JP2004327146A - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP2004327146A
JP2004327146A JP2003118066A JP2003118066A JP2004327146A JP 2004327146 A JP2004327146 A JP 2004327146A JP 2003118066 A JP2003118066 A JP 2003118066A JP 2003118066 A JP2003118066 A JP 2003118066A JP 2004327146 A JP2004327146 A JP 2004327146A
Authority
JP
Japan
Prior art keywords
separator
positive electrode
battery
negative electrode
basis weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003118066A
Other languages
Japanese (ja)
Inventor
Yoshinobu Katayama
吉宣 片山
Masahiro Wakino
雅裕 脇野
Masao Takee
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003118066A priority Critical patent/JP2004327146A/en
Publication of JP2004327146A publication Critical patent/JP2004327146A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline storage battery capable of keeping a high output characteristic and a low self-discharge rate over a long time by preventing the distance between positive and negative electrodes from being reduced by a compound deposited in a separator. <P>SOLUTION: This alkaline storage battery is provided with an electrode group formed so as to face the positive electrode 11 and the negative electrode 13 to each other by interlaying the separator 12; and equipped with a positive electrode collector connected to an end 11c of the positive electrode 11 of the electrode group, and a negative electrode collector connected to an end 13c of the negative electrode 13 thereof. A high graduation part 12b or 12c having a graduation higher than those of other parts is formed in at least either a part x positioned on the positive electrode collector side of the separator 12 or a part y positioned on the negative electrode collector side thereof. Thereby, the distance between the positive and negative electrodes is prevented from being reduced, and the distance between the positive and negative electrodes is properly kept, so that a micro short circuit between the positive and negative electrodes is restrained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池などのアルカリ蓄電池に係り、特に、セパレータの改良に関する。
【0002】
【従来の技術】
近年、二次電池(蓄電池)の用途が拡大して、携帯電話、ノートパソコン、電動工具、電動自転車、ハイブリッド車(HEV)、電気自動車(EV)などの広範囲の用途で用いられるようになった。このうち、特に、電動自転車、ハイブリッド車(HEV)、電気自動車(EV)などの高出力が求められる機器の電源としては、ニッケル−水素蓄電池やニッケル−カドミウム蓄電池などのアルカリ蓄電池が用いられている。
【0003】
ところで、携帯電話、ノートパソコン、電動工具等の用途においては、最も重視される電池特性は放電容量であって、高容量で、かつ長期にわたって高容量が維持できることが要求されている。そして、これらの用途においては、通常、過充電域まで充電されることが多い。このため、本来の正極充電活物質であるβ−NiOOHが、過充電により、更に充電されて電極の膨化を招来するγ−NiOOHが生成する。電極が膨化すると、電解液が膨化した正極に取り込まれることでセパレータ中に含まれる電解液量が少なくなり、セパレータでのイオン拡散能が不十分になって放電性が悪化することとなる。
【0004】
また、過充電されると、過充電時に正極から発生する酸素ガスによって、負極活物質である水素吸蔵合金が酸化されて、水素吸蔵合金の表面に稀土類元素の水酸化物が形成されるようになる。このため、水素吸蔵合金表面での電気化学反応が阻害されたり、封口体の作動圧を超えるまでに電池内部ガス圧が上昇した場合には、電解液がガスとなって電池系外へ放出されるようになる。これにより、電解液が枯渇化するようになって、放電性が悪化する。このようなメカニズムにより、主として過充電行為が原因となって電池特性の低下が進行するようになる。(例えば、特許文献1参照)
【特許文献1】
特開昭62−295353号公報
【0005】
【発明が解決しようとする課題】
しかしながら、新たな二次電池の用途となるHEV用やEV用等の車両駆動用動力源に用いられる電池においては、自動車に搭載される特質から、10年以上の車両耐用年数に見合うだけの高い電池寿命が求められるとともに、出力特性や自己放電特性が長期間にわたって高く維持できることが要求されている。そして、このようなHEV用やEV用の用途に用いられる電池の特徴としては、過充電や完全放電がされることがないため、中間的な充電状態を維持するように充放電が制御されることである。
【0006】
このため、携帯電話、ノートパソコン、電動工具などの用途においては支配的であった、過充電行為を原因とした正極膨化や電解液の枯渇化、あるいは負極反応性阻害等による劣化の進行は支配的ではなくなった。逆に、従来の用途ではほとんど問題にはならなかった要因で、電池特性が低下することが明らかになった。そこで、本発明者らが電池特性の低下に対して支配的な影響を及ぼす原因を調査したところ、正極を構成する合剤成分の一部あるいは負極の水素吸蔵合金成分の一部がアルカリ電解液中に溶出して、溶出した成分からなる化合物がセパレータ中に析出することで、出力特性や自己放電特性が低下することを見出した。
【0007】
これは、HEV用やEV用の用途においては、高率で部分充放電を繰り返して使用されるため、正極集電体近傍および負極集電体近傍の電流密度が極めて高くなる。このため、負極を構成する水素吸蔵合金成分(特に、マンガンが多い)や、正極を構成する合剤成分の一部がアルカリ電解液中に多量に溶出するようになる。そして、アルカリ電解液中に溶出した各成分がセパレータ上に析出するようになって、正、負極間距離が短くなり、場合によっては正、負極間でミクロの接触による微小な短絡が生じるようになる。この結果、出力特性や自己放電特性が低下したと考えられる。
【0008】
そこで、本発明は上記問題点を解消するためになされたものであって、セパレータに析出した化合物により正負極間距離が短くなるのを防止して、高出力特性と、低自己放電率を長期間にわたって維持できるアルカリ蓄電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明のアルカリ蓄電池は正極と負極がセパレータを介して相対向するように形成された電極群を備えるとともに、この電極群の正極の端部に接続された正極集電体と負極の端部に接続された負極集電体とを備えている。そして、セパレータの正極集電体側に位置する部位あるいは負極集電体側に位置する部位の少なくとも一方は、目付が他の部位の目付よりも高い高目付部が形成されている。
【0010】
このように、高目付部が形成されたセパレータを用いると、アルカリ電解液中に溶出した水素吸蔵合金成分や正極を構成する合剤成分の一部がセパレータに析出しても、高目付部が形成された部分に析出するのが抑制されるようになる。これにより、正、負極間距離が短くなることはなく、正、負極間距離が適正に維持されるので、正、負極間でミクロの短絡も生じることが抑制されるようになる。この結果、出力特性や自己放電特性が向上したアルカリ蓄電池が得られるようになる。
【0011】
この場合、高目付部の目付の増加量が5g/cmよりも低くなると短絡抑制効果を発揮することができなくなる。また、高目付部の目付の増加量が10g/cmよりも多くなりすぎると電池の直流抵抗値が増大するようになって放電性が低下するようになる。このため、高目付部の目付の増加量は、5g/cm以上で、10g/cm以下とするのが望ましい。
【0012】
また、高目付部の幅が10%と狭いセパレータを用いた場合には、充放電サイクル後の自己放電量が増加し、高目付部の幅が30%と広いセパレータを用いた場合には、充放電サイクル後の自己放電量が低下する反面、電池の直流抵抗値が増大するようになって放電性が低下するようになる。このことから、高目付部の幅はセパレータの全幅に対して30%未満、好ましくは20%以下となるセパレータを用いるのが望ましいということができる。なお、その下限値としては、セパレータの全幅に対して10%とするのが望ましい。
【0013】
【発明の実施の形態】
以下に、本発明の実施の形態を図1および図2に基づいて詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1は正極と負極とセパレータの一例を示す正面図であり、図1(a)は正極を模式的に示す正面図であり、図1(b)はセパレータの上、下端部に高目付部を形成した状態を模式的に示す正面図であり、図1(c)は負極を模式的に示す図である。また、図2はセパレータを間にして正極と負極を配置した状態の要部を模式的に示す断面図である。
【0014】
1.セパレータの作製
(1)実施例1
長さが830mmで、幅が50mmで、親水性を付与した目付が65g/cmのポリプロピレン製の第1セパレータ12aを用意する。そして、この第1セパレータ12aに、この上端部からの幅が第1セパレータ12aの全幅(高さ)に対して20%の部分(x)に、親水性を付与した目付が5g/cmのポリプロピレン製の第2セパレータ12bを溶着するとともに、下端部からの幅がセパレータ12aの全幅(高さ)に対して20%の部分(y)に、親水性を付与した目付が5g/cmのポリプロピレン製の第2セパレータ12cを溶着した。これにより、目付が70g/cmの高目付部12b,12cが形成されたセパレータ12が得られるようになる。これを実施例1のセパレータaとした。
【0015】
(2)実施例2
同様に、長さが830mmで、幅が50mmで、親水性を付与した目付が65g/cmのポリプロピレン製の第1セパレータ12aを用意する。そして、この第1セパレータ12aに、この上端部からの幅が第1セパレータ12aの全幅(高さ)に対して20%の部分(x)に、親水性を付与した目付が10g/cmのポリプロピレン製の第2セパレータ12bを溶着するとともに、下端部からの幅が第1セパレータ12aの全幅(高さ)に対して20%の部分(y)に、親水性を付与した目付が10g/cmのポリプロピレン製の第2セパレータ12cを溶着した。これにより、目付が75g/cmの高目付部12b,12cが形成されたセパレータ12が得られるようになる。これを実施例2のセパレータbとした。
【0016】
(3)実施例3
同様に、長さが830mmで、幅が50mmで、親水性を付与した目付が65g/cmのポリプロピレン製の第1セパレータ12aを用意する。そして、この第1セパレータ12aに、この上端部からの幅が第1セパレータ12aの全幅(高さ)に対して20%の部分(x)に、親水性を付与した目付が15g/cmのポリプロピレン製の第2セパレータ12bを溶着するとともに、下端部からの幅が第1セパレータ12aの全幅(高さ)に対して20%の部分(y)に、親水性を付与した目付が15g/cmのポリプロピレン製の第2セパレータ12cを溶着した。これにより、目付が80g/cmの高目付部12b,12cが形成されたセパレータ12が得られるようになる。これを実施例3のセパレータcとした。
【0017】
(4)比較例1
同様に、長さが830mmで、幅が50mmで、親水性を付与した目付が65g/cmのポリプロピレン製の第1セパレータ12aを用意し、この第1セパレータ12aに高目付部を形成することなく、そのまま用いてセパレータ12を作製し、これを比較例1のセパレータxとした。
【0018】
2.ニッケル正極の作製
共沈成分として亜鉛2.5質量%とコバルト1質量%を含有する水酸化ニッケル粉末90質量部と、水酸化コバルト粉末10質量部と、酸化亜鉛粉末3質量部との混合粉末に、ヒドロキシプロピルセルロースの0.2質量%水溶液50質量部を添加混練して活物質スラリー11bを調製した。この後、ニッケル金属多孔体11aの両面に活物質スラリー11bを充填し、乾燥させた後、所定の充填密度になるように圧延してニッケル正極11を作製した。この場合、上端から幅が1mmの部分に活物質スラリーの未充填部11cが形成されるように活物質スラリー11bを充填した。
【0019】
3.水素吸蔵合金負極の作製
一方、ミッシュメタル(Mm)、ニッケル(Ni:純度99.9%)、コバルト(Co)、アルミニウム(Al)、およびマンガン(Mn)を1.00:3.97:0.55:0.45;0.20のモル比になるように混合した後、この混合物をアルゴンガス雰囲気の高周波誘導炉で誘導加熱して合金溶湯とした。この合金溶湯を公知の方法で鋳型に流し込み、冷却して、組成式がMmNi3.97Co0.55Al0.45Mn0.20で表される水素吸蔵合金のインゴットを作製した。この水素吸蔵合金インゴットを機械的粉砕法により、所定の平均粒子径(例えば、30μm)になるまで粉砕して、水素吸蔵合金粉末とした。
【0020】
ついで、得られた水素吸蔵合金粉末100質量部に対して、結着剤としての0.6質量%のポリビニルピロリドン(PVP)と、0.5質量%のポリエチレンオキサイド(PEO)を混合して水素吸蔵合金ペースト13bを作製した。この水素吸蔵合金ペースト13bをパンチングメタルからなる芯体13aの両面に塗布し、室温で乾燥させた後、所定の厚みに圧延し、所定の寸法に切断して水素吸蔵合金負極13を作製した。この場合、下端から1mmの幅の部分が活物質スラリーの未充填部13cが形成されるように水素吸蔵合金ペースト13bを充填した。
【0021】
4.ニッケル−水素蓄電池の作製
ついで、上述のようにして作製したニッケル正極11と、各セパレータ12(a,b,c,x)と、水素吸蔵合金負極13とを用意した後、セパレータ12(a,b,c,x)を間にして、正極11と負極13をそれぞれ配置した。ついで、渦巻状に巻回して渦巻状電極群を形成した後、渦巻状電極群に配置された正極11の上部に形成された活物質の未充填部11cの端部と、図示しない円板状の正極集電体とを溶接した。また、渦巻状電極群に配置された負極13の下部に形成された活物質の未充填部13cの端部と、図示しない円板状の負極集電体とを溶接した。
【0022】
ついで、正、負極集電体が溶接された電極群を外装缶内に挿入した後、負極集電体を外装缶の内底面に溶接接続するとともに、正極集電体から延出する正極リードを封口体に設けられた正極蓋に溶接接続した。この後、外装缶内に電解液(例えば、濃度が7mol/lで、KとLiとNaのカチオン比K:Li:Naが8.75:1.00:0.25となるアルカリ水溶液)を注入し、更に外装缶の開口部を封口体により封止して、公称容量が6AhでDサイズのニッケル−水素蓄電池A〜C,Xをそれぞれ作製した。ここで、セパレータaを用いたものを電池Aとした。同様に、セパレータbを用いたものを電池Bとし、セパレータcを用いたものを電池Cとした。また、セパレータxを用いたものを電池Xとした。
【0023】
5.試験
(1)自己放電量の測定
ついで、これらの各電池A〜C,Xに充放電を5回繰り返して活性化処理を施した。この後、周囲温度が25℃の温度雰囲気中で、6Aの充電電流で公称容量の80%まで充電した。ついで、周囲温度が45℃の温度雰囲気中に1週間放置した後、放電させて放電時間から放置後の放電容量を測定した。ついで、初期容量との差を求めて初期自己放電量(Ah)として算出すると、下記の表1に示すような結果が得られた。
【0024】
この後、周囲温度が45℃の温度雰囲気中で、50Aの充電電流で公称容量の60%まで充電した後、50Aの放電電流で公称容量の40%まで放電するサイクルを1サイクルとするパルスサイクル試験を20000サイクル繰り返して行った。その後、周囲温度が25℃の温度雰囲気中で、6Aの充電電流で公称容量の80%まで充電した。ついで、周囲温度が45℃の温度雰囲気中に1週間放置した後、放電させて放電時間から20000サイクル後で、放置後の放電容量を測定した。ついで、初期容量との差を求めて20000サイクル後の自己放電量(Ah)として算出すると、下記の表1に示すような結果が得られた。
【0025】
(2)直流抵抗値の測定
また、上述のように活性化した後の各電池A〜C,Xを用いて、周囲温度が25℃の温度雰囲気中で、6Aの充電電流で公称容量の50%まで充電した。ついで、30A、90A、150Aの電流値で10秒間だけ充放電を行って、それぞれの電流値に対する10秒目の電圧と電流をプロットし、その近似曲線の傾きから各電池A〜C,Xの直流抵抗(mΩ)を求めると、下記の表1に示すような結果が得られた。
【0026】
【表1】

Figure 2004327146
【0027】
上記表1の結果から明らかなように、電池Xにあっては直流抵抗値が低いのに対して、電池A,B,Cの直流抵抗値は高く、高目付部の目付が増大するほど直流抵抗値が高くなることが分かる。一方、初期自己放電に関しては、電池の種類に係わらずほぼ同様な結果となっているが、高目付部が形成されていないセパレータxを用いた電池Xは充放電サイクル後の自己放電量が極めて増加していることが分かる。これに対して、高目付部が形成されたセパレータa,b,cを用いた電池A,B,Cにおいては、充放電サイクル後の自己放電量が電池Xの1/2以下に低下していることが分かる。
【0028】
これは、高率で部分充放電を繰り返して行うと、正極集電体近傍および負極集電体近傍の電流密度が極めて高くなる。このため、負極を構成する水素吸蔵合金成分(特に、マンガン(Mn)が多い)がアルカリ電解液中に多量に溶出するようになる。これにより、アルカリ電解液中に溶出した水素吸蔵合金成分がセパレータの正極側にも析出するようになって、正、負極間距離が短くなり、場合によっては正、負極間でミクロの接触による微小な短絡が生じるようになる。この結果、高目付部が形成されていないセパレータxを用いた電池Xのサイクル後の自己放電量が増大したと考えられる。
【0029】
一方、高目付部が形成されたセパレータa,b,cを用いた電池A,B,Cにおいては、アルカリ電解液中に溶出した水素吸蔵合金成分がセパレータに析出しても、高目付部が形成された部分の正極側に析出するのが抑制されるようになる。この結果、正、負極間距離が短くなることはなく、正、負極間距離が適正に維持されることとなって、正、負極間でミクロの短絡が生じることも抑制されたためと考えられる。
【0030】
この場合、高目付部の目付の増加量が5g/cmよりも低くなると短絡抑制効果を発揮することができなくなる。また、電池Cのように、高目付部の目付の増加量が10g/cmよりも多いセパレータを用いると、電池の直流抵抗値が増大するようになって放電性が低下するようになる。このため、高目付部の目付の増加量は、5g/cm以上で、10g/cm以下とするのが望ましいということができる。
【0031】
6.高目付部の幅の検討
ついで、高目付部の幅(x,y)についての検討を行った。そこで、長さが830mmで、幅が50mmで、親水性を付与した目付が65g/cmのポリプロピレン製の第1セパレータ12aに、この上端部からの幅が第1セパレータ12aの全幅(高さ)に対して10%の部分(x)に、親水性を付与した目付が10g/cmのポリプロピレン製の第2セパレータ12bを溶着するとともに、下端部からの幅がセパレータ12aの全幅(高さ)に対して10%の部分(y)に、親水性を付与した目付が10g/cmのポリプロピレン製の第2セパレータ12cを溶着して、目付が75g/cmの高目付部12b,12cを形成してセパレータdとした。
【0032】
また、長さが830mmで、幅が50mmで、親水性を付与した目付が65g/cmのポリプロピレン製の第1セパレータ12aに、この上端部からの幅が第1セパレータ12aの全幅(高さ)に対して30%の部分(x)に、親水性を付与した目付が10g/cmのポリプロピレン製の第2セパレータ12bを溶着するとともに、下端部からの幅がセパレータ12aの全幅(高さ)に対して30%の部分(y)に、親水性を付与した目付が10g/cmのポリプロピレン製の第2セパレータ12cを溶着して、目付が75g/cmの高目付部12b,12cを形成してセパレータeとした。
【0033】
ついで、これらのセパレータd,eを用いて、上述と同様にして、公称容量が6AhでDサイズのニッケル−水素蓄電池D,Eをそれぞれ作製した。ここで、セパレータdを用いたものを電池Dとし、セパレータeを用いたものを電池Eとした。この後、これらの電池D,Eを用いて上述と同様の試験を行って、初期自己放電量(Ah)、20000サイクル後の自己放電量(Ah)および電池直流抵抗値(mΩ)を求めると、下記の表2に示すように結果が得られた。なお、下記の表2には上述した電池Bの結果も併せて示している。
【0034】
【表2】
Figure 2004327146
【0035】
上記表2の結果から明らかなように、電池Dにあっては直流抵抗値が低いのに対して、高目付部12b,12cの幅(x,y)が第1セパレータ12aの全幅(高さ)に対して30%と広いセパレータeを用いた電池Eの直流抵抗値は高いことが分かる。一方、初期自己放電に関しては、電池の種類に係わらずほぼ同様な結果となっているが、高目付部12b,12cの幅(x,y)が第1セパレータ12aの全幅(高さ)に対して10%と狭いセパレータdを用いた電池Dは充放電サイクル後の自己放電量が増加していることが分かる。
【0036】
これに対して、高目付部12b,12cの幅(x,y)が第1セパレータ12aの全幅(高さ)に対して30%と広い電池Eにおいては、充放電サイクル後の自己放電量が低下していることが分かる。このことから、高目付部12b,12cの幅(x,y)が第1セパレータ12aの全幅(高さ)に対して30%未満、好ましくは20%以下となるセパレータを用いるのが望ましいということができる。なお、その下限値は10%としたセパレータを用いるのが望ましい。
【0037】
7.正極集電方式の検討
上述した例においては、正極の上部に形成された活物質の未充填部の端部に円板状の正極集電体を溶接する集電方式の例について説明したが、正極からの集電を集電タブで行う集電タブ方式についても検討した。そこで、以下においては、集電タブ方式としたアルカリ蓄電池の例を図3に基づいて説明する。なお、図3は、集電タブ方式のアルカリ蓄電池を構成する正極とセパレータと負極とを示す正面図であり、図3(a)は正極を模式的に示す正面図であり、図3(b)はセパレータの上、下端部に高目付部を形成した状態を模式的に示す正面図であり、図3(c)は負極を模式的に示す図である。
【0038】
まず、長さが830mmで、幅が50mmで、親水性を付与した目付が65g/cmのポリプロピレン製の第1セパレータ22aを用意する。ついで、この第1セパレータ22aに、この上端部からの幅がセパレータ22aの全幅(高さ)に対して20%の部分に、親水性を付与した目付が10g/cmのポリプロピレン製の第2セパレータ22bを溶着するとともに、下端部からの幅がセパレータ22aの全幅(高さ)に対して20%の部分に、親水性を付与した目付が10g/cmのポリプロピレン製の第2セパレータ22cを溶着した。これにより、目付が75g/cmの高目付部22b,22cが形成されたセパレータ22が得られるようになる。これを実施例4のセパレータfとした。また、長さが830mmで、幅が50mmで、親水性を付与した目付が65g/cmのポリプロピレン製の第1セパレータ22aに、高目付部を形成することなく、そのまま用いてセパレータ22を作製し、これを比較例2のセパレータyとした。
【0039】
一方、上述と同様に、正極活物質スラリー21bを調製した後、ニッケル金属多孔体の両面に活物質スラリー21bを充填し、乾燥させた後、所定の充填密度になるように圧延してニッケル正極21を作製した。この場合、上端の一部に活物質の未充填部(なお、図3においては1箇所しか示していないが実際は複数箇所に設けられている)が形成されるように活物質スラリーを充填し、この未充填部に正極集電タブ21cを溶接した。また、上述と同様に、水素吸蔵合金ペースト23bを調製した後、これをパンチングメタルからなる芯体の両面に塗布し、室温で乾燥させた後、所定の厚みに圧延し、所定の寸法に切断して水素吸蔵合金負極23を作製した。この場合、下端から1mmの幅の部分が活物質スラリーの未充填部23cが形成されるように水素吸蔵合金ペースト23bを充填した。
【0040】
ついで、上述のようにして作製したニッケル正極21と、各セパレータ22(f,y)と、水素吸蔵合金負極23とを用いて、セパレータ22(f,y)を間にして、正極21と負極23をそれぞれ配置した後、渦巻状に巻回して渦巻状電極群を形成した。この後、渦巻状電極群に配置された正極21の上部の複数箇所に溶接された集電タブ21c同士を溶接するとともに、渦巻状電極群に配置された負極23の下部に形成された活物質の未充填部23cの端部と図示しない円板状の負極集電体とを溶接した。
【0041】
ついで、この電極群を外装缶内に挿入した後、負極集電体を外装缶の内底面に溶接接続するとともに、正極集電タブ21cを封口体に設けられた正極蓋に溶接接続した。この後、外装缶内に電解液(例えば、濃度が7mol/lで、KとLiとNaのカチオン比K:Li:Naが8.75:1.00:0.25となるアルカリ水溶液)を注入し、更に外装缶の開口部を封口体により封止して、公称容量が1.7AhでAAサイズのニッケル−水素蓄電池F,Yをそれぞれ作製した。ここで、セパレータfを用いたものを電池Fとし、セパレータyを用いたものを電池Yとした。
【0042】
ついで、これらの各電池F,Yに活性化処理を施した。この後、周囲温度が25℃の温度雰囲気中で、1.7Aの充電電流で公称容量の80%まで充電した。ついで、周囲温度が45℃の温度雰囲気中に1週間放置した後、放電させて放電時間から放置後の放電容量を測定して、初期容量との差を求めて初期自己放電量(Ah)として算出すると、下記の表3に示すような結果が得られた。
【0043】
この後、周囲温度が45℃の温度雰囲気中で、8Aの充電電流で公称容量の60%まで充電した後、8Aの放電電流で公称容量の40%まで放電するサイクルを1サイクルとするパルスサイクル試験を500サイクル繰り返して行った。その後、周囲温度が25℃の温度雰囲気中で、1.7Aの充電電流で公称容量の80%まで充電した。ついで、周囲温度が45℃の温度雰囲気中に1週間放置した後、放電させて放電時間から500サイクル後で、放置後の放電容量を測定して、初期容量との差を求めて500サイクル後の自己放電量(Ah)として算出すると、下記の表3に示すような結果が得られた。
【0044】
また、上述のように活性化した後の各電池F,Yを用いて、周囲温度が25℃の温度雰囲気中で、1.7Aの充電電流で公称容量の50%まで充電した。ついで、5A、10A、15Aの電流値で10秒間だけ充放電を行って、それぞれの電流値に対する10秒目の電圧と電流をプロットし、その近似曲線の傾きから各電池F,Yの直流抵抗(mΩ)を求めると、下記の表3に示すような結果が得られた。
【0045】
【表3】
Figure 2004327146
【0046】
上記表3の結果から明らかなように、初期自己放電量(Ah)に関しては、電池Fも、電池Yも同様な結果となっているが、高目付部を形成したセパレータfを用いた電池Fにおいては、500サイクル後の自己放電量(Ah)が、高目付部が無形成のセパレータyを用いた電池Yに比較して、1/2以下に低下していることが分かる。このことからも、正極21からの集電を正極集電タブ21cとした集電タブ方式においても、高目付部を形成したセパレータを用いると、サイクル後の自己放電量(Ah)に対して効果的であることが分かる。
【0047】
8.組電池
上述のようにして作製された電池A〜F,X,Yを用いて、これらを120個直列接続するとともに、これらにSOC(State Of Charge :充電状態)が中間的な状態に維持されるように制御することができるパルス充放電サイクル(部分充放電)制御回路を接続して、それぞれ組電池を作製した。そして、各組電池に対して上述した実施の形態と同様の条件にて試験を行ったところ、電池A〜Fを用いた組電池については、上述した単電池の結果とほぼ同等の結果が得られた。
【0048】
このように、本発明の電池A〜Fを用いて充電状態が中間的な状態に維持されるように制御することができる制御回路を備えた組電池を構成すれば、高出力特性と、低自己放電率を長期間にわたって維持できるニッケル−水素蓄電池よりなる組電池を提供することが可能となる。この場合、電池固有もしくは組電池内での配置位置による電池温度差による容量のばらつきによって、一部の電池が完全放電もしくは満充電されないようにするためには、SOCを20〜80%、より好ましくは40〜60%に制限するように制御することが好ましい。
【0049】
【発明の効果】
上述したように、本発明においては、第1セパレータ12a(22a)の正極集電体側(電流密度が高い部分)に位置する部位(x)、および負極集電体側(電流密度が高い部分)に位置する部位(y)に、目付が他の部位の目付よりも高い高目付部12b,12c(22b,22c)が形成されている。このため、アルカリ電解液中に溶出した水素吸蔵合金成分や正極を構成する合剤成分の一部がセパレータ12(22)に析出するのが抑制されるようになる。これにより、正、負極間距離が短くなることはなく、正、負極間距離が適正に維持されることとなって、正、負極間でのミクロの短絡も抑制されるようになる。この結果、高出力特性と、低自己放電率を長期間にわたって維持できるアルカリ蓄電池を提供することが可能となる。
【0050】
なお、上述した実施の形態においては、セパレータの正極集電体側に位置する部位および負極集電体側に位置する部位の両方に目付が他の部位の目付よりも高い高目付部を形成した例について説明したが、セパレータの正極集電体側に位置する部位あるいは負極集電体側に位置する部位の少なくとも一方に、目付が他の部位の目付よりも高い高目付部を形成するようにしても、放電性を損なうことなく、自己放電特性を向上させることが可能である。
【0051】
また、上述した実施の形態においては、第1セパレータ12a(22a)に第2セパレータ12b,12c(22b,22c)を溶着して高目付部を形成する例について説明したが、高目付部を形成するに際して、これ以外の他の方法を用いてもよい。この場合、例えば、セパレータを作製する際に繊維の量を調製して、意図的に高目付部を設ける方法などが考えられる。
さらに、上述した実施の形態においては、本発明のアルカリ蓄電池として、ニッケル−水素蓄電池に適用する例について説明したが、ニッケル−水素蓄電池に限らず、ニッケル−カドミウム蓄電池などの他のアルカリ蓄電池にも本発明を適用できる。
【図面の簡単な説明】
【図1】正極と負極とセパレータの一例を示す正面図であり、図1(a)は正極を模式的に示す正面図であり、図1(b)はセパレータの上、下端部に高目付部を形成した状態を模式的に示す正面図であり、図1(c)は負極を模式的に示す図である。
【図2】セパレータを間にして正極と負極を配置した状態の要部を模式的に示す断面図である。
【図3】変形例の正極と負極とセパレータを示す正面図であり、図3(a)は正極を模式的に示す正面図であり、図3(b)はセパレータの上、下端部に高目付部を形成した状態を模式的に示す正面図であり、図3(c)は負極を模式的に示す図である。
【符号の説明】
11…ニッケル正極、11a…ニッケル金属多孔体(芯体)、11b…正極活物質スラリー、11c…未充填部、12…セパレータ、12a…第1セパレータ、12b,12c…高目付部となる第2セパレータ、13…水素吸蔵合金負極、13a…芯体、13b…水素吸蔵合金ペースト、13c…未充填部、21…ニッケル正極、21b…正極活物質スラリー、21c…正極集電タブ、22…セパレータ、22a…第1セパレータ、22b,22c…高目付部となる第2セパレータ、23…水素吸蔵合金負極、23b…水素吸蔵ペースト、23c…未充填部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an alkaline storage battery such as a nickel-hydrogen storage battery and a nickel-cadmium storage battery, and more particularly to an improvement in a separator.
[0002]
[Prior art]
2. Description of the Related Art In recent years, the use of secondary batteries (storage batteries) has expanded, and they have been used in a wide range of applications such as mobile phones, notebook computers, electric tools, electric bicycles, hybrid vehicles (HEV), and electric vehicles (EV). . Among them, an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery is used as a power source for a device requiring high output such as an electric bicycle, a hybrid vehicle (HEV), and an electric vehicle (EV). .
[0003]
By the way, in applications such as a mobile phone, a notebook computer, and a power tool, the most important battery characteristic is a discharge capacity, which is required to have a high capacity and maintain a high capacity for a long time. In these applications, the battery is usually charged up to the overcharge area. For this reason, β-NiOOH, which is the original positive electrode charge active material, is further charged due to overcharging, and γ-NiOOH that causes the electrodes to expand is generated. When the electrode swells, the electrolyte is taken into the swollen positive electrode, thereby reducing the amount of the electrolyte contained in the separator, resulting in insufficient ion diffusing ability in the separator and deterioration of the discharge performance.
[0004]
When overcharged, the oxygen gas generated from the positive electrode at the time of overcharge oxidizes the hydrogen storage alloy, which is the negative electrode active material, to form a rare earth element hydroxide on the surface of the hydrogen storage alloy. become. For this reason, when the electrochemical reaction on the surface of the hydrogen storage alloy is inhibited or the gas pressure inside the battery rises before exceeding the operating pressure of the sealing body, the electrolytic solution becomes gas and is discharged out of the battery system. Become so. As a result, the electrolytic solution becomes depleted, and the discharge performance deteriorates. With such a mechanism, deterioration of battery characteristics proceeds mainly due to overcharging. (For example, see Patent Document 1)
[Patent Document 1]
JP-A-62-295353
[0005]
[Problems to be solved by the invention]
However, batteries used as power sources for driving vehicles such as HEVs and EVs, which are new secondary battery applications, are high enough to meet the vehicle service life of 10 years or more due to the characteristics of being mounted on automobiles. Along with a demand for a battery life, it is required that output characteristics and self-discharge characteristics can be maintained high for a long period of time. As a feature of the battery used for such an HEV or EV application, charging and discharging are controlled so as to maintain an intermediate charging state because overcharging and complete discharging are not performed. That is.
[0006]
For this reason, the progress of deterioration caused by overcharging, such as expansion of the positive electrode, depletion of the electrolyte, or inhibition of negative electrode reactivity, was dominant in applications such as mobile phones, notebook computers, and power tools. It is no longer a target. Conversely, it became clear that battery characteristics deteriorated due to factors that hardly caused a problem in conventional applications. Therefore, the present inventors investigated the cause of the dominant influence on the deterioration of battery characteristics, and found that a part of the mixture component constituting the positive electrode or a part of the hydrogen storage alloy component of the negative electrode was an alkaline electrolyte. It has been found that the output characteristics and self-discharge characteristics are reduced by the compound eluted into the inside and the compound consisting of the eluted components being precipitated in the separator.
[0007]
This is because in HEV and EV applications, partial charge / discharge is repeated at a high rate and used, so that the current density near the positive electrode current collector and near the negative electrode current collector becomes extremely high. For this reason, a large amount of the hydrogen storage alloy component (particularly, a large amount of manganese) constituting the negative electrode and a part of the mixture component constituting the positive electrode are eluted into the alkaline electrolyte in a large amount. Then, each component eluted in the alkaline electrolyte comes to precipitate on the separator, the distance between the positive electrode and the negative electrode is shortened, and in some cases, a minute short circuit is generated between the positive electrode and the negative electrode due to micro contact. Become. As a result, it is considered that the output characteristics and the self-discharge characteristics decreased.
[0008]
Therefore, the present invention has been made to solve the above-described problem, and it is intended to prevent a compound deposited on a separator from shortening a distance between a positive electrode and a negative electrode, thereby increasing a high output characteristic and a low self-discharge rate. It is an object to provide an alkaline storage battery that can be maintained over a period.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the alkaline storage battery of the present invention includes an electrode group formed so that a positive electrode and a negative electrode face each other with a separator interposed therebetween, and a positive electrode current collector connected to an end of the positive electrode of the electrode group. And a negative electrode current collector connected to an end of the negative electrode. At least one of a portion of the separator located on the positive electrode current collector side and a portion of the separator located on the negative electrode current collector side is formed with a high basis weight portion having a higher basis weight than other regions.
[0010]
As described above, when the separator having the high-weighted portion is used, even if a part of the hydrogen storage alloy component eluted in the alkaline electrolyte or the mixture component constituting the positive electrode is precipitated on the separator, the high-weighted portion is formed. Precipitation at the formed portion is suppressed. As a result, the distance between the positive electrode and the negative electrode is not shortened, and the distance between the positive electrode and the negative electrode is appropriately maintained, so that the occurrence of a micro short circuit between the positive electrode and the negative electrode is suppressed. As a result, an alkaline storage battery having improved output characteristics and self-discharge characteristics can be obtained.
[0011]
In this case, the increase in the basis weight of the high basis weight portion is 5 g / cm. 2 If it is lower than this, the short-circuit suppressing effect cannot be exhibited. Further, the increase in the basis weight of the high basis weight portion is 10 g / cm. 2 If it is too large, the DC resistance value of the battery will increase and the discharge performance will decrease. For this reason, the increase in the basis weight of the high basis weight part is 5 g / cm. 2 With the above, 10 g / cm 2 It is desirable to do the following.
[0012]
In addition, when a separator having a narrow width of 10% is used, the amount of self-discharge after a charge / discharge cycle is increased, and when a separator having a width of 30% is wide, a separator having a large width is used. While the amount of self-discharge after the charge / discharge cycle is reduced, the DC resistance of the battery is increased and the dischargeability is reduced. From this, it can be said that it is desirable to use a separator in which the width of the high-weight portion is less than 30%, preferably 20% or less, of the entire width of the separator. The lower limit is preferably set to 10% with respect to the entire width of the separator.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. However, the present invention is not limited to this, and may be implemented with appropriate changes within a scope that does not change the gist of the present invention. Can be. FIG. 1 is a front view showing an example of a positive electrode, a negative electrode, and a separator. FIG. 1A is a front view schematically showing the positive electrode. FIG. FIG. 1C is a front view schematically illustrating a state in which a basis weight is formed, and FIG. 1C is a diagram schematically illustrating a negative electrode. FIG. 2 is a cross-sectional view schematically showing a main part in a state where a positive electrode and a negative electrode are arranged with a separator therebetween.
[0014]
1. Production of separator
(1) Example 1
The length is 830 mm, the width is 50 mm, and the basis weight with hydrophilicity is 65 g / cm. 2 The first separator 12a made of polypropylene is prepared. The first separator 12a has a portion (x) whose width from the upper end portion is 20% of the entire width (height) of the first separator 12a with a basis weight of 5 g / cm having hydrophilicity. 2 Is welded, and a portion (y) having a width from the lower end portion of 20% with respect to the entire width (height) of the separator 12a has a basis weight of 5 g / cm provided with hydrophilicity. 2 Of the second separator 12c made of polypropylene. Thereby, the basis weight is 70 g / cm. 2 The separator 12 on which the high-weight parts 12b and 12c are formed can be obtained. This was designated as separator a of Example 1.
[0015]
(2) Example 2
Similarly, the length is 830 mm, the width is 50 mm, and the basis weight with hydrophilicity is 65 g / cm. 2 The first separator 12a made of polypropylene is prepared. The first separator 12a has a portion (x) having a width from the upper end portion of 20% with respect to the entire width (height) of the first separator 12a, and has a weight per unit area of 10 g / cm. 2 The second separator 12b made of polypropylene is welded, and a portion (y) whose width from the lower end is 20% of the entire width (height) of the first separator 12a has a weight per unit area of 10 g / cm 2 Of the second separator 12c made of polypropylene. Thereby, the basis weight is 75 g / cm. 2 The separator 12 on which the high-weight parts 12b and 12c are formed can be obtained. This was designated as separator b of Example 2.
[0016]
(3) Example 3
Similarly, the length is 830 mm, the width is 50 mm, and the basis weight with hydrophilicity is 65 g / cm. 2 The first separator 12a made of polypropylene is prepared. Then, the first separator 12a has a portion (x) having a width from the upper end portion of 20% of the entire width (height) of the first separator 12a with a basis weight of 15 g / cm provided with hydrophilicity. 2 The second separator 12b made of polypropylene is welded, and a portion (y) whose width from the lower end is 20% of the entire width (height) of the first separator 12a has a basis weight of 15 g / cm 2 Of the second separator 12c made of polypropylene. Thereby, the basis weight is 80 g / cm. 2 The separator 12 on which the high-weight parts 12b and 12c are formed can be obtained. This was designated as separator c of Example 3.
[0017]
(4) Comparative Example 1
Similarly, the length is 830 mm, the width is 50 mm, and the basis weight with hydrophilicity is 65 g / cm. 2 The first separator 12a made of polypropylene was prepared, and the separator 12 was produced using the first separator 12a as it was without forming a high-weight portion, and this was used as the separator x of Comparative Example 1.
[0018]
2. Preparation of nickel positive electrode
Hydroxypropyl was added to a mixed powder of 90 parts by mass of nickel hydroxide powder containing 2.5% by mass of zinc and 1% by mass of cobalt, 10 parts by mass of cobalt hydroxide powder and 3 parts by mass of zinc oxide powder as coprecipitating components. An active material slurry 11b was prepared by adding and kneading 50 parts by mass of a 0.2% by mass aqueous solution of cellulose. After that, both surfaces of the nickel metal porous body 11a were filled with the active material slurry 11b, dried, and then rolled so as to have a predetermined packing density, thereby producing the nickel positive electrode 11. In this case, the active material slurry 11b was filled so that an unfilled portion 11c of the active material slurry was formed in a portion having a width of 1 mm from the upper end.
[0019]
3. Preparation of hydrogen storage alloy negative electrode
On the other hand, misch metal (Mm), nickel (Ni: purity 99.9%), cobalt (Co), aluminum (Al), and manganese (Mn) were 1.00: 3.97: 0.55: 0.45. After mixing to a molar ratio of 0.20, the mixture was induction-heated in a high-frequency induction furnace in an argon gas atmosphere to obtain a molten alloy. This alloy melt is poured into a mold by a known method, cooled, and the composition formula is MmNi. 3.97 Co 0.55 Al 0.45 Mn 0.20 The ingot of the hydrogen storage alloy represented by was manufactured. This hydrogen storage alloy ingot was pulverized by a mechanical pulverization method until a predetermined average particle diameter (for example, 30 μm) was obtained, thereby obtaining a hydrogen storage alloy powder.
[0020]
Next, with respect to 100 parts by mass of the obtained hydrogen storage alloy powder, 0.6% by mass of polyvinylpyrrolidone (PVP) as a binder and 0.5% by mass of polyethylene oxide (PEO) were mixed, and hydrogen was mixed. The storage alloy paste 13b was produced. This hydrogen-absorbing alloy paste 13b was applied to both surfaces of a core 13a made of punched metal, dried at room temperature, rolled to a predetermined thickness, and cut to a predetermined size to produce a hydrogen-absorbing alloy negative electrode 13. In this case, the hydrogen-absorbing alloy paste 13b was filled such that a portion having a width of 1 mm from the lower end formed an unfilled portion 13c of the active material slurry.
[0021]
4. Production of nickel-hydrogen storage battery
Next, after preparing the nickel positive electrode 11 prepared as described above, the respective separators 12 (a, b, c, x), and the hydrogen storage alloy negative electrode 13, the separator 12 (a, b, c, x) is prepared. , The positive electrode 11 and the negative electrode 13 were respectively arranged. Next, after spirally winding to form a spiral electrode group, an end of an active material unfilled portion 11c formed on the upper part of the positive electrode 11 arranged in the spiral electrode group, and a disc-shaped (not shown) And the positive electrode current collector. Further, an end of the unfilled portion 13c of the active material formed below the negative electrode 13 arranged in the spiral electrode group was welded to a disc-shaped negative electrode current collector (not shown).
[0022]
Then, after inserting the electrode group to which the positive and negative electrode current collectors are welded into the outer can, the negative electrode current collector is welded to the inner bottom surface of the outer can and the positive electrode lead extending from the positive electrode current collector is connected. It was connected by welding to the positive electrode lid provided on the sealing body. Thereafter, an electrolytic solution (for example, an alkaline aqueous solution having a concentration of 7 mol / l and a cation ratio of K, Li, and Na of K: Li: Na of 8.75: 1.00: 0.25) is placed in the outer can. Injection was carried out, and the opening of the outer can was further sealed with a sealing body to produce D-size nickel-hydrogen storage batteries A to C and X having a nominal capacity of 6 Ah, respectively. Here, a battery using the separator a was referred to as a battery A. Similarly, a battery using the separator b was referred to as a battery B, and a battery using the separator c was referred to as a battery C. A battery using the separator x was referred to as a battery X.
[0023]
5. test
(1) Measurement of self-discharge amount
Then, the batteries A to C and X were repeatedly charged and discharged five times to perform an activation process. Thereafter, the battery was charged to 80% of the nominal capacity at a charging current of 6 A in an atmosphere at an ambient temperature of 25 ° C. Then, after leaving for one week in an atmosphere at an ambient temperature of 45 ° C., the battery was discharged, and the discharge capacity after standing was measured from the discharge time. Next, when the difference from the initial capacity was obtained and calculated as the initial self-discharge amount (Ah), the results shown in Table 1 below were obtained.
[0024]
Thereafter, in a temperature atmosphere at an ambient temperature of 45 ° C., a pulse cycle in which a cycle of charging to 50% of the nominal capacity with a charging current of 50 A and discharging to 40% of the nominal capacity with a discharging current of 50 A is taken as one cycle. The test was repeated 20,000 cycles. Thereafter, the battery was charged to 80% of the nominal capacity in a temperature atmosphere at an ambient temperature of 25 ° C. with a charging current of 6 A. Then, after leaving for 1 week in an atmosphere at an ambient temperature of 45 ° C., the battery was discharged, and after 20,000 cycles from the discharge time, the discharge capacity after leaving was measured. Then, when the difference from the initial capacity was obtained and calculated as the self-discharge amount (Ah) after 20,000 cycles, the results shown in Table 1 below were obtained.
[0025]
(2) DC resistance measurement
Each of the batteries A to C and X, which had been activated as described above, was charged to 50% of the nominal capacity at a charging current of 6 A in an atmosphere at an ambient temperature of 25 ° C. Then, charging and discharging were performed for 10 seconds at current values of 30 A, 90 A, and 150 A, and the voltage and current at 10 seconds for each current value were plotted, and the slope of each of the batteries A to C and X was determined from the slope of the approximate curve. When the DC resistance (mΩ) was obtained, the results shown in Table 1 below were obtained.
[0026]
[Table 1]
Figure 2004327146
[0027]
As is clear from the results in Table 1, the DC resistance value of the battery X is low, whereas the DC resistance values of the batteries A, B, and C are high, and the direct current value increases as the weight per unit area increases. It can be seen that the resistance value increases. On the other hand, with regard to the initial self-discharge, almost the same result is obtained regardless of the type of the battery. However, the battery X using the separator x in which the high-weight portion is not formed has a very small self-discharge amount after the charge / discharge cycle. It can be seen that it has increased. On the other hand, in the batteries A, B, and C using the separators a, b, and c in which the high-weight parts are formed, the self-discharge amount after the charge / discharge cycle is reduced to half or less of the battery X. I understand that there is.
[0028]
This is because if partial charge and discharge are repeatedly performed at a high rate, the current densities near the positive electrode current collector and the negative electrode current collector become extremely high. For this reason, a large amount of the hydrogen storage alloy component (particularly, a large amount of manganese (Mn)) constituting the negative electrode is eluted in the alkaline electrolyte. As a result, the hydrogen storage alloy component eluted in the alkaline electrolyte is also deposited on the positive electrode side of the separator, and the distance between the positive electrode and the negative electrode is shortened. Short circuit will occur. As a result, it is considered that the self-discharge amount after the cycle of the battery X using the separator x in which the high-weight portion is not formed has increased.
[0029]
On the other hand, in the batteries A, B, and C using the separators a, b, and c in which the high-weighted portions are formed, even if the hydrogen storage alloy component eluted in the alkaline electrolyte precipitates on the separators, the high-weighted portions are formed. Precipitation on the positive electrode side of the formed portion is suppressed. As a result, it is considered that the distance between the positive electrode and the negative electrode did not become short, and the distance between the positive electrode and the negative electrode was properly maintained, and the occurrence of a micro short circuit between the positive electrode and the negative electrode was suppressed.
[0030]
In this case, the increase in the basis weight of the high basis weight portion is 5 g / cm. 2 If it is lower than this, the short-circuit suppressing effect cannot be exhibited. Further, as in the case of the battery C, the increase in the basis weight of the high basis weight portion is 10 g / cm. 2 If more separators are used, the DC resistance of the battery increases, and the discharge performance decreases. For this reason, the increase in the basis weight of the high basis weight part is 5 g / cm. 2 With the above, 10 g / cm 2 It can be said that it is desirable to:
[0031]
6. Examination of the width of the high weight part
Next, the width (x, y) of the high-weighted portion was examined. Therefore, the length is 830 mm, the width is 50 mm, and the basis weight with hydrophilicity is 65 g / cm. 2 In the first separator 12a made of polypropylene, a portion (x) in which the width from the upper end portion is 10% of the entire width (height) of the first separator 12a has a basis weight of 10 g / cm provided with hydrophilicity. 2 Is welded, and a portion (y) whose width from the lower end is 10% of the entire width (height) of the separator 12a has a basis weight of 10 g / cm provided with hydrophilicity. 2 The second separator 12c made of polypropylene is welded, and the basis weight is 75 g / cm. 2 Are formed to form a separator d.
[0032]
In addition, the length is 830 mm, the width is 50 mm, and the basis weight with hydrophilicity is 65 g / cm. 2 In the first separator 12a made of polypropylene, a portion (x) whose width from the upper end portion is 30% with respect to the entire width (height) of the first separator 12a has a basis weight of 10 g / cm having hydrophilicity. 2 Is welded, and a portion (y) whose width from the lower end is 30% of the total width (height) of the separator 12a has a weight per unit area of 10 g / cm provided with hydrophilicity. 2 The second separator 12c made of polypropylene is welded, and the basis weight is 75 g / cm. 2 Are formed to form the separator e.
[0033]
Then, using these separators d and e, nickel-metal hydride storage batteries D and E having a nominal capacity of 6 Ah and a D size were produced in the same manner as described above. Here, the battery using the separator d was referred to as a battery D, and the battery using the separator e was referred to as a battery E. Thereafter, a test similar to the above was performed using these batteries D and E, and the initial self-discharge amount (Ah), the self-discharge amount after 20,000 cycles (Ah), and the battery DC resistance value (mΩ) were obtained. The results were obtained as shown in Table 2 below. Table 2 below also shows the results of the battery B described above.
[0034]
[Table 2]
Figure 2004327146
[0035]
As is evident from the results in Table 2, while the DC resistance value of the battery D is low, the width (x, y) of the high-weight portions 12b and 12c is equal to the entire width (height) of the first separator 12a. It can be seen that the DC resistance value of the battery E using the separator e as wide as 30% as compared with the case of ()) is high. On the other hand, the initial self-discharge is almost the same regardless of the type of battery, but the width (x, y) of the high-weight portions 12b and 12c is larger than the entire width (height) of the first separator 12a. It can be seen that the battery D using the separator d as narrow as 10% has an increased self-discharge amount after the charge / discharge cycle.
[0036]
On the other hand, in the battery E in which the widths (x, y) of the high weighted portions 12b and 12c are as large as 30% of the entire width (height) of the first separator 12a, the self-discharge amount after the charge / discharge cycle is small. It can be seen that it has decreased. For this reason, it is desirable to use a separator in which the width (x, y) of the high-basis parts 12b, 12c is less than 30%, preferably 20% or less, of the entire width (height) of the first separator 12a. Can be. It is desirable to use a separator whose lower limit is 10%.
[0037]
7. Examination of positive electrode current collection method
In the above-described example, the example of the current collecting method in which the disc-shaped positive electrode current collector is welded to the end of the unfilled portion of the active material formed on the upper part of the positive electrode has been described. A current collection tab method using a current collection tab was also studied. Therefore, hereinafter, an example of an alkaline storage battery using a current collection tab system will be described with reference to FIG. FIG. 3 is a front view showing a positive electrode, a separator, and a negative electrode which constitute the current collector tab type alkaline storage battery. FIG. 3A is a front view schematically showing the positive electrode, and FIG. 3) is a front view schematically showing a state where a high-weight portion is formed at the upper and lower ends of the separator, and FIG. 3C is a diagram schematically showing a negative electrode.
[0038]
First, the length is 830 mm, the width is 50 mm, and the basis weight with hydrophilicity is 65 g / cm. 2 A first separator 22a made of polypropylene is prepared. Next, the first separator 22a has a weight per unit area of 20% of the total width (height) of the separator 22a from the upper end, and a basis weight of the first separator 22a with hydrophilicity of 10 g / cm. 2 The second separator 22b made of polypropylene is welded, and a portion having a width from the lower end of 20% of the entire width (height) of the separator 22a has a basis weight of 10 g / cm having hydrophilicity. 2 The second separator 22c made of polypropylene was welded. Thereby, the basis weight is 75 g / cm. 2 The separator 22 on which the high-weighted portions 22b and 22c are formed can be obtained. This was designated as separator f of Example 4. In addition, the length is 830 mm, the width is 50 mm, and the basis weight with hydrophilicity is 65 g / cm. 2 The separator 22 was prepared by using the first separator 22a made of polypropylene without forming a high-weight portion, and used as the separator y of Comparative Example 2.
[0039]
On the other hand, in the same manner as described above, after preparing the positive electrode active material slurry 21b, the both surfaces of the nickel metal porous body are filled with the active material slurry 21b, dried, and then rolled so as to have a predetermined packing density. 21 was produced. In this case, the active material slurry is filled so that an unfilled portion of the active material (only one portion is shown in FIG. 3 but actually provided at a plurality of portions) is formed in a part of the upper end, The positive electrode current collecting tab 21c was welded to this unfilled portion. In the same manner as described above, after preparing the hydrogen storage alloy paste 23b, apply it to both surfaces of a core made of punched metal, dry at room temperature, roll to a predetermined thickness, and cut to a predetermined size. Thus, a hydrogen storage alloy negative electrode 23 was produced. In this case, the hydrogen-absorbing alloy paste 23b was filled so that a portion having a width of 1 mm from the lower end formed an unfilled portion 23c of the active material slurry.
[0040]
Next, using the nickel positive electrode 21 produced as described above, the respective separators 22 (f, y), and the hydrogen storage alloy negative electrode 23, the positive electrode 21 and the negative electrode were sandwiched between the separators 22 (f, y). After disposing each of the electrodes 23, the electrodes were spirally wound to form a spiral electrode group. Thereafter, the current collecting tabs 21c welded to a plurality of locations above the positive electrode 21 arranged in the spiral electrode group are welded to each other, and the active material formed below the negative electrode 23 arranged in the spiral electrode group. Of the unfilled portion 23c and a disc-shaped negative electrode current collector (not shown) were welded.
[0041]
Next, after inserting this electrode group into the outer can, the negative electrode current collector was welded and connected to the inner bottom surface of the outer can, and the positive electrode current collecting tab 21c was welded and connected to the positive electrode lid provided on the sealing body. Thereafter, an electrolytic solution (for example, an alkaline aqueous solution having a concentration of 7 mol / l and a cation ratio of K, Li, and Na of K: Li: Na of 8.75: 1.00: 0.25) is placed in the outer can. Injection was performed, and the opening of the outer can was sealed with a sealing body to produce AA size nickel-hydrogen storage batteries F and Y having a nominal capacity of 1.7 Ah, respectively. Here, the battery using the separator f was referred to as a battery F, and the battery using the separator y was referred to as a battery Y.
[0042]
Next, the batteries F and Y were activated. Thereafter, the battery was charged to 80% of the nominal capacity in a temperature atmosphere at an ambient temperature of 25 ° C. with a charging current of 1.7 A. Then, after leaving for 1 week in a temperature atmosphere at an ambient temperature of 45 ° C., discharge the battery, measure the discharge capacity after standing from the discharge time, and determine the difference from the initial capacity to obtain the initial self-discharge amount (Ah). When calculated, the results as shown in Table 3 below were obtained.
[0043]
Thereafter, a pulse cycle in which the battery is charged to 60% of the nominal capacity with a charging current of 8 A in an atmosphere at an ambient temperature of 45 ° C. and then discharged to 40% of the nominal capacity with a discharging current of 8 A is defined as one cycle. The test was repeated 500 cycles. Thereafter, the battery was charged to 80% of the nominal capacity with a charging current of 1.7 A in an atmosphere at an ambient temperature of 25 ° C. Then, after leaving for 1 week in a temperature atmosphere at an ambient temperature of 45 ° C., discharge the battery, and after 500 cycles from the discharge time, measure the discharge capacity after standing, and determine the difference from the initial capacity after 500 cycles. , The results as shown in Table 3 below were obtained.
[0044]
Using the batteries F and Y activated as described above, the batteries were charged to 50% of the nominal capacity at a charging current of 1.7 A in a temperature atmosphere at an ambient temperature of 25 ° C. Then, charging and discharging were performed for 10 seconds at current values of 5 A, 10 A, and 15 A, and the voltage and current at 10 seconds were plotted with respect to each current value, and the DC resistance of each battery F, Y was determined from the slope of the approximate curve. When (mΩ) was obtained, the results as shown in Table 3 below were obtained.
[0045]
[Table 3]
Figure 2004327146
[0046]
As is clear from the results in Table 3, the initial self-discharge amount (Ah) of the battery F and that of the battery Y are the same, but the battery F using the separator f having the high-weight portion is used. It can be seen that the self-discharge amount (Ah) after 500 cycles is reduced to 以下 or less as compared with the battery Y using the separator y having no high-weight portion. From this, even in the current collecting tab system in which the current from the positive electrode 21 is used as the positive electrode current collecting tab 21c, the use of the separator having the high-weighted portion has an effect on the self-discharge amount (Ah) after the cycle. It turns out that it is a target.
[0047]
8. Battery pack
Using the batteries A to F, X, and Y produced as described above, 120 batteries are connected in series, and the SOC (State Of Charge: charged state) is maintained in an intermediate state. And a pulse charge / discharge cycle (partial charge / discharge) control circuit, which can be controlled as described above, was connected to each of the battery packs. Then, a test was performed on each of the assembled batteries under the same conditions as in the above-described embodiment, and as to the assembled batteries using the batteries A to F, almost the same results as those of the above-described unit cells were obtained. Was done.
[0048]
As described above, if a battery pack including a control circuit capable of controlling the state of charge to be maintained in an intermediate state using the batteries A to F of the present invention is configured, high output characteristics and low It is possible to provide an assembled battery including a nickel-hydrogen storage battery capable of maintaining a self-discharge rate for a long period of time. In this case, the SOC is preferably 20% to 80%, more preferably 20% to 80%, in order to prevent some of the batteries from being completely discharged or fully charged due to variations in the capacity due to the battery temperature difference depending on the battery specific or the arrangement position in the assembled battery. Is preferably controlled to be limited to 40 to 60%.
[0049]
【The invention's effect】
As described above, in the present invention, in the portion (x) located on the positive electrode current collector side (portion where the current density is high) and the negative electrode current collector side (portion where the current density is high) of the first separator 12a (22a). At the site (y) located, the high basis weight portions 12b, 12c (22b, 22c) having a higher basis weight than other regions are formed. For this reason, the hydrogen storage alloy component eluted in the alkaline electrolyte and a part of the mixture component constituting the positive electrode are prevented from being deposited on the separator 12 (22). As a result, the distance between the positive electrode and the negative electrode does not become short, and the distance between the positive electrode and the negative electrode is appropriately maintained, so that a micro short circuit between the positive electrode and the negative electrode is suppressed. As a result, it is possible to provide an alkaline storage battery that can maintain high output characteristics and a low self-discharge rate for a long period of time.
[0050]
Note that, in the above-described embodiment, an example is described in which a high basis weight portion having a higher basis weight is formed at both a portion located on the positive electrode current collector side and a portion located on the negative electrode current collector side of the separator than the other regions. As described above, even if a high-weighted portion whose basis weight is higher than that of other portions is formed on at least one of a portion located on the positive electrode current collector side or a portion located on the negative electrode current collector side of the separator, The self-discharge characteristics can be improved without impairing the performance.
[0051]
Further, in the above-described embodiment, an example has been described in which the second separators 12b and 12c (22b and 22c) are welded to the first separator 12a (22a) to form a high-weight portion. In doing so, another method other than this may be used. In this case, for example, a method may be considered in which the amount of fibers is adjusted when the separator is manufactured, and a high-weight portion is intentionally provided.
Furthermore, in the above-described embodiment, an example in which the alkaline storage battery of the present invention is applied to a nickel-hydrogen storage battery has been described, but not limited to a nickel-hydrogen storage battery, but may be applied to other alkaline storage batteries such as a nickel-cadmium storage battery. The present invention can be applied.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of a positive electrode, a negative electrode, and a separator. FIG. 1A is a front view schematically showing a positive electrode, and FIG. FIG. 1C is a front view schematically showing a state in which a portion is formed, and FIG. 1C is a diagram schematically showing a negative electrode.
FIG. 2 is a cross-sectional view schematically showing a main part in a state where a positive electrode and a negative electrode are arranged with a separator interposed therebetween.
FIG. 3 is a front view showing a positive electrode, a negative electrode, and a separator according to a modified example. FIG. 3 (a) is a front view schematically showing the positive electrode, and FIG. FIG. 3C is a front view schematically showing a state in which a basis weight is formed, and FIG. 3C is a diagram schematically showing a negative electrode.
[Explanation of symbols]
11: Nickel positive electrode, 11a: Nickel porous metal (core), 11b: Positive electrode active material slurry, 11c: Unfilled portion, 12: Separator, 12a: First separator, 12b, 12c ... Separator, 13: hydrogen storage alloy negative electrode, 13a: core, 13b: hydrogen storage alloy paste, 13c: unfilled portion, 21: nickel positive electrode, 21b: positive electrode active material slurry, 21c: positive electrode current collecting tab, 22: separator, 22a: first separator, 22b, 22c: second separator to be a high-weight part, 23: hydrogen storage alloy negative electrode, 23b: hydrogen storage paste, 23c: unfilled part

Claims (4)

正極と負極がセパレータを介して相対向するように形成された電極群を備えるとともに、該電極群の前記正極の端部に接続された正極集電体と前記負極の端部に接続された負極集電体とを備えたアルカリ蓄電池であって、
前記セパレータの前記正極集電体側に位置する部位あるいは前記負極集電体側に位置する部位の少なくとも一方は、目付が他の部位の目付よりも高い高目付部が形成されていることを特徴とするアルカリ蓄電池。
A positive electrode current collector connected to an end of the positive electrode of the electrode group, and a negative electrode connected to an end of the negative electrode. An alkaline storage battery comprising a current collector,
At least one of a portion of the separator located on the positive electrode current collector side or a portion of the separator located on the negative electrode current collector side is characterized in that a high basis weight portion having a basis weight higher than a basis weight of another region is formed. Alkaline storage battery.
前記高目付部は他の部位の目付よりも5〜10g/cmだけ目付が高いことを特徴とする請求項1に記載のアルカリ蓄電池。 2. The alkaline storage battery according to claim 1, wherein the high basis weight is higher by 5 to 10 g / cm 2 than the basis weight of other parts. 前記正極集電体側に位置する部位に形成された高目付部の幅あるいは前記負極集電体側に位置する部位に形成された高目付部の幅は前記セパレータの全幅に対して20%以下であることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池。The width of the high-weight portion formed on the portion located on the positive electrode current collector side or the width of the high-weight portion formed on the portion located on the negative electrode current collector side is 20% or less with respect to the entire width of the separator. The alkaline storage battery according to claim 1 or 2, wherein: 前記高目付部は目付が5〜10g/cmで前記セパレータの全幅に対して20%以下の幅を有する第2のセパレータが貼着されて形成されていることを特徴とする請求項1から請求項3のいずれかに記載のアルカリ蓄電池。2. The high-mass portion is formed by attaching a second separator having a basis weight of 5 to 10 g / cm 2 and having a width of 20% or less with respect to the entire width of the separator. 3. An alkaline storage battery according to claim 3.
JP2003118066A 2003-04-23 2003-04-23 Alkaline storage battery Withdrawn JP2004327146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118066A JP2004327146A (en) 2003-04-23 2003-04-23 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118066A JP2004327146A (en) 2003-04-23 2003-04-23 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2004327146A true JP2004327146A (en) 2004-11-18

Family

ID=33497718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118066A Withdrawn JP2004327146A (en) 2003-04-23 2003-04-23 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2004327146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170284A (en) * 2008-01-17 2009-07-30 Panasonic Corp Secondary battery
KR101538754B1 (en) * 2014-04-10 2015-07-30 (주)오렌지파워 A flexible electrode assembly, method of preparing therof and flexible battery the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170284A (en) * 2008-01-17 2009-07-30 Panasonic Corp Secondary battery
KR101538754B1 (en) * 2014-04-10 2015-07-30 (주)오렌지파워 A flexible electrode assembly, method of preparing therof and flexible battery the same

Similar Documents

Publication Publication Date Title
JP5273123B2 (en) Lithium ion secondary battery system and method for operating lithium ion secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP3943822B2 (en) Battery spiral electrode group and battery
US8802292B2 (en) Hydrogen-absorbing alloy for alkaline storage battery and method for manufacturing the same
US20050175896A1 (en) Hydrogen-absorbing alloy for alkaline storage batteries, alkaline storage battery, and method of manufacturing alkaline storage battery
CN106463786B (en) Nickel-hydrogen secondary battery
US8257862B2 (en) Alkaline storage battery
JP3744716B2 (en) Sealed alkaline storage battery
JP4497828B2 (en) Nickel-hydrogen storage battery and battery pack
US20150280285A1 (en) Accumulator system
JP3902330B2 (en) Cylindrical battery
JP2001325957A (en) Alkaline secondary cell
JP2004327146A (en) Alkaline storage battery
JP2004281289A (en) Alkaline storage battery
JP3802703B2 (en) Nickel metal hydride battery
JP2004227931A (en) Nonaqueous electrolyte rechargeable battery
JP3815511B2 (en) Nickel / metal hydride sealed alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP4443135B2 (en) Alkaline storage battery
JP4326121B2 (en) Alkaline storage battery
JP4573609B2 (en) Alkaline storage battery
JP3192694B2 (en) Alkaline storage battery
JP4626130B2 (en) Nickel-hydrogen storage battery
JPH05144432A (en) Electrode with hydrogen storage alloy
JP2003168422A (en) Square-shaped alkaline storage battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704