JP3802703B2 - Nickel metal hydride battery - Google Patents

Nickel metal hydride battery Download PDF

Info

Publication number
JP3802703B2
JP3802703B2 JP07633799A JP7633799A JP3802703B2 JP 3802703 B2 JP3802703 B2 JP 3802703B2 JP 07633799 A JP07633799 A JP 07633799A JP 7633799 A JP7633799 A JP 7633799A JP 3802703 B2 JP3802703 B2 JP 3802703B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
metal hydride
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07633799A
Other languages
Japanese (ja)
Other versions
JP2000268854A (en
Inventor
繁治 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP07633799A priority Critical patent/JP3802703B2/en
Publication of JP2000268854A publication Critical patent/JP2000268854A/en
Application granted granted Critical
Publication of JP3802703B2 publication Critical patent/JP3802703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はニッケル水素電池に関する。
【0002】
【従来の技術】
ニッケル水素電池は、ニッケル水酸化物やニッケル酸化物を基材とする正極活物質と、負極活物質として水素吸蔵合金(ミッシュメタル:Mm)を備えた負極とを有する。ニッケル水素電池は放電時間が長い利点をもち、注目を浴びている。
【0003】
ニッケル水素電池においては、正極活物質がニッケル水酸化物である場合、正極反応および負極反応は次のように考えられている。→は充電時、←は放電時を示す。
正極反応: Ni(OH)2+OH- →←NiO(OH)+H2O+e-
負極反応: Mm+H2O+e-→←MmH+OH-
上記したニッケル水素電池においては、実際の使用状況では過充電、過放電が行われることを考慮し、過剰な充電可能な容量(充電リザーブ)および過剰な放電可能な容量(放電リザーブ)を負極に設けている。つまり負極容量は正極容量よりも大きく設定されており、正極容量と負極容量との比率は、正極容量:負極容量=1:1.2(±0.2)程度とされている。過充電とは完全充電状態に達したあとの過剰な充電をいう。過放電とは、許容される終止電圧を越えて放電を続けることをいう。
【0004】
従来のニッケル水素電池においては過充電時には、負極の容量が大きいため、負極が満充電される前に正極が満充電され、正極から酸素ガスが発生するが、この酸素ガスは、負極の水素吸蔵合金に余分に吸蔵されていた水素ガスと反応して水に戻る。また負極では充電反応が停止し水素ガスの発生が抑制される。この結果、過充電時においてガスによる電池内圧の上昇が抑制され、液漏れや変形が抑制され、電池の密閉化が維持される。
【0005】
また過放電時には正極から水素が発生するが、負極で酸化吸収される反応が起こり、電池の密閉化が維持される。
このように従来のニッケル水素電池では、過充電時においても過放電時においても電池内圧の上昇が抑制され、電池の密閉化が維持される。
近年ニッケル水素電池においては、正極活物質の利用率を高める性質をもつ元素を正極活物質に添加することが行われている。このような代表的元素としてはCoがあげられる。Coを添加すれば、正極活物質の利用率を高めるのに有利となり、ニッケル水素電池の能力向上を図り得る。
【0006】
しかしながら産業界においては、ニッケル水素電池の有用性に鑑み、ニッケル水素電池の更なる性能の向上が要望されている。
【0007】
【発明が解決しようとする課題】
本発明は上記した実情に鑑みてなされたものであり、更なる性能の向上に貢献できるニッケル水素電池を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明者はニッケル水素電池について鋭意開発を進めている。本発明者は、正極活物質の利用率を高める性質をもつ元素を正極活物質に添加すれば、ニッケル水素電池の性能の向上には有利であるものの、充放電サイクルを多数回繰り返すと、殊に使用環境温度が高い状態(例えば40℃以上)で充放電サイクルを多数回繰り返すと、正極活物質相における当該元素の偏析が顕著となる傾向があり、この偏析の影響で、充放電のサイクル数がある値を越えたあたりからニッケル水素電池の性能の低下が誘発されることを知見した。
【0009】
そして本発明者は上記のような当該元素が正極活物質に添加された正極活物質相を備えたニッケル水素電池において、正極容量を負極容量よりも大きく設定すれば、つまり、正極容量:負極容量=(1.15〜2.0):1に設定すれば、充放電のサイクルを多数回繰り返したとしても、正極活物質相における当該元素の偏析を抑制できる作用があることを知見した。
【0010】
更に、当該元素の偏析を抑制できれば、正極活物質の利用率の向上効果を長期にわたり維持でき、ニッケル水素電池の長寿命化に貢献できることを本発明者は知見した。
即ち本発明に係るニッケル水素電池は、ニッケル水酸化物を基材とする正極活物質と、正極活物質に固溶され正極活物質の利用率を高める性質と充放電のサイクル数の増加に伴い偏析する性質とをもつ元素としてコバルトを含む正極活物質相を備えた正極と、
水素吸蔵合金を備えた負極とを有するニッケル水素電池であって、
正極活物質相は、Ni(・Co)(OH) で形成されており、
正極容量:負極容量=(1.15〜2.0):1に設定されており、充放電サイクルを繰り返したときにおけるコバルト成分の偏析を抑制して耐久性を高め、且つ、過充電および過放電しない状況下で使用されることを特徴とするものである。
【0011】
【発明の実施の形態】
本発明に係るニッケル水素電池においては、正極に係る正極活物質相は、ニッケル水酸化物およびニッケル酸化物の少なくとも一方を基材とする正極活物質と、正極活物質に添加され正極活物質の利用率を高める性質と充放電のサイクル数の増加に伴い偏析する性質とをもつ元素とを含む。当該元素としてはCoが代表的なものである
【0012】
正極活物質相において占める当該元素の含有量としては、例えば0.1〜5mass%程度、0.2〜3mass%程度にできるが、これに限定されるものではない。
正極活物質としてはNi(OH)2 、NiO(OH)があげられる。
負極は負極活物質としての水素吸蔵合金を備えている。水素吸蔵合金としては、AB5型のものを採用することができる。代表的なAB5型の水素吸蔵合金としては、AサイトをMm(ミッシュメタル)とし、BサイトをNiとしたMmNi5を採用することができる。この場合、Niの一部をCo、MnおよびAlの少なくとも1種で置換したものを採用することができる。例えばMmNi(・Co・Mn・Al)5を採用することができる。
【0013】
本発明に係るニッケル水素電池においては、負極容量よりも正極容量を増加させることを特徴とする。従って正極容量:負極容量=X:1に設定されている。Xとしては1.15〜2.0の範囲から任意値を採用することができる。
Xの値が上記範囲において増加すると、電池容量の低下が抑制され電池性能が向上するものの、正極容量が負極容量に対して増加するためニッケル水素電池のサイズが大きくなる。一方、Xの値が上記範囲において小さくなると、ニッケル水素電池のサイズの増加を抑え得るものの、電池容量の低下を抑制する効果が抑えられる傾向がある。
【0014】
従ってXの値としては上記した事情や価格などの要因を考慮して適宜選択することができる。Xの下限値としては上記範囲のうちの任意値から採用することができる。例えば、Xの下限値としては1.15,1.20,1.23,1.25,1.28,1.30,1.35,1.4等を採用することができる。
Xの上限値としては上記範囲のうちの任意値から採用することができる。例えば、Xの上限値としては1.9,1.8,1.7,1.6,1.5,1.4,1.3,1.2等を採用することができる。
【0015】
車両に搭載する場合等においては、Xとしては例えば1.15〜1.7の範囲あるいは1.2〜1.5の範囲を採用することができる。
正極容量とは、単位重量(1g)あたりの正極活物質相(ニッケル水酸化物またはニッケル酸化物,Coも含む)の電気量(mA・h/g)に、正極活物質相の重量(g)を乗じた値(mA・h)をいう。
【0016】
負極容量とは、単位重量(1g)あたりの負極活物質相の電気量(mA・h/g)に、負極活物質相の重量(g)を乗じた値(mA・h)をいう。
上記したように正極容量と負極容量との比率を設定すれば、充放電サイクルを多数回サイクル繰り返して実行したとしても、Co濃度が高い偏析相の発生を抑制することができ、従って正極活物質相におけるCo濃度が確保される。故に正極活物質の利用率を高めた正極活物質相の面積率を確保するのに有利となる。
【0017】
例えば、試験環境温度(外気温度)55℃において充放電サイクルを500サイクル行ったとき、Coを0.5mass%以上含む正極活物質相の面積率(Co偏析相の面積を除く)としては、従来技術に係るニッケル水素電池の電池に比較して本発明に係るニッケル水素電池では高くなる。即ち本発明に係るニッケル水素電池においては、Coを0.5mass%以上含む正極活物質相の面積率(Co偏析相の面積を除く)としては、例えば30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上にすることができる。
【0018】
本発明に係るニッケル水素電池においては、上記した正極は集電体と共に構成することが好ましい。負極も同様に集電体と共に構成することが好ましい。集電体としては、導電性をもつ材料で形成されたものを採用することができ、例えばニッケル系集電体、鉄系集電体を採用することができる。集電体の形態としては多孔性をもつものが好ましい。
【0019】
電解質としては一般的には電解液を用い、例えばアルカリ水溶液(水酸化カリウム、水酸化ナトリウム、水酸化リチウムなど)を採用することができる。
【0020】
【実施例】
以下、試験例に基づいて実施例を説明する。
本実施例においては円筒型電池を用いた。
正極はNi粉を焼結させた焼結式正極であり、Ni粉を含む集電体に正極活物質相を保持させて形成されている。集電体としては鉄系シートにNiめっき層を被覆したものを用いた。正極活物質相は、正極活物質としてのニッケル水酸化物と、これに添加されたCoとで形成されている。即ち正極活物質相としてはNi(・Co)(OH)2を用いた。ニッケル水酸化物にCoが固溶していることを、X線回折により本発明者は確認した。正極活物質相においてCoの含有量は約2mass%であった。
【0021】
負極は、AB5型の水素吸蔵合金を集電体に保持させて形成されている。集電体としては鉄系シートにNiめっき層を被覆したものを用いた。水素吸蔵合金としてはMmNi(・Co・Mn・Al)5を用いた。Mmはミッシュメタルをいう。MmはCe15mass%、La10mass%を含む他に、Nd,Prを含む。水素吸蔵合金においては、Ni約50mass%、Co約10mass%、Mn約5mass%、Al約2mass%、残部実質的にMmであった。
【0022】
上記した条件に基づいて形成した正極と負極とセパレータと電解液とをケースに組み込んで、円筒型の電池を作製した。初期の電池容量は6.3Ahに設定した。本実施例においては正極容量を負極容量よりも大きくし、正極容量:負極容量=1.2:1に設定した。
上記した電池を用い、充放電サイクルを繰り返して行い耐久試験を行った。耐久試験は、1C充電(1.3Vまで)→休止30分→1C放電(1.0Vまで)→休止30分を充放電サイクルの1サイクルとし、これを多数回繰り返した。試験環境温度(外気温度)は55℃であり、いわば高温耐久試験である。
【0023】
同様な条件で比較例に係る電池も作製した。比較例の電池においては、従来ののニッケル水素電池の場合と同様に、負極容量を正極容量よりも大きくし、正極容量:負極容量=1:1.2に設定した。比較例の電池の初期の電池容量は、実施例と同様に設定した。比較例の電池についても同様な条件で、充放電サイクルを繰り返して行い、耐久試験を行った。
【0024】
試験結果を図1に示す。図1において横軸は充放電サイクル数を示し、縦軸は電池容量(%)を示し、初期の電地容量を100%とした。比較例は図1において特性線B1として示されている。特性線B1に示すように、比較例においては400サイクル数を越えたあたりから、電池容量は低下し始め、500サイクル数付近で電池容量はかなり低下して0%近くとなる。
【0025】
これに対して実施例においては図1の特性線A1で示すように、電池容量が大きく低下するサイクル数を800サイクル数付近までのばすことができた。
また上記した実施例において正極容量:負極容量=1.2:1に設定したが、本発明者による知見によれば、正極容量:負極容量=1.3:1に設定した場合には図1において特性線A2となり、正極容量:負極容量=1.5:1に設定した場合には特性線A3となり、正極容量:負極容量=1.1:1に設定した場合には特性線A4となるものと考えられる。
【0026】
ところで従来技術に係るニッケル水素電池によれば、正極容量よりも負極容量を大きくしているのは、前述したように過充電や過放電が行われたときに、負極のリザーブ量で対処し、ガスによる内圧増加を抑制するためである。この点本実施例に係るニッケル水素電池においては、過充電や過放電が実行されないような形態で使用されることが好ましい。例えば、駆動源として内燃機関と電気モータとを併有するハイブリッドカーに搭載されるニッケル水素電池のように、過充電や過放電は本来的に行われにくいし、過充電や過放電が実行されないような制御形態が組込まれた状態で使用されることが好ましい。
【0027】
(EPMA分析)
上記した実施例に係る電池の正極活物質相、比較例に係る電池の正極活物質相について、充放電を行う前における初期組織、充電後の組織及び放電後の組織に対してEPMA分析(電子プローブマイクロアナリシス)を行った。EPMAの結果に基づいて図2(A)(B)を作成した。図2(A)は比較例に係る正極活物質相の組織を模式化したものである。図2(B)は実施例に係る正極活物質相の組織を模式化したものである。図2(A)(B)において、充電後の組織及び放電後の組織は、それぞれ充放電サイクルを数100サイクル実行した後のものである。
【0028】
図2(A)に示すように比較例の場合には、初期組織ではNi(・Co)(OH)2の相10であり、Coが均一に固溶されていた。充電後にはNi(・Co)OOHの相20がかなりの割合を占めているものの、Coが偏析した偏析相25が粒界に生成していた。偏析相25は分析結果に基づけばCoOOHと考えられる。更にCoの偏析の影響を受け、NiOOHを主体とする相27が生成していた。放電後には、偏析相25が残留しており、Ni(・Co)(OH)2の相10の他に、Ni(OH)2を主体とする相13が生成していた。
【0029】
本発明者が行ったEPMA分析によれば、相20,10におけるCo濃度は高かったが、相13,27におけるCo濃度は0.5mass%以下と低かった。このように比較例においては、ニッケル水酸化物の利用率を高めるためにCoを添加(固溶)しているものの、充放電サイクルが多数回繰り返されると、Coが偏析してしまうため、ニッケル水素電池の耐久性は必ずしも満足できるものではない。
【0030】
図2(B)に示すように実施例の場合には、初期組織は比較例の場合と同様にNi(・Co)(OH)2の相10であった。充電後にはNi(・Co)OOHとNi(・Co)(OH)2を主体とする相22となり、比較例のようなCoの偏析相はこのサイクル数では発現されなかった。放電後には、Ni(・Co)(OH)2の相10となっていた。EPMA分析によれば、充電後の相22におけるCo濃度、放電後の相10におけるCo濃度は高かった。本実施例のように正極容量に余裕を持たせておけば、充放電サイクルを多数回繰り返した場合であっても、Coが正極活物質相に固溶したままとなり易く、正極活物質相の利用率の低減が抑えられる。
【0031】
充放電サイクルを500サイクル実行したとき、Co濃度が0.5mass%以上含む正極活物質相の面積率をEPMA分析に基づいて、実施例および比較例について求めた。この場合には、Co濃度が10mass%以上の領域は、Co偏析相とみなしてカットした。即ち0.5mass%以上含む正極活物質相の面積には、Co偏析相の面積を含めなかった。
【0032】
比較例では、Co濃度が0.5mass%以上含む正極活物質相の面積率(Co偏析相の面積を除く)が10%程度であった。一方本実施例では、Co濃度が0.5mass%以上含む正極活物質相の面積率(Co偏析相の面積を除く)は30%以上であった。部位によっては、面積率が40%以上、50%以上、60%以上のところもあった。このことからも本実施例によれば、Co偏析相の発生を抑制してCoの均一分散化(固溶化)に貢献できることがわかる。
【0033】
(適用例)
図3は円筒型電池に適用した一例を示す。本例はニッケル水素電池であり、50はニッケル水酸化物にCoを添加した正極活物質相を備えた正極、52は水素吸蔵合金で形成された負極、54はセパレータ、60は円筒形状の外装缶、62は正極端子、64はシールパッキングを示す。本例においても正極容量は負極容量よりも大きく設定されている。
【0034】
本発明に係るニッケル水素電池はこのような円筒形のものに限定されるものではなく、ガム型でもよく、更には他の形状でも良いことは勿論であり、要旨を逸脱しない範囲内で適宜変更して実施できるものである。
(付記)
上記した記載から次の技術的思想も把握できる。
・試験環境温度55℃において充放電サイクルを500サイクル行ったとき、Coを0.5mass%以上含む正極活物質相の面積率(Co偏析相の面積を除く)は、30%以上であることを特徴とするニッケル水素電池。
・過充電及び過放電しない状況下で使用されることを特徴とする請求項1に係るニッケル水素電池。
・内燃機関と電動モータとを併有するハイブリッドカーに搭載されることを特徴とする請求項1に係るニッケル水素電池。
・正極活物質の利用率を高める性質をもつ元素(Co等)が正極活物質相に添加されており、充放電のサイクルの繰り返しに対して当該元素の偏析を抑制したことを特徴とする請求項1に係るニッケル水素電池。
【0035】
【発明の効果】
本発明に係るニッケル水素電池によれば、正極容量を負極容量よりも大きくしているため、充放電サイクルを多数回繰り返して行ったとき、電池容量の低下を抑制することができる。故に充放電サイクルの繰り返しに対するニッケル水素電池の耐久性を向上でき、長寿命化に有利となる。殊に、高温環境下で充放電サイクルを繰り返した場合であっても、耐久性を向上することができ、長寿命化に有利となる。
【図面の簡単な説明】
【図1】試験結果を示すグラフである。
【図2】EPMA分析結果に基づいて、初期組織、所定サイクルを経た後の充電後の組織および放電後の組織を模式的に示す組織構成図であり、(A)は比較例に係り、(B)は実施例に係る。
【図3】適用例に係る斜視図である。
【符号の説明】
図中、25は偏析相、10,22,27は活物質相を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nickel metal hydride battery.
[0002]
[Prior art]
The nickel metal hydride battery includes a positive electrode active material based on nickel hydroxide or nickel oxide, and a negative electrode including a hydrogen storage alloy (Misch metal: Mm) as a negative electrode active material. Nickel metal hydride batteries have gained attention because they have the advantage of a long discharge time.
[0003]
In a nickel metal hydride battery, when the positive electrode active material is nickel hydroxide, the positive electrode reaction and the negative electrode reaction are considered as follows. → indicates charging, ← indicates discharging.
Positive electrode reaction: Ni (OH) 2 + OH → ← NiO (OH) + H 2 O + e
Negative electrode reaction: Mm + H 2 O + e → ← MmH + OH
In the above-mentioned nickel metal hydride battery, in consideration of the fact that overcharge and overdischarge are performed in the actual usage situation, an excessively chargeable capacity (charge reserve) and an excessively dischargeable capacity (discharge reserve) are used as negative electrodes. Provided. That is, the negative electrode capacity is set larger than the positive electrode capacity, and the ratio of the positive electrode capacity to the negative electrode capacity is about positive electrode capacity: negative electrode capacity = 1: 1.2 (± 0.2). Overcharging refers to excessive charging after reaching a fully charged state. Overdischarge refers to continuing discharge over an allowable end voltage.
[0004]
In a conventional nickel metal hydride battery, the capacity of the negative electrode is large when overcharged, so the positive electrode is fully charged before the negative electrode is fully charged, and oxygen gas is generated from the positive electrode. It reacts with hydrogen gas stored in the alloy and returns to water. Further, the charging reaction is stopped at the negative electrode, and the generation of hydrogen gas is suppressed. As a result, an increase in the internal pressure of the battery due to gas during overcharging is suppressed, liquid leakage and deformation are suppressed, and the battery is kept sealed.
[0005]
Further, hydrogen is generated from the positive electrode during overdischarge, but a reaction that is oxidized and absorbed by the negative electrode occurs, and the battery is kept sealed.
As described above, in the conventional nickel metal hydride battery, the increase in the battery internal pressure is suppressed during overcharge and overdischarge, and the battery is kept sealed.
In recent years, in nickel metal hydride batteries, an element having a property of increasing the utilization rate of the positive electrode active material is added to the positive electrode active material. An example of such a representative element is Co. If Co is added, it is advantageous to increase the utilization rate of the positive electrode active material, and the capacity of the nickel metal hydride battery can be improved.
[0006]
However, in the industry, in view of the usefulness of nickel metal hydride batteries, further improvement in performance of nickel metal hydride batteries is desired.
[0007]
[Problems to be solved by the invention]
This invention is made | formed in view of the above-mentioned actual condition, and makes it a subject to provide the nickel hydride battery which can contribute to the improvement of the further performance.
[0008]
[Means for Solving the Problems]
The inventor has been intensively developing a nickel metal hydride battery. The present inventor is advantageous in improving the performance of the nickel-metal hydride battery by adding an element having the property of increasing the utilization rate of the positive electrode active material to the positive electrode active material. If the charge / discharge cycle is repeated many times in a state where the use environment temperature is high (for example, 40 ° C. or higher), the segregation of the element in the positive electrode active material phase tends to become remarkable, and the charge / discharge cycle is affected by this segregation. It was found that the performance of the nickel metal hydride battery was lowered from the point where the number exceeded a certain value.
[0009]
In the nickel-metal hydride battery including the positive electrode active material phase in which the element is added to the positive electrode active material, the present inventor can set the positive electrode capacity to be larger than the negative electrode capacity. = (1 15 to 2.0.): if set to 1, even repeated cycles of charge and discharge a number of times, and found that an effect capable of suppressing the segregation of the elements in the positive electrode active material phase.
[0010]
Furthermore, the present inventor has found that if the segregation of the element can be suppressed, the effect of improving the utilization rate of the positive electrode active material can be maintained over a long period of time, and the life of the nickel-metal hydride battery can be extended.
That NiMH battery according to the present invention, with a nickel hydroxide product and the positive electrode active material to the base material, the increase of the cycle number nature and charge and discharge to increase the utilization rate of the positive electrode active material is dissolved in the positive electrode active material a positive electrode having a positive electrode active material phase containing cobalt as an element having a property of segregation,
A nickel metal hydride battery having a negative electrode with a hydrogen storage alloy,
The positive electrode active material phase is formed of Ni (· Co) (OH) 2 ,
Positive electrode capacity: negative electrode capacity = (1 15 to 2.0.): 1 is set to a high order and durability by suppressing segregation of put Turkey Baltic component when repeated charge-discharge cycles, and, that it used in situations that do not overcharge and overdischarge are those characterized.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the nickel metal hydride battery according to the present invention, the positive electrode active material phase of the positive electrode includes a positive electrode active material based on at least one of nickel hydroxide and nickel oxide, and a positive electrode active material added to the positive electrode active material. And an element having a property of increasing the utilization factor and a property of segregating with an increase in the number of charge / discharge cycles. As the element is intended Co is typical.
[0012]
The content of the element in the positive electrode active material phase can be, for example, about 0.1 to 5 mass% or about 0.2 to 3 mass%, but is not limited thereto.
Examples of the positive electrode active material include Ni (OH) 2 and NiO (OH).
The negative electrode includes a hydrogen storage alloy as a negative electrode active material. As the hydrogen storage alloy, it can be formed of the 5 type AB. As a typical AB 5 type hydrogen storage alloy, MmNi 5 in which the A site is Mm (Misch metal) and the B site is Ni can be employed. In this case, a part of Ni can be substituted with at least one of Co, Mn and Al. For example, MmNi (· Co · Mn · Al) 5 can be employed.
[0013]
The nickel metal hydride battery according to the present invention is characterized in that the positive electrode capacity is increased more than the negative electrode capacity. Therefore, positive electrode capacity: negative electrode capacity = X: 1 is set. As X, An arbitrary value can be adopted from the range of 15 to 2.0.
When the value of X increases in the above range, the battery capacity is prevented from decreasing and the battery performance is improved. However, since the positive electrode capacity increases with respect to the negative electrode capacity, the size of the nickel hydrogen battery increases. On the other hand, when the value of X becomes smaller in the above range, an increase in the size of the nickel metal hydride battery can be suppressed, but the effect of suppressing a decrease in battery capacity tends to be suppressed.
[0014]
Therefore, the value of X can be appropriately selected in consideration of the factors such as the above circumstances and price. The lower limit of X can be adopted from any value within the above range. For example, the lower limit of X is 1 . 15, 1.20, 1.23, 1.25, 1.28, 1.30, 1.35, 1.4, etc. can be employed.
The upper limit value of X can be adopted from any value within the above range. For example, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, etc. can be adopted as the upper limit of X.
[0015]
In the case of mounting on a vehicle or the like, as X, for example, a range of 1.15 to 1.7 or a range of 1.2 to 1.5 can be adopted.
The positive electrode capacity is the amount of electricity (mA · h / g) of the positive electrode active material phase (including nickel hydroxide, nickel oxide, and Co) per unit weight (1 g), and the weight (g ) Multiplied by (mA · h).
[0016]
The negative electrode capacity is a value (mA · h) obtained by multiplying the amount of electricity (mA · h / g) of the negative electrode active material phase per unit weight (1 g) by the weight (g) of the negative electrode active material phase.
If the ratio between the positive electrode capacity and the negative electrode capacity is set as described above, the occurrence of a segregation phase having a high Co concentration can be suppressed even when the charge / discharge cycle is repeated many times. Co concentration in the phase is ensured. Therefore, it is advantageous to ensure the area ratio of the positive electrode active material phase in which the utilization rate of the positive electrode active material is increased.
[0017]
For example, when the charge / discharge cycle is performed 500 times at a test environment temperature (outside temperature) of 55 ° C., the area ratio of the positive electrode active material phase containing Co of 0.5 mass% or more (excluding the area of the Co segregation phase) is conventionally used. It becomes higher in the nickel metal hydride battery according to the present invention than in the nickel metal hydride battery according to the technology. That is, in the nickel metal hydride battery according to the present invention, the area ratio of the positive electrode active material phase containing Co of 0.5 mass% or more (excluding the area of the Co segregation phase) is, for example, 30% or more, 40% or more, 50% or more. 60% or more, 70% or more, 80% or more, or 90% or more.
[0018]
In the nickel metal hydride battery according to the present invention, the positive electrode described above is preferably configured together with a current collector. Similarly, the negative electrode is preferably configured together with the current collector. As the current collector, one formed of a conductive material can be employed, and for example, a nickel-based current collector or an iron-based current collector can be employed. The current collector is preferably porous.
[0019]
As the electrolyte, an electrolytic solution is generally used, and for example, an alkaline aqueous solution (potassium hydroxide, sodium hydroxide, lithium hydroxide, etc.) can be employed.
[0020]
【Example】
Examples will be described below based on test examples.
In this example, a cylindrical battery was used.
The positive electrode is a sintered positive electrode obtained by sintering Ni powder, and is formed by holding a positive electrode active material phase on a current collector containing Ni powder. As the current collector, an iron sheet coated with a Ni plating layer was used. The positive electrode active material phase is formed of nickel hydroxide as a positive electrode active material and Co added thereto. That is, Ni (.Co) (OH) 2 was used as the positive electrode active material phase. The present inventor confirmed by X-ray diffraction that Co was dissolved in nickel hydroxide. The content of Co in the positive electrode active material phase was about 2 mass%.
[0021]
The negative electrode is formed by holding an AB 5 type hydrogen storage alloy on a current collector. As the current collector, an iron sheet coated with a Ni plating layer was used. MmNi (· Co · Mn · Al) 5 was used as the hydrogen storage alloy. Mm refers to misch metal. Mm includes Ce15 mass% and La10 mass%, and also includes Nd and Pr. In the hydrogen storage alloy, Ni was about 50 mass%, Co was about 10 mass%, Mn was about 5 mass%, Al was about 2 mass%, and the balance was substantially Mm.
[0022]
A positive electrode, a negative electrode, a separator, and an electrolytic solution formed based on the above conditions were incorporated into a case to produce a cylindrical battery. The initial battery capacity was set to 6.3 Ah. In this example, the positive electrode capacity was set larger than the negative electrode capacity, and the positive electrode capacity: the negative electrode capacity = 1.2: 1 was set.
Using the above-described battery, a charge / discharge cycle was repeated and a durability test was performed. In the durability test, 1C charge (up to 1.3V) → rest 30 minutes → 1C discharge (up to 1.0V) → pause 30 minutes was defined as one charge / discharge cycle, which was repeated many times. The test environment temperature (outside air temperature) is 55 ° C., which is a high temperature endurance test.
[0023]
A battery according to the comparative example was also manufactured under the same conditions. In the battery of the comparative example, similarly to the case of the conventional nickel metal hydride battery, the negative electrode capacity was set larger than the positive electrode capacity, and the positive electrode capacity: negative electrode capacity = 1: 1.2 was set. The initial battery capacity of the comparative example battery was set in the same manner as in the example. The battery of the comparative example was also subjected to a durability test by repeating the charge / discharge cycle under the same conditions.
[0024]
The test results are shown in FIG. In FIG. 1, the horizontal axis indicates the number of charge / discharge cycles, the vertical axis indicates the battery capacity (%), and the initial electric capacity is 100%. The comparative example is shown as a characteristic line B1 in FIG. As shown by the characteristic line B1, in the comparative example, the battery capacity starts to decrease after the number of cycles exceeding 400, and the battery capacity decreases considerably to near 0% near the number of cycles 500.
[0025]
On the other hand, in the embodiment, as indicated by the characteristic line A1 in FIG. 1, the number of cycles in which the battery capacity is greatly reduced can be extended to about 800 cycles.
Further, in the above-described embodiment, the positive electrode capacity: the negative electrode capacity = 1.2: 1 is set. However, according to the knowledge of the present inventor, when the positive electrode capacity: the negative electrode capacity = 1.3: 1 is set, FIG. Characteristic line A2, and when the positive electrode capacity: negative electrode capacity = 1.5: 1 is set, the characteristic line A3 is obtained. When the positive electrode capacity: negative electrode capacity = 1.1: 1 is set, the characteristic line A4 is obtained. It is considered a thing.
[0026]
By the way, according to the nickel metal hydride battery according to the prior art, the negative electrode capacity is made larger than the positive electrode capacity when the overcharge or overdischarge is performed as described above, and the reserve amount of the negative electrode is dealt with. This is to suppress an increase in internal pressure due to gas. In this respect, the nickel metal hydride battery according to the present embodiment is preferably used in such a form that overcharge and overdischarge are not performed. For example, as in a nickel metal hydride battery mounted on a hybrid car that has both an internal combustion engine and an electric motor as a drive source, overcharge and overdischarge are inherently difficult to be performed, and overcharge and overdischarge are not performed. It is preferably used in a state in which a simple control form is incorporated.
[0027]
(EPMA analysis)
Regarding the positive electrode active material phase of the battery according to the above-described example and the positive electrode active material phase of the battery according to the comparative example, EPMA analysis (electron) was performed on the initial structure before charge / discharge, the structure after charge, and the structure after discharge. Probe microanalysis) was performed. 2A and 2B were created based on the results of EPMA. FIG. 2A schematically illustrates the structure of the positive electrode active material phase according to the comparative example. FIG. 2B schematically illustrates the structure of the positive electrode active material phase according to the example. 2A and 2B, the structure after charging and the structure after discharging are those after several hundreds of charge / discharge cycles, respectively.
[0028]
As shown in FIG. 2A, in the case of the comparative example, the initial structure was the phase 10 of Ni (.Co) (OH) 2 , and Co was uniformly dissolved. After charging, the Ni (.Co) OOH phase 20 accounted for a considerable proportion, but a segregated phase 25 in which Co segregated was generated at the grain boundaries. The segregation phase 25 is considered to be CoOOH based on the analysis result. Further, under the influence of Co segregation, a phase 27 mainly composed of NiOOH was formed. After the discharge, the segregation phase 25 remained, and in addition to the Ni (.Co) (OH) 2 phase 10, the phase 13 mainly composed of Ni (OH) 2 was generated.
[0029]
According to the EPMA analysis conducted by the present inventors, the Co concentration in the phases 20 and 10 was high, but the Co concentration in the phases 13 and 27 was as low as 0.5 mass% or less. Thus, in the comparative example, Co is added (solid solution) to increase the utilization rate of nickel hydroxide, but Co is segregated when the charge / discharge cycle is repeated many times. The durability of hydrogen batteries is not always satisfactory.
[0030]
As shown in FIG. 2B, in the case of the example, the initial structure was the phase 10 of Ni (.Co) (OH) 2 as in the case of the comparative example. After charging, the phase 22 was mainly composed of Ni (.Co) OOH and Ni (.Co) (OH) 2 , and the segregated phase of Co as in the comparative example was not expressed at this cycle number. After discharge, the phase was Ni (.Co) (OH) 2 . According to the EPMA analysis, the Co concentration in the phase 22 after charging and the Co concentration in the phase 10 after discharging were high. If a positive electrode capacity is provided as in this example, even if the charge / discharge cycle is repeated many times, Co tends to remain in solid solution in the positive electrode active material phase, and the positive electrode active material phase Reduction of utilization rate is suppressed.
[0031]
When the charge / discharge cycle was executed 500 times, the area ratio of the positive electrode active material phase containing Co concentration of 0.5 mass% or more was determined for Examples and Comparative Examples based on EPMA analysis. In this case, the region where the Co concentration was 10 mass% or more was cut as a Co segregation phase. That is, the area of the positive electrode active material phase containing 0.5 mass% or more did not include the area of the Co segregation phase.
[0032]
In the comparative example, the area ratio (excluding the area of the Co segregation phase) of the positive electrode active material phase containing Co concentration of 0.5 mass% or more was about 10%. On the other hand, in this example, the area ratio (excluding the area of the Co segregation phase) of the positive electrode active material phase containing Co concentration of 0.5 mass% or more was 30% or more. Depending on the part, the area ratio was 40% or more, 50% or more, or 60% or more. This also shows that according to the present example, it is possible to suppress the occurrence of Co segregation phase and contribute to uniform dispersion (solid solution) of Co.
[0033]
(Application example)
FIG. 3 shows an example applied to a cylindrical battery. This example is a nickel metal hydride battery, 50 is a positive electrode provided with a positive electrode active material phase obtained by adding Co to nickel hydroxide, 52 is a negative electrode formed of a hydrogen storage alloy, 54 is a separator, and 60 is a cylindrical exterior. A can, 62 is a positive electrode terminal, and 64 is a seal packing. Also in this example, the positive electrode capacity is set larger than the negative electrode capacity.
[0034]
The nickel metal hydride battery according to the present invention is not limited to such a cylindrical one, but may be of a gum type, and may be of other shapes, and may be changed as appropriate without departing from the scope of the invention. Can be implemented.
(Appendix)
The following technical idea can also be grasped from the above description.
When the charge / discharge cycle is performed 500 times at a test environment temperature of 55 ° C., the area ratio of the positive electrode active material phase containing Co of 0.5 mass% or more (excluding the area of the Co segregation phase) is 30% or more. Nickel metal hydride battery.
The nickel-metal hydride battery according to claim 1, wherein the nickel-metal hydride battery is used in a situation where it is not overcharged or overdischarged.
The nickel metal hydride battery according to claim 1, wherein the nickel metal hydride battery is mounted on a hybrid car having both an internal combustion engine and an electric motor.
An element having a property of increasing the utilization rate of the positive electrode active material (Co or the like) is added to the positive electrode active material phase, and segregation of the element is suppressed with respect to repeated charge / discharge cycles. A nickel metal hydride battery according to Item 1.
[0035]
【The invention's effect】
According to the nickel metal hydride battery according to the present invention, since the positive electrode capacity is made larger than the negative electrode capacity, it is possible to suppress a decrease in battery capacity when the charge / discharge cycle is repeated many times. Therefore, the durability of the nickel metal hydride battery against repeated charge / discharge cycles can be improved, which is advantageous for extending the life. In particular, even when the charge / discharge cycle is repeated in a high temperature environment, the durability can be improved, which is advantageous for extending the life.
[Brief description of the drawings]
FIG. 1 is a graph showing test results.
FIG. 2 is a structure diagram schematically showing an initial structure, a structure after charging after passing through a predetermined cycle, and a structure after discharging based on the EPMA analysis results, (A) relates to a comparative example, B) relates to an example.
FIG. 3 is a perspective view according to an application example.
[Explanation of symbols]
In the figure, 25 indicates a segregation phase, 10, 22, and 27 indicate active material phases.

Claims (1)

ニッケル水酸化物を基材とする正極活物質と、前記正極活物質に固溶され前記正極活物質の利用率を高める性質と充放電のサイクル数の増加に伴い偏析する性質とをもつ元素としてコバルトを含む正極活物質を備えた正極と、
負極活物質として水素吸蔵合金を備えた負極とを有するニッケル水素電池であって
正極活物質相は、Ni(・Co)(OH) で形成されており、
正極容量:負極容量=(1.15〜2.0):1に設定されており、充放電サイクルを繰り返したときにおけるコバルト成分の偏析を抑制して耐久性を高め、且つ、過充電および過放電しない状況下で使用されることを特徴とするニッケル水素電池。
As an element having a cathode active material for a nickel hydroxide product and the substrate, and a property of segregation with increasing of the positive electrode active material being a solid solution said number of positive electrode active material increasing the utilization characteristics and charge-discharge cycle a positive electrode having a positive electrode active material phase containing cobalt,
A nickel metal hydride battery having a negative electrode with a hydrogen storage alloy as a negative electrode active material,
The positive electrode active material phase is formed of Ni (· Co) (OH) 2 ,
Positive electrode capacity: negative electrode capacity = (1 15 to 2.0.): 1 is set to a high order and durability by suppressing segregation of put Turkey Baltic component when repeated charge-discharge cycles, and, NiMH batteries characterized that you used in situations that do not overcharge and overdischarge.
JP07633799A 1999-03-19 1999-03-19 Nickel metal hydride battery Expired - Fee Related JP3802703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07633799A JP3802703B2 (en) 1999-03-19 1999-03-19 Nickel metal hydride battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07633799A JP3802703B2 (en) 1999-03-19 1999-03-19 Nickel metal hydride battery

Publications (2)

Publication Number Publication Date
JP2000268854A JP2000268854A (en) 2000-09-29
JP3802703B2 true JP3802703B2 (en) 2006-07-26

Family

ID=13602559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07633799A Expired - Fee Related JP3802703B2 (en) 1999-03-19 1999-03-19 Nickel metal hydride battery

Country Status (1)

Country Link
JP (1) JP3802703B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626130B2 (en) * 2003-07-02 2011-02-02 パナソニック株式会社 Nickel-hydrogen storage battery
JP5531220B2 (en) * 2011-09-21 2014-06-25 エクセルギー・パワー・システムズ株式会社 Stacked battery and stacked battery system
BR112014014964B1 (en) * 2011-11-19 2021-03-02 Exergy Power Systems, Inc cell layer, battery assembled including cell layer and method for assembling cell layer
JP6620689B2 (en) * 2016-07-01 2019-12-18 トヨタ自動車株式会社 Battery system

Also Published As

Publication number Publication date
JP2000268854A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3802703B2 (en) Nickel metal hydride battery
JP3515286B2 (en) Electrodes for secondary batteries
JP2962326B1 (en) Nickel-hydrogen storage battery for backup power supply
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JPH04212269A (en) Alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2579072B2 (en) Hydrogen storage alloy electrode
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2013134904A (en) Alkaline storage battery and alkaline storage battery system including the same
JP3071026B2 (en) Metal hydride storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH05283071A (en) Activation of metal hydride storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2001223000A (en) Alkaline secondary battery
JPH05144432A (en) Electrode with hydrogen storage alloy
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP3343413B2 (en) Alkaline secondary battery
JPH06163072A (en) Metal-hydride secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041201

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees