JPH06283196A - Sealed nickel-hydrogen secondary battery - Google Patents

Sealed nickel-hydrogen secondary battery

Info

Publication number
JPH06283196A
JPH06283196A JP5071421A JP7142193A JPH06283196A JP H06283196 A JPH06283196 A JP H06283196A JP 5071421 A JP5071421 A JP 5071421A JP 7142193 A JP7142193 A JP 7142193A JP H06283196 A JPH06283196 A JP H06283196A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
separator
secondary battery
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5071421A
Other languages
Japanese (ja)
Other versions
JP2984806B2 (en
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP5071421A priority Critical patent/JP2984806B2/en
Publication of JPH06283196A publication Critical patent/JPH06283196A/en
Application granted granted Critical
Publication of JP2984806B2 publication Critical patent/JP2984806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a sealed nickel-hydrogen secondary battery, the internal pressure of which is low at the time of charging. CONSTITUTION:The porous part volume of a positive electrode 3a is V1 (ml), and the porous part volume of a separator 3b is V2 (ml), while the porous part volume of a negative electrode 3c is V3 (ml), and the volume of the mutual surface contact part between the positive electrode 3a, the separator 3b, the negative electrode 3c, and the wall surface of a can body 1 is V4 (ml). When the amount of injection of the alkaline electrolyte is defined v (ml), the electrolyte space factor (%) expressed as vX100/(V1+V2+V3+V4) is 85-97%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉型ニッケル−水素二
次電池に関し、更に詳しくは、充電時における電池内圧
が低く、また充放電サイクル寿命も長い密閉型ニッケル
−水素二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed nickel-hydrogen secondary battery, and more particularly to a sealed nickel-hydrogen secondary battery having a low battery internal pressure during charging and a long charge / discharge cycle life.

【0002】[0002]

【従来の技術】各種の電気・電子機器の小型軽量化,コ
ードレス化の進展に伴い、それらの電源として用いられ
る電池には、小型化・軽量化・高容量化への要求が高ま
っている。この要請に応える高容量電池として、最近、
ニッケル−水素二次電池が注目を集めている。
2. Description of the Related Art With the progress of miniaturization, weight reduction, and cordlessness of various electric / electronic devices, there is an increasing demand for miniaturization, weight reduction, and high capacity of batteries used as power sources for the electric and electronic devices. Recently, as a high capacity battery to meet this demand,
Nickel-hydrogen secondary batteries are drawing attention.

【0003】このニッケル−水素二次電池は、水素を負
極活物質として作動するものであり、可逆的に水素を吸
蔵・放出することができる水素吸蔵合金から成る負極
と、通常、正極活物質として動作するニッケル水酸化物
を導電基材に担持して成る正極とをアルカリ電解液中に
配置して構成される。この電池の形状としては、円筒タ
イプと角形タイプのものがあるが、一般に、密閉型の円
筒タイプのものの検討が進められている。
This nickel-hydrogen secondary battery operates with hydrogen as a negative electrode active material, and as a negative electrode composed of a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, and usually as a positive electrode active material. A positive electrode formed by supporting an operating nickel hydroxide on a conductive base material is arranged in an alkaline electrolyte. The shape of this battery includes a cylindrical type and a prismatic type, but in general, a closed type is being studied.

【0004】ここで、密閉型円筒タイプの電池につき、
その構造を図1に基づいて説明する。まず、負極端子も
兼ねる有底円筒容器1の底には絶縁板2が配置されてい
る。上記有底円筒容器1の中には、後述する極板群Aが
収納され、同時に所定のアルカリ電解液が注入されてい
る。そして、この極板群Aの上に絶縁板2が載置され、
つづいて封口板4で封鎖され、全体は絶縁ガスケット5
を介して正極端子も兼ねる蓋6で密封されている。
Here, regarding the sealed cylindrical battery,
The structure will be described with reference to FIG. First, an insulating plate 2 is arranged on the bottom of a bottomed cylindrical container 1 which also serves as a negative electrode terminal. An electrode plate group A described later is housed in the bottomed cylindrical container 1, and at the same time, a predetermined alkaline electrolyte is injected. Then, the insulating plate 2 is placed on the electrode plate group A,
Subsequently, it is closed by the sealing plate 4, and the whole is an insulating gasket 5.
It is sealed with a lid 6 which also serves as a positive electrode terminal.

【0005】上記した極板群Aは、正極シート3aと電
気絶縁性のマット状合成樹脂から成る多孔質のセパレー
タ3bと負極シート3cとをこの順序で重ね合わせ、所
望径の巻芯を中心にして渦巻状に巻回し、前記巻芯を抜
き去ることにより製造される。したがって、この極板群
Aの断面構造は、その中心に巻芯の除去跡である巻芯部
3dを有し、正極シート3a,セパレータ3b,負極シ
ート3c,これらに含浸されているアルカリ電解液とか
ら成るユニット3が、複数個、径方向に集積された構造
になっている。
In the above electrode plate group A, the positive electrode sheet 3a, the porous separator 3b made of electrically insulating matte synthetic resin, and the negative electrode sheet 3c are superposed in this order, centering around a winding core of a desired diameter. It is manufactured by winding it in a spiral shape and removing the core. Therefore, the sectional structure of this electrode plate group A has a core portion 3d, which is a trace of the core removal, at the center thereof, and the positive electrode sheet 3a, the separator 3b, the negative electrode sheet 3c, and the alkaline electrolyte solution impregnated therein. A plurality of units 3 composed of and are integrated in the radial direction.

【0006】この極板群Aを構成する正極シートや負極
シートは、いずれも、その内部にまでアルカリ電解液が
含浸して効率のよい電池反応を可能にするためには、あ
る多孔度を有する多孔シートであることが必要である。
このようなことから、正極シートとしては、例えばスポ
ンジ状ニッケルシートのような多孔質の導電シートに正
極活物質として動作する水酸化ニッケルを主体とする活
物質合剤を充填したものが通常用いられている。この場
合、活物質合剤は、導電シートの空隙全てに稠密充填さ
れることはなく、充填量を制御することにより、充填後
の正極シートにおいては、所望する体積の空隙部を残留
させ、電池組立後に、この空隙部体積にアルカリ電解液
が浸潤できるような状態が確保されている。
Each of the positive electrode sheet and the negative electrode sheet constituting the electrode plate group A has a certain porosity in order to impregnate the inside thereof with an alkaline electrolyte to enable an efficient battery reaction. It must be a porous sheet.
For this reason, as the positive electrode sheet, for example, a porous conductive sheet such as a sponge-like nickel sheet filled with an active material mixture mainly composed of nickel hydroxide that operates as a positive electrode active material is usually used. ing. In this case, the active material mixture is not densely filled in all the voids of the conductive sheet, and by controlling the filling amount, the positive electrode sheet after filling leaves voids having a desired volume, After the assembly, a state is ensured in which the volume of the void can be infiltrated with the alkaline electrolyte.

【0007】また、負極シートとしては、所定粒径の水
素吸蔵合金粉末と例えばポリテトラフルオロエチレンの
ような結着剤とを所定の量比で混合し、その混合物をシ
ート成形したものや、例えばパンチングニッケルシー
ト,ニッケルネットのような多孔質の導電シートに水素
吸蔵合金粉末とカルボキシメチルセルロースのような増
粘剤とから成るスラリーを塗着することにより、水素吸
蔵合金粉末層を担持させたものなどが用いられている。
この負極シートの場合も、正極シートの場合と同じよう
に、成形やスラリー塗着の条件を制御することにより、
所望体積の空隙部を残留させ、そこにアルカリ電解液が
浸潤できるように製造されている。
As the negative electrode sheet, a hydrogen storage alloy powder having a predetermined particle size and a binder such as polytetrafluoroethylene are mixed in a predetermined ratio, and the mixture is formed into a sheet. Punched nickel sheet, nickel net, or the like, on which a hydrogen storage alloy powder layer is supported by applying a slurry containing hydrogen storage alloy powder and a thickener such as carboxymethyl cellulose to a porous conductive sheet Is used.
Also in the case of this negative electrode sheet, as in the case of the positive electrode sheet, by controlling the conditions of molding and slurry coating,
It is manufactured so that a desired volume of voids remains and the alkaline electrolyte can infiltrate therein.

【0008】このように、電池内の極板群Aにおいて
は、正極シート3a,セパレータ3b,負極シート3c
には、いずれも所定体積の空隙部が存在していて、そこ
でアルカリ電解液が保持され、電池反応が進行してい
く。
As described above, in the electrode plate group A in the battery, the positive electrode sheet 3a, the separator 3b, and the negative electrode sheet 3c.
In each of them, there is a predetermined volume of voids, in which the alkaline electrolyte is retained and the battery reaction proceeds.

【0009】[0009]

【発明が解決しようとする課題】ところで、ニッケル−
水素二次電池においては、水素吸蔵合金の充電反応が起
こる電位は水の電解電位に近接した値であるため、充電
終期にあっては、水素ガス圧の加算に基づく電池内圧の
上昇が起こる。この内圧上昇を抑制するためには、負極
の容量を大きくすればある程度緩和することは可能であ
るが、しかしそのような処置は、負極容積を大きくする
ことであり、電池の高エネルギー密度化という点で好ま
しくない。
By the way, nickel-
In the hydrogen secondary battery, the potential at which the charging reaction of the hydrogen storage alloy occurs is close to the electrolysis potential of water, so that the internal pressure of the battery increases due to the addition of hydrogen gas pressure at the end of charging. In order to suppress this increase in internal pressure, it is possible to reduce the capacity to some extent by increasing the capacity of the negative electrode, but such a measure is to increase the negative electrode volume, which is called high energy density of the battery. It is not preferable in terms.

【0010】本発明は上記した問題を解決し、充電時に
おける電池内圧は低く、また活物質の利用率も高くなる
ニッケル−水素二次電池の提供を目的とする。
An object of the present invention is to solve the above problems and to provide a nickel-hydrogen secondary battery in which the internal pressure of the battery during charging is low and the utilization rate of the active material is high.

【0011】[0011]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、有底缶体;前記有底缶体に
収納され、多孔質集電体に活物質合剤が充填されている
正極と多孔質の絶縁材であるセパレータと集電体に水素
吸蔵合金粉末層が形成されている負極とをこの順序で面
接触させて成る極板群;および、前記有底缶体に注入し
たアルカリ電解液;前記有底缶体に絶縁ガスケットを介
して気密に冠着されている蓋体;とを備えている密閉型
ニッケル−水素二次電池において、前記正極の空隙部体
積をV1(ml),前記セパレータの空隙部体積をV2
(ml),前記負極の空隙部体積をV3 (ml),前記
正極とセパレータと負極と缶体壁面との相互面接触部分
の体積をV4 (ml)とし、また前記アルカリ電解液の
注入量をv(ml)としたとき、v×100/(V1
2 +V3 +V4 )で示される電解液占積率(%)が8
5〜97%であることを特徴とする密閉型ニッケル−水
素二次電池が提供される。
In order to achieve the above object, in the present invention, a bottomed can body is housed in the bottomed can body, and a porous current collector is filled with an active material mixture. A positive electrode, a separator which is a porous insulating material, and a negative electrode having a hydrogen storage alloy powder layer formed on the current collector in surface contact in this order; and the bottomed can body. In a sealed nickel-hydrogen secondary battery, which comprises: an injected alkaline electrolyte; a lid that is hermetically attached to the bottomed can via an insulating gasket; 1 (ml), the void volume of the separator is V 2
(Ml), the void volume of the negative electrode is V 3 (ml), the volume of the mutual surface contact portion of the positive electrode, the separator, the negative electrode, and the wall surface of the can body is V 4 (ml), and the alkaline electrolyte is injected. When the amount is v (ml), v × 100 / (V 1 +
The electrolytic solution space factor (%) represented by V 2 + V 3 + V 4 ) is 8
A sealed nickel-hydrogen secondary battery is provided, which is characterized by being 5 to 97%.

【0012】本発明の電池は、アルカリ電解液の注入量
が極板群Aの空隙部体積との関係で制御されていること
を除いては、その構造は従来から知られているニッケル
−水素二次電池と変わることはない。ここで、前記した
ように、活物質合剤が充填されたのちの正極には、充填
量に規定された所定体積の空隙部が存在し、またセパレ
ータ,負極にもそれぞれ空隙部が存在する。正極の空隙
部体積をV1 mlとし、またセパレータの空隙部体積を
2 ml,負極の空隙部体積をV3 mlとしたとき、こ
れらによって構成される発電ユニットの各構成要素が有
しているそれ自体の空隙部体積の総和は(V1+V2
3 )mlとなる。また、正極とセパレータ,セパレー
タと負極とが相互に面接触している部分にも空隙部が形
成される。
The structure of the battery of the present invention is nickel-hydrogen, which is conventionally known, except that the injection amount of the alkaline electrolyte is controlled by the relationship with the void volume of the electrode plate group A. It is no different from a secondary battery. Here, as described above, the positive electrode after being filled with the active material mixture has a void of a predetermined volume defined by the filling amount, and the separator and the negative electrode also have voids. When the void volume of the positive electrode is V 1 ml, the void volume of the separator is V 2 ml, and the void volume of the negative electrode is V 3 ml, each constituent element of the power generation unit configured by these has The total volume of the voids in itself is (V 1 + V 2 +
V 3 ) ml. Further, voids are also formed in the portions where the positive electrode and the separator and the separator and the negative electrode are in surface contact with each other.

【0013】そして、この極板群を有底缶体に収納する
と、図1において、巻芯部3dとして形成されている空
隙部を除いたときの極板群Aの空隙部体積は、上記した
(V 1 +V2 +V3 )mlに加え、正極,セパレータ,
負極が相互に面接触している部分の空隙部の体積、およ
びこの極板群Aと有底缶体1の内壁とが面接触している
部分の空隙部の体積が加算された値になる。本発明で
は、この面接触に伴う空隙部体積をV4 (ml)とす
る。
Then, the electrode plate group is housed in a bottomed can body.
And in FIG. 1, the empty space formed as the winding core portion 3d.
The void volume of the electrode plate group A excluding the voids is as described above.
(V 1+ V2+ V3) Ml, plus positive electrode, separator,
The volume of the void in the area where the negative electrodes are in surface contact with each other, and
The polar electrode group A and the inner wall of the bottomed can body 1 are in surface contact with each other.
It becomes a value obtained by adding the volumes of the voids in the part. In the present invention
Is the void volume associated with this surface contact VFour(Ml)
It

【0014】したがって、極板群Aにおける空隙部体積
の総和V(ml)は、V=V1 +V 2 +V3 +V4 とな
る。なお、本発明においては、極板群Aの空隙部体積の
総和Vの中には、巻芯部3dの体積は含まないものとす
る。注入するアルカリ電解液の量をvmlとしたとき、
本発明においては、v×100/(V1 +V2 +V3
4 )を電解液占積率(%)とよび、この値が85〜9
7%となるように設定される。
Therefore, the void volume in the electrode plate group A
The sum of V (ml) is V = V1+ V 2+ V3+ VFourTona
It In the present invention, the void volume of the electrode plate group A
The volume of the winding core 3d is not included in the total V.
It When the amount of alkaline electrolyte to be injected is vml,
In the present invention, v × 100 / (V1+ V2+ V3+
VFour) Is called the electrolytic solution space factor (%), and this value is 85 to 9
It is set to be 7%.

【0015】アルカリ電解液の注入量を上記占積率とな
るように制御することにより、極板群には3〜15%の
空隙が残留する。そのため、電池の完全充電時に正極か
ら発生する水素ガスは、極板群の内部を移動しやすくな
り、また負極における水素吸蔵合金の表面が電解液で過
度に濡れていないため、そのガス吸収性が向上し、もっ
て全体としての内圧上昇が抑制される。
By controlling the injection amount of the alkaline electrolyte to the above space factor, 3 to 15% of voids remain in the electrode plate group. Therefore, the hydrogen gas generated from the positive electrode at the time of full charge of the battery is likely to move inside the electrode plate group, and since the surface of the hydrogen storage alloy in the negative electrode is not excessively wet with the electrolytic solution, its gas absorption property is high. As a result, the internal pressure rise as a whole is suppressed.

【0016】この電解液占積率が85%より小さいよう
な状態のときは、極板群の内部は過度に多孔状態にある
ため、電池の高容量化が実現されず、また充放電サイク
ル寿命も短くなる。電解液占積率の上限は、通常、電池
に装着される安全弁の開弁圧が約20kg/cm2であるとの
関係で、97%に規制される。電解液占積率の好ましい
値は87〜95%、とくに87〜93%であることが好
ましい。
When the electrolyte space factor is less than 85%, the inside of the electrode plate group is excessively porous, so that the capacity of the battery cannot be increased and the charging / discharging cycle life is shortened. Also becomes shorter. The upper limit of the electrolytic solution space factor is usually regulated to 97% because the opening pressure of the safety valve mounted on the battery is about 20 kg / cm 2 . A preferable value of the space factor of the electrolytic solution is 87 to 95%, and particularly preferably 87 to 93%.

【0017】なお、本発明においては、正極として、活
物質合剤が充填されたのちの気孔率が25〜33%であ
るものを用いることが好ましい。すなわち、V1 が正極
のバルク体積に対して25〜33%となるように、活物
質合剤を充填することが好ましい。正極の上記気孔率が
25%より低い場合には、アルカリ電解液の浸潤状態が
悪くなり、そのため組立後の電池における急放電が困難
になるからである。また、正極の上記気孔率が33%よ
り高くなっている状態では、活物質合剤と、導電シート
(集電体)との密着度合が不充分であるため、活物質の
利用率は低下し、充放電サイクル寿命の短縮を引き起こ
すからである。
In the present invention, it is preferable to use a positive electrode having a porosity of 25 to 33% after being filled with the active material mixture. That is, it is preferable to fill the active material mixture so that V 1 is 25 to 33% with respect to the bulk volume of the positive electrode. This is because if the porosity of the positive electrode is lower than 25%, the infiltrated state of the alkaline electrolyte becomes poor, which makes rapid discharge difficult in the assembled battery. Further, in the state where the porosity of the positive electrode is higher than 33%, the degree of adhesion between the active material mixture and the conductive sheet (current collector) is insufficient, so the utilization rate of the active material decreases. This is because it causes shortening of charge / discharge cycle life.

【0018】[0018]

【発明の実施例】多孔度96%のスポンジ状ニッケルシ
ートに、Ni(OH)2 粉93重量部,Ni粉3重量
部,CoO粉4重量部を1.2%濃度のカルボキシメチル
セルロース水溶液に添加して成る活物質合剤を充填し、
2時間乾燥したのち2ton/cm2 の圧を加えて、活物質合
剤の充填量が異なる4種類の正極シートを製造した。こ
れら正極シートの寸法形状,空隙部体積V1 ,気孔率を
表1に示した。
Example of the Invention A sponge-like nickel sheet having a porosity of 96% was added with 93 parts by weight of Ni (OH) 2 powder, 3 parts by weight of Ni powder, and 4 parts by weight of CoO powder to a 1.2% aqueous carboxymethylcellulose solution. Filled with the active material mixture,
After drying for 2 hours, a pressure of 2 ton / cm 2 was applied to manufacture four types of positive electrode sheets having different active material mixture filling amounts. Table 1 shows the dimensions and shape, the void volume V 1 , and the porosity of these positive electrode sheets.

【0019】[0019]

【表1】 つぎに、アーク溶解法で、組成:MmNi3.3 Co1.0
Mn0.4 Al0.3 (Mmはミッシュメタル)で示される
水素吸蔵合金を溶製したのち、これを粉砕して、150
メッシュ(タイラー篩)下の合金粉末とした。イオン交
換水100重量部に対し、上記合金粉末400重量部,
カルボキシメチルセルロース1重量部を投入してスラリ
ーを調製した。このスラリーに、厚み0.07mm,開孔率
38%(穴の径1.5mm)のパンチングニッケルシートを
浸漬したのちそれを引き上げ、付着スラリー層を塗着し
た。このとき、塗着条件を変えて厚みが異なる付着スラ
リー層を形成した。ついで、大気中で乾燥し、2ton/cm
2 の圧力で圧延し、全体の厚みが0.41mmと一定にして
4種類の負極シートを製造した。これら負極シートの寸
法形状,水素吸蔵合金粉末層における空隙部体積V2
気孔率を表2に示した。
[Table 1] Next, by the arc melting method, the composition: MmNi 3.3 Co 1.0
A hydrogen storage alloy represented by Mn 0.4 Al 0.3 (Mm is misch metal) was melted and then crushed to obtain 150
The alloy powder under a mesh (Tyler sieve) was used. 400 parts by weight of the above alloy powder to 100 parts by weight of ion-exchanged water,
A slurry was prepared by adding 1 part by weight of carboxymethyl cellulose. A punching nickel sheet having a thickness of 0.07 mm and a porosity of 38% (hole diameter of 1.5 mm) was dipped in this slurry and then pulled up to apply an adhered slurry layer. At this time, the coating conditions were changed to form the attached slurry layers having different thicknesses. Then, dry in air, 2ton / cm
Four types of negative electrode sheets were manufactured by rolling under a pressure of 2 and keeping the total thickness constant at 0.41 mm. Dimension and shape of these negative electrode sheets, void volume V 2 in the hydrogen storage alloy powder layer,
The porosity is shown in Table 2.

【0020】[0020]

【表2】 ついで、長さ190mm,幅44mm,厚み0.18mm,空隙
部体積(V3 )0.963ml,気孔率64%のナイロン
セパレータを、表3で示したように組合せた正極シート
と負極シートの間に挟み、全体を直径3mmの巻芯を中心
にして渦巻状に巻回したのち巻芯を除去し、巻芯部の径
が3mm,全体の外径が13mmの極板群とした。
[Table 2] Then, a nylon separator having a length of 190 mm, a width of 44 mm, a thickness of 0.18 mm, a void volume (V 3 ) of 0.963 ml, and a porosity of 64% was combined as shown in Table 3 between the positive electrode sheet and the negative electrode sheet. The core was then spirally wound around a core having a diameter of 3 mm, and then the core was removed to obtain a group of electrode plates having a core diameter of 3 mm and an overall outer diameter of 13 mm.

【0021】鋼にニッケルめっきが施されている内径1
3.2mmの有底円筒容器に上記極板群を収納して4種類の
電池前駆体を製造した。これら前駆体につき、各正極,
負極,セパレータ、およびこれらが面接触している部分
における空隙部体積を一括して表3に示した。
Inner diameter 1 where steel is nickel-plated
The above electrode group was housed in a 3.2 mm bottomed cylindrical container to manufacture four types of battery precursors. For each of these precursors,
Table 3 collectively shows the volume of voids in the negative electrode, the separator, and the portion where these are in surface contact.

【0022】[0022]

【表3】 この4種類の電池前駆体に、組成が、KOH32重量
%,NaOH5重量%,LiOH1重量%から成り、比
重が1.38であるアルカリ電解液を注入したのち蓋で密
封し、図1で示した構造の密閉型円筒電池とした。この
とき、電解液の注入量vを変化させることにより、電解
液占積率が異なる電池とした。
[Table 3] An alkaline electrolyte having a composition of 32% by weight of KOH, 5% by weight of NaOH and 1% by weight of LiOH, and a specific gravity of 1.38 was injected into the four types of battery precursors, and then sealed with a lid, as shown in FIG. A sealed cylindrical battery having a structure was used. At this time, by changing the injection amount v of the electrolytic solution, batteries having different electrolytic solution space factors were obtained.

【0023】これらの電池につき、下記の仕様で充電
し、電池内圧を測定した。 温度 20℃、 充電 1C、 4.5時間。 結果を電池内圧と電解液占積率との関係図として図2に
示した。
These batteries were charged under the following specifications and the internal pressure of the batteries was measured. Temperature 20 ℃, charging 1C, 4.5 hours. The results are shown in FIG. 2 as a relationship diagram between the internal pressure of the battery and the space factor of the electrolytic solution.

【0024】[0024]

【発明の効果】以上の説明で明らかなように、本発明の
ニッケル−水素二次電池は、充電時における電池内圧が
低い。これは、缶体に収納されている極板群への電解液
の注入量を、本発明で規定する空隙部体積に対して85
〜97%となるように制御したことがもたらす効果であ
る。
As is apparent from the above description, the nickel-hydrogen secondary battery of the present invention has a low battery internal pressure during charging. This is because the injection amount of the electrolytic solution into the electrode plate group housed in the can is 85% with respect to the void volume defined in the present invention.
This is the effect brought about by controlling the content to be ~ 97%.

【図面の簡単な説明】[Brief description of drawings]

【図1】密閉型のニッケル−水素二次電池の構造例を示
す切欠斜視図である。
FIG. 1 is a cutaway perspective view showing a structural example of a sealed nickel-hydrogen secondary battery.

【図2】本発明で規定する電解液占積率と電池内圧との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the electrolytic solution space factor and the battery internal pressure specified in the present invention.

【符号の説明】[Explanation of symbols]

A 極板群 1 有底円筒缶体 2 絶縁板 3a 正極 3b セパレータ 3c 負極 3d 巻芯部 4 封口板 5 絶縁ガスケット 6 蓋 A electrode plate group 1 bottomed cylindrical can body 2 insulating plate 3a positive electrode 3b separator 3c negative electrode 3d winding core 4 sealing plate 5 insulating gasket 6 lid

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有底缶体;前記有底缶体に収納され、多
孔質集電体に活物質合剤が充填されている正極と多孔質
の絶縁材であるセパレータと集電体に水素吸蔵合金粉末
層が形成されている負極とをこの順序で面接触させた極
板群;および、前記有底缶体に注入したアルカリ電解
液;前記有底缶体に絶縁ガスケットを介して気密に冠着
されている蓋体;とを備えている密閉型ニッケル−水素
二次電池において、前記正極の空隙部体積をV1 (m
l),前記セパレータの空隙部体積をV2 (ml),前
記負極の空隙部体積をV3 (ml),前記正極とセパレ
ータと負極と缶体壁面との相互面接触部分の体積をV4
(ml)とし、また前記アルカリ電解液の注入量をv
(ml)としたとき、v×100/(V1 +V2 +V3
+V4 )で示される電解液占積率(%)が85〜97%
であることを特徴とする密閉型ニッケル−水素二次電
池。
1. A bottomed can body; a positive electrode housed in the bottomed can body, in which a porous current collector is filled with an active material mixture, a separator as a porous insulating material, and hydrogen in the current collector. An electrode plate group in which the negative electrode on which the storage alloy powder layer is formed is brought into surface contact in this order; and an alkaline electrolyte injected into the bottomed can body; airtightly in the bottomed can body via an insulating gasket. In a sealed nickel-hydrogen secondary battery comprising: a cap that is capped, the void volume of the positive electrode is V 1 (m
l), the void volume of the separator is V 2 (ml), the void volume of the negative electrode is V 3 (ml), and the volume of the mutual surface contact portion of the positive electrode, the separator, the negative electrode, and the wall surface of the can is V 4
(Ml), and the injection amount of the alkaline electrolyte is v
(Ml), v × 100 / (V 1 + V 2 + V 3
+ V 4 ), the electrolytic solution space factor (%) is 85 to 97%
A sealed nickel-hydrogen secondary battery characterized in that
【請求項2】 前記正極の気孔率が25〜33%である
請求項1の密閉型ニッケル−水素二次電池。
2. The sealed nickel-hydrogen secondary battery according to claim 1, wherein the porosity of the positive electrode is 25 to 33%.
JP5071421A 1993-03-30 1993-03-30 Sealed nickel-hydrogen secondary battery Expired - Lifetime JP2984806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5071421A JP2984806B2 (en) 1993-03-30 1993-03-30 Sealed nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5071421A JP2984806B2 (en) 1993-03-30 1993-03-30 Sealed nickel-hydrogen secondary battery

Publications (2)

Publication Number Publication Date
JPH06283196A true JPH06283196A (en) 1994-10-07
JP2984806B2 JP2984806B2 (en) 1999-11-29

Family

ID=13460036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5071421A Expired - Lifetime JP2984806B2 (en) 1993-03-30 1993-03-30 Sealed nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP2984806B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958200B2 (en) 2000-04-05 2005-10-25 Matsushita Electric Industrial Co., Ltd. Nickel-metal hydride storage battery and assembly of the same
JP2015032570A (en) * 2013-08-07 2015-02-16 プライムアースEvエナジー株式会社 Nickel hydrogen storage battery
US9601811B2 (en) 2012-09-21 2017-03-21 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary cell
JP2018174095A (en) * 2017-03-31 2018-11-08 株式会社Gsユアサ Power storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218738A (en) * 1975-08-04 1977-02-12 Asahi Chem Ind Co Ltd Coating composition
JPH0541212A (en) * 1991-07-08 1993-02-19 Matsushita Electric Ind Co Ltd Nickel hydroxide active material and positive nickel electrode and alkaline storage battery using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218738A (en) * 1975-08-04 1977-02-12 Asahi Chem Ind Co Ltd Coating composition
JPH0541212A (en) * 1991-07-08 1993-02-19 Matsushita Electric Ind Co Ltd Nickel hydroxide active material and positive nickel electrode and alkaline storage battery using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958200B2 (en) 2000-04-05 2005-10-25 Matsushita Electric Industrial Co., Ltd. Nickel-metal hydride storage battery and assembly of the same
US9601811B2 (en) 2012-09-21 2017-03-21 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary cell
JP2015032570A (en) * 2013-08-07 2015-02-16 プライムアースEvエナジー株式会社 Nickel hydrogen storage battery
JP2018174095A (en) * 2017-03-31 2018-11-08 株式会社Gsユアサ Power storage device

Also Published As

Publication number Publication date
JP2984806B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
US5032475A (en) Nickel-metal hydride secondary cell
JP2001338645A (en) Paste type positive electrode for alkaline battery and nickel hydrogen battery
JP2984806B2 (en) Sealed nickel-hydrogen secondary battery
CN1267098A (en) Alkaline storage bettery with scroll electrode body
JPH11162468A (en) Alkaline secondary battery
JP3209071B2 (en) Alkaline storage battery
JP3567021B2 (en) Alkaline secondary battery
US6946222B2 (en) Sintered nickel electrode for alkaline storage battery, method of forming the same, and alkaline storage battery
JP2004303678A (en) Energy storage element and combined energy storage element
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2537128B2 (en) Method for producing hydrogen storage alloy powder for negative electrode of nickel-hydrogen secondary battery and method for producing negative electrode for nickel-hydrogen secondary battery
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JP3071026B2 (en) Metal hydride storage battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP3742149B2 (en) Alkaline secondary battery
JP4567990B2 (en) Secondary battery
JP3392700B2 (en) Alkaline secondary battery
JP2005056679A (en) Cylindrical alkaline storage battery
JP4458749B2 (en) Alkaline storage battery
JP2558587B2 (en) Negative electrode for nickel-hydrogen secondary battery
JPH1040950A (en) Alkaline secondary battery
JPH06267583A (en) Spiral-shaped cell
JP4441191B2 (en) Alkaline storage battery and method for manufacturing the same
JP2003317798A (en) Nickel - hydrogen battery and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 13