JP4326121B2 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP4326121B2
JP4326121B2 JP2000173695A JP2000173695A JP4326121B2 JP 4326121 B2 JP4326121 B2 JP 4326121B2 JP 2000173695 A JP2000173695 A JP 2000173695A JP 2000173695 A JP2000173695 A JP 2000173695A JP 4326121 B2 JP4326121 B2 JP 4326121B2
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
positive electrode
active material
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000173695A
Other languages
Japanese (ja)
Other versions
JP2001351673A (en
Inventor
正夫 武江
功祐 里口
誠 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000173695A priority Critical patent/JP4326121B2/en
Publication of JP2001351673A publication Critical patent/JP2001351673A/en
Application granted granted Critical
Publication of JP4326121B2 publication Critical patent/JP4326121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル−水素蓄電池やニッケル−カドミウム蓄電池などのアルカリ蓄電池に係り、特に、これらのアルカリ蓄電池に用いられる正極板と負極板とセパレータとからなる電極群の構造に関する。
【0002】
【従来の技術】
ニッケル・水素蓄電池をはじめとするアルカリ蓄電池は、近年の市場拡大に伴って、電動工具、アシスト自転車、電気自動車等への用途が拡大し、大型化、高容量化、高出力化への需要、要望が高まった。
このような背景にあって、この種のアルカリ蓄電池において、種々の高出力化の検討が行われた。例えば、図4に示すように、電極群40の上部に正極板41に接続された正極集電体44を溶接し、電極群40の下部に負極板42に接続された負極集電体45を溶接するとともに、正極集電体44を図示しない封口体の下部に溶接し、負極集電体45を図示しない電池缶の内底部に溶接する構造が採用されるようになった。
【0003】
ところで、電極群40の上部に正極板41に接続された正極集電体44を溶接し、電極群40の下部に負極板42に接続された負極集電体45を溶接する場合、正極板41の端部と負極板42の端部が同位置にあると、正極板41と負極集電体45あるいは負極板42と正極集電体44とが接触して、内部短絡を生じる恐れがある。このため、負極集電体45と正極板41との接触による短絡あるいは正極集電体44と負極板42との接触による短絡を防止する目的で、正極板41に対して負極板42を下側にずらして配置する構造となっている。
【0004】
【発明が解決しようとする課題】
ところが、この種のアルカリ蓄電池に用いられる水酸化ニッケルを主正極活物質とする正極板は、充放電サイクルの進行に伴って水酸化ニッケルが高次化して膨潤し、膨潤した活物質が正極板よりせり出すようになるという現象を生じる。そして、上述のように正極板41に対して負極板42を下側にずらして配置すると、電極群40の下部では負極板42の一部に正極板41と対向しない部分42bが存在することとなる。
【0005】
この結果、この負極板42の正極板41に対向しない部分42bと正極板41の下端部41cとの間(図4の符号Zを参照)で充放電反応(この充放電反応を以下では回り込み反応という)が生じて、正極板41の下端部41cは活物質の膨潤によってせり出しを生じるという現象を生じた。
正極板41の下端部41cでの活物質の膨潤によってせり出しを生じると、やがては正極活物質の脱落によって、容量低下を引き起こしたり、場合によっては、負極集電体45との短絡を引き起こすという問題を生じた。
【0006】
そこで、本発明は上記問題点を解決するためになされたものであって、正極板に対して負極板をずらして配置しても、正極板が回り込み反応を起こさないような構造として、正極活物質の脱落による容量低下を防止するとともに、負極集電体との短絡を防止して、高容量で長寿命のアルカリ蓄電池が得られるようにすることを目的とするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明のアルカリ蓄電池は、正極活物質が充填された正極板と負極活物質が充填された負極板とこれらを隔離するセパレータとからなる電極群を備え、電極群の下部に負極板に接続された負極集電体を備えている。そして、この電極群は正極板上部および負極板下部で正極板と負極板とが互いに対向しないようにずらして配置されており、正極板上部の負極板と対向しない部分には正極活物質が充填されている。そして、負極板下部の正極板と対向しない部分には負極活物質が充填されていないか、負極活物質が充填されている場合は当該負極活物質の表面に耐アルカリ性の保護膜が備えられているか、耐アルカリ性の樹脂が塗布されていて、正極板との充放電反応が阻害されるようにしている。
【0008】
このように、負極板下部の正極板と対向しない部分には負極活物質が充填されていないと、正極板の下端部が回り込み反応を起こさないような構造となるため、正極活物質の脱落による容量低下が防止できて、負極集電体との短絡を防止することが可能となり、高容量で長寿命のアルカリ蓄電池が得られるようになる。
【0009】
そして、負極板下部の正極板と対向しない部分に負極活物質が充填されている場合は当該負極活物質の表面に耐アルカリ性の保護膜が備えられているか、耐アルカリ性の樹脂が塗布されていると、保護膜あるいは塗布された樹脂は充放電反応を阻害するように作用するため、正極板の下端部が回り込み反応を起こすことが防止できるようになる
【0010】
【発明の実施の形態】
ついで、本発明の一実施の形態を図1〜図4に基づいて以下に説明する。なお、図1は本発明の実施例1の電極群の要部の一部を模式的に示す断面図であり、図2は本発明の実施例2の電極群の要部の一部を模式的に示す断面図であり、図3は本発明の実施例3の電極群の要部の一部を模式的に示す断面図であり、図4は比較例の電極群の要部の一部を模式的に示す断面図である。また、本発明は以下の実施の形態に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
【0011】
1.ニッケル正極板の作製
水酸化ニッケル粉末を90質量部と、水酸化コバルト粉末を10質量部と、酸化亜鉛粉末を3質量部とを添加混合した混合粉末に、結着剤としてのヒドロキシプロピルセルロース0.2質量%水溶液を50質量部を添加混合して正極活物質スラリーを作製した。この正極活物質スラリーをニッケル発泡体(多孔度が約95%で、目付が約600g/m2のもの)からなる発泡ニッケル基板11a,21a,31a,41aの空孔内にそれぞれ充填した後、乾燥させた。この後、所定の厚みにロール圧延した後、所定の形状に切断してニッケル正極板11,21,31,41をそれぞれ作製した。
【0012】
なお、各ニッケル正極板11,21,31,41においては、発泡ニッケル基板11a,21a,31a,41aの上部に充填された正極活物質を欠き落として、該部分を圧縮して高密度化した後、この高密度化した部分にニッケル箔(具体的には上端から約0.5mm幅)が溶着されており、後述する各正極集電体14,24,34,44との溶接部11b,21b,31b,41bがそれぞれ形成されている。
【0013】
2.水素吸蔵合金粉末の作製
ミツシュメタル(Mm:La,Ce,Nd,Pr等の希土類元素を主成分とする化合物)と、ニッケルと、コバルトと、アルミニウムと、マンガンとを元素比で1.0:3.2:1.0:0.2:0.6に秤量して混合し、これをるつぼに入れて高周波溶解炉で溶融した後、冷却して、Mml.0Ni3.2Col.0A10.2MnO.6の組成式で表される水素吸蔵合金を作製した。ついで、得られた水素吸蔵合金の鋳塊(インゴット)を、予め粗粉砕した後、不活性ガス中で平均粒径が約50μmになるように機械的に粉砕した。
【0014】
3.水素吸蔵合金負極板の作製
(1)実施例1
ついで、粉砕した水素吸蔵合金の粉末に、結着剤としてポリエチレンオキサイド0.5質量%水溶液を10質量部だけ添加混合して負極活物質スラリーを作製した。このように作製した負極活物質スラリーをパンチングメタル12aの両面に塗着し、乾燥した後、所定の厚みにロール圧延し、所定の形状に切断した。ついで、切断された極板の下端から約1.5mm幅の負極活物質を欠き落としてパンチングメタル12aの露出部12bを形成して、実施例1の水素吸蔵合金負極板12を作製した。なお、露出部12bの下端部分(下端から約0.5mm幅の部分)12cは後述する負極集電体15との溶接部となる。
【0015】
(2)実施例2
実施例1と同様に作製した負極活物質スラリーをパンチングメタル22aの両面に塗着し、乾燥した後、所定の厚みにロール圧延し、所定の形状に切断した。ついで、切断された極板の下端から約0.5mm幅だけ負極活物質を欠き落としてパンチングメタル22aの露出部22cを形成した。ついで、露出部22cの上端から上方に約1.0mm幅の耐アルカリ性のポリプロピレン製テープ(PPテープ)22bを負極活物質上に貼り付けて、充放電反応の阻害部を形成して、実施例2の水素吸蔵合金負極板22を作製した。なお、パンチングメタル22aの露出部22c(約0.5mm幅の部分)は後述する負極集電体25との溶接部となる。
【0016】
(3)実施例3
実施例1と同様に作製した負極活物質スラリーをパンチングメタル32aの両面に塗着し、乾燥した後、所定の厚みにロール圧延し、所定の形状に切断した。ついで、切断された極板の下端から約0.5mm幅だけ負極活物質を欠き落としてパンチングメタル32aの露出部32cを形成した。ついで、露出部32cの上端から上方に約1.0mm幅だけに約8.0質量%のフッ素樹脂液(例えば、PTFE液)を塗布して、充放電反応の阻害部となるフッ素樹脂塗布部32bを形成した後、乾燥させて実施例3の水素吸蔵合金負極板32を作製した。なお、パンチングメタル32aの露出部32c(約0.5mm幅の部分)は後述する負極集電体35との溶接部となる。
【0017】
(4)比較例
実施例1と同様に作製した負極活物質スラリーをパンチングメタル42aの両面に塗着し、乾燥した後、所定の厚みにロール圧延し、所定の形状に切断した。ついで、切断された極板の下端から約0.5mm幅の負極活物質を欠き落としてパンチングメタル42aの露出部42cを形成し、比較例の水素吸蔵合金負極板42を作製した。なお、パンチングメタル42aの露出部42c(約0.5mm幅の部分)は後述する負極集電体45との溶接部となる。
【0018】
4.ニッケル−水素蓄電池の作製
(1)実施例1
上述のように作製したニッケル正極板11と水素吸蔵合金負極板12を用い、これらのニッケル正極板11と水素吸蔵合金負極板12が正極集電体14および負極集電体15の溶接時に短絡を生じないように、高さ方向に約1.5mmだけずらすようにして配置した後、ポリオレフィン製不織布(例えば、ポリプロピレンおよびポリエチレンを主成分とし、厚みが約0.15mmで、目付が約60g/m2のもの)からなるセパレータ13を介して渦巻状に巻回して、渦巻状電極群10を作製した。
【0019】
ついで、正極板11の溶接部11bに正極集電体14を溶接するとともに、負極板12のパンチングメタル12aの露出部12bの下端部分12cに負極集電体15を溶接して電極体とした後、この電極体を図示しない負極端子を兼ねる有底円筒形の金属外装缶(AAサイズ)内に挿入した。ついで、負極集電体15を金属外装缶の内底部に溶接するとともに、正極集電体14を正極端子を兼ねる封口体に溶接した後、電解液(水酸化ナトリウム及び水酸化リチウムを含む水酸化カリウムを主体とした7mol/lのアルカリ水溶液)を金属外装缶内に注入した。ついで、封口体を絶縁ガスケットを介して金属外装缶の開口部に載置し、金属外装缶の開口を封口体側にかしめることにより開口部を封ロして、公称容量が1200mAhの実施例1のニッケル−水素蓄電池Aを作製した。
【0020】
(2)実施例2
上述のように作製したニッケル正極板21と水素吸蔵合金負極板22を用い、これらのニッケル正極板21と水素吸蔵合金負極板22が正極集電体24および負極集電体25の溶接時に短絡を生じないように、高さ方向に約1.5mmだけずらすようにして配置した後、ポリオレフィン製不織布(例えば、ポリプロピレンおよびポリエチレンを主成分とし、厚みが約0.15mmで、目付が約60g/m2のもの)からなるセパレータ23を介して渦巻状に巻回して、渦巻状電極群20を作製した。
【0021】
ついで、に正極板21の溶接部21bに正極集電体24を溶接するとともに、負極板22のパンチングメタル22aの露出部22cに負極集電体25を溶接して電極体とした後、この電極体を実施例1と同様に、金属外装缶(AAサイズ)内に挿入し、負極集電体25を金属外装缶の内底部に溶接するとともに、正極集電体24を封口体に溶接した後、電解液を注入し、封口体を絶縁ガスケットを介して金属外装缶の開口部に載置し、金属外装缶の開口を封口体側にかしめることにより開口部を封ロして、公称容量が1200mAhの実施例2のニッケル−水素蓄電池Bを作製した。
【0022】
(3)実施例3
上述のように作製したニッケル正極板31と水素吸蔵合金負極板32を用い、これらのニッケル正極板31と水素吸蔵合金負極板32が正極集電体34および負極集電体35の溶接時に短絡を生じないように、高さ方向に約1.5mmだけずらすようにして配置した後、ポリオレフィン製不織布(例えば、ポリプロピレンおよびポリエチレンを主成分とし、厚みが約0.15mmで、目付が約60g/m2のもの)からなるセパレータ33を介して渦巻状に巻回して、渦巻状電極群30を作製した。
【0023】
ついで、正極板31の溶接部31bに正極集電体34を溶接するとともに、負極板32のパンチングメタル32aの露出部32cに負極集電体35を溶接して電極体とした後、この電極体を実施例1と同様に、金属外装缶(AAサイズ)内に挿入し、負極集電体35を金属外装缶の内底部に溶接するとともに、正極集電体34を封口体に溶接した後、電解液を注入し、封口体を絶縁ガスケットを介して金属外装缶の開口部に載置し、金属外装缶の開口を封口体側にかしめることにより開口部を封ロして、公称容量が1200mAhの実施例3のニッケル−水素蓄電池Cを作製した。
【0024】
(4)比較例
上述のように作製したニッケル正極板41と水素吸蔵合金負極板42を用い、これらのニッケル正極板41と水素吸蔵合金負極板42が正極集電体44および負極集電体45の溶接時に短絡を生じないように、高さ方向に約1.5mmだけずらすようにして配置した後、ポリオレフィン製不織布(例えば、ポリプロピレンおよびポリエチレンを主成分とし、厚みが約0.15mmで、目付が約60g/m2のもの)からなるセパレータ43を介して渦巻状に巻回して、渦巻状電極群40を作製した。
【0025】
ついで、正極板41の溶接部41bに正極集電体44を溶接するとともに、負極板42のパンチングメタル42aの露出部42cに負極集電体45を溶接して電極体とした後、この電極体を実施例1と同様に、金属外装缶(AAサイズ)内に挿入し、負極集電体45を金属外装缶の内底部に溶接するとともに、正極集電体44を封口体に溶接した後、電解液を注入し、封口体を絶縁ガスケットを介して金属外装缶の開口部に載置し、金属外装缶の開口を封口体側にかしめることにより開口部を封ロして、公称容量が1200mAhの比較例のニッケル−水素蓄電池Xを作製した。
【0026】
5.試験
(1)活性化処理
ついで、上述のようにして作製した各ニッケル−水素蓄電池A,B,C,Xを用いて、室温(約25℃)で120mA(0.1C)の充電電流で16時間充電した後に1時間休止させ、その後、240mA(0.2C)の放電電流で放電終止電圧が1.0Vになるまで放電させた後に、1時間休止させるという充放電サイクルを3サイクル繰り返して、各ニッケル−水素蓄電池A,B,C,Xを活性化した。
【0027】
(2)充放電サイクル試験
ついで、上述のようにして活性化した各ニッケル−水素蓄電池A,Xを用いて、室温(約25℃)で、1.2A(1C)の充電々流で充電を行い、充電末期の電池電圧のピーク値を記憶し、これを基準として一定値(10mV)だけ電圧が低下した時点で充電を終了し、1時間休止した後、1.2A(1C)の放電電流で電池電圧が1.0Vになるまで放電させ、1時間休止するという−ΔVサイクル試験を行い、各充放電サイクル毎の放電容量を求めると、図5に示すような結果が得られた。
【0028】
図5から明らかなように、負極板42の正極板41と対向しない部分42bに負極活物質が充填されている比較例の電池Xは、数10サイクル経過後に数%の容量低下が生じ、約300サイクル経過した時点では初期容量の90%程度の放電容量となり、300サイクル以降での容量低下が顕著となり、約550サイクルで寿命(初期容量の60%)となっていることが分かる。
一方、負極板12の正極板11と対向しない部分にパンチングメタル12aの露出部(負極活物質が充填されていない部分)12bが形成された実施例1の電池Aは、300サイクル付近までは安定して初期容量が維持され、その後に放電容量が徐々に低下し、約700サイクルで寿命となって、比較例の電池Xよりも充放電サイクル特性が優れていることが分かる。
【0029】
ここで、寿命後の各ニッケル−水素蓄電池A,Xを解体して調査した結果、比較例の電池Xは、電極群40の正極板41の下端部41cで活物質が下側にせり出しており、また、外装缶の内底部に正極板41から脱落した活物質が滞留していることが確認できた。一方、実施例1の電池Aの正極板11には下端部11cに活物質のせり出しは見られず、外装缶の内底部にも脱落した活物質がほとんど認められなかった。
【0030】
これらの事実を勘案すると、比較例の電池Xにおいては、負極板42の正極板41と対向しない部分42bにも負極活物質が存在するため、正極板41の下端部41cに回り込み反応が生じて、正極活物質が膨潤して正極板41の下端部41cから下方にせり出し、この正極活物質がせり出した部分が大きくなって、やがては正極板41から脱落して、充放電初期から容量が低下したと考えられる。一方、実施例1の電池Aにおいては、負極板12の正極板11と対向しない部分(パンチングメタル12aの露出部12b)には負極活物質が存在しないため、正極板11の下端部11cでの回り込み反応が抑制されて、活物質のせり出しおよび脱落が抑制されたと考えられる。
【0031】
(3)高率充放電サイクル試験
ついで、上述のようにして活性化した各ニッケル−水素蓄電池B,C,Xを用いて、室温(約25℃)で、2.4A(2C)の充電々流で高率充電を行い、充電末期の電池電圧のピーク値を記憶し、これを基準として一定値(5mV)だけ電圧が低下した時点で充電を終了し、1時間休止した後、4.8A(4C)の放電電流で電池電圧が1.0Vになるまで高率放電させ、1時間休止するという−ΔVサイクル試験を行い、各充放電サイクル毎の放電容量を求めると、図6に示すような結果が得られた。
【0032】
図6から明らかなように、負極板42の正極板41と対向しない部分42bに負極活物質が充填されている比較例の電池Xは、充放電の初期から徐々に容量低下が生じ、約200サイクル経過した時点では初期容量の約85%程度まで低下し、その後に全く充放電できなくなった。また、寿命(初期容量の60%)に至った比較例の電池Xの開放電圧を測定すると0Vとなっていた。
一方、負極板22の正極板21と対向しない部分にPPテープ22bを貼り付けた実施例2の電池B、および正極板31と対向しない部分にフッ素樹脂塗布部32bを形成した実施例3の電池Cは、共に200サイクル付近までは安定して初期容量が維持され、その後に容量低下が徐々に始まり、いずれも約500サイクルで寿命となっていることが分かる。
【0033】
ここで、寿命に至った比較例の電池Xを解体して調査した結果、電極群40の正極板41の下端部41cより下方にせり出した活物質と外装缶の内底部に脱落して滞留した活物質とが接触しているとともに、滞留した活物質が負極集電体45に接触して、正極板41と負極板42とが短絡していることが確認できた。一方、実施例2の電池Bの正極板21および実施例3の電池Cの正極板31には活物質のせり出しは見られず、外装缶の内底部にも脱落した活物質がほとんど認められなかった。
【0034】
これは、高率充放電試験は通常の充放電試験に比べて充放電電流が大きいために、正極活物質のせり出しおよび脱落への影響が大きくなったものと考えられ、その影響が大きい場合には短絡までに至ったと考えられる。一方、負極板22の正極板21と対向しない部分に、PPテープ22bを貼り付けた電池Bおよびフッ素樹脂塗布部32bを形成した電池Cにおいては、正極板21の下端部21cあるいは正極板31の下端部31cでの回り込み反応が抑制されて、活物質のせり出しおよび脱落が抑制されたものと考えられる。
【0035】
上述したように、本発明においては、負極板12の正極板11と対向しない部分(パンチングメタル12aの露出部12b)に負極活物質が充填されていないか、あるいは負極板22(32)の正極板21(31)と対向しない部分に、PPテープ22bを貼り付けたり、フッ素樹脂塗布部32bを形成して充放電反応を阻害しているため、正極板11(21,31)の下端部11c(21c,31c)での回り込み反応が起こらないような構造となり、正極活物質の脱落による容量低下が防止できて、負極集電体15(25,35)との短絡を防止することが可能となって、高容量で、長寿命のアルカリ蓄電池が得られるようになる。
【0036】
なお、上述した実施形態においては、発泡ニッケルに正極活物質を充填した正極板を用いる例について説明したが、ニッケルメッシュなどの基材に正極活物質を充填した正極板、あるいはパンチングメタル、エキスパンドメタル等の芯材に正極活物質を塗着した正極板を用いるようにしてもよい。
また、上述した実施形態においては、パンチングメタルに負極活物質を塗着した負極板を用いる例について説明したが、エキスパンドメタル等の芯材に負極活物質を塗着した負極板、あるいは発泡ニッケルやニッケルメッシュ等の基材に負極活物質を充填した負極板を用いるようにしてもよい。
さらに、上述した実施形態においては、本発明をニッケル−水素蓄電池に適用する例について説明したが、本発明のアルカリ蓄電池として、ニッケル−カドミウム蓄電池に適用してもほぼ同様である。
【図面の簡単な説明】
【図1】 本発明の実施例1の電極群の要部の一部を模式的に示す断面図である。
【図2】 本発明の実施例2の電極群の要部の一部を模式的に示す断面図である。
【図3】 本発明の実施例3の電極群の要部の一部を模式的に示す断面図である。
【図4】 従来例(比較例)の電極群の要部の一部を模式的に示す断面図である。
【図5】 充放電サイクルに対する放電容量の関係を示す図である。
【図6】 高率充放電サイクルに対する放電容量の関係を示す図である。
【符号の説明】
10,20,30,40…電極群、11,21,31,41…正極板、11a,21a,31a,41a…発泡ニッケル基板(多孔性基板)、11b,21b,31b,41b…正極集電体との溶接部、11c,21c,31c,41c…正極板の下端部、12,22,32,42…負極板、12a,22a,32a,42a…パンチングメタル(多孔性基板)、13,23,33,43…セパレータ、14,24,34,44…正極集電体、15,25,35,45…負極集電体、12b…パンチングメタルの露出部(活物質が充填されていない部分)、22b…ポリプロピレン製テープ、32b…フッ素樹脂塗布部、42b…負極板の正極板に対向しない部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, and more particularly to a structure of an electrode group including a positive electrode plate, a negative electrode plate, and a separator used in these alkaline storage batteries.
[0002]
[Prior art]
Alkaline storage batteries such as nickel-hydrogen storage batteries have been used in power tools, assist bicycles, electric vehicles, etc. as the market has expanded in recent years, and demand for larger size, higher capacity, higher output, The demand increased.
Against this background, various kinds of high output have been studied for this type of alkaline storage battery. For example, as shown in FIG. 4, a positive electrode current collector 44 connected to the positive electrode plate 41 is welded to the upper part of the electrode group 40, and a negative electrode current collector 45 connected to the negative electrode plate 42 is attached to the lower part of the electrode group 40. In addition to welding, a structure in which the positive electrode current collector 44 is welded to a lower portion of a sealing body (not shown) and the negative electrode current collector 45 is welded to an inner bottom portion of a battery can (not shown) has been adopted.
[0003]
By the way, when the positive electrode current collector 44 connected to the positive electrode plate 41 is welded to the upper part of the electrode group 40 and the negative electrode current collector 45 connected to the negative electrode plate 42 is welded to the lower part of the electrode group 40, If the end of the negative electrode 42 and the end of the negative electrode plate 42 are in the same position, the positive electrode plate 41 and the negative electrode current collector 45 or the negative electrode plate 42 and the positive electrode current collector 44 may come into contact with each other, thereby causing an internal short circuit. Therefore, for the purpose of preventing a short circuit due to contact between the negative electrode current collector 45 and the positive electrode plate 41 or a short circuit due to contact between the positive electrode current collector 44 and the negative electrode plate 42, the negative electrode plate 42 is placed below the positive electrode plate 41. It has a structure that is shifted and arranged.
[0004]
[Problems to be solved by the invention]
However, the positive electrode plate using nickel hydroxide as the main positive electrode active material used in this type of alkaline storage battery has a higher level of nickel hydroxide and swells as the charge / discharge cycle progresses. This causes a phenomenon of becoming more protruding. When the negative electrode plate 42 is shifted downward with respect to the positive electrode plate 41 as described above, a portion 42 b that does not face the positive electrode plate 41 exists in a part of the negative electrode plate 42 below the electrode group 40. Become.
[0005]
As a result, a charge / discharge reaction (this charge / discharge reaction is referred to as a wraparound reaction below) between the portion 42b of the negative electrode plate 42 that does not oppose the positive electrode plate 41 and the lower end portion 41c of the positive electrode plate 41 (see symbol Z in FIG. 4). And the lower end portion 41c of the positive electrode plate 41 is caused to protrude due to swelling of the active material.
When protrusion occurs due to the swelling of the active material at the lower end portion 41c of the positive electrode plate 41, the capacity of the positive electrode active material may eventually drop, resulting in a decrease in capacity or, in some cases, a short circuit with the negative electrode current collector 45. Produced.
[0006]
Accordingly, the present invention has been made to solve the above-described problems, and has a structure in which the positive electrode plate does not cause a wraparound reaction even when the negative electrode plate is shifted from the positive electrode plate. An object of the present invention is to prevent a decrease in capacity due to dropping of a substance and to prevent a short circuit with a negative electrode current collector so that a high-capacity and long-life alkaline storage battery can be obtained.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an alkaline storage battery of the present invention comprises an electrode group consisting of a positive electrode plate filled with a positive electrode active material, a negative electrode plate filled with a negative electrode active material, and a separator separating them . A negative electrode current collector connected to the negative electrode plate is provided at the bottom. Then, the electrode group are staggered such that the positive and negative electrode plates in the positive electrode plate upper and the negative electrode plate bottom do not face each other, the positive electrode active material is filled in the negative electrode plate not facing the portion of the positive electrode plate upper Has been. Then, either the negative electrode active material in the positive electrode plate not facing the portion of the lower negative electrode plate are not filled, with a protective film on the surface in alkali resistance of the negative electrode active material is provided in the case where the anode active material is filled Or an alkali-resistant resin is applied so that the charge / discharge reaction with the positive electrode plate is inhibited.
[0008]
Thus, when the negative electrode active material in the positive electrode plate not facing the portion of the lower negative electrode plate are not filled, since a structure such as the lower end portion of the positive electrode plate does not cause wraparound reaction, by falling of the positive electrode active material The capacity can be prevented from decreasing, and a short circuit with the negative electrode current collector can be prevented, so that an alkaline storage battery having a high capacity and a long life can be obtained.
[0009]
Then, either the protective film on the surface in alkali resistance of the anode active material is provided, the alkali resistance of the resin that has been applied if the anode active material is filled in the positive electrode plate not facing the portion of the lower negative electrode plate Since the protective film or the applied resin acts to inhibit the charge / discharge reaction, the lower end portion of the positive electrode plate can be prevented from wrapping around and causing a reaction .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described below with reference to FIGS. 1 is a cross-sectional view schematically showing a part of the main part of the electrode group of Example 1 of the present invention, and FIG. 2 is a schematic part of the main part of the electrode group of Example 2 of the present invention. FIG. 3 is a sectional view schematically showing a part of the main part of the electrode group of Example 3 of the present invention, and FIG. 4 is a part of the main part of the electrode group of the comparative example. It is sectional drawing which shows this typically. Further, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range not changing the gist thereof.
[0011]
1. Preparation of Nickel Positive Electrode Plate Hydroxypropylcellulose 0 as a binder to a mixed powder obtained by adding 90 parts by mass of nickel hydroxide powder, 10 parts by mass of cobalt hydroxide powder, and 3 parts by mass of zinc oxide powder. A positive electrode active material slurry was prepared by adding and mixing 50 parts by mass of a 2 mass% aqueous solution. After filling this positive electrode active material slurry into the pores of the foamed nickel substrates 11a, 21a, 31a, 41a made of nickel foam (having a porosity of about 95% and a basis weight of about 600 g / m 2 ), Dried. Then, after rolling to predetermined thickness, it cut | disconnected to the predetermined shape and produced the nickel positive electrode plates 11, 21, 31, and 41, respectively.
[0012]
In each of the nickel positive plates 11, 21, 31, and 41, the positive electrode active material filled in the upper portions of the foamed nickel substrates 11a, 21a, 31a, and 41a is cut off, and the portions are compressed and densified. Thereafter, a nickel foil (specifically, about 0.5 mm width from the upper end) is welded to the densified portion, and a welded portion 11b with each of the positive electrode current collectors 14, 24, 34, 44 described later, 21b, 31b, and 41b are formed, respectively.
[0013]
2. Preparation of hydrogen storage alloy powder 1.0: 3 in an element ratio of Mitsmetal (Mm: a compound mainly composed of rare earth elements such as La, Ce, Nd, and Pr), nickel, cobalt, aluminum, and manganese. .2: 1.0: 0.2: 0.6 were weighed and mixed, placed in a crucible, melted in a high-frequency melting furnace, cooled, and then cooled to Mm 1.0 Ni 3.2 Co 1.0 A1. A hydrogen storage alloy represented by a composition formula of 0.2 Mn O.6 was produced. Subsequently, the obtained ingot of the hydrogen storage alloy was coarsely pulverized in advance, and then mechanically pulverized in an inert gas so that the average particle diameter was about 50 μm.
[0014]
3. Preparation of hydrogen storage alloy negative electrode plate (1) Example 1
Next, 10 parts by mass of a 0.5% by weight aqueous solution of polyethylene oxide as a binder was added to and mixed with the pulverized hydrogen storage alloy powder to prepare a negative electrode active material slurry. The negative electrode active material slurry thus produced was applied to both sides of the punching metal 12a, dried, and then roll-rolled to a predetermined thickness and cut into a predetermined shape. Next, a negative electrode active material having a width of about 1.5 mm was cut off from the lower end of the cut electrode plate to form an exposed portion 12b of the punching metal 12a, and the hydrogen storage alloy negative electrode plate 12 of Example 1 was produced. Note that a lower end portion (a portion having a width of about 0.5 mm from the lower end) 12c of the exposed portion 12b is a welded portion to the negative electrode current collector 15 described later.
[0015]
(2) Example 2
The negative electrode active material slurry produced in the same manner as in Example 1 was applied to both sides of the punching metal 22a, dried, roll-rolled to a predetermined thickness, and cut into a predetermined shape. Subsequently, the exposed portion 22c of the punching metal 22a was formed by cutting off the negative electrode active material by a width of about 0.5 mm from the lower end of the cut electrode plate. Next, an alkali-resistant polypropylene tape (PP tape) 22b having a width of about 1.0 mm is pasted on the negative electrode active material upward from the upper end of the exposed portion 22c to form a charge / discharge reaction inhibiting portion. 2 hydrogen storage alloy negative electrode plate 22 was produced. The exposed portion 22c (a portion having a width of about 0.5 mm) of the punching metal 22a is a welded portion with the negative electrode current collector 25 described later.
[0016]
(3) Example 3
The negative electrode active material slurry produced in the same manner as in Example 1 was applied to both sides of the punching metal 32a, dried, and then roll-rolled to a predetermined thickness and cut into a predetermined shape. Subsequently, the exposed portion 32c of the punching metal 32a was formed by removing the negative electrode active material by a width of about 0.5 mm from the lower end of the cut electrode plate. Next, a fluororesin application portion that serves as an inhibition portion of the charge / discharge reaction is applied by applying an approximately 8.0 mass% fluororesin liquid (for example, PTFE solution) only to a width of about 1.0 mm upward from the upper end of the exposed portion 32c. After forming 32b, it was made to dry and the hydrogen storage alloy negative electrode plate 32 of Example 3 was produced. The exposed portion 32c (a portion having a width of about 0.5 mm) of the punching metal 32a serves as a welded portion with the negative electrode current collector 35 described later.
[0017]
(4) Comparative Example A negative electrode active material slurry produced in the same manner as in Example 1 was applied to both sides of the punching metal 42a, dried, and then roll-rolled to a predetermined thickness and cut into a predetermined shape. Next, an exposed portion 42c of the punching metal 42a was formed by cutting off the negative electrode active material having a width of about 0.5 mm from the lower end of the cut electrode plate, and a hydrogen storage alloy negative electrode plate 42 of a comparative example was produced. The exposed portion 42c (a portion having a width of about 0.5 mm) of the punching metal 42a becomes a welded portion with a negative electrode current collector 45 described later.
[0018]
4). Preparation of nickel-hydrogen storage battery (1) Example 1
Using the nickel positive electrode plate 11 and the hydrogen storage alloy negative electrode plate 12 produced as described above, the nickel positive electrode plate 11 and the hydrogen storage alloy negative electrode plate 12 are short-circuited when the positive electrode current collector 14 and the negative electrode current collector 15 are welded. After being arranged so as to be shifted by about 1.5 mm in the height direction so as not to occur, a polyolefin non-woven fabric (for example, having polypropylene and polyethylene as main components, a thickness of about 0.15 mm, and a basis weight of about 60 g / m) 2 ) to form a spiral electrode group 10 by spirally winding the separator.
[0019]
Next, the positive electrode current collector 14 is welded to the welded portion 11b of the positive electrode plate 11, and the negative electrode current collector 15 is welded to the lower end portion 12c of the exposed portion 12b of the punching metal 12a of the negative electrode plate 12 to obtain an electrode body. The electrode body was inserted into a bottomed cylindrical metal outer can (AA size) that also served as a negative electrode terminal (not shown). Next, the negative electrode current collector 15 is welded to the inner bottom portion of the metal outer can, and the positive electrode current collector 14 is welded to a sealing body that also serves as a positive electrode terminal, and then an electrolyte solution (hydroxide containing sodium hydroxide and lithium hydroxide). 7 mol / l alkaline aqueous solution mainly composed of potassium) was injected into the metal outer can. Next, the sealing body is placed on the opening of the metal outer can through an insulating gasket, and the opening of the metal outer can is caulked toward the sealing body to seal the opening, and the nominal capacity is 1200 mAh. Nickel-hydrogen storage battery A was prepared.
[0020]
(2) Example 2
Using the nickel positive electrode plate 21 and the hydrogen storage alloy negative electrode plate 22 produced as described above, the nickel positive electrode plate 21 and the hydrogen storage alloy negative electrode plate 22 are short-circuited when the positive electrode current collector 24 and the negative electrode current collector 25 are welded. After being arranged so as to be shifted by about 1.5 mm in the height direction so as not to occur, a non-woven fabric made of polyolefin (for example, polypropylene and polyethylene as main components, a thickness of about 0.15 mm, and a basis weight of about 60 g / m 2) The spiral electrode group 20 was produced by spirally winding it through a separator 23 made of
[0021]
Next, the positive electrode current collector 24 is welded to the welded portion 21b of the positive electrode plate 21, and the negative electrode current collector 25 is welded to the exposed portion 22c of the punching metal 22a of the negative electrode plate 22 to form an electrode body. After the body was inserted into the metal outer can (AA size) as in Example 1, the negative electrode current collector 25 was welded to the inner bottom of the metal outer can, and the positive electrode current collector 24 was welded to the sealing body The electrolyte is injected, the sealing body is placed on the opening of the metal outer can through the insulating gasket, and the opening of the metal outer can is caulked toward the sealing body to seal the opening, so that the nominal capacity is A nickel-hydrogen storage battery B of Example 2 with 1200 mAh was produced.
[0022]
(3) Example 3
Using the nickel positive electrode plate 31 and the hydrogen storage alloy negative electrode plate 32 produced as described above, the nickel positive electrode plate 31 and the hydrogen storage alloy negative electrode plate 32 are short-circuited when the positive electrode current collector 34 and the negative electrode current collector 35 are welded. After being arranged so as to be shifted by about 1.5 mm in the height direction so as not to occur, a non-woven fabric made of polyolefin (for example, polypropylene and polyethylene as main components, a thickness of about 0.15 mm, and a basis weight of about 60 g / m 2) A spiral electrode group 30 was produced by spirally winding the separator 33.
[0023]
Next, the positive electrode current collector 34 is welded to the welded portion 31b of the positive electrode plate 31, and the negative electrode current collector 35 is welded to the exposed portion 32c of the punching metal 32a of the negative electrode plate 32 to obtain an electrode body. In the same manner as in Example 1, after being inserted into a metal outer can (AA size) and welding the negative electrode current collector 35 to the inner bottom of the metal outer can, and welding the positive electrode current collector 34 to the sealing body, The electrolyte is injected, the sealing body is placed on the opening of the metal outer can through an insulating gasket, and the opening is sealed by caulking the opening of the metal outer can toward the sealing body, so that the nominal capacity is 1200 mAh. A nickel-hydrogen storage battery C of Example 3 was prepared.
[0024]
(4) Comparative Example Using the nickel positive electrode plate 41 and the hydrogen storage alloy negative electrode plate 42 produced as described above, the nickel positive electrode plate 41 and the hydrogen storage alloy negative electrode plate 42 are formed as the positive electrode current collector 44 and the negative electrode current collector 45. In order not to cause a short circuit during welding, a polyolefin non-woven fabric (for example, polypropylene and polyethylene as main components, with a thickness of about 0.15 mm and a basis weight of about 1.5 mm is disposed. Is spirally wound through a separator 43 made of about 60 g / m 2) to produce a spiral electrode group 40.
[0025]
Next, the positive electrode current collector 44 is welded to the welded portion 41b of the positive electrode plate 41, and the negative electrode current collector 45 is welded to the exposed portion 42c of the punching metal 42a of the negative electrode plate 42 to form an electrode body. In the same manner as in Example 1, after being inserted into a metal outer can (AA size) and welding the negative electrode current collector 45 to the inner bottom of the metal outer can, and welding the positive electrode current collector 44 to the sealing body, The electrolyte is injected, the sealing body is placed on the opening of the metal outer can through an insulating gasket, and the opening is sealed by caulking the opening of the metal outer can toward the sealing body, so that the nominal capacity is 1200 mAh. The nickel-hydrogen storage battery X of the comparative example was prepared.
[0026]
5. Test (1) Activation Treatment Next, using each of the nickel-hydrogen batteries A, B, C, and X produced as described above, a charge current of 120 mA (0.1 C) at room temperature (about 25 ° C.) 16 After charging for 1 hour, the battery is paused for 1 hour, and then discharged at 240 mA (0.2 C) until the end-of-discharge voltage reaches 1.0 V, and then repeated for 3 cycles of charge / discharge cycles of resting for 1 hour, Each nickel-hydrogen storage battery A, B, C, X was activated.
[0027]
(2) Charging / discharging cycle test Next, using the nickel-hydrogen storage batteries A and X activated as described above, charging was performed at a room temperature (about 25 ° C.) with a charging current of 1.2 A (1 C). And the peak value of the battery voltage at the end of charging is stored, and when the voltage drops by a constant value (10 mV) with reference to this, charging is terminated, and after resting for 1 hour, the discharge current of 1.2 A (1 C) The battery was discharged until the battery voltage reached 1.0 V, and a −ΔV cycle test was performed in which the battery was paused for 1 hour, and the discharge capacity for each charge / discharge cycle was determined. The result shown in FIG. 5 was obtained.
[0028]
As is apparent from FIG. 5, the battery X of the comparative example in which the portion 42b of the negative electrode plate 42 not facing the positive electrode plate 41 is filled with the negative electrode active material has a capacity drop of several percent after several tens of cycles. When 300 cycles have elapsed, the discharge capacity is about 90% of the initial capacity, and the capacity decrease after 300 cycles becomes remarkable, and it can be seen that the life (60% of the initial capacity) is reached at about 550 cycles.
On the other hand, the battery A of Example 1 in which the exposed portion (the portion not filled with the negative electrode active material) 12b of the punching metal 12a is formed in the portion of the negative electrode plate 12 that does not face the positive electrode plate 11 is stable up to about 300 cycles. Thus, the initial capacity is maintained, after which the discharge capacity gradually decreases, and the life is reached in about 700 cycles, indicating that the charge / discharge cycle characteristics are superior to the battery X of the comparative example.
[0029]
Here, as a result of disassembling and investigating each of the nickel-hydrogen storage batteries A and X after the life, in the battery X of the comparative example, the active material protrudes downward at the lower end portion 41c of the positive electrode plate 41 of the electrode group 40. In addition, it was confirmed that the active material dropped from the positive electrode plate 41 was retained in the inner bottom portion of the outer can. On the other hand, in the positive electrode plate 11 of the battery A of Example 1, no protruding active material was observed at the lower end portion 11c, and almost no active material dropped off at the inner bottom of the outer can.
[0030]
Considering these facts, in the battery X of the comparative example, since the negative electrode active material is also present in the portion 42b of the negative electrode plate 42 that does not face the positive electrode plate 41, a wraparound reaction occurs in the lower end portion 41c of the positive electrode plate 41. The positive electrode active material swells and protrudes downward from the lower end portion 41c of the positive electrode plate 41, and the portion where the positive electrode active material protrudes increases, eventually falling off from the positive electrode plate 41 and the capacity decreasing from the beginning of charge and discharge. It is thought that. On the other hand, in the battery A of Example 1, since the negative electrode active material does not exist in the portion of the negative electrode plate 12 that does not face the positive electrode plate 11 (exposed portion 12b of the punching metal 12a), the lower end portion 11c of the positive electrode plate 11 It is considered that the wraparound reaction was suppressed and the protrusion and dropping of the active material were suppressed.
[0031]
(3) High-rate charge / discharge cycle test Next, 2.4 A (2 C) is charged at room temperature (about 25 ° C.) using the nickel-hydrogen storage batteries B, C, and X activated as described above. The battery is charged at a high rate, and the peak value of the battery voltage at the end of charging is memorized. When the voltage drops by a constant value (5 mV) with reference to this, charging is terminated, and after suspending for 1 hour, 4.8 A When the discharge capacity of each charge / discharge cycle is determined by performing a -ΔV cycle test in which a high-rate discharge is performed until the battery voltage reaches 1.0 V with the discharge current of (4C) and the discharge is stopped for 1 hour, the discharge capacity for each charge / discharge cycle is obtained as shown in FIG. Results were obtained.
[0032]
As is clear from FIG. 6, in the battery X of the comparative example in which the portion 42b of the negative electrode plate 42 not facing the positive electrode plate 41 is filled with the negative electrode active material, the capacity is gradually reduced from the initial stage of charge / discharge. At the time when the cycle passed, the capacity dropped to about 85% of the initial capacity, and after that, charging / discharging was impossible at all. Moreover, when the open circuit voltage of the battery X of the comparative example which reached the lifetime (60% of the initial capacity) was measured, it was 0V.
On the other hand, the battery B of Example 2 in which the PP tape 22b was pasted on the portion of the negative electrode plate 22 not facing the positive electrode plate 21, and the battery of Example 3 in which the fluororesin coating portion 32b was formed on the portion not facing the positive electrode plate 31. It can be seen that the initial capacity of C is stably maintained up to around 200 cycles, and thereafter, the capacity starts gradually decreasing, and both have a lifetime of about 500 cycles.
[0033]
Here, as a result of disassembling and investigating the battery X of the comparative example that reached the end of life, the active material protruding downward from the lower end portion 41c of the positive electrode plate 41 of the electrode group 40 and the inner bottom portion of the outer can dropped and stayed. While the active material was in contact, it was confirmed that the staying active material was in contact with the negative electrode current collector 45 and the positive electrode plate 41 and the negative electrode plate 42 were short-circuited. On the other hand, no positive active material was seen on the positive electrode plate 21 of the battery B of Example 2 and the positive electrode plate 31 of the battery C of Example 3, and almost no fallen active material was observed at the inner bottom of the outer can. It was.
[0034]
This is because the charge / discharge current of the high rate charge / discharge test is larger than that of the normal charge / discharge test. Is thought to have led to a short circuit. On the other hand, in the battery B in which the PP tape 22b is attached to the portion of the negative electrode plate 22 that does not face the positive electrode plate 21 and in the battery C in which the fluororesin coating portion 32b is formed, the lower end portion 21c of the positive electrode plate 21 or the positive electrode plate 31 It is considered that the wraparound reaction at the lower end 31c is suppressed, and the protrusion and dropping of the active material are suppressed.
[0035]
As described above, in the present invention, the portion of the negative electrode plate 12 not facing the positive electrode plate 11 (exposed portion 12b of the punching metal 12a) is not filled with the negative electrode active material, or the positive electrode of the negative electrode plate 22 (32). Since the PP tape 22b is affixed to the portion not facing the plate 21 (31) or the fluororesin coating portion 32b is formed to inhibit the charge / discharge reaction, the lower end portion 11c of the positive electrode plate 11 (21, 31). (21c, 31c) has a structure that does not cause a wraparound reaction, can prevent a decrease in capacity due to the dropout of the positive electrode active material, and can prevent a short circuit with the negative electrode current collector 15 (25, 35). Thus, a high-capacity and long-life alkaline storage battery can be obtained.
[0036]
In the embodiment described above, an example in which a positive electrode plate in which foamed nickel is filled with a positive electrode active material has been described. However, a positive electrode plate in which a base material such as a nickel mesh is filled with a positive electrode active material, punching metal, or expanded metal. A positive electrode plate in which a positive electrode active material is coated on a core material such as the above may be used.
In the embodiment described above, an example of using a negative electrode plate in which a negative electrode active material is applied to punching metal has been described. However, a negative electrode plate in which a negative electrode active material is applied to a core material such as expanded metal, or nickel foam or You may make it use the negative electrode plate which filled base materials, such as a nickel mesh, with the negative electrode active material.
Furthermore, in the above-described embodiment, an example in which the present invention is applied to a nickel-hydrogen storage battery has been described. However, even if the present invention is applied to a nickel-cadmium storage battery, the alkaline storage battery is substantially the same.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a part of an essential part of an electrode group of Example 1 of the present invention.
FIG. 2 is a cross-sectional view schematically showing a part of an essential part of an electrode group of Example 2 of the present invention.
FIG. 3 is a cross-sectional view schematically showing a part of an essential part of an electrode group of Example 3 of the present invention.
FIG. 4 is a cross-sectional view schematically showing a part of the main part of an electrode group of a conventional example (comparative example).
FIG. 5 is a diagram showing a relationship of a discharge capacity with respect to a charge / discharge cycle.
FIG. 6 is a diagram showing a relationship of discharge capacity with respect to a high rate charge / discharge cycle.
[Explanation of symbols]
10, 20, 30, 40 ... electrode group, 11, 21, 31, 41 ... positive electrode plate, 11a, 21a, 31a, 41a ... nickel foam substrate (porous substrate), 11b, 21b, 31b, 41b ... positive electrode current collector 11c, 21c, 31c, 41c ... lower end of positive plate, 12, 22, 32, 42 ... negative plate, 12a, 22a, 32a, 42a ... punching metal (porous substrate), 13, 23 , 33, 43 ... separator, 14, 24, 34, 44 ... positive electrode current collector, 15, 25, 35, 45 ... negative electrode current collector, 12b ... exposed portion of punching metal (portion not filled with active material) , 22b ... polypropylene tape, 32b ... fluororesin coating part, 42b ... part of the negative electrode plate not facing the positive electrode plate

Claims (3)

多孔性基板に水酸化ニッケルを主成分とする正極活物質が充填された正極板と、多孔性基板に負極活物質が充填された負極板と、これらを隔離するセパレータとからなる電極群を備えるとともに、前記電極群の下部に前記負極板に接続された負極集電体を備えたアルカリ蓄電池であって、
前記電極群は正極板上部および負極板下部で前記正極板と前記負極板とが互いに対向しないようにずらして配置されており、
前記正極板上部の前記負極板と対向しない部分には正極活物質が充填されており、前記負極板下部の前記正極板と対向しない部分には負極活物質が充填されていないことを特徴とするアルカリ蓄電池。
A positive electrode plate in which a porous substrate is filled with a positive electrode active material mainly composed of nickel hydroxide, a negative electrode plate in which the porous substrate is filled with a negative electrode active material, and a separator for separating them are provided. And an alkaline storage battery comprising a negative electrode current collector connected to the negative electrode plate at the bottom of the electrode group,
The electrode group is arranged so that the positive electrode plate and the negative electrode plate are not opposed to each other at the upper part of the positive electrode plate and the lower part of the negative electrode plate ,
Wherein the positive electrode plate and the negative electrode plate not facing the portion of the top and the cathode active material is filled, wherein the negative electrode plate The negative electrode active material in the positive electrode plate not facing the portion of the lower has not been filled Alkaline storage battery.
多孔性基板に水酸化ニッケルを主成分とする正極活物質が充填された正極板と、多孔性基板に負極活物質が充填された負極板と、これらを隔離するセパレータとからなる電極群を備えるとともに、前記電極群の下部に前記負極板に接続された負極集電体を備えたアルカリ蓄電池であって、
前記電極群は正極板上部および負極板下部で前記正極板と前記負極板とが互いに対向しないようにずらして配置されており、
前記正極板上部の前記負極板と対向しない部分には正極活物質が充填されており、前記負極板下部の前記正極板と対向しない部分には負極活物質が充填されているとともに、当該負極活物質の表面に耐アルカリ性の保護膜が備えられていて前記正極板との充放電反応が阻害されていることを特徴とするアルカリ蓄電池。
A positive electrode plate in which a porous substrate is filled with a positive electrode active material mainly composed of nickel hydroxide, a negative electrode plate in which the porous substrate is filled with a negative electrode active material, and a separator for separating them are provided. And an alkaline storage battery comprising a negative electrode current collector connected to the negative electrode plate at the bottom of the electrode group,
The electrode group is arranged so that the positive electrode plate and the negative electrode plate are not opposed to each other at the upper part of the positive electrode plate and the lower part of the negative electrode plate ,
A portion of the upper portion of the positive electrode plate that does not face the negative electrode plate is filled with a positive electrode active material, and a portion of the lower portion of the negative electrode plate that does not face the positive electrode plate is filled with a negative electrode active material. An alkaline storage battery characterized in that an alkali-resistant protective film is provided on the surface of a substance to inhibit a charge / discharge reaction with the positive electrode plate.
多孔性基板に水酸化ニッケルを主成分とする正極活物質が充填された正極板と、多孔性基板に負極活物質が充填された負極板と、これらを隔離するセパレータとからなる電極群を備えるとともに、前記電極群の下部に前記負極板に接続された負極集電体を備えたアルカリ蓄電池であって、
前記電極群は正極板上部および負極板下部で前記正極板と前記負極板とが互いに対向しないようにずらして配置されており、
前記正極板上部の前記負極板と対向しない部分には正極活物質が充填されており、前記負極板下部の前記正極板と対向しない部分には負極活物質が充填されているとともに、当該負極活物質の表面に耐アルカリ性の樹脂が塗布されていて前記正極板との充放電反応が阻害されていることを特徴とするアルカリ蓄電池。
A positive electrode plate in which a porous substrate is filled with a positive electrode active material mainly composed of nickel hydroxide, a negative electrode plate in which the porous substrate is filled with a negative electrode active material, and a separator for separating them are provided. And an alkaline storage battery comprising a negative electrode current collector connected to the negative electrode plate at the bottom of the electrode group,
The electrode group is arranged so that the positive electrode plate and the negative electrode plate are not opposed to each other at the upper part of the positive electrode plate and the lower part of the negative electrode plate ,
A portion of the upper portion of the positive electrode plate that does not face the negative electrode plate is filled with a positive electrode active material, and a portion of the lower portion of the negative electrode plate that does not face the positive electrode plate is filled with a negative electrode active material. An alkaline storage battery, wherein a surface of a substance is coated with an alkali-resistant resin to inhibit a charge / discharge reaction with the positive electrode plate.
JP2000173695A 2000-06-09 2000-06-09 Alkaline storage battery Expired - Fee Related JP4326121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000173695A JP4326121B2 (en) 2000-06-09 2000-06-09 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000173695A JP4326121B2 (en) 2000-06-09 2000-06-09 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2001351673A JP2001351673A (en) 2001-12-21
JP4326121B2 true JP4326121B2 (en) 2009-09-02

Family

ID=18675878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000173695A Expired - Fee Related JP4326121B2 (en) 2000-06-09 2000-06-09 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4326121B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5061582B2 (en) * 2006-11-10 2012-10-31 株式会社Gsユアサ battery
JP5630859B2 (en) * 2010-08-06 2014-11-26 Fdkトワイセル株式会社 Cylindrical storage battery
EP2523202A1 (en) * 2011-05-13 2012-11-14 Eika, S.Coop Electrical double - layer capacitor, and method for manufacturing such a capacitor

Also Published As

Publication number Publication date
JP2001351673A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
US8802292B2 (en) Hydrogen-absorbing alloy for alkaline storage battery and method for manufacturing the same
US20120052353A1 (en) Cylindrical nickel-hydrogen storage battery
JP4868809B2 (en) Cylindrical alkaline storage battery
US20100248024A1 (en) Alkaline storage battery system
US7393612B2 (en) Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
JP4931492B2 (en) Cylindrical storage battery
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
EP1037297B1 (en) Alkaline storage battery with group of spiral electrodes
JP5717125B2 (en) Alkaline storage battery
JP4326121B2 (en) Alkaline storage battery
JP6105389B2 (en) Alkaline storage battery
JP3598665B2 (en) Active materials for batteries and batteries
JP2962326B1 (en) Nickel-hydrogen storage battery for backup power supply
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JP2013178882A (en) Alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3071026B2 (en) Metal hydride storage battery
JP4236399B2 (en) Alkaline storage battery
JP4567990B2 (en) Secondary battery
JPH05144432A (en) Electrode with hydrogen storage alloy
JPH05263171A (en) Hydrogen-occluding alloy and its electrode as well as hydrogen storage alloy battery
JP2004327146A (en) Alkaline storage battery
JP2005056679A (en) Cylindrical alkaline storage battery
JP2003317712A (en) Nickel - hydrogen storage battery
JPH11233105A (en) Hydrogen storage alloy electrode and alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees