討した。そこで、Nd0.9Mg0.1Ni3.6Al0.2で表される組成の水素吸蔵合金のインゴットを上述と同様に、アーク溶解法にて作製した。この組成の水素吸蔵合金インゴットを融点(Tm=1123℃)より60℃低い温度(Tm−60℃)で所定時間(この場合は12時間)熱処理を行った後、粗粉砕し、不活性ガス雰囲気中で平均粒径が25μmになるまで機械的に粉砕して、水素吸蔵合金粉末nを作製した。同様に、この組成の水素吸蔵合金インゴットを融点(Tm=1123℃)より90℃低い温度(Tm−90℃)で所定時間(この場合は12時間)熱処理を行った後、粗粉砕し、不活性ガス雰囲気中で平均粒径が25μmになるまで機械的に粉砕して、水素吸蔵合金粉末oを作製した。
5. Examination of the heat treatment temperature of the hydrogen storage alloy Next, the heat treatment temperature of the hydrogen storage alloy was examined as follows. Therefore, an ingot of a hydrogen storage alloy having a composition represented by Nd 0.9 Mg 0.1 Ni 3.6 Al 0.2 was produced by the arc melting method in the same manner as described above. A hydrogen storage alloy ingot having this composition is heat-treated at a temperature (Tm-60 ° C) lower than the melting point (Tm = 1123 ° C) for a predetermined time (in this case, 12 hours), then coarsely pulverized, and an inert gas atmosphere In this, mechanically pulverized until the average particle size became 25 μm to prepare hydrogen storage alloy powder n. Similarly, a hydrogen storage alloy ingot having this composition is heat-treated at a temperature (Tm-90 ° C.) 90 ° C. lower than the melting point (Tm = 1123 ° C.) for a predetermined time (in this case, 12 hours), then coarsely pulverized, A hydrogen storage alloy powder o was prepared by mechanically pulverizing in an active gas atmosphere until the average particle size became 25 μm.

これらの水素吸蔵合金n,oの結晶構造を上述と同様に同定するとともに、各水素吸蔵合金n,oの各Ce2Ni7型構造の構成比率X(%)、Ce5Co19型構造の構成比率Y(%)、LaNi5型構造の構成比率Z(%)、およびCe5Co19型構造に対するCe2Ni7型構造の構成比(X/Y)を示すと、下記の表3に示すような結果が得られた。なお、表3には上述した水素吸蔵合金g(融点(Tm)より30℃低い温度(Tm−30℃)で熱処理を行ったもの)の結果も併せて示している。

Figure 2008084649
The crystal structures of these hydrogen storage alloys n and o are identified in the same manner as described above, the composition ratio X (%) of each Ce 2 Ni 7 type structure of each hydrogen storage alloy n and o, and the Ce 5 Co 19 type structure. Table 3 below shows the composition ratio Y (%), the composition ratio Z (%) of the LaNi 5 structure, and the composition ratio (X / Y) of the Ce 2 Ni 7 structure to the Ce 5 Co 19 structure. The results shown were obtained. Table 3 also shows the results of the above-described hydrogen storage alloy g (heat treated at a temperature 30 ° C. lower than the melting point (Tm) (Tm-30 ° C.)).
Figure 2008084649

上記表3の結果から明らかなように、熱処理温度が、融点(Tm=1123℃)より30℃低い温度(Tm−30℃)、融点(Tm=1123℃)より60℃低い温度(Tm−60℃)、融点(Tm=1123℃)より90℃低い温度(Tm−90℃)と低下するほど、結晶構造中のLaNi5の構成比率が大きくなることが分かる。 As is apparent from the results in Table 3 above, the heat treatment temperature is 30 ° C. lower than the melting point (Tm = 1123 ° C.) (Tm−30 ° C.) and 60 ° C. lower than the melting point (Tm = 1123 ° C.) (Tm−60). It can be seen that the composition ratio of LaNi 5 in the crystal structure increases as the temperature decreases to 90 ° C. (Tm−90 ° C.) lower than the melting point (Tm = 1123 ° C.).

ついで、これらの水素吸蔵合金n,oを用いて、上述と同様に水素吸蔵合金負極n1,o1を作製するとともに、ニッケル−水素蓄電池N,Oを作製し、上述と同様に活性化した後、上述と同様の充放電試験を行って放電特性指標としての放電出力(−10℃アシスト出力)として求めると、下記の表4に示すような結果となった。また、これらの出力特性評価試験後の電池N,Oを解体して、上述と同様に、これらの各電池N,Oから水素吸蔵合金を採取して酸素濃度を測定し、酸素濃度よりA成分の酸化割合である合金失活率を算出すると下記の表4に示すような結果となった。なお、表4には上述した電池G(水素吸蔵合金gを負極に用いた電池)の結果も併せて示している。

Figure 2008084649
Next, using these hydrogen storage alloys n, o, the hydrogen storage alloy negative electrodes n1, o1 were prepared in the same manner as described above, and the nickel-hydrogen storage batteries N, O were prepared and activated in the same manner as described above. When a charge / discharge test similar to that described above was performed to obtain a discharge output (−10 ° C. assist output) as a discharge characteristic index, the results shown in Table 4 below were obtained. Also, the batteries N and O after the output characteristic evaluation test were disassembled, and the hydrogen storage alloy was sampled from each of the batteries N and O, and the oxygen concentration was measured. When the alloy deactivation rate, which is the oxidation ratio, was calculated, the results shown in Table 4 below were obtained. Table 4 also shows the results of the above-described battery G (battery using the hydrogen storage alloy g as a negative electrode).
Figure 2008084649

上記表4の結果から明らかなように、熱処理温度が低下して、結晶構造中のLaNi5の構成比率が大きくなるほど、放電特性(−10℃アシスト出力)および耐食性が低下することが分かる。そこで、LaNi5型構造相をEPMAで組織観察したところ、概ね、偏析相はAlリッチ相であることが明らかになった。即ち、放電特性および耐食性が低下は、Alの溶出により水素吸蔵合金の腐食が加速されたことが影響していると考えられる。このことから、結晶構造中のLaNi5の構成比率Z(%)は15%以下であることのが望ましいということが分かる。 As is apparent from the results of Table 4 above, it can be seen that the discharge characteristics (−10 ° C. assist output) and the corrosion resistance decrease as the heat treatment temperature decreases and the composition ratio of LaNi 5 in the crystal structure increases. Therefore, when the structure of the LaNi 5 type structural phase was observed with EPMA, it became clear that the segregated phase was generally an Al-rich phase. That is, it is considered that the decrease in the discharge characteristics and the corrosion resistance is affected by the accelerated corrosion of the hydrogen storage alloy due to the elution of Al. From this, it can be seen that the composition ratio Z (%) of LaNi 5 in the crystal structure is desirably 15% or less.

一方、熱処理温度(Ta)が融点(Tm)より30℃低い温度(Tm−30℃)よりも高温(Ta>Tm−30)になった場合、沸点の低いMgのMgヒュームが発生して、水素吸蔵合金製造時の生産性の低下や組成安定性などの問題が生じるようになる。以上のことから、水素吸蔵合金の熱処理温度(Ta)は、水素吸蔵合金の融点温度(Tm)よりも30〜60℃低い温度((Tm−60)≦Ta≦(Tm−30))とするのが望ましいということが分かる。   On the other hand, when the heat treatment temperature (Ta) is higher than the temperature (Tm-30 ° C.) 30 ° C. lower than the melting point (Tm) (Ta> Tm-30), Mg fume having a low boiling point is generated, Problems such as a decrease in productivity and compositional stability at the time of producing the hydrogen storage alloy occur. From the above, the heat treatment temperature (Ta) of the hydrogen storage alloy is set to a temperature 30 to 60 ° C. lower than the melting point temperature (Tm) of the hydrogen storage alloy ((Tm-60) ≦ Ta ≦ (Tm-30)). It is understood that is desirable.

本発明のアルカリ蓄電池を模式的に示す断面図である。It is sectional drawing which shows the alkaline storage battery of this invention typically. Ce2Ni7型構造の構成比率X(%)とCe5Co19型構造の構成比率Y(%)との構成比X/Yに対する−10℃アシスト出力(A)との関係を示すグラフである。A graph showing the relationship between the Ce 2 composition ratio X (%) of Ni 7 type structure and Ce 5 composition ratio Y (%) of Co 19 type structure and -10 ° C. assist output to the configuration ratio X / Y of (A) is there.

符号の説明Explanation of symbols

11…水素吸蔵合金負極、11c…芯体露出部、12…ニッケル正極、12c…芯体露出部、13…セパレータ、14…負極集電体、15…正極集電体、16…正極用リード、17…外装缶、17a…環状溝部、17b…開口端縁、18…封口体、18a…封口板、18b…正極キャップ、18c…弁板、18d…スプリング、19a…絶縁ガスケット、19b…防振リング DESCRIPTION OF SYMBOLS 11 ... Hydrogen storage alloy negative electrode, 11c ... Core body exposed part, 12 ... Nickel positive electrode, 12c ... Core body exposed part, 13 ... Separator, 14 ... Negative electrode collector, 15 ... Positive electrode collector, 16 ... Lead for positive electrode, DESCRIPTION OF SYMBOLS 17 ... Exterior can, 17a ... Annular groove, 17b ... Opening edge, 18 ... Sealing body, 18a ... Sealing plate, 18b ... Positive electrode cap, 18c ... Valve plate, 18d ... Spring, 19a ... Insulating gasket, 19b ... Anti-vibration ring

Claims (5)

アルカリ蓄電池の負極活物質として用いられるアルカリ蓄電池用水素吸蔵合金であって、
前記水素吸蔵合金は少なくともCe2Ni7型構造とCe5Co19型構造からなる混合相を有することを特徴とするアルカリ蓄電池用水素吸蔵合金。
A hydrogen storage alloy for alkaline storage batteries used as a negative electrode active material for alkaline storage batteries,
The hydrogen storage alloy for an alkaline storage battery, wherein the hydrogen storage alloy has a mixed phase composed of at least a Ce 2 Ni 7 type structure and a Ce 5 Co 19 type structure.
前記Ce2Ni7型構造の構成比率をX(%)とし、前記Ce5Co19型構造の構成比率をY(%)とした場合の前記Ce5Co19型構造の構成比率Y(%)に対する前記Ce2Ni7型構造の構成比率X(%)の構成比X/Yは15以下であることを特徴とする請求項1に記載のアルカリ蓄電池用水素吸蔵合金。 The composition ratio Y (%) of the Ce 5 Co 19 structure when the composition ratio of the Ce 2 Ni 7 structure is X (%) and the composition ratio of the Ce 5 Co 19 structure is Y (%). 2. The hydrogen storage alloy for an alkaline storage battery according to claim 1, wherein the composition ratio X / Y of the composition ratio X (%) of the Ce 2 Ni 7 type structure with respect to is 15 or less. 前記水素吸蔵合金はさらにLaNi5型構造を有し、該LaNi5型構造の構成比率をZ(%)をとした場合、Zは15%以下(Z≦15%)であることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池用水素吸蔵合金。 The hydrogen storage alloy further comprises a LaNi 5 type structure, if the component ratio of the LaNi 5 type structure was the Z (%), Z is characterized by 15% or less (Z ≦ 15%) The hydrogen storage alloy for alkaline storage batteries according to claim 1 or 2. 請求項1乃至請求項3のいずれかに記載のアルカリ蓄電池用水素吸蔵合金を負極活物質とする水素吸蔵合金負極と、正極と、これらの両極を隔離するセパレータと、アルカリ電解液とを外装缶内に備えたことを特徴とするアルカリ蓄電池。   An outer can comprising a hydrogen storage alloy negative electrode using the hydrogen storage alloy for alkaline storage batteries according to any one of claims 1 to 3 as a negative electrode active material, a positive electrode, a separator separating these two electrodes, and an alkaline electrolyte. An alkaline storage battery characterized in that it is provided inside. 水素吸蔵合金を負極活物質とする水素吸蔵合金負極と、正極と、これらの両極を隔離するセパレータと、アルカリ電解液とを外装缶内に備えたアルカリ蓄電池の製造方法であって、
一般式が(R1-αNdα)1-βMgβNiε-γ-δAlγMδ(ただし、RはNdを除く希土類元素および4族元素から選ばれた元素、MはNi,Alを除く5族〜13族元素から選ばれた元素)と表される水素吸蔵合金を該水素吸蔵合金の融点温度Tmよりも30〜60℃低い温度Ta((Tm−60)≦Ta≦(Tm−30))℃で熱処理する熱処理工程を備えたことを特徴とするアルカリ蓄電池の製造方法。
A method for producing an alkaline storage battery comprising a hydrogen storage alloy negative electrode using a hydrogen storage alloy as a negative electrode active material, a positive electrode, a separator separating these two electrodes, and an alkaline electrolyte in an outer can,
The general formula is (R 1- αNdα) 1- βMgβNiε - γ - δAlγMδ (where R is an element selected from rare earth elements other than Nd and group 4 elements, and M is a group 5 to group 13 elements excluding Ni and Al) A heat treatment in which a hydrogen storage alloy represented by (selected element) is heat-treated at a temperature Ta ((Tm-60) ≦ Ta ≦ (Tm-30)) ° C. 30 to 60 ° C. lower than the melting point temperature Tm of the hydrogen storage alloy A method for producing an alkaline storage battery comprising a step.
JP2006262215A 2006-09-27 2006-09-27 Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method Pending JP2008084649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262215A JP2008084649A (en) 2006-09-27 2006-09-27 Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262215A JP2008084649A (en) 2006-09-27 2006-09-27 Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008084649A true JP2008084649A (en) 2008-04-10

Family

ID=39355290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262215A Pending JP2008084649A (en) 2006-09-27 2006-09-27 Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008084649A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054514A (en) * 2007-08-29 2009-03-12 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, and alkaline storage battery using the same
JP2009299172A (en) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd Hydrogen storage alloy and alkali storage battery
CN101931078A (en) * 2009-06-18 2010-12-29 三洋电机株式会社 Hydrogen-absorbing alloy for alkaline storage battery and manufacture method thereof
JP2011008994A (en) * 2009-06-24 2011-01-13 Sanyo Electric Co Ltd Alkaline storage battery, and alkaline storage battery system
JP2011216467A (en) * 2010-03-18 2011-10-27 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery including negative electrode having the alloy, and alkaline storage battery system
WO2012057351A1 (en) * 2010-10-29 2012-05-03 三洋電機株式会社 Alkaline storage battery
CN102800853A (en) * 2012-08-30 2012-11-28 上海锦众信息科技有限公司 Preparation method of negative electrode material of nickel-based alkaline secondary battery
EP2045855B1 (en) * 2007-09-28 2013-03-27 Sanyo Electric Co., Ltd. Alkaline storage battery system
JP2014229593A (en) * 2013-05-27 2014-12-08 三洋電機株式会社 Alkali storage battery
JP2015159081A (en) * 2014-02-25 2015-09-03 新日鐵住金株式会社 Negative electrode active material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100601A (en) * 1997-09-29 1999-04-13 Sanyo Electric Co Ltd Hydrogen storage alloy grain and its production
JP2002105564A (en) * 2000-09-29 2002-04-10 Toshiba Corp Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
WO2008018494A1 (en) * 2006-08-09 2008-02-14 Gs Yuasa Corporation Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100601A (en) * 1997-09-29 1999-04-13 Sanyo Electric Co Ltd Hydrogen storage alloy grain and its production
JP2002105564A (en) * 2000-09-29 2002-04-10 Toshiba Corp Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
WO2008018494A1 (en) * 2006-08-09 2008-02-14 Gs Yuasa Corporation Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012042776; 金本学他: '新規高容量希土類-Mg-Ni系水素吸蔵合金の開発' GS Yuasa Technical Report 2006年7月 第3巻 第1号, 20060707, p20-25 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054514A (en) * 2007-08-29 2009-03-12 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, and alkaline storage battery using the same
EP2045855B1 (en) * 2007-09-28 2013-03-27 Sanyo Electric Co., Ltd. Alkaline storage battery system
JP2009299172A (en) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd Hydrogen storage alloy and alkali storage battery
CN101931078A (en) * 2009-06-18 2010-12-29 三洋电机株式会社 Hydrogen-absorbing alloy for alkaline storage battery and manufacture method thereof
JP2011023337A (en) * 2009-06-18 2011-02-03 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery and method for manufacturing the same
JP2011008994A (en) * 2009-06-24 2011-01-13 Sanyo Electric Co Ltd Alkaline storage battery, and alkaline storage battery system
JP2011216467A (en) * 2010-03-18 2011-10-27 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery including negative electrode having the alloy, and alkaline storage battery system
WO2012057351A1 (en) * 2010-10-29 2012-05-03 三洋電機株式会社 Alkaline storage battery
JP2012099250A (en) * 2010-10-29 2012-05-24 Sanyo Electric Co Ltd Alkaline storage battery
CN102800853A (en) * 2012-08-30 2012-11-28 上海锦众信息科技有限公司 Preparation method of negative electrode material of nickel-based alkaline secondary battery
JP2014229593A (en) * 2013-05-27 2014-12-08 三洋電機株式会社 Alkali storage battery
JP2015159081A (en) * 2014-02-25 2015-09-03 新日鐵住金株式会社 Negative electrode active material

Similar Documents

Publication Publication Date Title
JP5171114B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP5173320B2 (en) Hydrogen storage alloy electrode and alkaline storage battery using this hydrogen storage alloy electrode
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP5642577B2 (en) Alkaline storage battery and alkaline storage battery system
JP5207750B2 (en) Alkaline storage battery
JP5425433B2 (en) Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
JP5636740B2 (en) Hydrogen storage alloy for alkaline storage battery and method for producing the same
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
US20110033748A1 (en) Hydrogen-absorbing alloy powder, method for treating the surface thereof, negative electrode for alkaline storage battery, and alkaline storage battery
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP2011082129A (en) Hydrogen storage alloy for alkaline storage battery, and hydrogen storage alloy electrode for alkaline storage battery using the same
JP5252920B2 (en) Alkaline storage battery
JP5354970B2 (en) Hydrogen storage alloy and alkaline storage battery
JP5717125B2 (en) Alkaline storage battery
JP5213312B2 (en) Alkaline storage battery
JP4663451B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP6105389B2 (en) Alkaline storage battery
JP2013196991A (en) Alkali storage battery
JP5247170B2 (en) Alkaline storage battery
JP5147190B2 (en) Alkaline storage battery and method for producing positive electrode used therefor
JP5334498B2 (en) Alkaline storage battery
WO2012165519A1 (en) Alkaline storage cell and alkaline storage cell system
JP2013134903A (en) Hydrogen absorbing alloy for alkaline storage battery, and alkaline storage battery including the same
JP2014110150A (en) Sintered nickel positive electrode for alkali storage battery use, and alkali storage battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113