JP6105389B2 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP6105389B2
JP6105389B2 JP2013111092A JP2013111092A JP6105389B2 JP 6105389 B2 JP6105389 B2 JP 6105389B2 JP 2013111092 A JP2013111092 A JP 2013111092A JP 2013111092 A JP2013111092 A JP 2013111092A JP 6105389 B2 JP6105389 B2 JP 6105389B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
crystal structure
storage alloy
nickel
experimental examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013111092A
Other languages
Japanese (ja)
Other versions
JP2014229593A (en
Inventor
原田 育幸
育幸 原田
田村 和明
和明 田村
森 一
一 森
曲 佳文
佳文 曲
輝人 長江
輝人 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013111092A priority Critical patent/JP6105389B2/en
Publication of JP2014229593A publication Critical patent/JP2014229593A/en
Application granted granted Critical
Publication of JP6105389B2 publication Critical patent/JP6105389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、水素吸蔵合金負極を用いたアルカリ蓄電池に関する。   The present invention relates to an alkaline storage battery using a hydrogen storage alloy negative electrode.

ニッケル水素蓄電池等のアルカリ蓄電池では、正極の極板容量に対し、負極の極板容量が高くなるように設計されている。これは負極において、過充電時の水素発生を防止するための充電リザーブと、過放電時の酸素発生を防止するための放電リザーブを確保するためである。一方、充放電の繰り返しなどにより、電池内材料(正極・負極材料、その他の材料)が酸化されると放電リザーブが増加/充電リザーブが減少する。加えて負極合金の酸化劣化によっても充電リザーブは減少し、最終的に充電リザーブが枯渇すると、過充電時に負極から水素が発生し、ガス圧上昇にともなうリークによりセパレータが保持する電解液が枯渇して充放電ができなくなる。   An alkaline storage battery such as a nickel metal hydride storage battery is designed such that the electrode plate capacity of the negative electrode is higher than the electrode plate capacity of the positive electrode. This is to ensure a charge reserve for preventing hydrogen generation during overcharge and a discharge reserve for preventing oxygen generation during overdischarge in the negative electrode. On the other hand, when the material in the battery (positive electrode / negative electrode material, other materials) is oxidized due to repeated charge / discharge, etc., the discharge reserve increases / the charge reserve decreases. In addition, the charge reserve decreases due to the oxidative deterioration of the negative electrode alloy.If the charge reserve is eventually depleted, hydrogen is generated from the negative electrode during overcharge, and the electrolyte retained by the separator is depleted due to leakage due to the gas pressure increase. Charge / discharge is not possible.

放電リザーブ量の蓄積量制御のための水素吸蔵合金の高耐久化及び高容量化の観点から、A2B7型結晶構造やA5B19型結晶構造を有するMg含有水素吸蔵合金が検討されている(下記特許文献1〜3参照)。A2B7型結晶構造の水素吸蔵合金は、AB2型結晶構造とAB5型結晶構造とが2層を周期として重なり合った例えばCeNi型の六方晶系(2H)の結晶構造のものが知られている。A5B19型結晶構造の水素吸蔵合金は、AB2型結晶構造とAB5型結晶構造とが3層を周期として積み重なった例えばCeCo19型の三方晶系(3R)の結晶構造のものと、AB2型結晶構造とAB5型結晶構造とが2層を周期として重なり合った例えばPrCo19型の六方晶系(2H)の結晶構造のものとが知られている。 Mg-containing hydrogen storage alloys having an A2B7 type crystal structure or an A5B19 type crystal structure have been studied from the viewpoint of increasing the durability and capacity of the hydrogen storage alloy for controlling the amount of stored discharge reserve (the following patent documents) 1-3). As the hydrogen storage alloy having the A2B7 type crystal structure, for example, a Ce 2 Ni 7 type hexagonal crystal (2H) crystal structure in which the AB2 type crystal structure and the AB5 type crystal structure overlap each other with a period of two layers is known. Yes. The hydrogen storage alloy having an A5B19 crystal structure includes, for example, a Ce 2 Co 19 type trigonal (3R) crystal structure in which an AB2 type crystal structure and an AB5 type crystal structure are stacked with a period of three layers, and an AB2 type For example, a Pr 5 Co 19 type hexagonal (2H) crystal structure in which the crystal structure and the AB5 type crystal structure overlap each other with a period of two layers is known.

A2B7型結晶構造の水素吸蔵合金は、水素の吸蔵・放出のサイクル寿命特性を向上させることができるが、大電流放電特性(アシスト出力)が不十分であって、従来の範囲を超えた高出力用途としては満足いく特性が得られない。A5B19型結晶構造の水素吸蔵合金は、単位結晶格子当たりのニッケル比率を増加させることができ、水素分子の吸着及び水素原子への解離を促進する活性点を増加させることが可能となるが、金属原子間の隙間が小さくなって水素吸蔵圧が上昇する。そのため、A5B19型結晶構造の水素吸蔵合金を大電流の充放電用途に用いると、水素吸蔵合金の微粉化が加速されて耐久性が低下する。   The hydrogen storage alloy with A2B7 crystal structure can improve the cycle life characteristics of hydrogen storage / release, but the high current discharge characteristics (assist output) is insufficient and the high output exceeds the conventional range. Satisfactory characteristics cannot be obtained for use. The hydrogen storage alloy having the A5B19 type crystal structure can increase the nickel ratio per unit crystal lattice and increase the active sites that promote the adsorption of hydrogen molecules and the dissociation into hydrogen atoms. The gap between atoms becomes smaller and the hydrogen storage pressure rises. For this reason, when a hydrogen storage alloy having an A5B19 crystal structure is used for charging and discharging with a large current, pulverization of the hydrogen storage alloy is accelerated and durability is lowered.

なお、従来の水素吸蔵合金負極を用いたアルカリ蓄電池では、出力特性(水素吸蔵圧が高いと有利)と回生特性(水素吸蔵圧が低いと有利)の両立のため、40℃、H/M=0.5における水素吸蔵圧が0.020MPa以上、0.055MPa以下のものが多く用いられている。   In addition, in the alkaline storage battery using the conventional hydrogen storage alloy negative electrode, 40 ° C., H / M = for compatibility between output characteristics (advantageous when the hydrogen storage pressure is high) and regenerative characteristics (advantageous when the hydrogen storage pressure is low). A hydrogen storage pressure at 0.5 of 0.020 MPa or more and 0.055 MPa or less is often used.

特開2008−084649号公報JP 2008-084649 A 特開2009−176712号公報JP 2009-176712 A 特開2011−127177号公報JP 2011-127177 A

水素吸蔵合金負極を用いたアルカリ蓄電池をハイブリッド自動車(HEV、PHEV)や電気自動車(EV)等の電源として用いるには、出力特性や回生特性だけでなく、多数の電池を用いる必要上、コストダウンが求められている。近年、磁石用途で用いられるNdなどの希土類元素については、価格が高騰しており、その使用量削減が必要となり、比較的安価なLaへの置換えが検討されている。しかし、水素吸蔵合金中のLaの添加量を単純に増加させていくと、水素吸蔵圧が低下するため、水素吸蔵合金負極を用いたアルカリ蓄電池では出力特性の低下が顕著となる。   In order to use an alkaline storage battery using a hydrogen storage alloy negative electrode as a power source for a hybrid vehicle (HEV, PHEV), an electric vehicle (EV), etc., it is necessary to use not only output characteristics and regenerative characteristics, but also a large number of batteries. Is required. In recent years, the price of rare earth elements such as Nd used in magnet applications has risen and it is necessary to reduce the amount used, and replacement with relatively inexpensive La is being studied. However, when the addition amount of La in the hydrogen storage alloy is simply increased, the hydrogen storage pressure decreases, so that the output characteristics of the alkaline storage battery using the hydrogen storage alloy negative electrode are significantly reduced.

また、水素吸蔵合金負極を用いたアルカリ蓄電池をHEV、PHEVやEV用途に用いるには、低温での高率放電性(例えば−10℃で5It以上の放電性)が求められるだけでなく、エンジンなどの付近で高温放置されるため、耐高温特性も要求される。   In addition, in order to use alkaline storage batteries using a hydrogen storage alloy negative electrode for HEV, PHEV and EV applications, not only high-rate discharge characteristics at low temperatures (for example, discharge characteristics of 5 It or more at −10 ° C.) are required. Therefore, high temperature resistance is also required.

本発明の一態様のアルカリ蓄電池は、
水素吸蔵合金を主成分とする水素吸蔵合金負極と、
水酸化ニッケルを主成分とするニッケル正極と、
セパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池であって、
前記水素吸蔵合金は、Laを主要希土類元素とする一般式(LaLn1一zMgNit−u(T:Al、Co、Mn、Znから選択され、LnはLa以外の希土類元素及びYから選択された少なくとも1種であり、x>y、0.09≦z≦0.14、3.65≦t≦3.80、0.05≦u≦0.25)であって、六方晶系(2H)のA5B19型結晶構造のものと、三方晶系(3R)のA5B19型結晶構造のものと、A2B7型結晶構造のものとを含み、
前記六方晶系(2H)のA5B19型結晶構造のもののCu−Kα線による粉末X線回折強度ピークは、前記三方晶系(3R)のA5B19型結晶構造のもの及びA2B7型結晶構造のものよりも大きいものとされている。
The alkaline storage battery of one embodiment of the present invention is
A hydrogen storage alloy negative electrode mainly composed of a hydrogen storage alloy;
A nickel positive electrode mainly composed of nickel hydroxide;
An alkaline storage battery comprising an electrode group consisting of a separator and an alkaline electrolyte in an outer can,
The hydrogen storage alloy is selected from the general formula (La x Ln y ) 11 z Mg z Ni tu- Tu (T: Al, Co, Mn, Zn) in which La is a main rare earth element, and Ln is other than La X> y, 0.09 ≦ z ≦ 0.14, 3.65 ≦ t ≦ 3.80, 0.05 ≦ u ≦ 0.25) A hexagonal (2H) A5B19 crystal structure, a trigonal (3R) A5B19 crystal structure, and an A2B7 crystal structure,
The powder X-ray diffraction intensity peak by Cu-Kα ray of the hexagonal (2H) A5B19 crystal structure is higher than that of the trigonal (3R) A5B19 crystal structure and A2B7 crystal structure. It is supposed to be big.

本発明のアルカリ蓄電池によれば、負極の水素吸蔵合金中に安価なLaを特定量で含み、かつ、特定の結晶構造のものを含むものとしたことにより、従来の水素吸蔵合金負極を用いたアルカリ蓄電池と比較して、安価でありながら、放電出力特性が向上し、また高温耐久性も同等以上となる。なお、水素吸蔵合金中のLa以外の希土類元素Lnとしては、Sm、Gd、Yの少なくとも1種を主要成分として含むことが好ましい。   According to the alkaline storage battery of the present invention, the conventional hydrogen storage alloy negative electrode is used because the hydrogen storage alloy of the negative electrode contains inexpensive La in a specific amount and includes a specific crystal structure. Compared with alkaline storage batteries, while being inexpensive, the discharge output characteristics are improved, and the high-temperature durability is equal to or higher. The rare earth element Ln other than La in the hydrogen storage alloy preferably includes at least one of Sm, Gd, and Y as a main component.

各種実験例で使用したニッケル水素蓄電池の縦断面図である。It is a longitudinal cross-sectional view of the nickel metal hydride storage battery used in various experimental examples. LaSm系水素吸蔵合金の粉末X線回折チャートである。3 is a powder X-ray diffraction chart of a LaSm hydrogen storage alloy. LaNd系水素吸蔵合金の粉末X線回折チャートである。2 is a powder X-ray diffraction chart of a LaNd-based hydrogen storage alloy.

以下、本発明を実施するための形態について,各種実験例により詳細に説明する。ただし、以下に示す各種実験例は、本発明の技術思想を理解するために例示するものであって、本発明をこの実施形態に特定することを意図するものではない。本発明は、特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, embodiments for carrying out the present invention will be described in detail with various experimental examples. However, the following various experimental examples are given for the purpose of understanding the technical idea of the present invention, and are not intended to specify the present invention in this embodiment. The present invention can be equally applied to various changes made without departing from the technical idea shown in the claims.

[水素吸蔵合金の調製]
金属元素を所定のモル比となるように混合した後、これらの混合物をアルゴンガス雰囲気の高周波誘導炉に投入して溶解させ、これを金型に注入して凝固させ、下記表1に示す組成を有する実験例1〜5の鋳塊状態のLaSm系水素吸蔵合金及び表2に示す組成を有する実験例6〜8の鋳塊状態のLaNd系水素吸蔵合金を調製した。これらの水素吸蔵合金の組成は、一般式(LaLn1一zMgNit−uAl(Ln=Sm又はNd)で表される。
[Preparation of hydrogen storage alloy]
After mixing the metal elements so as to have a predetermined molar ratio, these mixtures are put into a high-frequency induction furnace in an argon gas atmosphere to be melted, poured into a mold and solidified, and the compositions shown in Table 1 below are given. The ingot-state LaSm-based hydrogen storage alloys of Experimental Examples 1 to 5 and the ingot-state LaNd-based hydrogen storage alloys having the compositions shown in Table 2 were prepared. The composition of these hydrogen storage alloy is represented by the general formula (La x Ln y) 1 one z Mg z Ni t-u Al u (Ln = Sm or Nd).

次いで、得られた各水素吸蔵合金について、DSC(示差走査熱量計)を用いて融点(Tm)を測定した。その後、各水素吸蔵合金について、それらの融点(Tm)より低い所定温度、例えば1025℃(実験例1〜5)又は1020℃(実験例6〜8)で、所定時間、例えば10時間、熱処理を行った。この後、これらの各水素吸蔵合金の塊を粗粉砕した後、不活性ガス雰囲気中で機械的に粉砕し、体積累積頻度50%での粒径(D50)が25μmの実験例1〜8に係る水素吸蔵合金粉末を調製した。 Subsequently, about each obtained hydrogen storage alloy, melting | fusing point (Tm) was measured using DSC (differential scanning calorimeter). Thereafter, each hydrogen storage alloy is subjected to heat treatment at a predetermined temperature lower than the melting point (Tm) thereof, for example, 1025 ° C. (Experimental Examples 1 to 5) or 1020 ° C. (Experimental Examples 6 to 8) for a predetermined time, for example, 10 hours. went. After that, these hydrogen storage alloy ingots were coarsely crushed and then mechanically pulverized in an inert gas atmosphere, and Experimental Examples 1 to 8 having a particle diameter (D 50 ) at a volume cumulative frequency of 50% of 25 μm. A hydrogen storage alloy powder was prepared.

次いで、Cu−Kα管をX線源とするX線回折測定装置を用いる粉末X線回折法により、実験例1〜8に係る水素吸蔵合金粉末の結晶構造の同定を行った。この場合、スキャンスピード1°/min、管電圧40kV、管電流300mA、スキャンステップ1°、測定角度20〜50θ/degでX線回折測定を行った。実験例1〜5に係る水素吸蔵合金粉末の粉末X線回折チャートを図2に、実験例6〜8に係る水素吸蔵合金粉末の粉末X線回折チャートを図3に、それぞれ示した。   Subsequently, the crystal structure of the hydrogen storage alloy powder according to Experimental Examples 1 to 8 was identified by a powder X-ray diffraction method using an X-ray diffraction measurement apparatus using a Cu—Kα tube as an X-ray source. In this case, X-ray diffraction measurement was performed at a scan speed of 1 ° / min, a tube voltage of 40 kV, a tube current of 300 mA, a scan step of 1 °, and a measurement angle of 20 to 50θ / deg. A powder X-ray diffraction chart of the hydrogen storage alloy powders according to Experimental Examples 1 to 5 is shown in FIG. 2, and a powder X-ray diffraction chart of the hydrogen storage alloy powders according to Experimental Examples 6 to 8 is shown in FIG.

三方晶系(3R)のA5B19型結晶構造、六方晶系(2H)のA5B19型結晶構造、A2B7型結晶構造は、それぞれ、2θ=31.4°〜31.7°、32.1°〜32.4°、32.7°〜33.0°のピークより同定した。図2及び図3に示したチャートから、実験例1〜8のいずれの水素吸蔵合金においても、A2B7型結晶構造とA5B19型結晶構造が存在することが確認された。また、A5B19型結晶構造の六方晶系(2H)と三方晶系(3R)のピーク強度について、A2B7型結晶構造のピーク強度を100%とした際の相対値(%)を、実験例1〜5の測定結果については表1に、実験例6〜8の測定結果については表2に、それぞれ示した。   The trigonal (3R) A5B19 crystal structure, the hexagonal (2H) A5B19 crystal structure, and the A2B7 crystal structure are 2θ = 31.4 ° to 31.7 °, 32.1 ° to 32, respectively. It was identified from the peaks of .4 ° and 32.7 ° to 33.0 °. From the charts shown in FIGS. 2 and 3, it was confirmed that any of the hydrogen storage alloys of Experimental Examples 1 to 8 has an A2B7 crystal structure and an A5B19 crystal structure. Further, regarding the peak intensities of the hexagonal system (2H) and the trigonal system (3R) of the A5B19 type crystal structure, relative values (%) when the peak intensity of the A2B7 type crystal structure is set to 100% are shown in Experimental Examples 1 to 3. The measurement results of 5 are shown in Table 1, and the measurement results of Experimental Examples 6 to 8 are shown in Table 2.

次いで、実験例1〜8のそれぞれの水素吸歳合金粉末を、例えば80℃で水素吸蔵放出を5回繰り返して活性化させた後、これらを40℃の雰囲気下で、水素吸蔵量(H/M)が0.5、0.7のときの解離圧を水素平衡圧として、JIS H7201(1991)「水素吸蔵合金の圧力一組成等温線(PCT曲線)の測定方法」に基づいて、水素吸蔵圧及びその傾きを測定した。水素吸蔵圧の傾きは、以下の計算式により求めた。
傾き=Log(吸蔵圧(H/M=0.7)/吸蔵圧(H/M=0.5))
/(0.7−0.5)
実験例1〜5の測定結果を表1に、実験例6〜8の測定結果を表2に、それぞれ示した。
Next, each of the hydrogen-absorbing alloy powders of Experimental Examples 1 to 8 was activated by repeating hydrogen storage and release five times at, for example, 80 ° C., and then the hydrogen storage amount (H / Based on JIS H7201 (1991) “Method for measuring pressure-composition isotherm (PCT curve) of hydrogen storage alloy” with dissociation pressure when M) is 0.5 and 0.7 as hydrogen equilibrium pressure The pressure and its slope were measured. The slope of the hydrogen storage pressure was determined by the following formula.
Inclination = Log (Occlusion pressure (H / M = 0.7) / Occlusion pressure (H / M = 0.5))
/(0.7-0.5)
The measurement results of Experimental Examples 1 to 5 are shown in Table 1, and the measurement results of Experimental Examples 6 to 8 are shown in Table 2, respectively.

Figure 0006105389
Figure 0006105389

Figure 0006105389
Figure 0006105389

図2に示した結果から、LaSm系のA5B19型結晶構造については、実験例1の水素吸蔵合金では六方晶系(2H)が主であったが、実験例2〜5の水素吸蔵合金では三方晶系(3R)が主であることが確認された。同様に、図3に示した結果から、LaNd系のA5B19型結晶構造については、実験例6の水素吸蔵合金では六方晶系(2H)が主であったが、実験例7及び8の水素吸蔵合金では三方晶系(3R)が主であることが確認された。   From the results shown in FIG. 2, the LaSm-based A5B19 type crystal structure was mainly hexagonal (2H) in the hydrogen storage alloy of Experimental Example 1, but three-way in the hydrogen storage alloys of Experimental Examples 2-5. It was confirmed that the crystal system (3R) was predominant. Similarly, from the results shown in FIG. 3, the LaNd-based A5B19 type crystal structure was mainly hexagonal (2H) in the hydrogen storage alloy of Experimental Example 6, but the hydrogen storage of Experimental Examples 7 and 8 It was confirmed that the alloy was mainly trigonal (3R).

また、表1に示した結果から、実験例2〜5では、水素吸蔵合金中のLaの添加量が増大するにしたがって水素吸蔵合金の平衡圧が低下しているが、実験例1では、水素吸蔵合金中のLaの添加量が最も多いにもかかわらず、水素吸蔵合金の平衡圧が実験例2のものよりも大きくなっていることがわかる。同じく、表2に示した結果から、実験例7及び8では、水素吸蔵合金中のLaの添加量が増大するにしたがって水素吸蔵合金の平衡圧が低下しているが、実験例6では、水素吸蔵合金中のLaの添加量が最も多いにもかかわらず、水素吸蔵合金の平衡圧は実験例7のものとほぼ同等の結果が得られていることがわかる。このことは、水素吸蔵合金は、六方晶系(2H)のA5B19型結晶構造を有するものとすることにより、水素吸蔵合金の平衡圧が上昇し、水素吸蔵合金中のLaの添加量の増加による平衡圧力低下分が緩和されることを示すものと考えられる。   Further, from the results shown in Table 1, in Experimental Examples 2 to 5, the equilibrium pressure of the hydrogen storage alloy decreases as the amount of La added in the hydrogen storage alloy increases. It can be seen that the equilibrium pressure of the hydrogen storage alloy is higher than that of Experimental Example 2 despite the largest amount of La added in the storage alloy. Similarly, from the results shown in Table 2, in Experimental Examples 7 and 8, the equilibrium pressure of the hydrogen storage alloy decreases as the amount of La added in the hydrogen storage alloy increases. It can be seen that despite the largest amount of La added in the storage alloy, the equilibrium pressure of the hydrogen storage alloy is almost the same as that of Experimental Example 7. This is because when the hydrogen storage alloy has a hexagonal (2H) A5B19 type crystal structure, the equilibrium pressure of the hydrogen storage alloy increases, and the amount of La added in the hydrogen storage alloy increases. This is considered to indicate that the equilibrium pressure drop is relaxed.

ただし、Laは水素との結合強度が強いため、Laの添加量の増加により吸蔵されるが放出されない不可逆水素が増加することが想定される。しかしながら、車載用途などでは、完全放電を行なわないため、問題とならない。なお、六方晶系(2H)のA5B19型結晶構造は、水素吸蔵合金の組成を特定するほか、熱処理条件等の製造条件を調整することで含有させることができる。   However, since La has a strong bond strength with hydrogen, it is assumed that irreversible hydrogen that is occluded but not released increases due to an increase in the amount of La added. However, there is no problem in in-vehicle applications because complete discharge is not performed. The hexagonal (2H) A5B19 type crystal structure can be included by specifying the composition of the hydrogen storage alloy and adjusting the manufacturing conditions such as the heat treatment conditions.

実験例1〜8では、LnとしてSm及びNdを用いた例を示した。Lnとしては、La以外の希土類元素及びYから選択された少なくとも1種を採用することができるが、水素吸蔵合金の微粉化抑制の観点から、Nd、Sm、Gd、Pr、Yなどの元素が望ましい。さらに、Lnとしては、Laの添加量の増加による平衡圧が低下することから、平衡圧を上昇させる効果が大きいSm、Y、Gdなどの希土類元素が望ましい。なお、水素吸蔵合金中のLaの添加量はLnよりも多量、すなわち上記の水素吸蔵合金組成の一般式において、x>yなるようにすることが好ましい。   In Experimental Examples 1 to 8, examples using Sm and Nd as Ln were shown. As Ln, at least one selected from rare earth elements other than La and Y can be used, but from the viewpoint of suppressing pulverization of the hydrogen storage alloy, elements such as Nd, Sm, Gd, Pr, and Y are used. desirable. Further, as Ln, since the equilibrium pressure is decreased due to an increase in the amount of La added, rare earth elements such as Sm, Y, and Gd that have a large effect of increasing the equilibrium pressure are desirable. It should be noted that the amount of La added in the hydrogen storage alloy is preferably larger than Ln, that is, x> y in the above general formula of the hydrogen storage alloy composition.

Mg添加量は、多すぎると微粉化及びMg成分の溶解が加速し、少なすぎると結晶構造が不安定(Mgを含まないAB5型結晶構造の生成が顕著)となり、水素吸蔵特性が安定しない(吸蔵カーブの2段化など)。水素吸蔵特性を安定させるためには、A5B19型結晶構造を安定的に構築する必要があるため、Mg量及び希土類元素(La+Ln)量の合計(A)と、Ni及び添加元素(T)量の合計(B)との量論比(B/A)を所定の範囲にコントロールする必要がある。A2B7型結晶構造は存在しても問題ないが、B/Aが少なすぎるとAB2やAB3型結晶構造が、多すぎるとAB5型結晶構造が混在しやすくなる。AB2やAB3型結晶構造、AB5型結晶構造が混在した場合においては、サイクルに伴う微粉化が顕著となる。   If the amount of Mg added is too large, pulverization and dissolution of the Mg component accelerate, and if it is too small, the crystal structure becomes unstable (production of AB5-type crystal structure not containing Mg is remarkable) and the hydrogen storage characteristics are not stable ( (Two steps of occlusion curve). In order to stabilize the hydrogen storage characteristics, it is necessary to stably build the A5B19 type crystal structure. Therefore, the total amount of Mg and rare earth elements (La + Ln) (A), and the amount of Ni and additive elements (T) It is necessary to control the stoichiometric ratio (B / A) to the total (B) within a predetermined range. There is no problem even if an A2B7 crystal structure exists, but if the B / A is too small, the AB2 or AB3 crystal structure tends to be mixed, and if it is too much, the AB5 crystal structure tends to be mixed. In the case where AB2, AB3 type crystal structure, and AB5 type crystal structure are mixed, the pulverization accompanying the cycle becomes remarkable.

車載用途においては、いつでもアシスト(放電)できるようにするため、SOC(充電状態:State of Charge)50%以上の充電状態で保持されており、そういった高SOCの状況で大きな出力特性が望まれる。同じく、放電に伴ってSOCが低下した際には、回生充電により即座にSOC位置を回復することが必要であり、大きな回生出力特性も必要となる。このような観点から、高SOC領域では電池電圧が高く、低SOC領域では電池電圧が低いほうが望ましいため、水素吸蔵曲線(PCTカーブ)は、H/M=0.5〜0.7での傾きが0.7以上3.0以下であることが望ましく、A5B19型結晶構造とA2B7型結晶構造からなる範囲にB/Aをコントロールすることが必要である。以上の点を考慮すると、0.09≦z≦0.14、3.65≦t≦3.80とすることが好ましい。   In an in-vehicle application, in order to be able to assist (discharge) at any time, a state of charge (SOC) is maintained in a state of charge of 50% or more, and a large output characteristic is desired in such a high SOC state. Similarly, when the SOC decreases with discharge, it is necessary to immediately recover the SOC position by regenerative charging, and a large regenerative output characteristic is also required. From this point of view, it is desirable that the battery voltage is high in the high SOC region and low in the low SOC region. Therefore, the hydrogen storage curve (PCT curve) has a slope at H / M = 0.5 to 0.7. Is preferably 0.7 or more and 3.0 or less, and it is necessary to control B / A within a range consisting of an A5B19 type crystal structure and an A2B7 type crystal structure. Considering the above points, it is preferable that 0.09 ≦ z ≦ 0.14, 3.65 ≦ t ≦ 3.80.

実験例1〜8では、T成分としてAlを用いた例を示したが、他に、Co、Mn又はZnを用いることができる。T成分の添加量は、少なすぎると結晶構造の安定性及び水素吸蔵量の面で不利となり、多すぎるとT成分の溶解の影響が顕著となるので、0.05≦u≦0.25とすることが好ましい。   In Experimental Examples 1-8, although the example which used Al as a T component was shown, Co, Mn, or Zn can be used for others. If the amount of T component added is too small, it will be disadvantageous in terms of the stability of the crystal structure and the amount of hydrogen occlusion, and if it is too large, the effect of dissolution of the T component will be significant, so 0.05 ≦ u ≦ 0.25. It is preferable to do.

[ニッケル水素蓄電池の特性測定]
上述のようにして調製された実験例1〜8の各水素吸蔵合金を用い、以下に示すようにしてニッケル水素蓄電池を作製し、高温放置試験及び出力特性の測定を行った。
[Characteristic measurement of nickel metal hydride storage battery]
Using each of the hydrogen storage alloys of Experimental Examples 1 to 8 prepared as described above, a nickel metal hydride storage battery was produced as shown below, and a high temperature storage test and measurement of output characteristics were performed.

(水素吸蔵合金負極の作製)
上述した実験例1〜8の各水素吸蔵合金粉末と水溶性結着剤、熱可塑性エラストマー及び炭素系導電剤を混合・混練して水素吸蔵合金スラリーを調製した。水溶性結着剤としては、0.1質量%のCMC(カルボキシメチルセルロース)の水溶液を使用した。熱可塑性エラストマーとしては、スチレンブタジエンラテックス(SBR)を使用した。炭素系導電剤としては、ケッチエンブラックを使用した。
(Production of hydrogen storage alloy negative electrode)
The hydrogen storage alloy slurries were prepared by mixing and kneading each of the hydrogen storage alloy powders of Experimental Examples 1 to 8, the water-soluble binder, the thermoplastic elastomer, and the carbon-based conductive agent. As the water-soluble binder, an aqueous solution of 0.1% by mass of CMC (carboxymethyl cellulose) was used. Styrene butadiene latex (SBR) was used as the thermoplastic elastomer. Ketchen Black was used as the carbon-based conductive agent.

上述のようにして作製した水素吸蔵合金スラリーを、ニッケルメッキを施した軟鋼材製の多孔性基板(パンチングメタル)からなる負極用導電性芯体に、所定の充填密度(例えば、5.2g/cm)となるように塗着、乾燥させた後、所定の厚みになるように圧延した。この後、所定の寸法になるように切断して、実験例1〜8のそれぞれに対応する水素吸蔵合金負極をそれぞれ作製した。 The hydrogen storage alloy slurry produced as described above is applied to a negative electrode conductive core made of a nickel-plated mild steel porous substrate (punching metal) with a predetermined packing density (for example, 5.2 g / After coating and drying so as to be cm 3 ), it was rolled to a predetermined thickness. Then, it cut | disconnected so that it might become a predetermined dimension, and produced the hydrogen storage alloy negative electrode corresponding to each of Experimental Examples 1-8, respectively.

(ニッケル正極の作製)
多孔度が約85%の多孔性ニッケル焼結基板を比重が1.75の硝酸ニッケル、硝酸コバルト及び硝酸亜鉛の混合水溶液に浸漬し、多孔性ニッケル焼結基板の細孔内にニッケル塩、コバルト塩及び亜鉛塩を保持させた。この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬し、ニッケル塩、コバルト塩および亜鉛塩をそれぞれ水酸化ニッケル、水酸化コバルトおよび水酸化亜鉛に転換させた。次いで、充分に水洗してアルカリ溶液を除去した後、乾燥し、多孔性ニッケル焼結基板の細孔内に水酸化ニッケルを主成分とする正極活物質を充填した。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板の細孔内に水酸化ニッケルを主体とする活物質を充填密度が2.5g/cmになるように充填した。
(Preparation of nickel positive electrode)
A porous nickel sintered substrate having a porosity of about 85% is immersed in a mixed aqueous solution of nickel nitrate, cobalt nitrate and zinc nitrate having a specific gravity of 1.75, and nickel salt and cobalt are placed in the pores of the porous nickel sintered substrate. Salt and zinc salt were retained. Thereafter, this porous nickel sintered substrate is immersed in a 25% by mass aqueous sodium hydroxide (NaOH) solution to convert nickel salt, cobalt salt and zinc salt into nickel hydroxide, cobalt hydroxide and zinc hydroxide, respectively. I let you. Next, after sufficiently washing with water to remove the alkaline solution, it was dried, and the positive electrode active material mainly composed of nickel hydroxide was filled in the pores of the porous nickel sintered substrate. Such an active material filling operation is repeated a predetermined number of times (for example, 6 times) so that the active material mainly composed of nickel hydroxide is filled in the pores of the porous sintered substrate so that the filling density becomes 2.5 g / cm 3. Filled.

次いで、水酸化ニッケルを主成分とする正極活物質が充填された多孔性ニッケル焼結基板を、硝酸ニッケル及び硝酸イットリウムの混合水溶液に浸漬し、極板表面にニッケル塩及びイットリウム塩を保持させ、この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬し、ニッケル塩及びイットリウム塩をそれぞれ水酸化ニッケルおよび水酸化イットリウムに転換させた。次いで、充分に水洗してアルカリ溶液を除去した後、乾燥し、所定の寸法に切断してニッケル正極を作製した。   Next, a porous nickel sintered substrate filled with a positive electrode active material mainly composed of nickel hydroxide is immersed in a mixed aqueous solution of nickel nitrate and yttrium nitrate, and the nickel salt and yttrium salt are held on the electrode plate surface, Thereafter, this porous nickel sintered substrate was immersed in a 25% by mass sodium hydroxide (NaOH) aqueous solution to convert the nickel salt and yttrium salt into nickel hydroxide and yttrium hydroxide, respectively. Next, after sufficiently washing with water to remove the alkaline solution, it was dried and cut into predetermined dimensions to produce a nickel positive electrode.

(アルカリ電解液の調製)
アルカリ電解液は、30質量%の水酸化カリウム(KOH)水溶液に、水酸化ナトリウム(NaOH)及び水酸化リチウム(LiOH)を所定のモル比となるよう調製した混合水溶液に対し、タングステン酸ナトリウムをタングステン換算でアルカリ電解液1gあたり20mgとなるように添加したものを使用した。
(Preparation of alkaline electrolyte)
The alkaline electrolyte was prepared by adding sodium tungstate to a mixed aqueous solution prepared by adding sodium hydroxide (NaOH) and lithium hydroxide (LiOH) in a predetermined molar ratio to a 30% by mass potassium hydroxide (KOH) aqueous solution. What was added so that it might become 20 mg per 1 g of alkaline electrolyte in conversion of tungsten was used.

(ニッケル水素蓄電池の作製)
上述のように作製された水素吸蔵合金負極とニッケル正極とを用い、これらの間に、スルフォン化処理されたポリプロピレン繊維を含む不織布からなるセパレータを介在させて渦巻状に巻回して渦巻状電極群を作製した。このスルフォン化処理されたポリプロピレン繊維は、アンモニア吸着能を有している。このようにして作製された渦巻状電極群の下部こは水素吸蔵合金負極の芯体露出部が露出しており、その上部にはニッケル正極の芯体露出部が露出している。次いで、得られた渦巻状電極群の下端面に露出する芯体露出部に負極集電体を溶接するとともに、渦巻状電極群の上端面に露出するニッケル正極の芯体露出部の上に正極集電体を溶接して、電極体とした。
(Production of nickel metal hydride storage battery)
Using the hydrogen storage alloy negative electrode and the nickel positive electrode produced as described above, a separator made of nonwoven fabric containing a sulfonated polypropylene fiber is interposed therebetween, and the spiral electrode group is wound in a spiral shape. Was made. This sulfonated polypropylene fiber has an ammonia adsorption ability. In the lower part of the spiral electrode group thus produced, the core exposed part of the hydrogen storage alloy negative electrode is exposed, and the core exposed part of the nickel positive electrode is exposed above it. Next, the negative electrode current collector is welded to the core exposed portion exposed at the lower end surface of the obtained spiral electrode group, and the positive electrode is exposed on the nickel positive electrode core exposed portion exposed at the upper end surface of the spiral electrode group. The current collector was welded to obtain an electrode body.

得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)内に収納した後、負極集電体を外装缶の内底面に溶接した。正極集電体より延出する集電リード部を正極端子を兼ねるとともに外周部に絶縁ガスケットが装着された封口体の底部を構成する封口体に溶接した。なお、封口体には正極キャップが設けられていて、この正極キャップ内に所定の圧力になると変形する弁体とスプリングよりなる圧力弁が配置されている。   The obtained electrode body was housed in a bottomed cylindrical outer can made of nickel-plated iron (the outer surface of the bottom surface becomes the negative electrode external terminal), and then the negative electrode current collector was welded to the inner bottom surface of the outer can . The current collector lead portion extending from the positive electrode current collector served as the positive electrode terminal and was welded to the sealing body constituting the bottom portion of the sealing body having an insulating gasket attached to the outer peripheral portion. In addition, the positive electrode cap is provided in the sealing body, and the pressure valve which consists of the valve body and spring which deform | transform when it becomes predetermined pressure in this positive electrode cap is arrange | positioned.

次いで、外装缶の上部外周部に環状溝部を形成した後、アルカリ電解液を注液し、外装缶の上部に形成された環状溝部の上に封口体の外周部に装着された絶縁ガスケットを載置した。この後、外装缶の開口端縁をかしめ、外装缶内に上記アルカリ電解液を電池容量あたり2.5g/Ah注入し、実験例1〜8のそれぞれに対応するニッケル水素蓄電池を作製した。   Next, after forming an annular groove in the upper outer periphery of the outer can, an alkaline electrolyte is injected, and an insulating gasket mounted on the outer periphery of the sealing body is placed on the annular groove formed in the upper portion of the outer can. I put it. Then, the opening edge of the outer can was crimped, and the alkaline electrolyte was injected into the outer can at 2.5 g / Ah per battery capacity, and nickel hydride storage batteries corresponding to each of Experimental Examples 1 to 8 were produced.

このようにして作製されたニッケル水素蓄電池10の具体的構成を図1を用いて説明する。ニッケル水素蓄電池10は、上述のようにして作製されたニッケル正極11と、水素吸蔵合金負極12とがセパレータ13とを介して互いに絶縁された状態で巻き回された巻回電極体14を有している。ニッケル正極11は、ニッケルめっき鋼板製のパンチングメタルからなる正極芯体15の両面に形成された多孔質ニッケル焼結体内に、水酸化ニッケルを主成分とし、水酸化コバルト等が添加された正極活物質16が充填された構成を有している。水素吸蔵合金負極12は、ニッケルメッキした軟鋼材製のパンチングメタルからなる負極芯体18の両面に負極活物質としての水素吸蔵合金粉末を有する負極合剤層19が形成されている。   A specific configuration of the nickel-metal hydride storage battery 10 thus manufactured will be described with reference to FIG. The nickel-metal hydride storage battery 10 has a wound electrode body 14 in which the nickel positive electrode 11 and the hydrogen storage alloy negative electrode 12 manufactured as described above are wound in a state of being insulated from each other via a separator 13. ing. The nickel positive electrode 11 is a positive electrode active material in which nickel hydroxide is a main component and cobalt hydroxide is added in a porous nickel sintered body formed on both surfaces of a positive electrode core 15 made of a nickel-plated steel plate. It has a configuration filled with the substance 16. In the hydrogen storage alloy negative electrode 12, a negative electrode mixture layer 19 having hydrogen storage alloy powder as a negative electrode active material is formed on both surfaces of a negative electrode core 18 made of a nickel-plated mild steel punching metal.

巻回電極体14の下部には負極芯体18に負極集電体20が抵抗溶接されており、巻回電極体14の上部には正極芯体15に正極集電体21が抵抗溶接されている。巻回電極体14は、鉄にニッケルメッキを施した有底円筒形の金属製の外装缶22内に挿入されており、負極集電体20と外装缶22の底部との間はスポット溶接されている。   A negative electrode current collector 20 is resistance-welded to the negative electrode core 18 at the lower part of the wound electrode body 14, and a positive electrode current collector 21 is resistance-welded to the positive electrode core 15 at the upper part of the wound electrode body 14. Yes. The wound electrode body 14 is inserted into a bottomed cylindrical metal outer can 22 in which iron is nickel-plated, and the negative electrode current collector 20 and the bottom of the outer can 22 are spot-welded. ing.

外装缶22の開放端側には、鉄にニッケルメッキを施した封口体23が、ガスケット24を介して外装缶22とは電気的に絶縁された状態で、カシメ固定されている。正極集電体21は、封口体23に溶接されて電気的に接続されている。正極集電体21の中央部には開口25が設けられており、この開口25には弁体26が開口25を塞ぐように配置されている。   On the open end side of the outer can 22, a sealing body 23 in which nickel is plated on iron is caulked and fixed with a gasket 24 being electrically insulated from the outer can 22. The positive electrode current collector 21 is welded and electrically connected to the sealing body 23. An opening 25 is provided in the center of the positive electrode current collector 21, and a valve body 26 is disposed in the opening 25 so as to block the opening 25.

また、封口体23の上面には、開口25の周囲を覆い、かつ、弁体26とは一定距離だけ隔てた状態となるように、正極キャップ27が設けられている。正極キャップ27には、適宜ガス抜き孔(図示省略)が設けられている。正極キャップ27の内面と弁体26との間にはバネ28が設けられており、弁体26はバネ28によって封口体23の開口25を塞ぐように押圧されている。この弁体26は外装缶22の内部の圧力が高くなった際に、内部の圧力を逃がす安全弁としての機能を有している。   Further, a positive electrode cap 27 is provided on the upper surface of the sealing body 23 so as to cover the periphery of the opening 25 and to be separated from the valve body 26 by a certain distance. The positive electrode cap 27 is appropriately provided with a gas vent hole (not shown). A spring 28 is provided between the inner surface of the positive electrode cap 27 and the valve body 26, and the valve body 26 is pressed by the spring 28 so as to close the opening 25 of the sealing body 23. The valve body 26 has a function as a safety valve for releasing the internal pressure when the internal pressure of the outer can 22 becomes high.

(ニッケル水素蓄電池の活性化)
上述のようにして作製された実験例1〜8に対応するそれぞれの円筒状ニッケル水素蓄電池を、それぞれ25℃に維持された恒温槽中で、1Itの充電電流でSOCが120%となるまで充電し、次いで、70℃に維持された恒温槽中で24時間放置した後、45℃に維持された恒温槽中で、1Itの放電電流で電池電圧が0.3Vになるまで放電させた。この充放電サイクルを1サイクルとして2サイクル繰り返して、電池を活性化した。
(Activation of NiMH batteries)
Each cylindrical nickel-metal hydride storage battery corresponding to Experimental Examples 1 to 8 manufactured as described above was charged in a thermostat maintained at 25 ° C. until the SOC became 120% with a charging current of 1 It. Then, after being left for 24 hours in a thermostat maintained at 70 ° C., the battery was discharged in a thermostat maintained at 45 ° C. until the battery voltage became 0.3 V with a discharge current of 1 It. The battery was activated by repeating this charge / discharge cycle as one cycle for two cycles.

次いで、活性化された実験例1〜8に対応するそれぞれの円筒状ニッケル水素蓄電池に対して、25℃に維持された恒温槽中で、0.5Itの定電流でSOCが120%となるまで充電し、1時間放置した後、1Itの放電電流で電池電圧が0.9Vになるまで放電させた。この充放電サイクルを3サイクル繰り返した。   Next, for each of the cylindrical nickel-metal hydride storage batteries corresponding to the activated Experimental Examples 1 to 8, in a thermostat maintained at 25 ° C., until the SOC becomes 120% at a constant current of 0.5 It. The battery was charged and allowed to stand for 1 hour, and then discharged at a discharge current of 1 It until the battery voltage reached 0.9V. This charge / discharge cycle was repeated three times.

(高温放置試験)
水素吸蔵合金の耐食性を調べるために、以下の評価を実施した。上述のようにして活性化した実験例1〜8のそれぞれに対応する円筒形ニッケル水素蓄電池の電池質量を測定した後、25℃の温度雰囲気で1Itの充電電流でSOCの80%まで充電した後、80℃の温度雰囲気で1週間放置させた。次いで、25℃の温度雰囲気下で1Itの放電電流で、電池電圧が0.9Vになるまで放電させた。このような充電放置を6回(実験例1〜5)又は5回(実験例6〜8)繰り返した。
(High temperature storage test)
In order to investigate the corrosion resistance of the hydrogen storage alloy, the following evaluation was performed. After measuring the battery mass of the cylindrical nickel metal hydride storage battery corresponding to each of Experimental Examples 1 to 8 activated as described above, after charging to 80% of SOC at a charging current of 1 It in a temperature atmosphere of 25 ° C. , And allowed to stand at 80 ° C. for 1 week. Next, the battery was discharged with a discharge current of 1 It in a temperature atmosphere of 25 ° C. until the battery voltage became 0.9V. Such charge leaving was repeated 6 times (Experimental Examples 1 to 5) or 5 times (Experimental Examples 6 to 8).

(出力特性評価)
80℃の温度雰囲気での放置前及び放置後の実験例1〜8のそれぞれに対応する円筒形ニッケル水素蓄電池の低温出力特性評価を以下のように測定した。上述のようにして活性化した実験例1〜8のそれぞれに対応する円筒形ニッケル水素蓄電池を25℃の温度雰囲気で1Itの充電電流でSOCの50%まで充電した後、−10℃の温度雰囲気で3時間休止させた。次いで、−10℃の温度雰囲気で、以下に示す所定の充電レートで20秒間充電させた後、−10℃の温度雰囲気で30分間休止させた。この後、−10℃の温度雰囲気で、以下に示す所定の放電レートで10秒間放電させた後、−10℃の温度雰囲気で30分間休止させた。このような−10℃の温度雰囲気での所定の充電レートでの20秒間充電、30分の休止、所定の放電レートで10秒間放電、一10℃の温度雰囲気での30分の休止を繰り返した。
(Output characteristic evaluation)
The low-temperature output characteristic evaluation of the cylindrical nickel-metal hydride storage battery corresponding to each of Experimental Examples 1 to 8 before and after being left in an 80 ° C. temperature atmosphere was measured as follows. The cylindrical nickel metal hydride storage batteries corresponding to each of Experimental Examples 1 to 8 activated as described above were charged to 50% of SOC at a charging current of 1 It in a temperature atmosphere of 25 ° C., and then the temperature atmosphere of −10 ° C. And rested for 3 hours. Next, the battery was charged for 20 seconds at a predetermined charging rate shown below in a temperature atmosphere of −10 ° C., and then rested for 30 minutes in a temperature atmosphere of −10 ° C. Thereafter, the battery was discharged for 10 seconds at a predetermined discharge rate shown below in a temperature atmosphere of −10 ° C., and then rested for 30 minutes in a temperature atmosphere of −10 ° C. Such a 20 second charge at a predetermined charge rate in a temperature atmosphere of −10 ° C., a 30 minute pause, a 10 second discharge at a predetermined discharge rate, and a 30 minute pause in a temperature atmosphere of 10 ° C. were repeated. .

この場合、所定の充電レートは0.8It−1.7It−2.5It−3.31t−4.21tの順で充電電流を増加させ、所定の放電レートは、1.7It−3.3It−5.0It−6.7It−8.3Itの順で放電電流を増加させるものであり、各放電レートで10秒間経過時点での各電池の電池電圧(V)を放電レート毎に測定した。次いで、測定した10秒間経過時点での各電池の電池電圧(V)を放電レート毎の放電電流値に対して2次元プロットし、電池電圧と放電電流値の関係を示す近似曲線を求め、近似曲線における0.9V時の放電電流値をSOC50%出力特性として求めた。実験例1〜5のLaSm系の測定結果は、実験例1の測定結果を100とした相対値で表3の「初期」の欄に示し、実験例6〜8のLaNd系は実験例6の測定結果を100とした相対値で表4の「初期」の欄に示した。   In this case, the predetermined charging rate increases the charging current in the order of 0.8 It−1.7 It−2.5 It−3.31 t−4.21 t, and the predetermined discharging rate is 1.7 It−3.3 It−. The discharge current was increased in the order of 5.0 It-6.7 It-8.3 It, and the battery voltage (V) of each battery when 10 seconds passed at each discharge rate was measured for each discharge rate. Then, the measured battery voltage (V) of each battery at the time point of 10 seconds is two-dimensionally plotted with respect to the discharge current value for each discharge rate to obtain an approximate curve indicating the relationship between the battery voltage and the discharge current value. The discharge current value at 0.9 V in the curve was determined as SOC 50% output characteristics. The measurement results of the LaSm system of Experimental Examples 1 to 5 are shown in the “Initial” column of Table 3 as relative values with the measurement result of Experimental Example 1 being 100, and the LaNd systems of Experimental Examples 6 to 8 are those of Experimental Example 6. The relative value with the measurement result as 100 is shown in the column “Initial” in Table 4.

次いで、高温放置後の実験例1〜8のそれぞれに対応する円筒形ニッケル水素蓄電池について、上記の場合と同様にして、SOC50%出力特性を求めた。実験例1〜5のLaSm系の測定結果は実験例1の測定結果を100とした相対値で表3の「劣化後」の欄に示し、実験例6〜8のLaNd系は実験例6の測定結果を100とした相対値で表4の「劣化後」の欄に示した。   Next, the SOC 50% output characteristics were obtained for the cylindrical nickel-metal hydride batteries corresponding to each of Experimental Examples 1 to 8 after being left at high temperature in the same manner as in the above case. The measurement results of the LaSm system in Experimental Examples 1 to 5 are shown in the “After Degradation” column of Table 3 as relative values with the measurement result of Experimental Example 1 being 100, and the LaNd systems in Experimental Examples 6 to 8 are those of Experimental Example 6. The relative value with the measurement result as 100 is shown in the “after degradation” column of Table 4.

なお、表3及び表4の「初期×劣化後」の欄は、「初期」の出力特性及び「劣化後」の出力特性を総合的に勘案するため、「初期」の測定結果と「劣化後」の測定結果の積について、実験例1〜5のLaSm系の測定結果は実験例1の測定結果を100とした相対値で表3に示し、実験例6〜8のLaNd系は実験例6の測定結果を100とした相対値で表4に示したものである。   In addition, in the columns of “Initial × After Degradation” in Tables 3 and 4, the “Initial” measurement results and “After Degradation” are taken into account in order to comprehensively consider the “Initial” output characteristics and “After Degradation” output characteristics. The measurement results of the LaSm system of Experimental Examples 1 to 5 are shown in Table 3 as relative values with the measurement result of Experimental Example 1 being 100, and the LaNd systems of Experimental Examples 6 to 8 are Experimental Example 6 Table 4 shows the relative values with the measurement result of 100 as 100.

Figure 0006105389
Figure 0006105389

Figure 0006105389
Figure 0006105389

これらの表3及び表4に示した結果から明らかなように、実験例1及び実験例6に対応するニッケル水素蓄電池においては、実験例2〜5ないし実験例7、8に対応するニッケル水素蓄電池よりもLa添加量が多い(コスト安価)にもかかわらず、初期特性の低下が抑制され、また、劣化後(高温放置後)においても充放電特性の優位性を保っており、初期と劣化後の特性バランスに優れていることが確認できた。特に、実験例1に対応するニッケル水素蓄電池においては、実施例2のものに対し、よりLa添加量を増大させることが可能となっており、コスト面でも優位であることが明らかである。   As is clear from the results shown in Tables 3 and 4, in the nickel metal hydride storage batteries corresponding to Experimental Examples 1 and 6, the nickel hydrogen storage batteries corresponding to Experimental Examples 2 to 5 to Experimental Examples 7 and 8 are used. In spite of the addition amount of La (cost is low), the deterioration of the initial characteristics is suppressed, and the superiority of the charge / discharge characteristics is maintained even after deterioration (after leaving at high temperature). It was confirmed that the balance of characteristics was excellent. In particular, in the nickel metal hydride storage battery corresponding to Experimental Example 1, it is possible to increase the amount of La added more than that of Example 2, and it is clear that the cost is superior.

10…ニッケル水素蓄電池 11…ニッケル正極 12…水素吸蔵合金負極
13…セパレータ 14…巻回電極体 15…正極芯体
16…正極活物質 18…負極芯体 19…負極合剤層
20…負極集電体 21…正極集電体 22…外装缶
23…封口体 24…ガスケット 25…開口
26…弁体 27…正極キャップ 28…バネ
DESCRIPTION OF SYMBOLS 10 ... Nickel metal hydride battery 11 ... Nickel positive electrode 12 ... Hydrogen storage alloy negative electrode 13 ... Separator 14 ... Winding electrode body 15 ... Positive electrode core body 16 ... Positive electrode active material 18 ... Negative electrode core body 19 ... Negative electrode mixture layer 20 ... Negative electrode current collection Body 21 ... Positive electrode current collector 22 ... Exterior can 23 ... Sealing body 24 ... Gasket 25 ... Opening 26 ... Valve body 27 ... Positive electrode cap 28 ... Spring

Claims (2)

水素吸蔵合金を主成分とする水素吸蔵合金負極と、
水酸化ニッケルを主成分とするニッケル正極と、
セパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池であって、
前記水素吸蔵合金は、Laを主要希土類元素とする一般式(LaLn1一zMgNit−u(T:Al、Co、Mn、Znから選択され、LnはLa以外の希土類元素及びYから選択された少なくとも1種であり、x>y、0.09≦z≦0.14、3.65≦t≦3.80、0.05≦u≦0.25)であって、六方晶系(2H)のA5B19型結晶構造のものと、三方晶系(3R)のA5B19型結晶構造のものと、A2B7型結晶構造のものとを含み、
前記六方晶系(2H)のA5B19型結晶構造のもののCu−Kα線による粉末X線回折強度ピークは、前記三方晶系(3R)のA5B19型結晶構造のもの及びA2B7型結晶構造のものよりも大きい、
アルカリ蓄電池。
A hydrogen storage alloy negative electrode mainly composed of a hydrogen storage alloy;
A nickel positive electrode mainly composed of nickel hydroxide;
An alkaline storage battery comprising an electrode group consisting of a separator and an alkaline electrolyte in an outer can,
The hydrogen storage alloy is selected from the general formula (La x Ln y ) 11 z Mg z Ni tu- Tu (T: Al, Co, Mn, Zn) in which La is a main rare earth element, and Ln is other than La X> y, 0.09 ≦ z ≦ 0.14, 3.65 ≦ t ≦ 3.80, 0.05 ≦ u ≦ 0.25) A hexagonal (2H) A5B19 crystal structure, a trigonal (3R) A5B19 crystal structure, and an A2B7 crystal structure,
The powder X-ray diffraction intensity peak by Cu-Kα ray of the hexagonal (2H) A5B19 crystal structure is higher than that of the trigonal (3R) A5B19 crystal structure and A2B7 crystal structure. large,
Alkaline storage battery.
前記Lnは、Sm、Gd、Yの少なくとも1種を主要成分として含む、請求項1に記載のアルカリ蓄電池。   The alkaline storage battery according to claim 1, wherein the Ln includes at least one of Sm, Gd, and Y as a main component.
JP2013111092A 2013-05-27 2013-05-27 Alkaline storage battery Active JP6105389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013111092A JP6105389B2 (en) 2013-05-27 2013-05-27 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013111092A JP6105389B2 (en) 2013-05-27 2013-05-27 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2014229593A JP2014229593A (en) 2014-12-08
JP6105389B2 true JP6105389B2 (en) 2017-03-29

Family

ID=52129247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013111092A Active JP6105389B2 (en) 2013-05-27 2013-05-27 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP6105389B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106521382B (en) * 2016-10-28 2018-02-09 燕山大学 A kind of single-phase superlattices A5B19The preparation method of type La Mg Ni base hydrogen-storing alloys
WO2023047726A1 (en) * 2021-09-24 2023-03-30 日本重化学工業株式会社 Hydrogen occlusion alloy for alkaline storage battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253654B1 (en) * 1999-12-27 2018-02-14 GS Yuasa International Ltd. Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle
WO2007018291A1 (en) * 2005-08-11 2007-02-15 Gs Yuasa Corporation Hydrogen-storage alloy, process for producing the same, hydrogen-storage alloy electrode, and secondary cell
JP2008084649A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP2011127177A (en) * 2009-12-17 2011-06-30 Sanyo Electric Co Ltd Hydrogen storage alloy, method for producing the same, and alkali storage battery
JP5642577B2 (en) * 2010-03-18 2014-12-17 三洋電機株式会社 Alkaline storage battery and alkaline storage battery system

Also Published As

Publication number Publication date
JP2014229593A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
US9105947B2 (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery and alkaline storage battery system each including negative electrode having the alloy
JP5207750B2 (en) Alkaline storage battery
JP5425433B2 (en) Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
US8802292B2 (en) Hydrogen-absorbing alloy for alkaline storage battery and method for manufacturing the same
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP5535684B2 (en) Hydrogen storage alloy for alkaline storage battery and hydrogen storage alloy electrode for alkaline storage battery using the same
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP5252920B2 (en) Alkaline storage battery
JP5717125B2 (en) Alkaline storage battery
JP6105389B2 (en) Alkaline storage battery
WO2014068953A1 (en) Accumulator system
JP5213312B2 (en) Alkaline storage battery
JP2013178882A (en) Alkaline storage battery
JP5247170B2 (en) Alkaline storage battery
JP4326121B2 (en) Alkaline storage battery
JP5334498B2 (en) Alkaline storage battery
WO2014068868A1 (en) Nickel metal hydride storage battery and storage battery system
JP4573609B2 (en) Alkaline storage battery
JP2013134903A (en) Hydrogen absorbing alloy for alkaline storage battery, and alkaline storage battery including the same
JP6200897B2 (en) Storage battery module and storage battery system
JP5493833B2 (en) Alkaline storage battery and method for manufacturing the same
WO2014068954A1 (en) Storage battery system
JP2014089896A (en) Nickel hydrogen storage battery and battery system
JP2014110150A (en) Sintered nickel positive electrode for alkali storage battery use, and alkali storage battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170302

R150 Certificate of patent or registration of utility model

Ref document number: 6105389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150