JP4567990B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP4567990B2
JP4567990B2 JP2004034513A JP2004034513A JP4567990B2 JP 4567990 B2 JP4567990 B2 JP 4567990B2 JP 2004034513 A JP2004034513 A JP 2004034513A JP 2004034513 A JP2004034513 A JP 2004034513A JP 4567990 B2 JP4567990 B2 JP 4567990B2
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
positive electrode
secondary battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004034513A
Other languages
Japanese (ja)
Other versions
JP2005228541A (en
Inventor
仁史 前田
和宏 内山
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004034513A priority Critical patent/JP4567990B2/en
Publication of JP2005228541A publication Critical patent/JP2005228541A/en
Application granted granted Critical
Publication of JP4567990B2 publication Critical patent/JP4567990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

この発明は二次電池に係り、特に、正極と、正極と、酸素ガスを吸収する負極材料のペーストを集電体に塗布し、乾燥、圧延させた負極と、正極と負極との間に設けたセパレータと、アルカリ電解液とを電池容器内に収容させた二次電池において、負極に、活物質と結着剤とを含む電極材料が導電性支持体に付与されたものを用いた場合に、電池の特性を低下させることなく、電極から活物質が脱落するのを防止し、正極で発生した酸素ガスが負極で適切に吸収されるようにした点に特徴を有するものである。
The present invention relates to a secondary battery, and in particular, a positive electrode, a positive electrode, and a negative electrode material that absorbs oxygen gas applied to a current collector, dried and rolled , and provided between the positive electrode and the negative electrode. In a secondary battery in which a separator and an alkaline electrolyte are contained in a battery container, a negative electrode is used in which an electrode material including an active material and a binder is applied to a conductive support. It is characterized in that the active material is prevented from falling off the electrode without deteriorating the characteristics of the battery, and the oxygen gas generated at the positive electrode is appropriately absorbed by the negative electrode.

従来より、正極や負極における活物質の量を多くして高エネルギー密度の二次電池を得るために、正極や負極として、活物質と結着剤とを含む電極材料をパンチングメタル等の導電性支持体に付与させたものが用いられている。   Conventionally, in order to obtain a secondary battery having a high energy density by increasing the amount of active material in the positive electrode and the negative electrode, the electrode material including the active material and the binder is used as a conductive material such as punching metal as the positive electrode and the negative electrode. What was provided to the support body is used.

ここで、このような二次電池においては、充放電によって電極の表面にひび割れが生じたり、電極から活物質が脱落して短絡が生じたりし、これによってサイクル特性等の電池特性が大きく低下するという問題があった。   Here, in such a secondary battery, the surface of the electrode is cracked by charging / discharging, or the active material is dropped from the electrode to cause a short circuit, thereby greatly reducing battery characteristics such as cycle characteristics. There was a problem.

このため、従来においては、上記のように活物質と結着剤とを含む電極材料を導電性支持体に付与させた電極の表面に結着剤を塗布して、電極の強度を高めるようにしたり、導電性支持体に非水溶性結着剤を塗布して、導電性支持体と活物質との結着力を高めることが提案されている(例えば、特許文献1参照。)。   For this reason, conventionally, a binder is applied to the surface of an electrode obtained by applying an electrode material containing an active material and a binder to a conductive support as described above to increase the strength of the electrode. Alternatively, it has been proposed to increase the binding force between the conductive support and the active material by applying a water-insoluble binder to the conductive support (for example, see Patent Document 1).

しかし、上記のように電極表面に結着剤を塗布したり、導電性支持体に非水溶性結着剤を塗布した場合においては、これにより電極の抵抗が上昇して、電池の充放電特性等が低下するという問題があった。
特開2001−266888号公報
However, when a binder is applied to the electrode surface as described above or a water-insoluble binder is applied to the conductive support, this increases the resistance of the electrode, and the charge / discharge characteristics of the battery Etc. had a problem of lowering.
JP 2001-266888 A


この発明は、正極と、酸素ガスを吸収する負極材料のペーストを集電体に塗布し、乾燥、圧延させた負極と、正極と負極との間に設けたセパレータと、アルカリ電解液とを電池容器内に収容させた二次電池において、その負極に、活物質と結着剤とを含む電極材料を導電性支持体に付与させたものを用いた場合における上記のような問題を解決することを課題とするものである。


The present invention provides a battery comprising a positive electrode, a negative electrode material applied with a paste of a negative electrode material that absorbs oxygen gas , dried and rolled , a separator provided between the positive electrode and the negative electrode, and an alkaline electrolyte. To solve the above-described problems in a case where an electrode material containing an active material and a binder is applied to a negative electrode in a secondary battery housed in a container. Is an issue.

すなわち、この発明は、上記のような二次電池において、電極の抵抗が上昇して電池の充放電特性が低下するということがなく、電極の表面にひび割れが生じたり、電極から活物質が脱落したりするのを確実に防止できるようにすると共に、正極で発生した酸素ガスを負極で適切に吸収させることを課題とするものである。

That is, according to the present invention, in the secondary battery as described above, the resistance of the electrode does not increase and the charge / discharge characteristics of the battery do not deteriorate, the surface of the electrode is cracked, or the active material is dropped from the electrode both the then to be able to reliably prevent the or, it is an object thereof to properly absorb oxygen gas generated at the positive electrode at the negative electrode.

この発明においては、上記のような課題を解決するため、正極と、酸素ガスを吸収する負極と、正極と負極との間に設けたセパレータと、アルカリ電解液とを電池容器内に収容させた二次電池において、上記の負極に、活物質と結着剤とを含む電極材料を導電性支持体に付与させたものを用いた場合に、この電極の表面に上記のセパレータと同じ材料で構成された被覆層を設けるようにしたのである。
In the present invention, in order to solve the above problems, a positive electrode, a negative electrode that absorbs oxygen gas, a separator provided between the positive electrode and the negative electrode, and an alkaline electrolyte are contained in a battery container. In a secondary battery, when an electrode material containing an active material and a binder is applied to the negative electrode , the surface of the electrode is made of the same material as the separator. A coated layer was provided.

ここで、上記の二次電池の構造は特に限定されないが、電極の表面にひび割れが生じたり、電極から活物質が脱落したりするのを防止するという点からは、活物質と結着剤とを含む電極材料を導電性支持体に付与させた面積が大きいものに対して有効であり、セパレータを正極と負極との間に挟み込んで多層状、例えば渦巻き状に捲回したものに対して有効である。   Here, the structure of the secondary battery is not particularly limited. However, from the viewpoint of preventing the surface of the electrode from cracking or dropping of the active material from the electrode, the active material and the binder Effective for a large area where an electrode material containing a conductive support is applied to a conductive support, and effective for a multi-layered structure such as a spiral wound sandwiching a separator between a positive electrode and a negative electrode It is.

また、上記のセパレータや被覆層に用いる材料についても特に限定されないが、例えば、アルカリ電解液等の電解液に対して安定であり、低融点で加工が容易なポリオレフィンを用いることが好ましい。   Further, the material used for the separator or the coating layer is not particularly limited. For example, it is preferable to use a polyolefin that is stable to an electrolytic solution such as an alkaline electrolytic solution and has a low melting point and can be easily processed.

この発明における二次電池においては、上記のように負極に、活物質と結着剤とを含む電極材料を導電性支持体に付与させたものを用いた場合に、この電極の表面に上記のセパレータと同じ材料で構成された被覆層を設けるようにしたため、この被覆層により電極表面にひび割れが生じたり、電極から活物質が脱落したりするのが防止される。
また、この発明における二次電池においては、上記のように負極の表面にセパレータと同じ材料で構成された被覆層を設けると、この被覆層においてもセパレータと同様にガスが適切に透過されるようになり、正極で発生した酸素ガスが負極で適切に吸収されるようになる。
In the secondary battery in the present invention, the negative electrode as described above, when using those obtained by applying an electrode material containing an active material and a binder on a conductive support, above the surface of the electrode Since the coating layer made of the same material as the separator is provided, the coating layer prevents cracks on the electrode surface and the active material from falling off the electrode.
Further, in the secondary battery according to the present invention, when the coating layer made of the same material as the separator is provided on the surface of the negative electrode as described above, gas can be appropriately permeated through the coating layer as well as the separator. Thus, the oxygen gas generated at the positive electrode is appropriately absorbed by the negative electrode.

また、この発明における二次電池においては、上記のように被覆層にセパレータと同じ材料を用いているため、この被覆層にもセパレータと同様に電解液が適切に含浸されるようになり、従来のように電極の抵抗が上昇するのが抑制されて、電池の充放電特性等が低下するのが防止され、またセパレータの厚みを薄くすることも可能になり、活物質の充填量を多くして、電池の容量を高めることも可能になる。   In the secondary battery according to the present invention, since the same material as the separator is used for the coating layer as described above, the coating layer is appropriately impregnated with the electrolytic solution similarly to the separator. In this way, it is possible to prevent the resistance of the electrode from rising and to prevent the charge / discharge characteristics of the battery from being lowered, and it is also possible to reduce the thickness of the separator, thereby increasing the filling amount of the active material. Thus, it is possible to increase the capacity of the battery.

以下、この発明に係る二次電池について実施例を挙げて具体的に説明すると共に、この実施例における二次電池においては、電極から活物質が脱落して短絡が生じたりするのが抑制されて、サイクル特性が低下するのが防止されることを、比較例を挙げて明らかにする。なお、この発明における二次電池は、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the secondary battery according to the present invention will be described in detail with reference to examples, and in the secondary battery in this example, it is suppressed that the active material is dropped from the electrode and a short circuit occurs. It will be clarified by giving a comparative example that the cycle characteristics are prevented from deteriorating. In addition, the secondary battery in this invention is not limited to what was shown in the following Example, It can implement by changing suitably in the range which does not change the summary.

(実施例)
この実施例においては、正極を作製するにあたり、活物質となる水酸化ニッケル粉末を87重量部、酸化亜鉛粉末を3重量部、水酸化コバルト粉末を10重量部の割合で混合させ、これに結着剤のヒドロキシプロピルセルロースの0.2重量%水溶液を50重量部加え、これらを混合して正極材料のペーストを調製した。そして、このペーストを、目付けが約600g/m2,多孔度が95%,厚みが約2mmのニッケル発泡体からなる導電性支持体の両面に塗布して空孔内に充填させ、これを乾燥させ、上記の活物質密度が約2.9g/cm3−voidになるように圧延させた後、これを所定の寸法に切断して、非焼結式ニッケル極からなる正極を作製した。
(Example)
In this example, in preparing the positive electrode, 87 parts by weight of nickel hydroxide powder as an active material, 3 parts by weight of zinc oxide powder, and 10 parts by weight of cobalt hydroxide powder were mixed together. 50 parts by weight of a 0.2% by weight aqueous solution of hydroxypropylcellulose as an adhesive was added and mixed to prepare a paste of positive electrode material. Then, this paste is applied to both sides of a conductive support made of nickel foam having a basis weight of about 600 g / m 2 , a porosity of 95% and a thickness of about 2 mm, and filled in the pores, and then dried. The resulting active material was rolled so that the active material density was about 2.9 g / cm 3 -void, and then cut into a predetermined size to produce a positive electrode made of a non-sintered nickel electrode.

また、負極を作製するにあたっては、活物質となる組成式MmNi3.2Co1.0Al0.2Mn0.6(但し、MmはLa、Ce、Pr、Ndが25:50:6:19の重量比になったミッシュメタルである。)で表される平均粒径が50μmの水素吸蔵合金粒子100重量部に、結着剤のポリエチレンオキシドとポリビニルピロリドンとが1:1の重量比で混合された混合物を1.0重量部加えると共に少量の水とを加え、これらを均一に混合して負極材料のペーストを調製した。そして、このペーストをニッケルめっきしたパンチングメタルからなる集電体の両面に均一に塗布し、これを乾燥し圧延させて、水素吸蔵合金電極からなる負極を作製した。 In preparing the negative electrode, the composition formula MmNi 3.2 Co 1.0 Al 0.2 Mn 0.6 used as the active material (where Mm is La, Ce, Pr, Nd is a weight ratio of 25: 50: 6: 19) A mixture obtained by mixing 100 parts by weight of hydrogen storage alloy particles having an average particle diameter of 50 μm and a binder of polyethylene oxide and polyvinylpyrrolidone at a weight ratio of 1: 1 is 1.0. While adding a part by weight, a small amount of water was added, and these were uniformly mixed to prepare a paste of a negative electrode material. And this paste was apply | coated uniformly on both surfaces of the collector which consists of a nickel-plated punching metal, this was dried and rolled, and the negative electrode which consists of a hydrogen storage alloy electrode was produced.

また、セパレータとしては、厚みが0.1mmのポリエチレン製の不織布を使用し、電解液としては、30重量%の水酸化カリウム水溶液からなるアルカリ電解液を使用するようにした。   Further, a polyethylene non-woven fabric having a thickness of 0.1 mm was used as the separator, and an alkaline electrolyte made of a 30% by weight potassium hydroxide aqueous solution was used as the electrolyte.

また、この実施例においては、上記のように作製した正極及び負極の両面に、それぞれ上記のセパレータと同じポリエチレンのパウダーを付着させ、これをホットプレスにより加熱溶融させて、正極及び負極の両面にポリエチレンの被覆層を形成した。   Further, in this example, the same polyethylene powder as that of the separator was attached to both sides of the positive electrode and the negative electrode produced as described above, and this was heated and melted by hot pressing to form both sides of the positive electrode and the negative electrode. A polyethylene coating layer was formed.

そして、この実施例においては、これらを使用して設計容量が1500mAhになった図1に示すような円筒型の二次電池を作製した。   In this example, a cylindrical secondary battery as shown in FIG. 1 having a design capacity of 1500 mAh was produced using these.

ここで、上記の二次電池を作製するにあたっては、図1に示すように、上記のように両面にポリエチレンの被覆層を形成した正極1と負極2との間に上記のセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させると共に、この電池缶4内に上記のアルカリ電解液を注液した後、電池缶4と正極蓋6との間に絶縁パッキン8を介して封口し、正極1を正極リード5を介して正極蓋6に接続させると共に、負極2を負極リード7を介して電池缶4に接続させ、上記の絶縁パッキン8により電池缶4と正極蓋6とを電気的に分離させた。また、上記の正極蓋6と正極外部端子9との間にコイルスプリング10を設け、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて電池内部のガスが大気中に放出されるようにした。   Here, in producing the secondary battery, as shown in FIG. 1, the separator 3 is interposed between the positive electrode 1 and the negative electrode 2 having the polyethylene coating layers on both sides as described above. These are wound in a spiral shape and accommodated in the battery can 4, and the alkaline electrolyte is poured into the battery can 4, and then the insulating packing 8 is interposed between the battery can 4 and the positive electrode lid 6. The positive electrode 1 is connected to the positive electrode lid 6 via the positive electrode lead 5 and the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7, and the battery can 4 and the positive electrode lid 6 are connected by the insulating packing 8. And were electrically separated. In addition, when a coil spring 10 is provided between the positive electrode lid 6 and the positive electrode external terminal 9 and the internal pressure of the battery rises abnormally, the coil spring 10 is compressed and the gas inside the battery is brought into the atmosphere. To be released.

(比較例)
比較例においては、上記の実施例において作製した正極及び負極の両面にポリエチレンの被覆層を設けないようにし、それ以外は、上記の実施例の場合と同様にして、二次電池を作製した。
(Comparative example)
In the comparative example, a secondary battery was produced in the same manner as in the above example except that the polyethylene coating layer was not provided on both surfaces of the positive electrode and the negative electrode produced in the above example.

そして、上記のように作製した実施例及び比較例の各二次電池を、25℃の温度条件の下で、それぞれ150mAで16時間充電させた後、750mAで1.0Vまで放電させ、これを1サイクルとして、10サイクルの充放電を繰り返して、各二次電池を活性化させた。   And after charging each secondary battery of the Example and Comparative Example produced as described above at 150 mA for 16 hours under a temperature condition of 25 ° C., it was discharged to 1.0 V at 750 mA, Each cycle was activated by repeating 10 cycles of charge and discharge as one cycle.

次いで、このように活性化された実施例及び比較例の各二次電池を、それぞれ25℃の温度条件の下で、1500mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させ、これを10分間放置させた後、1500mAの電流で電池電圧が1.0Vになるまで放電させ、これを10分間放置させるようにし、これを1サイクルとして充放電を繰り返して行った。   Next, the secondary batteries of the example and comparative example thus activated were charged under a temperature condition of 25 ° C., respectively, at a current of 1500 mA until the battery voltage reached the maximum value until the battery voltage decreased by 10 mV. The battery was allowed to stand for 10 minutes, and then discharged at a current of 1500 mA until the battery voltage reached 1.0 V. The battery was allowed to stand for 10 minutes, and this was repeated for charge and discharge as one cycle.

この結果、上記の比較例の二次電池においては、500サイクル前に短絡が生じて寿命となったが、実施例の二次電池においては、1000サイクルの充放電を行った時点においても、短絡が生じていなかった。   As a result, in the secondary battery of the above comparative example, a short circuit occurred 500 cycles before the end of the life, but in the secondary battery of the example, even when the charge / discharge of 1000 cycles was performed, the short circuit occurred. Did not occur.

この発明の実施例及び比較例において作製した二次電池の概略断面図である。It is a schematic sectional drawing of the secondary battery produced in the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池缶
5 正極リード
6 正極蓋
7 負極リード
8 絶縁パッキン
9 正極外部端子
10 コイルスプリング
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery can 5 Positive electrode lead 6 Positive electrode lid 7 Negative electrode lead 8 Insulation packing 9 Positive electrode external terminal 10 Coil spring

Claims (3)


正極と、酸素ガスを吸収する負極材料のペーストを集電体に塗布し、乾燥、圧延させた負極と、正極と負極との間に設けたセパレータと、アルカリ電解液とを電池容器内に収容させた二次電池において、上記の負極が、活物質と結着剤とを含む電極材料が導電性支持体に付与されてなると共に、上記の負極表面に上記のセパレータと同じ材料で構成された被覆層が設けられてなることを特徴とする二次電池。

A positive electrode, a negative electrode material paste that absorbs oxygen gas, is applied to a current collector, dried and rolled , a separator provided between the positive electrode and the negative electrode, and an alkaline electrolyte contained in a battery container In the rechargeable battery, the negative electrode has an electrode material containing an active material and a binder applied to the conductive support, and the negative electrode surface is made of the same material as the separator. A secondary battery comprising a coating layer.
請求項1に記載した二次電池において、上記のセパレータを正極と負極との間に挟み込んで多層状に構成したことを特徴とする二次電池。   The secondary battery according to claim 1, wherein the separator is sandwiched between a positive electrode and a negative electrode and configured in a multilayer shape. 請求項1又は請求項2に記載した二次電池において、上記のセパレータ及び被覆層の材料にポリオレフィンを用いたことを特徴とする二次電池。   The secondary battery according to claim 1 or 2, wherein a polyolefin is used as a material for the separator and the coating layer.
JP2004034513A 2004-02-12 2004-02-12 Secondary battery Expired - Fee Related JP4567990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004034513A JP4567990B2 (en) 2004-02-12 2004-02-12 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004034513A JP4567990B2 (en) 2004-02-12 2004-02-12 Secondary battery

Publications (2)

Publication Number Publication Date
JP2005228541A JP2005228541A (en) 2005-08-25
JP4567990B2 true JP4567990B2 (en) 2010-10-27

Family

ID=35003080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004034513A Expired - Fee Related JP4567990B2 (en) 2004-02-12 2004-02-12 Secondary battery

Country Status (1)

Country Link
JP (1) JP4567990B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10573927B2 (en) 2013-02-01 2020-02-25 Nippon Shokubai Co., Ltd. Electrode precursor, electrode, and cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373330A (en) * 1976-12-10 1978-06-29 Matsushita Electric Ind Co Ltd Rechargeable enclosed type battery
JPS547543A (en) * 1977-06-20 1979-01-20 Matsushita Electric Ind Co Ltd Lead storage battery
JPS5427935A (en) * 1977-08-03 1979-03-02 Matsushita Electric Ind Co Ltd Method of making iron electrode
JPS54134332A (en) * 1978-04-07 1979-10-18 Japan Storage Battery Co Ltd Nonnelectrolyte cell
JP2001210300A (en) * 2000-01-28 2001-08-03 Nitto Denko Corp Separator for alkaline storage battery and its production
JP2002184384A (en) * 2000-12-18 2002-06-28 Nitto Denko Corp Separator for cell
JP2002216737A (en) * 2000-04-05 2002-08-02 Nitto Denko Corp Battery
JP2003051302A (en) * 2001-08-06 2003-02-21 Nitto Denko Corp Separator for alkaline secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373330A (en) * 1976-12-10 1978-06-29 Matsushita Electric Ind Co Ltd Rechargeable enclosed type battery
JPS547543A (en) * 1977-06-20 1979-01-20 Matsushita Electric Ind Co Ltd Lead storage battery
JPS5427935A (en) * 1977-08-03 1979-03-02 Matsushita Electric Ind Co Ltd Method of making iron electrode
JPS54134332A (en) * 1978-04-07 1979-10-18 Japan Storage Battery Co Ltd Nonnelectrolyte cell
JP2001210300A (en) * 2000-01-28 2001-08-03 Nitto Denko Corp Separator for alkaline storage battery and its production
JP2002216737A (en) * 2000-04-05 2002-08-02 Nitto Denko Corp Battery
JP2002184384A (en) * 2000-12-18 2002-06-28 Nitto Denko Corp Separator for cell
JP2003051302A (en) * 2001-08-06 2003-02-21 Nitto Denko Corp Separator for alkaline secondary battery

Also Published As

Publication number Publication date
JP2005228541A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP2012527733A (en) Paste zinc electrode for rechargeable zinc battery
JP2003317694A (en) Nickel hydride storage battery
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP4567990B2 (en) Secondary battery
JP3557063B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP6105389B2 (en) Alkaline storage battery
JPH11162468A (en) Alkaline secondary battery
JP2537128B2 (en) Method for producing hydrogen storage alloy powder for negative electrode of nickel-hydrogen secondary battery and method for producing negative electrode for nickel-hydrogen secondary battery
JP4326121B2 (en) Alkaline storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP5334498B2 (en) Alkaline storage battery
JP4626130B2 (en) Nickel-hydrogen storage battery
JPH06283196A (en) Sealed nickel-hydrogen secondary battery
JP4236399B2 (en) Alkaline storage battery
JP3475033B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH05263171A (en) Hydrogen-occluding alloy and its electrode as well as hydrogen storage alloy battery
JPH1040950A (en) Alkaline secondary battery
JP2005056679A (en) Cylindrical alkaline storage battery
JP3436059B2 (en) Nickel-hydrogen storage battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees