JP5425433B2 - Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material - Google Patents

Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material Download PDF

Info

Publication number
JP5425433B2
JP5425433B2 JP2008242207A JP2008242207A JP5425433B2 JP 5425433 B2 JP5425433 B2 JP 5425433B2 JP 2008242207 A JP2008242207 A JP 2008242207A JP 2008242207 A JP2008242207 A JP 2008242207A JP 5425433 B2 JP5425433 B2 JP 5425433B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
battery
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008242207A
Other languages
Japanese (ja)
Other versions
JP2009176712A (en
Inventor
周平 吉田
和明 田村
吉宣 片山
輝人 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008242207A priority Critical patent/JP5425433B2/en
Priority to EP08022199A priority patent/EP2096691B1/en
Priority to US12/341,033 priority patent/US20090169995A1/en
Priority to CN2008101902021A priority patent/CN101471440B/en
Publication of JP2009176712A publication Critical patent/JP2009176712A/en
Application granted granted Critical
Publication of JP5425433B2 publication Critical patent/JP5425433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、ハイブリッド車(HEV:Hybrid Electric Vehicle)や電気自動車(PEV:Pure Electric Vehicle)等の大電流放電を要する用途に適したアルカリ蓄電池の負極活物質として用いられる水素吸蔵合金およびこの水素吸蔵合金を負極活物質として用いたアルカリ蓄電池に関する。   The present invention relates to a hydrogen storage alloy used as a negative electrode active material of an alkaline storage battery suitable for applications requiring a large current discharge, such as a hybrid vehicle (HEV) and an electric vehicle (PEV), and the hydrogen storage The present invention relates to an alkaline storage battery using an alloy as a negative electrode active material.

近年、ハイブリッド車(HEV)や電気自動車(PEV)などの出力が求められる機器の電源用としてアルカリ蓄電池、特に、ニッケル−水素蓄電池が用いられるようになった。一般的に、ニッケル−水素蓄電池の負極活物質として用いられる水素吸蔵合金は、LaNi5等のAB5型希土類水素吸蔵合金のB成分(Ni)の一部をアルミニウム(Al)やマンガン(Mn)等の元素で置換したものが用いられている。このようなAB5型希土類水素吸蔵合金以外にも、AB2型構造なども知られている。また、AB2型構造とAB5型構造とを組み合わせることで種々の結晶構造をとることも知られている。 In recent years, alkaline storage batteries, particularly nickel-hydrogen storage batteries, have been used as power sources for devices that require output such as hybrid vehicles (HEV) and electric vehicles (PEV). Generally, a hydrogen storage alloy used as a negative electrode active material of a nickel-hydrogen storage battery is a part of the B component (Ni) of an AB 5 type rare earth hydrogen storage alloy such as LaNi 5 which is aluminum (Al) or manganese (Mn). Those substituted with an element such as are used. In addition to the AB 5 type rare earth hydrogen storage alloy, an AB 2 type structure is also known. It is also known to take various crystal structures by combining an AB 2 type structure and an AB 5 type structure.

これらのうち、AB2型構造とAB5型構造とが2層を周期として重なり合ったA27型構造の水素吸蔵合金が、例えば特許文献1(特開2002−164045号公報)等で種々検討されるようになった。このA27型構造の水素吸蔵合金は六方晶系の結晶構造(2H)を有しており、水素の吸蔵・放出のサイクル寿命特性を向上させることが可能である。ところが、A27型構造の水素吸蔵合金は、放電特性(アシスト出力)が不十分で、従来の範囲を遥かに越えた出力用途としては満足いく性能を有していないという問題があった。 Among these, various hydrogen storage alloys having an A 2 B 7 type structure in which an AB 2 type structure and an AB 5 type structure overlap each other with a period of two layers are disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-164045. It came to be considered. This hydrogen storage alloy having an A 2 B 7 type structure has a hexagonal crystal structure (2H), and can improve the cycle life characteristics of hydrogen storage / release. However, the hydrogen storage alloy of the A 2 B 7 type structure has a problem that the discharge characteristics (assist output) are insufficient and the performance is not satisfactory for output applications far exceeding the conventional range. .

ここで、準安定構造となり得る結晶構造としては、A27型構造の他にA519型構造などが知られている。この場合、A519型構造はAB2型構造とAB5型構造とが3層を周期として積み重なり合っており、A27型構造よりも単位結晶格子当たりのニッケル(Ni)比率を増加させることができるので、水素分子の吸着および水素原子への解離を促進する活性点を増加させることが可能となる。
特開2002−164045号公報
Here, as a crystal structure that can be a metastable structure, an A 5 B 19 type structure and the like are known in addition to the A 2 B 7 type structure. In this case, in the A 5 B 19 type structure, the AB 2 type structure and the AB 5 type structure are stacked with a period of three layers, and the nickel (Ni) ratio per unit crystal lattice is higher than that of the A 2 B 7 type structure. Since the number of active sites can be increased, the number of active sites that promote the adsorption and dissociation of hydrogen molecules into hydrogen atoms can be increased.
JP 2002-164045 A

しかしながら、A519型構造の水素吸蔵合金において、ニッケル(Ni)はB成分のその他の元素(アルミニウム(Al),コバルト(Co),マンガン(Mn),亜鉛(Zn)など)に比較して原子半径が小さいことが知られている。ここで、A519型構造において、ニッケル(Ni)の比率を増加させると、単位格子を構成する金属原子間の隙間が小さくなるという問題を生じる。そして、金属原子間の隙間が小さくなると、金属格子中に水素原子が入りにくくなって、不安定な金属水素化物を形成するようになり、水素平衡圧が上昇するようになる。 However, in the hydrogen storage alloy of A 5 B 19 type structure, nickel (Ni) is compared with other elements of B component (aluminum (Al), cobalt (Co), manganese (Mn), zinc (Zn), etc.)). It is known that the atomic radius is small. Here, in the A 5 B 19 type structure, when the ratio of nickel (Ni) is increased, there arises a problem that gaps between metal atoms constituting the unit cell are reduced. When the gap between the metal atoms is reduced, hydrogen atoms are less likely to enter the metal lattice, so that an unstable metal hydride is formed, and the hydrogen equilibrium pressure is increased.

このため、このような金属原子間の隙間が小さくなった水素吸蔵合金を負極活物質として用いたニッケル−水素蓄電池を大電流の充放電用途に用いると、水素吸蔵合金の微粉化が加速されて耐久性が低下することとなる。また、水素平衡圧が上昇することにより、ニッケル正極での水素の還元反応が進行して自己放電が促進され、電池としての性能が劣化するようになる。この結果、この種のアルカリ蓄電池をハイブリッド車(HEV)や電気自動車(PEV)などの出力性能(出力特性が極めて高い)、耐久性能(耐久性が極めて高い)および自己放電性能(自己放電が極めて少ない)が求められる用途の電源用として使用するには問題があった。   For this reason, when a nickel-hydrogen storage battery using a hydrogen storage alloy with such a small gap between metal atoms as a negative electrode active material is used for a large current charge / discharge application, the pulverization of the hydrogen storage alloy is accelerated. Durability will be reduced. Moreover, when the hydrogen equilibrium pressure increases, hydrogen reduction reaction proceeds at the nickel positive electrode, self-discharge is promoted, and battery performance deteriorates. As a result, this type of alkaline storage battery can be used for output performance (extremely high output characteristics), durability performance (extremely high durability) and self-discharge performance (extremely high self-discharge) such as hybrid vehicles (HEV) and electric vehicles (PEV). There is a problem in using it as a power source for applications that require a small number of applications.

そこで、本発明は上記した問題を解決するためになされたものであって、水素吸蔵合金の合金構造、特に、A成分元素を特定することにより、従来の範囲を遥かに越えた出力特性を有することが可能な水素吸蔵合金およびこの水素吸蔵合金を負極活物質として用いたアルカリ蓄電池を提供することを目的とするものである。   Therefore, the present invention has been made to solve the above-described problems, and has an output characteristic far exceeding the conventional range by specifying the alloy structure of the hydrogen storage alloy, particularly the A component element. It is an object of the present invention to provide a hydrogen storage alloy that can be used and an alkaline storage battery that uses this hydrogen storage alloy as a negative electrode active material.

上記目的を達成するため、本発明の水素吸蔵合金は、Lnで表される希土類元素とマグネシウムからなるA成分と、少なくともニッケル、アルミニウムを含む元素からなるB成分とから構成され、水素吸蔵合金の合金主相はA519型構造であるとともに、一般式はLnl-xMgxNiy-a-bAlab(式中、MはCo,Mn,Znから選択される少なくとも1種の元素であり、0.1≦x≦0.2、3.6≦y≦3.9、0.1≦a≦0.2、0≦b≦0.1)と表され、希土類元素Lnはランタン(La)とサマリウム(Sm)の二元素からなり、かつ40℃での水素吸蔵量H/M(原子比)が0.5のときの吸蔵水素平衡圧(Pa)が0.03〜0.17MPaであることを特徴とする。
In order to achieve the above object, the hydrogen storage alloy of the present invention is composed of a rare earth element represented by Ln and an A component composed of magnesium and a B component composed of an element containing at least nickel and aluminum. The alloy main phase has an A 5 B 19 type structure, and the general formula is Ln lx Mg x Ni yab Al a M b (wherein M is at least one element selected from Co, Mn, and Zn, 0.1 ≦ x ≦ 0.2, 3.6 ≦ y ≦ 3.9, 0.1 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.1), and the rare earth element Ln is lanthanum (La) And samarium (Sm) , and the hydrogen storage pressure (Pa) when the hydrogen storage amount H / M (atomic ratio) at 40 ° C. is 0.5 is 0.03 to 0.17 MPa. It is characterized by that.

ここで、水素吸蔵合金において、水素の吸蔵・放出にはA成分を構成する希土類元素(Ln)が寄与している。この場合、希土類元素(Ln)の元素数が増大すると、合金鋳造時の構成元素間の液相における相互作用パラメータが増加して、偏析などの第二相が生成されやすくなる。そして、偏析などの第二相が生成された水素吸蔵合金を負極活物質とするアルカリ蓄電池においては、充放電サイクルを繰り返すに伴って水素吸蔵合金の微粉化が加速されるようになる。ところが、希土類元素(Ln)の元素数を希土類元素(Ln)のうちで原子半径が大きいLaとSmの二元素に規制すると、合金鋳造時に構成元素間の液相における相互パラメータが減少するようになる。これにより、偏析などの第二層の生成が抑制されやすくなり、充放電サイクルに伴う水素吸蔵合金の微粉化を抑制することが可能となる。
Here, in the hydrogen storage alloy, rare earth elements (Ln) constituting the A component contribute to the storage and release of hydrogen. In this case, when the number of elements of the rare earth element (Ln) increases, the interaction parameter in the liquid phase between the constituent elements during alloy casting increases, and a second phase such as segregation is likely to be generated. And in the alkaline storage battery which uses as a negative electrode active material the hydrogen storage alloy in which the 2nd phases, such as segregation, were produced, pulverization of a hydrogen storage alloy comes to be accelerated with repeating a charging / discharging cycle. However, when regulating the number of elements of the rare earth element (Ln) to two yuan element of La and Sm atomic radius is larger among the rare earth elements (Ln), so that the mutual parameter is decreased in the liquid phase between the constituent elements during alloy cast become. Thereby, it becomes easy to suppress generation | occurrence | production of 2nd layers, such as segregation, and it becomes possible to suppress pulverization of the hydrogen storage alloy accompanying a charging / discharging cycle.

そして、このような抑制効果は準安定構造であるA519型構造で顕著に表れることが分かったので、合金主相はA519型構造であり、一般式をLnl-xMgxNiy-a-bAlab(式中、MはCo,Mn,Znから選択される少なくとも1種の元素)と表した場合、0.1≦x≦0.2、0.1≦a≦0.2、0≦b≦0.1、3.6≦y≦3.9の条件を満たす必要がある。これは、このような準安定構造であるA519型構造を合金主相とするには、0.1≦x≦0.2、0.1≦a≦0.2、0≦b≦0.1の条件を満たしても、B成分の量論比yが3.5程度の従来の量論比領域では認められず、3.6以上で、3.9以下の量論比領域(3.6≦y≦3.9の領域)においてのみ可能となるからである。 And, it was found that such a suppression effect appears remarkably in the A 5 B 19 type structure which is a metastable structure. Therefore, the alloy main phase has an A 5 B 19 type structure, and the general formula is expressed as Ln lx Mg x Ni. When expressed as yab Al a M b (wherein M is at least one element selected from Co, Mn, and Zn), 0.1 ≦ x ≦ 0.2, 0.1 ≦ a ≦ 0.2 , 0 ≦ b ≦ 0.1, 3.6 ≦ y ≦ 3.9 must be satisfied. This is because 0.1 ≦ x ≦ 0.2, 0.1 ≦ a ≦ 0.2, and 0 ≦ b ≦ to make the A 5 B 19 type structure which is such a metastable structure an alloy main phase. Even if the condition of 0.1 is satisfied, it is not recognized in the conventional stoichiometric ratio region where the B component stoichiometric ratio y is about 3.5, but the stoichiometric ratio region of 3.6 or more and 3.9 or less ( This is because it is possible only in the region of 3.6 ≦ y ≦ 3.9.

この場合、希土類元素(Ln)のうちで原子半径が大きいLaを含むことで、40℃での水素吸蔵量H/M(原子比)が0.5のときの吸蔵水素平衡圧(Pa)が0.03〜0.17MPaとすることが可能となり、自己放電性能を向上させることが可能となる。これは、平衡圧が0.17MPaより大きい場合、水素吸蔵合金表面の水素濃度が高くなって、これが正極の還元反応に寄与するため、ハイブリッド自動車、電気自動車用など高温環境下に長期放置される用途では自己放電による容量の低下が顕著となる。一方、吸蔵水素平衡圧(Pa)が0.03MPa未満であると、作動電圧が低下することにより出力特性が低下する。   In this case, by including La having a large atomic radius among the rare earth elements (Ln), the stored hydrogen equilibrium pressure (Pa) when the hydrogen storage amount H / M (atomic ratio) at 40 ° C. is 0.5 is obtained. It becomes possible to set it as 0.03-0.17 Mpa, and it becomes possible to improve self-discharge performance. This is because when the equilibrium pressure is greater than 0.17 MPa, the hydrogen concentration on the surface of the hydrogen storage alloy increases, and this contributes to the reduction reaction of the positive electrode. In applications, the reduction in capacity due to self-discharge is significant. On the other hand, if the stored hydrogen equilibrium pressure (Pa) is less than 0.03 MPa, the output voltage is lowered due to a decrease in the operating voltage.

これらのことから、出力特性を発揮し、かつ耐久性能および自己放電性能を両立させるためには、合金主相がA519型構造で、一般式がLnl-xMgxNiy-a-bAlab(式中、MはCo,Mn,Znから選択される少なくとも1種の元素であり、0.1≦x≦0.2、3.6≦y≦3.9、0.1≦a≦0.2、0≦b≦0.1)と表され、希土類元素LnはLaとSmの二元素からなり、かつ40℃での水素吸蔵量H/M(原子比)が0.5のときの吸蔵水素平衡圧(Pa)が0.03〜0.17MPaである水素吸蔵合金を用いる必要がある。
From these facts, in order to exhibit output characteristics and achieve both durability and self-discharge performance, the alloy main phase has an A 5 B 19 type structure, and the general formula is Ln lx Mg x Ni yab Al a M b (In the formula, M is at least one element selected from Co, Mn, and Zn, and 0.1 ≦ x ≦ 0.2, 3.6 ≦ y ≦ 3.9, and 0.1 ≦ a ≦ 0. .2, 0 ≦ b ≦ 0.1), the rare earth element Ln is composed of two elements of La and Sm , and the hydrogen storage amount H / M (atomic ratio) at 40 ° C. is 0.5. It is necessary to use a hydrogen storage alloy having a storage hydrogen equilibrium pressure (Pa) of 0.03 to 0.17 MPa.

なお、前記一般式で表される水素吸蔵合金のニッケルモル比率((y−a−b)/(y+1))が74%以上であるのが望ましい。また、一般式Lnl-xMgxNiy-a-bAla
bで表される水素吸蔵合金のニッケル置換元素となる元素Mはコバルト(Co)およびマンガン(Mn)を含まないのが望ましい。また、上記組成の水素吸蔵合金は耐久性能を有するため、水素吸蔵合金からなる粉末は体積累積頻度が50%の粒径(D50)が20μm以下とすることが可能であり、更なる高出力特性を得ることができる。
In addition, it is desirable that the nickel molar ratio ((yab) / (y + 1)) of the hydrogen storage alloy represented by the general formula is 74% or more. In addition, the general formula Ln lx Mg x Ni yab Al a M
It is desirable that the element M as a nickel-substitution element of the hydrogen storage alloy represented by b does not contain cobalt (Co) and manganese (Mn) . Also, since the hydrogen storage alloy of the above composition having a durability, the powder consisting of a hydrogen storage alloy is capable of volume cumulative frequency 50% particle size (D50) is to 20μm or less, even higher output Characteristics can be obtained.

本発明においては、水素吸蔵合金の合金構造およびA成分元素を特定するようにしているので、従来の範囲を遥かに越えた出力特性(アシスト出力)を有する水素吸蔵合金を得、この水素吸蔵合金を負極活物質として用いることにより、出力特性を発揮し、かつ耐久性能および自己放電性能が両立したアルカリ蓄電池を得ることが可能となる。   In the present invention, since the alloy structure of the hydrogen storage alloy and the A component element are specified, a hydrogen storage alloy having output characteristics (assist output) far exceeding the conventional range is obtained, and this hydrogen storage alloy By using as a negative electrode active material, it is possible to obtain an alkaline storage battery that exhibits output characteristics and has both durability and self-discharge performance.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1は本発明のアルカリ蓄電池を模式的に示す断面図である。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention. In addition, FIG. 1 is sectional drawing which shows typically the alkaline storage battery of this invention.

1.水素吸蔵合金
ランタン(La),セリウム(Ce),プラセオジム(Pr),ネオジム(Nd),サマリウム(Sm),マグネシウム(Mg),ニッケル(Ni),アルミニウム(Al),コバルト(Co),マンガン(Mn),亜鉛(Zn)などの金属元素を下記の表1に示すような所定のモル比となるように混合した後、これらの混合物をアルゴンガス雰囲気の高周波誘導炉に投入して溶解させる。この後、厚みが0.5mm以下の合金鋳塊になるように溶湯急冷して、薄板状の水素吸蔵合金a〜kを作製する。
1. Hydrogen storage alloys Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Magnesium (Mg), Nickel (Ni), Aluminum (Al), Cobalt (Co), Manganese ( After mixing metal elements such as Mn) and zinc (Zn) at a predetermined molar ratio as shown in Table 1 below, these mixtures are put into a high frequency induction furnace in an argon gas atmosphere to be dissolved. Thereafter, the molten metal is rapidly cooled so as to form an alloy ingot having a thickness of 0.5 mm or less, and thin plate-like hydrogen storage alloys a to k are produced.

この場合、組成式がLa0.8Ce0.1Pr0.05Nd0.05Ni4.2Al0.3(Co,Mn)0.7で表されるものを水素吸蔵合金aとし、Nd0.9Mg0.1Ni3.2Al0.2Co0.1で表されるものを水素吸蔵合金bとし、La0.3Nd0.5Mg0.2Ni3.5Al0.2で表されるものを水素吸蔵合金cとする。また、Nd0.9Mg0.1Ni3.7Al0.1で表されるものを水素吸蔵合金dとし、La0.2Pr0.2Nd0.5Mg0.1Ni3.7Al0.1で表されるものを水素吸蔵合金eとし、La0.2Nd0.7Mg0.1Ni3.6Al0.1Zn0.1で表されるものを水素吸蔵合金fとする。また、La0.2Nd0.7Mg0.1Ni3.7Al0.1で表されるものを水素吸蔵合金gとし、La0.4Nd0.5Mg0.1Ni3.7Al0.1で表されるものを水素吸蔵合金hとし、La0.5Sm0.4Mg0.1Ni3.7Al0.1で表されるものを水素吸蔵合金iとする。さらに、La0.4Sm0.5Mg0.1Ni3.7Al0.1で表されるものを水素吸蔵合金jとし、La0.8Mg0.2Ni3.8Al0.1で表されるものを水素吸蔵合金kとし、La0.6Sm0.2Mg0.2Ni3.5Al0.1で表されるものを水素吸蔵合金lとする。以上の結果を表にまとめると、下記の表1に示すような結果となった。 In this case, the compositional formula represented by La 0.8 Ce 0.1 Pr 0.05 Nd 0.05 Ni 4.2 Al 0.3 (Co, Mn) 0.7 is referred to as a hydrogen storage alloy a, and Nd 0.9 Mg 0.1 Ni 3.2 Al 0.2 Co 0.1 One is represented by hydrogen storage alloy b, and one represented by La 0.3 Nd 0.5 Mg 0.2 Ni 3.5 Al 0.2 is represented by hydrogen storage alloy c. Further, a material represented by Nd 0.9 Mg 0.1 Ni 3.7 Al 0.1 is a hydrogen storage alloy d, a material represented by La 0.2 Pr 0.2 Nd 0.5 Mg 0.1 Ni 3.7 Al 0.1 is a hydrogen storage alloy e, and La 0.2 Nd 0.7 A material represented by Mg 0.1 Ni 3.6 Al 0.1 Zn 0.1 is designated as hydrogen storage alloy f. Also, La 0.2 Nd 0.7 Mg 0.1 Ni 3.7 Al 0.1 represents hydrogen storage alloy g, La 0.4 Nd 0.5 Mg 0.1 Ni 3.7 Al 0.1 represents hydrogen storage alloy h, and La 0.5 Sm 0.4 A material represented by Mg 0.1 Ni 3.7 Al 0.1 is referred to as a hydrogen storage alloy i. Further, La 0.4 Sm 0.5 Mg 0.1 Ni 3.7 Al 0.1 is represented by hydrogen storage alloy j, La 0.8 Mg 0.2 Ni 3.8 Al 0.1 is represented by hydrogen storage alloy k, and La 0.6 Sm 0.2 Mg 0.2. A material represented by Ni 3.5 Al 0.1 is referred to as a hydrogen storage alloy l. When the above results are summarized in a table, the results shown in Table 1 below are obtained.

なお、下記の表1には、各水素吸蔵合金a〜lを一般式Lnl-xMgxNiy-a-bAlab(MはCo,Mn,Znの少なくとも1つ以上からなる元素)で表した場合のx(Mgの量論比),a(Alの量論比),b(Mの量論比)およびy(B成分(Ni+Al+M)の量論比)の値も示している。また、ニッケルモル比率((y−a−b)/(y+1))の値も示している。

Figure 0005425433
In Table 1 below, each of the hydrogen storage alloys a to l is represented by the general formula Ln lx Mg x Ni yab Al a M b (M is an element composed of at least one of Co, Mn, and Zn). The values of x (stoichiometric ratio of Mg), a (stoichiometric ratio of Al), b (stoichiometric ratio of M) and y (stoichiometric ratio of B component (Ni + Al + M)) are also shown. The value of the nickel molar ratio ((y−a−b) / (y + 1)) is also shown.
Figure 0005425433

ついで、得られた各水素吸蔵合金a〜lについて、DSC(示差走査熱量計)を用いて融点(Tm)を測定した。その後、これらの水素吸蔵合金a〜kの融点(Tm)よりも30℃だけ低い温度(Ta=Tm−30℃)で所定時間(この場合は10時間)の熱処理を行った。そして、熱処理後の各水素吸蔵合金a〜kの吸蔵水素平衡圧Pa(MPa)を求めると表2に示す結果となった。この場合、40℃の雰囲気下で、水素吸蔵量(H/M)が0.5のときの解離圧を吸蔵水素平衡圧Pa(MPa)として、JIS H7201(1991)「水素吸蔵合金の圧力−組成等温線(PCT曲線)の測定方法」に基づいて測定した。   Subsequently, the melting points (Tm) of the obtained hydrogen storage alloys a to 1 were measured using DSC (differential scanning calorimeter). Thereafter, heat treatment was performed for a predetermined time (in this case, 10 hours) at a temperature (Ta = Tm−30 ° C.) lower by 30 ° C. than the melting points (Tm) of these hydrogen storage alloys a to k. And when the hydrogen storage equilibrium pressure Pa (MPa) of each hydrogen storage alloy ak after heat processing was calculated | required, it became the result shown in Table 2. In this case, under an atmosphere of 40 ° C., the dissociation pressure when the hydrogen storage amount (H / M) is 0.5 is defined as the storage hydrogen equilibrium pressure Pa (MPa), and JIS H7201 (1991) “Pressure of the hydrogen storage alloy— It measured based on the measuring method of a composition isotherm (PCT curve).

この後、これらの各水素吸蔵合金a〜lの塊を粗粉砕した後、不活性ガス雰囲気中で機械的に粉砕して、体積累積頻度50%での粒径(D50)が20μmの水素吸蔵合金粉末a〜lを作製した。ついで、Cu−Kα管をX線源とするX線回折測定装置を用いる粉末X線回折法で水素吸蔵合金粉末a〜lの結晶構造の同定を行った。この場合、スキャンスピード1°/min、管電圧40kV、管電流300mA、スキャンステップ1°、測定角度(2θ)20〜50°でX線回折測定を行った。得られたXRDプロファイルよりJCPDSカードチャートを用いて、各水素吸蔵合金a〜kの結晶構造を同定した。   Thereafter, these hydrogen storage alloys a to l are coarsely pulverized and then mechanically pulverized in an inert gas atmosphere to obtain a hydrogen storage having a particle size (D50) of 20 μm at a volume cumulative frequency of 50%. Alloy powders a to l were prepared. Next, the crystal structures of the hydrogen storage alloy powders a to l were identified by a powder X-ray diffraction method using an X-ray diffraction measuring apparatus using a Cu-Kα tube as an X-ray source. In this case, X-ray diffraction measurement was performed at a scan speed of 1 ° / min, a tube voltage of 40 kV, a tube current of 300 mA, a scan step of 1 °, and a measurement angle (2θ) of 20 to 50 °. From the obtained XRD profile, the crystal structure of each of the hydrogen storage alloys a to k was identified using a JCPDS card chart.

ここで、各結晶構造の構成比において、A519型構造はCe5Co19型構造とPr5Co19型構造とSm5Co19型構造とし、A27型構造はNd2Ni7型構造とCe2Ni7型構造とし、AB5型構造はLaNi5型構造として、JCPDSによる各構造の回折角の強度値と42〜44°の最強強度値との比各強度比を、得られたXRDプロファイルにあてはめて、各構造の構成比率を算出すると、下記の表2に示すような結果が得られた。

Figure 0005425433
Here, in the composition ratio of each crystal structure, the A 5 B 19 type structure is a Ce 5 Co 19 type structure, a Pr 5 Co 19 type structure and an Sm 5 Co 19 type structure, and the A 2 B 7 type structure is Nd 2 Ni. 7 type structure and Ce 2 Ni 7 type structure, AB 5 type structure is LaNi 5 type structure, the intensity value of the diffraction angle of each structure according to JCPDS and the strongest intensity value of 42-44 °, each intensity ratio, When the composition ratio of each structure was calculated by applying to the obtained XRD profile, the results shown in Table 2 below were obtained.
Figure 0005425433

上記表1および表2の結果から以下のことが明らかとなった。即ち、合金aのように、0.1≦x≦0.2、0.1≦a≦0.2、0≦b≦0.1の条件を満たさなく、かつB成分(Ni+Al+M)の量論比yが5.2のように大きくなると、AB5型構造となる。また、合金bのように、0.1≦x≦0.2、0.1≦a≦0.2、0≦b≦0.1の条件を満たしても、B成分(Ni+Al+M)の量論比yが3.5と小さいと、A27型構造が合金主相となる。 From the results shown in Tables 1 and 2, the following has become clear. That is, the alloy a does not satisfy the conditions of 0.1 ≦ x ≦ 0.2, 0.1 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.1, and the B component (Ni + Al + M) is stoichiometric. When the ratio y is increased to 5.2, an AB 5 type structure is obtained. Moreover, even if the conditions of 0.1 ≦ x ≦ 0.2, 0.1 ≦ a ≦ 0.2, and 0 ≦ b ≦ 0.1 are satisfied as in the case of the alloy b, the stoichiometry of the B component (Ni + Al + M) When the ratio y is as small as 3.5, the A 2 B 7 type structure becomes the alloy main phase.

これらに対して、合金c〜lのように0.1≦x≦0.2、0.1≦a≦0.2、0≦b≦0.1の条件を満たし、かつB成分(Ni+Al+M)の量論比yが3.6以上、3.9以下であると、A519型構造が合金主相(この場合、合金lにおいてはA519型構造の構成比率は46%となるが、合金主相ということができる)となり、ニッケルモル比率((y−a−b)/(y+1))が74%以上で、Ni比率を増大させることが可能とることが分かる。また、B成分(Ni+Al+M)の量論比yが3.6以上、3.9以下であっても、合金eのように希土類元素(Ln)が三元素であるとAB5型構造が偏析するようになることが分かる。 On the other hand, as in alloys c to l, the conditions of 0.1 ≦ x ≦ 0.2, 0.1 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.1 are satisfied, and the B component (Ni + Al + M) When the stoichiometric ratio y is 3.6 or more and 3.9 or less, the A 5 B 19 type structure is an alloy main phase (in this case, the composition ratio of the A 5 B 19 type structure in the alloy 1 is 46%. It can be said that the nickel main ratio ((yab) / (y + 1)) is 74% or more and the Ni ratio can be increased. Further, even when the stoichiometric ratio y of the B component (Ni + Al + M) is 3.6 or more and 3.9 or less, the AB 5 type structure is segregated when the rare earth element (Ln) is a three element like the alloy e. You can see that

2.水素吸蔵合金電極
ついで、上述した水素吸蔵合金a〜lを用いて、以下のようにして水素吸蔵合金電極11(a1〜l1)をそれぞれ作製する。この場合まず、CMC(カルボキシメチルセルロース)を水(あるいは純水)に溶解させた水溶性結着剤に見掛け密度が1.5g/cm3のニッケルフレークを0.5質量%添加し、これに水素吸蔵合金粉末(a〜k)をそれぞれ混合して混練する。ついで、非水溶性結着剤としてのSBR(スチレンブタジエンラテックス)と水(あるいは純水)を加えて混合して、スラリー密度が3.1g/cm3となるように粘度調整して水素吸蔵合金スラリーをそれぞれ作製する。この場合、CMC(カルボキシメチルセルロース)は水素吸蔵合金粉末100質量部に対して0.1質量%、SBR(スチレンブタジエンラテックス)は水素吸蔵合金粉末100質量部に対して1.0質量%となるように調整する。
2. Hydrogen Storage Alloy Electrode Next, using the above-described hydrogen storage alloys a to l, hydrogen storage alloy electrodes 11 (a1 to l1) are respectively produced as follows. In this case, first, 0.5% by mass of nickel flakes having an apparent density of 1.5 g / cm 3 was added to a water-soluble binder in which CMC (carboxymethylcellulose) was dissolved in water (or pure water), and hydrogen was added thereto. The occlusion alloy powders (a to k) are mixed and kneaded. Subsequently, SBR (styrene butadiene latex) as a water-insoluble binder and water (or pure water) are added and mixed to adjust the viscosity so that the slurry density becomes 3.1 g / cm 3, and then the hydrogen storage alloy. Each slurry is prepared. In this case, CMC (carboxymethylcellulose) is 0.1% by mass with respect to 100 parts by mass of the hydrogen storage alloy powder, and SBR (styrene butadiene latex) is 1.0% by mass with respect to 100 parts by mass of the hydrogen storage alloy powder. Adjust to.

この後、Niメッキ軟鋼材製の多孔性基板(パンチングメタル)からなる負極芯体を用意し、この負極芯体に、充填密度が5.0g/cm3となるように水素吸蔵合金スラリーをそれぞれ塗着し、乾燥させた後、所定の厚みになるように圧延する。この後、所定の寸法(この場合は、負極表面積(短軸長×長軸長×2)が800cm2)になるように切断して、水素吸蔵合金電極11(a1〜l1)をそれぞれ作製する。 Thereafter, a negative electrode core made of a Ni-plated mild steel porous substrate (punching metal) is prepared, and a hydrogen storage alloy slurry is respectively added to the negative electrode core so that the filling density is 5.0 g / cm 3. After coating and drying, rolling to a predetermined thickness. Then, it cut | disconnects so that it may become a predetermined dimension (in this case, a negative electrode surface area (short-axis length x long-axis length x2) may be 800 cm < 2 >), and each hydrogen storage alloy electrode 11 (a1-l1) is produced. .

ここで、水素吸蔵合金aを用いたものを水素吸蔵合金電極a1とし、水素吸蔵合金bを用いたものを水素吸蔵合金電極b1とする。また、水素吸蔵合金cを用いたものを水素吸蔵合金電極c1とし、水素吸蔵合金dを用いたものを水素吸蔵合金電極d1とし、水素吸蔵合金eを用いたものを水素吸蔵合金電極e1とし、水素吸蔵合金fを用いたものを水素吸蔵合金電極f1とし、水素吸蔵合金gを用いたものを水素吸蔵合金電極g1とし、水素吸蔵合金hを用いたものを水素吸蔵合金電極h1とする。さらに、水素吸蔵合金iを用いたものを水素吸蔵合金電極i1とし、水素吸蔵合金jを用いたものを水素吸蔵合金電極j1とし、水素吸蔵合金kを用いたものを水素吸蔵合金電極k1とし、水素吸蔵合金lを用いたものを水素吸蔵合金電極l1とする。   Here, the one using the hydrogen storage alloy a is referred to as a hydrogen storage alloy electrode a1, and the one using the hydrogen storage alloy b is referred to as a hydrogen storage alloy electrode b1. Also, the hydrogen storage alloy electrode c1 is a hydrogen storage alloy electrode c1, the hydrogen storage alloy d is a hydrogen storage alloy electrode d1, and the hydrogen storage alloy e is a hydrogen storage alloy electrode e1. The one using the hydrogen storage alloy f is referred to as a hydrogen storage alloy electrode f1, the one using the hydrogen storage alloy g is referred to as a hydrogen storage alloy electrode g1, and the one using the hydrogen storage alloy h is referred to as a hydrogen storage alloy electrode h1. Further, the hydrogen storage alloy electrode i1 is a hydrogen storage alloy electrode i1, the hydrogen storage alloy j is a hydrogen storage alloy electrode j1, and the hydrogen storage alloy k is a hydrogen storage alloy electrode k1. A material using the hydrogen storage alloy l is defined as a hydrogen storage alloy electrode l1.

3.ニッケル電極
一方、多孔度が約85%の多孔性ニッケル焼結基板を比重が1.75の硝酸ニッケルと硝酸コバルトの混合水溶液に浸漬して、多孔性ニッケル焼結基板の細孔内にニッケル塩およびコバルト塩を保持させる。この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、ニッケル塩およびコバルト塩をそれぞれ水酸化ニッケルおよび水酸化コバルトに転換させる。
3. Nickel electrode On the other hand, a porous nickel sintered substrate having a porosity of about 85% is immersed in a mixed aqueous solution of nickel nitrate and cobalt nitrate having a specific gravity of 1.75, and a nickel salt is placed in the pores of the porous nickel sintered substrate. And retain cobalt salts. Thereafter, the porous nickel sintered substrate is immersed in a 25% by mass sodium hydroxide (NaOH) aqueous solution to convert the nickel salt and the cobalt salt into nickel hydroxide and cobalt hydroxide, respectively.

ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板の細孔内に水酸化ニッケルを主成分とする活物質を充填する。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板の細孔内に水酸化ニッケルを主体とする活物質の充填密度が2.5g/cm3になるように充填する。この後、室温で乾燥させた後、所定の寸法に切断してニッケル電極12を作製する。 Next, after sufficiently washing with water to remove the alkaline solution, drying is performed, and the active material mainly composed of nickel hydroxide is filled in the pores of the porous nickel sintered substrate. Such an active material filling operation is repeated a predetermined number of times (for example, 6 times) so that the filling density of the active material mainly composed of nickel hydroxide in the pores of the porous sintered substrate becomes 2.5 g / cm 3. To fill. Then, after drying at room temperature, the nickel electrode 12 is produced by cutting into predetermined dimensions.

4.ニッケル−水素蓄電池
この後、上述のように作製される水素吸蔵合金電極11とニッケル電極12とを用い、これらの間に、ポリプロピレン製不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製する。なお、このようにして作製された渦巻状電極群の下部には水素吸蔵合金電極11の芯体露出部11cが露出しており、その上部にはニッケル電極12の芯体露出部12cが露出している。ついで、得られた渦巻状電極群の下端面に露出する芯体露出部11cに負極集電体14を溶接するとともに、渦巻状電極群の上端面に露出するニッケル電極12の芯体露出部12cの上に正極集電体15を溶接して、電極体とする。
4). Nickel-hydrogen storage battery Thereafter, the hydrogen storage alloy electrode 11 and the nickel electrode 12 produced as described above are used, and a separator 13 made of a polypropylene non-woven fabric is interposed between them, and the spiral is wound. The electrode group is produced. The core exposed portion 11c of the hydrogen storage alloy electrode 11 is exposed at the lower part of the spiral electrode group thus produced, and the core exposed part 12c of the nickel electrode 12 is exposed at the upper portion thereof. ing. Next, the negative electrode current collector 14 is welded to the core exposed portion 11c exposed at the lower end surface of the obtained spiral electrode group, and the core exposed portion 12c of the nickel electrode 12 exposed at the upper end surface of the spiral electrode group. A positive electrode current collector 15 is welded to the electrode body to form an electrode body.

ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)17内に収納した後、負極集電体14を外装缶17の内底面に溶接する。一方、正極集電体15より延出する集電リード部15aを正極端子を兼ねるとともに外周部に絶縁ガスケット19が装着された封口体18の底部に溶接する。なお、封口体18には正極キャップ18aが設けられていて、この正極キャップ18a内に所定の圧力になると変形する弁体18bとスプリング18cよりなる圧力弁(図示せず)が配置されている。   Next, after the obtained electrode body was accommodated in a bottomed cylindrical outer can in which nickel was plated on iron (the outer surface of the bottom surface becomes a negative external terminal) 17, the negative electrode current collector 14 was attached to the outer can 17. Weld to the inner bottom. On the other hand, the current collecting lead portion 15a extending from the positive electrode current collector 15 serves as a positive electrode terminal and is welded to the bottom portion of the sealing body 18 having the insulating gasket 19 attached to the outer peripheral portion. The sealing body 18 is provided with a positive electrode cap 18a, and a pressure valve (not shown) composed of a valve body 18b and a spring 18c, which are deformed when a predetermined pressure is reached, is disposed in the positive electrode cap 18a.

ついで、外装缶17の上部外周部に環状溝部17aを形成した後、電解液を注液し、外装缶17の上部に形成された環状溝部17aの上に封口体18の外周部に装着された絶縁ガスケット19を載置する。この後、外装缶17の開口端縁17bをかしめることにより、ニッケル−水素蓄電池10(A〜L)が作製される。この場合、外装缶17内に30質量%の水酸化カリウム(KOH)水溶液からなるアルカリ電解液を電池容量(Ah)当り2.5g(2.5g/Ah)となるように注入する。   Next, after forming an annular groove portion 17 a on the upper outer peripheral portion of the outer can 17, an electrolytic solution was injected, and the outer peripheral portion of the sealing body 18 was mounted on the annular groove portion 17 a formed on the upper portion of the outer can 17. An insulating gasket 19 is placed. Then, the nickel-hydrogen storage battery 10 (AL) is produced by caulking the opening edge 17b of the outer can 17. In this case, an alkaline electrolyte composed of a 30% by mass potassium hydroxide (KOH) aqueous solution is poured into the outer can 17 so as to be 2.5 g (2.5 g / Ah) per battery capacity (Ah).

ここで、水素吸蔵合金電極a1を用いたものを電池Aとし、水素吸蔵合金電極b1を用いたものを電池Bとし、水素吸蔵合金電極c1を用いたものを電池Cとし、水素吸蔵合金電極d1を用いたものを電池Dとし、水素吸蔵合金電極e1を用いたものを電池Eとし、水素吸蔵合金電極f1を用いたものを電池Fとし、水素吸蔵合金電極g1を用いたものを電池Gとし、水素吸蔵合金電極h1を用いたものを電池Hとし、水素吸蔵合金電極i1を用いたものを電池Iとし、水素吸蔵合金電極j1を用いたものを電池Jとし、水素吸蔵合金電極k1を用いたものを電池Kとし、水素吸蔵合金電極l1を用いたものを電池Lとする。   Here, a battery using the hydrogen storage alloy electrode a1 is referred to as a battery A, a battery using the hydrogen storage alloy electrode b1 is referred to as a battery B, a battery using the hydrogen storage alloy electrode c1 is referred to as a battery C, and the hydrogen storage alloy electrode d1. Is a battery D, a battery E is a battery using the hydrogen storage alloy electrode e1, a battery F is a battery using the hydrogen storage alloy electrode f1, and a battery G is a battery using the hydrogen storage alloy electrode g1. A battery using the hydrogen storage alloy electrode h1 is referred to as a battery H, a battery using the hydrogen storage alloy electrode i1 is referred to as a battery I, a battery using the hydrogen storage alloy electrode j1 is referred to as a battery J, and the hydrogen storage alloy electrode k1 is used. The battery K is referred to as the battery K, and the battery L using the hydrogen storage alloy electrode 11 is referred to as the battery L.

5.電池試験
(1)出力特性評価
まず、上述のようにして作製される電池A〜Lを用いて、25℃の温度雰囲気で、1Itの充電々流でSOC(State Of Charge:充電深度)の120%まで充電し、1時間休止する。ついで、70℃の温度雰囲気で24時間放置した後、45℃の温度雰囲気で、1Itの放電々流で電池電圧が0.3Vになるまで放電させるサイクルを2サイクル繰り返して、これらの各電池A〜Lを活性化する。
5. Battery Test (1) Output Characteristic Evaluation First, using the batteries A to L manufactured as described above, an SOC (State Of Charge) of 120 at a charging current of 1 It in a temperature atmosphere of 25 ° C. % Charge and rest for 1 hour. Next, the battery A was allowed to stand for 24 hours in a temperature atmosphere at 70 ° C., and then a cycle of discharging the battery voltage to 0.3 V with a discharge current of 1 It in a temperature atmosphere at 45 ° C. was repeated two times. Activate ~ L.

活性化終了後、25℃の温度雰囲気で、1Itの充電電流でSOC(State Of Charge :充電深度)の50%まで充電した後、1時間休止する。ついで、−10℃の温度雰囲気で、任意の充電レートで20秒間充電させた後、30分間休止させる。この後、−10℃の温度雰囲気で、任意の放電レートで10秒間放電させた後、25℃の温度雰囲気で30分間休止させる。このような−10℃の温度雰囲気で、任意の充電レートでの20秒間充電、30分の休止、任意の放電レートで10秒間放電、25℃の温度雰囲気での30分の休止を繰り返す。   After the activation, the battery is charged to 50% of SOC (State Of Charge) with a charging current of 1 It in a temperature atmosphere of 25 ° C. and then rests for 1 hour. Next, the battery is charged for 20 seconds at an arbitrary charging rate in a temperature atmosphere of −10 ° C., and then rested for 30 minutes. Then, after discharging at an arbitrary discharge rate for 10 seconds in a temperature atmosphere of −10 ° C., it is paused for 30 minutes in a temperature atmosphere of 25 ° C. In such a temperature atmosphere of −10 ° C., charging for 20 seconds at an arbitrary charging rate, pause for 30 minutes, discharging for 10 seconds at an arbitrary discharge rate, and pause for 30 minutes in a temperature atmosphere of 25 ° C. are repeated.

この場合、任意の充電レートは、0.8It→1.7It→2.5It→3.3It→4.2Itの順で充電電流を増加させ、任意の放電レートは、1.7It→3.3It→5.0It→6.7It→8.3Itの順で放電電流を増加させ、各放電レートで10秒間経過時点での各電池A〜Lの電池電圧(V)を各電流毎にそれぞれ測定して、放電V−Iプロット近似曲線を求めた。   In this case, an arbitrary charging rate increases charging current in the order of 0.8 It → 1.7 It → 2.5 It → 3.3 It → 4.2 It, and an arbitrary discharging rate is 1.7 It → 3.3 It. → 5.0 It → 6.7 It → 8.3 It was increased in order of the discharge current, the battery voltage (V) of each of the batteries A to L at the time of 10 seconds at each discharge rate was measured for each current, respectively. Thus, a discharge VI plot approximate curve was obtained.

ここで、求めたV−Iプロット近似曲線上の電池電圧が0.9V時の電流を放電特性指標としての放電出力(−10℃アシスト出力)として求め、水素吸蔵合金bを用いた電池Bの−10℃アシスト出力を基準(100)とし、これとの相対比を−10℃アシスト出力比(対電池B)として求めると下記の表3に示すような結果となった。   Here, the current when the battery voltage on the obtained VI plot approximate curve is 0.9 V is obtained as a discharge output (−10 ° C. assist output) as a discharge characteristic index, and the battery B using the hydrogen storage alloy b is obtained. When the −10 ° C. assist output was set as the reference (100) and the relative ratio thereof was determined as the −10 ° C. assist output ratio (vs. battery B), the results shown in Table 3 below were obtained.

(2)水素吸蔵合金粉末の微粉化量(活性化前後の粒度変化量)の測定
ついで、水素吸蔵合金の耐食性指標として、水素吸蔵合金粉末の微粉化量(活性化前後の粒度(体積累積頻度が50%の粒径(D50))変化量)を測定した。ここで、微粉化量は、粉砕直後の粒度と活性化後の粒度の差で表わされ、活性化時の充放電での水素吸蔵合金の微粉化挙動の指標である。この場合、水素吸蔵合金bを用いた電池Bの微粉化量を基準(100)とし、これとの相対比を微粉化量比(対電池B)として求めると下記の表3に示すような結果となった。
(2) Measurement of atomization amount of hydrogen storage alloy powder (change in particle size before and after activation) Next, as an index of corrosion resistance of hydrogen storage alloy, the amount of atomization of hydrogen storage alloy powder (particle size before and after activation (volume cumulative frequency) Was 50% of the particle size (D50)). Here, the amount of pulverization is represented by the difference between the particle size immediately after pulverization and the particle size after activation, and is an indicator of the pulverization behavior of the hydrogen storage alloy during charge and discharge during activation. In this case, when the pulverization amount of the battery B using the hydrogen storage alloy b is taken as the reference (100) and the relative ratio thereof is obtained as the pulverization amount ratio (vs. the battery B), the result shown in Table 3 below It became.

ついで、得られた−10℃アシスト出力と水素吸蔵合金粉末の微粉化量に基づいて、出力・耐久性指標として、微粉化量に対する−10℃アシスト出力の比(出力・耐久性指標=−10℃アシスト出力/微粉化量)を求めると下記の表3に示すような結果となった。

Figure 0005425433
Next, based on the obtained -10 ° C assist output and the pulverization amount of the hydrogen storage alloy powder, as the output / durability index, the ratio of the -10 ° C assist output to the pulverization amount (output / durability index = -10) The temperature was obtained as shown in Table 3 below.
Figure 0005425433

上記表3の結果から以下のことが明らかになった。即ち、水素吸蔵合金bを用いた電池Bよりも、水素吸蔵合金c〜lを用いた電池C〜Lの方が、換言すると、0.1≦x≦0.2、0.1≦a≦0.2、0≦b≦0.1の条件を満たし、かつB成分(Ni+Al+M)の量論比yが大きいほど、−10℃アシスト出力(低温出力)が大きく、アシスト出力が向上する傾向にあるとともに、微粉化量に対する−10℃アシスト出力の比も向上する傾向にあることが分かる。   From the results in Table 3 above, the following became clear. That is, the batteries C to L using the hydrogen storage alloys c to l are, in other words, 0.1 ≦ x ≦ 0.2, 0.1 ≦ a ≦, than the battery B using the hydrogen storage alloy b. The larger the stoichiometric ratio y of the B component (Ni + Al + M) that satisfies the conditions of 0.2 and 0 ≦ b ≦ 0.1, the greater the −10 ° C. assist output (low temperature output), and the assist output tends to improve. In addition, it can be seen that the ratio of the −10 ° C. assist output to the amount of pulverization tends to be improved.

しかしながら、0.1≦x≦0.2、0.1≦a≦0.2、0≦b≦0.1の条件を満たし、かつB成分(Ni+Al+M)の量論比yが大きくても、電池Dのように希土類元素(Ln)がランタン(La)ではなくネオジム(Nd)のみを含む水素吸蔵合金dを用いると、水素平衡圧(Pa)が大きく、微粉化量も大きく、かつ微粉化量に対する−10℃アシスト出力の比も低下することが分かる。これは、希土類元素(Ln)をランタン(La)よりも原子半径が小さいネオジム(Nd)にすると、単位格子を構成する金属原子間の隙間が小さくなって金属格子中に水素原子が入りにくくなり、不安定な金属水素化物が形成されるようになって、水素平衡圧が上昇するようになったと考えられる。そして、このように金属原子間の隙間が小さくなった水素吸蔵合金を負極活物質として大電流の充放電用途に用いると、水素吸蔵合金の微粉化が加速されて耐久性が低下したと考えられる。   However, even if the conditions of 0.1 ≦ x ≦ 0.2, 0.1 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.1 are satisfied and the stoichiometric ratio y of the B component (Ni + Al + M) is large, When a hydrogen storage alloy d containing only neodymium (Nd) instead of lanthanum (La) is used as in the battery D, the hydrogen equilibrium pressure (Pa) is large, the pulverization amount is large, and the pulverization is performed. It can be seen that the ratio of the −10 ° C. assist output to the amount also decreases. This is because if the rare earth element (Ln) is neodymium (Nd), which has a smaller atomic radius than lanthanum (La), the gap between the metal atoms constituting the unit cell becomes small, making it difficult for hydrogen atoms to enter the metal lattice. It is considered that an unstable metal hydride is formed and the hydrogen equilibrium pressure is increased. And, when the hydrogen storage alloy with a small gap between metal atoms is used as a negative electrode active material for large current charge / discharge applications, it is considered that the pulverization of the hydrogen storage alloy is accelerated and the durability is lowered. .

また、0.1≦x≦0.2、0.1≦a≦0.2、0≦b≦0.1の条件を満たし、かつB成分(Ni+Al+M)の量論比yが大きくても、電池Eのように希土類元素(Ln)がランタン(La)とプラセオジム(Pr)とネオジム(Nd)の三元素からなると、微粉化量が大きく、かつ微粉化量に対する−10℃アシスト出力の比もさらに低下することが分かる。これは、A成分を構成する希土類元素(Ln)の元素数が増大すると、合金鋳造時の構成元素間の液相における相互作用パラメータが増加し、偏析などの第二相が生成されやすくなる。そして、偏析などの第二相が生成されると微粉化が加速され、微粉化量が大きくなったと考えられる。   Further, even if the conditions of 0.1 ≦ x ≦ 0.2, 0.1 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.1 are satisfied and the stoichiometric ratio y of the B component (Ni + Al + M) is large, When the rare earth element (Ln) is composed of three elements of lanthanum (La), praseodymium (Pr), and neodymium (Nd) as in the battery E, the amount of pulverization is large and the ratio of the −10 ° C. assist output to the amount of pulverization is It turns out that it falls further. This is because when the number of elements of the rare earth element (Ln) constituting the component A increases, the interaction parameter in the liquid phase between the constituent elements at the time of casting the alloy increases, and a second phase such as segregation is likely to be generated. And when 2nd phases, such as segregation, were produced, pulverization was accelerated and it was thought that the amount of pulverization became large.

以上の表1〜表3の結果を総合勘案すると以下のようになる。即ち、Lnで表される希土類元素とマグネシウムとからなるA成分と、少なくともニッケル、アルミニウムを含む元素からなるB成分とから構成される水素吸蔵合金の合金主相はA519型構造であり、一般式をLnl-xMgxNiy-a-bAlab(式中、MはCo,Mn,Znから選択される少なくとも1種の元素)と表した場合、0.1≦x≦0.2、0.1≦a≦0.2、0≦b≦0.1、3.6≦y≦3.9の条件を満たし、かつ希土類元素(Ln)は少なくともランタン(La)を含む最大で二元素からなる水素吸蔵合金を用いると、ニッケルモル比率((y−a−b)/(y+1))が74%以上となってNi比率が増大し、40℃での水素吸蔵量H/M(原子比)が0.5のときの吸蔵水素平衡圧(Pa)が0.03〜0.17MPaとなり、−10℃アシスト出力(低温出力)が大きく、かつ微粉化量に対する−10℃アシスト出力の比も向上する。 A comprehensive consideration of the results in Tables 1 to 3 is as follows. That is, the alloy main phase of a hydrogen storage alloy composed of an A component composed of a rare earth element represented by Ln and magnesium and a B component composed of an element containing at least nickel and aluminum has an A 5 B 19 type structure. When the general formula is expressed as Ln lx Mg x Ni yab Al a M b (wherein M is at least one element selected from Co, Mn, Zn), 0.1 ≦ x ≦ 0.2, 0.1 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.1, 3.6 ≦ y ≦ 3.9, and the rare earth element (Ln) contains at least two elements including lanthanum (La) When a hydrogen storage alloy made of is used, the nickel molar ratio ((y−a−b) / (y + 1)) becomes 74% or more, the Ni ratio increases, and the hydrogen storage amount at 40 ° C. H / M (atom Ratio) is 0.5 to 0.17. The hydrogen storage equilibrium pressure (Pa) is 0.03 to 0.17. Pa next, -10 ° C. assist output (low temperature output) is large, and also improves the ratio of -10 ° C. assist output for micronized amount.

なお、上述した実施形態においては、ランタン(La)以外の希土類元素(Ln)としてサマリウム(Sm)あるいはネオジム(Nd)を用いる例について説明したが、サマリウム(Sm)、ネオジム(Nd)以外にプラセオジム(Pr)、セシウム(Ce)などのランタノイドを用いるようにしてもよい。また、一般式Lnl-xMgxNiy-a-bAlabで表される水素吸蔵合金のニッケル置換元素となる元素Mはコバルト(Co)およびマンガン(Mn)を含まないのが望ましい。これは、ハイブリッド自動車用、電気自動車用など高温環境下に長期放置される用途では自己放電性能(自己放電が極めて少ない)が求められており、負極にコバルト(Co)およびマンガン(Mn)を含むと、長期放置時にこれら元素が溶出し、セパレータ上に再析出し、自己放電性能の低下をもたらすからである。 In the above-described embodiment, an example in which samarium (Sm) or neodymium (Nd) is used as the rare earth element (Ln) other than lanthanum (La) has been described. However, praseodymium other than samarium (Sm) and neodymium (Nd) is described. Lanthanoids such as (Pr) and cesium (Ce) may be used. In general formula Ln lx Mg x Ni yab Al a M b element M consisting of nickel substitution elements of the hydrogen storage alloy represented by the free of cobalt (Co) and manganese (Mn) is preferable. This is because self-discharge performance (very low self-discharge) is required for applications that are left in a high temperature environment such as for hybrid vehicles and electric vehicles, and the negative electrode contains cobalt (Co) and manganese (Mn). This is because these elements are eluted when left for a long time and re-deposited on the separator, resulting in a decrease in self-discharge performance.

本発明のアルカリ蓄電池を模式的に示す断面図である。It is sectional drawing which shows the alkaline storage battery of this invention typically.

符号の説明Explanation of symbols

11…水素吸蔵合金電極、11c…芯体露出部、12…ニッケル電極、12c…芯体露出部、13…セパレータ、14…負極集電体、15…正極集電体、16…正極用リード、17…外装缶、17a…環状溝部、17b…開口端縁、18…封口体、18a…封口板、18b…正極キャップ、18c…弁板、18d…スプリング、19a…絶縁ガスケット、19b…防振リング DESCRIPTION OF SYMBOLS 11 ... Hydrogen storage alloy electrode, 11c ... Core body exposed part, 12 ... Nickel electrode, 12c ... Core body exposed part, 13 ... Separator, 14 ... Negative electrode collector, 15 ... Positive electrode collector, 16 ... Positive electrode lead, DESCRIPTION OF SYMBOLS 17 ... Exterior can, 17a ... Circular groove part, 17b ... Opening edge, 18 ... Sealing body, 18a ... Sealing plate, 18b ... Positive electrode cap, 18c ... Valve plate, 18d ... Spring, 19a ... Insulating gasket, 19b ... Anti-vibration ring

Claims (5)

Lnで表される希土類元素とマグネシウムとからなるA成分と、少なくともニッケル、アルミニウムを含む元素からなるB成分とから構成される水素吸蔵合金であって、
前記水素吸蔵合金の合金主相はA19型構造であるとともに、
一般式はLn1-xMgNiy-a-bAl(式中、MはCo,Mn,Znから選択される少なくとも1種の元素であり、0.1≦x≦0.2、3.6≦y≦3.9、0.1≦a≦0.2、0≦b≦0.1)と表され、
前記希土類元素(Ln)はランタン(La)とサマリウム(Sm)の二元素からなり、かつ40℃での水素吸蔵量H/M(原子比)が0.5のときの吸蔵水素平衡圧(Pa)が0.03〜0.17MPaであることを特徴とする水素吸蔵合金。
A hydrogen storage alloy comprising an A component composed of a rare earth element represented by Ln and magnesium, and a B component composed of an element containing at least nickel and aluminum,
The alloy main phase of the hydrogen storage alloy has an A 5 B 19 type structure,
General formula Ln 1-x Mg x Ni y -a-b Al a M b ( where, M is at least one element selected from among Co, Mn, and Zn, 0.1 ≦ x ≦ 0. 2, 3.6 ≦ y ≦ 3.9, 0.1 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.1),
The rare earth element (Ln) is composed of two elements of lanthanum (La) and samarium (Sm) , and the hydrogen storage equilibrium pressure (Pa) when the hydrogen storage amount H / M (atomic ratio) at 40 ° C. is 0.5. ) Is 0.03 to 0.17 MPa.
前記一般式Ln1-xMgNiy-a-bAlで表される水素吸蔵合金のニッケルモル比率((y−a−b)/(y+1))が74%以上であることを特徴とする請求項1に記載の水素吸蔵合金。 Said general formula Ln 1-x Mg x Ni y -a-b Al a M b nickel molar ratio of hydrogen-absorbing alloy represented by ((y-a-b) / (y + 1)) is 74% or more The hydrogen storage alloy according to claim 1. 前記一般式Ln1-xMgNiy-a-bAlで表される水素吸蔵合金のニッケル置換元素となる元素Mはコバルト(Co)およびマンガン(Mn)を含まないことを特徴とする請求項1または請求項2に記載の水素吸蔵合金。 Wherein the general formula Ln 1-x Mg x Ni y -a-b Al a M b element M consisting of nickel substitution elements of the hydrogen storage alloy represented by the free cobalt (Co) and manganese (Mn) The hydrogen storage alloy according to claim 1 or 2. 前記水素吸蔵合金の粉末は体積累積頻度が50%の粒径(D50)が20μm以下であることを特徴とする請求項1から請求項のいずれかに記載の水素吸蔵合金。 The hydrogen storage alloy according to any one of claims 1 to 3 , wherein the hydrogen storage alloy powder has a volume cumulative frequency of 50% and a particle size (D50) of 20 µm or less. 請求項1乃至請求項のいずれかに記載の水素吸蔵合金を負極活物質とする水素吸蔵合金電極と、正極と、これらの両極を隔離するセパレータと、アルカリ電解液とを外装缶内に備えたことを特徴とするアルカリ蓄電池。
A hydrogen storage alloy electrode comprising the hydrogen storage alloy according to any one of claims 1 to 4 as a negative electrode active material, a positive electrode, a separator that separates both electrodes, and an alkaline electrolyte are provided in an outer can. An alkaline storage battery characterized by that.
JP2008242207A 2007-12-27 2008-09-22 Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material Active JP5425433B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008242207A JP5425433B2 (en) 2007-12-27 2008-09-22 Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
EP08022199A EP2096691B1 (en) 2007-12-27 2008-12-19 Hydrogen storage alloy and alkaline storage battery employing hydrogen storage alloy as negative electrode active material
US12/341,033 US20090169995A1 (en) 2007-12-27 2008-12-22 Hydrogen storage alloy and alkaline storage battery employing hydrogen storage alloy as negative electrode active material
CN2008101902021A CN101471440B (en) 2007-12-27 2008-12-26 Hydrogen storage alloy and alkaline storage battery employing hydrogen storage alloy as negative electrode active material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007336704 2007-12-27
JP2007336704 2007-12-27
JP2008242207A JP5425433B2 (en) 2007-12-27 2008-09-22 Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material

Publications (2)

Publication Number Publication Date
JP2009176712A JP2009176712A (en) 2009-08-06
JP5425433B2 true JP5425433B2 (en) 2014-02-26

Family

ID=40828673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242207A Active JP5425433B2 (en) 2007-12-27 2008-09-22 Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material

Country Status (2)

Country Link
JP (1) JP5425433B2 (en)
CN (1) CN101471440B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316359B2 (en) 2019-08-05 2023-07-27 エナジーウィズ株式会社 Electrode plate manufacturing apparatus and electrode plate manufacturing method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247170B2 (en) * 2008-01-30 2013-07-24 三洋電機株式会社 Alkaline storage battery
JP5642577B2 (en) * 2010-03-18 2014-12-17 三洋電機株式会社 Alkaline storage battery and alkaline storage battery system
CN102403490A (en) * 2010-09-17 2012-04-04 北京有色金属研究总院 Nickel-metal hydride battery and low-self-discharge rare earth-magnesium-nickel-aluminum series hydrogen storage alloy therefor
JP6024295B2 (en) * 2012-08-30 2016-11-16 三洋電機株式会社 Alkaline storage battery
CN104532062A (en) * 2014-08-28 2015-04-22 包头稀土研究院 Yttrium-nickel rare earth-based hydrogen storage alloy
US10323301B2 (en) 2014-09-30 2019-06-18 Gs Yuasa International Ltd. Hydrogen storing alloy, electrode, and nickel-hydrogen storage battery
CN108048693A (en) * 2017-12-11 2018-05-18 桂林电子科技大学 Mix the A5B19 type hydrogen-storage alloy preparation methods of Al, Co
CN108172807B (en) * 2018-01-10 2020-04-28 包头中科轩达新能源科技有限公司 Multi-element single-phase A5B19Superlattice hydrogen storage alloy electrode material and preparation method thereof
CN113430441B (en) * 2021-06-30 2022-08-26 包头中科轩达新能源科技有限公司 Neodymium-containing hydrogen storage alloy and preparation method thereof
CN115961177B (en) * 2023-02-03 2024-05-10 包头中科轩达新能源科技有限公司 High-power long-life superlattice structure hydrogen storage alloy and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3397981B2 (en) * 1996-06-11 2003-04-21 三洋電機株式会社 Hydrogen storage alloy and manufacturing method
EP1721996B1 (en) * 2004-02-20 2011-04-06 Japan Metals and Chemicals Co., Ltd. METHOD FOR PRODUCING Mg-REM-Ni BASE HYDROGEN OCCLUDING ALLOY
JP4511298B2 (en) * 2004-09-28 2010-07-28 三洋電機株式会社 Nickel metal hydride storage battery
WO2007018292A1 (en) * 2005-08-11 2007-02-15 Gs Yuasa Corporation Hydrogen-storage alloy, hydrogen-storage alloy electrode, secondary cell, and process for producing hydrogen-storage alloy
JP2007066675A (en) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd Manufacturing method of hydrogen storage alloy for alkaline storage battery, and hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
CN101268571B (en) * 2005-09-21 2010-05-19 三洋电机株式会社 Alkaline storage battery
JP5581588B2 (en) * 2006-08-09 2014-09-03 株式会社Gsユアサ Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP5171114B2 (en) * 2007-05-30 2013-03-27 三洋電機株式会社 Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316359B2 (en) 2019-08-05 2023-07-27 エナジーウィズ株式会社 Electrode plate manufacturing apparatus and electrode plate manufacturing method

Also Published As

Publication number Publication date
JP2009176712A (en) 2009-08-06
CN101471440A (en) 2009-07-01
CN101471440B (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5425433B2 (en) Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
JP5171114B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP5173320B2 (en) Hydrogen storage alloy electrode and alkaline storage battery using this hydrogen storage alloy electrode
JP5642577B2 (en) Alkaline storage battery and alkaline storage battery system
JP5207750B2 (en) Alkaline storage battery
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP5636740B2 (en) Hydrogen storage alloy for alkaline storage battery and method for producing the same
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP5535684B2 (en) Hydrogen storage alloy for alkaline storage battery and hydrogen storage alloy electrode for alkaline storage battery using the same
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
EP2096691B1 (en) Hydrogen storage alloy and alkaline storage battery employing hydrogen storage alloy as negative electrode active material
JP5252920B2 (en) Alkaline storage battery
JP5512176B2 (en) Alkaline storage battery and alkaline storage battery system
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP5717125B2 (en) Alkaline storage battery
JP6736065B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery using the same
JP5354970B2 (en) Hydrogen storage alloy and alkaline storage battery
JP6024295B2 (en) Alkaline storage battery
JP2005226084A (en) Hydrogen storage alloy for alkaline storage battery, alkali storage battery, and method for manufacturing alkali storage battery
JP6105389B2 (en) Alkaline storage battery
JP2011021241A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery
JP5247170B2 (en) Alkaline storage battery
JP2013178882A (en) Alkaline storage battery
JP2013147753A (en) Method for manufacturing hydrogen storing alloy for battery
JP4573609B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5425433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150