JP2004303678A - Energy storage element and combined energy storage element - Google Patents

Energy storage element and combined energy storage element Download PDF

Info

Publication number
JP2004303678A
JP2004303678A JP2003097777A JP2003097777A JP2004303678A JP 2004303678 A JP2004303678 A JP 2004303678A JP 2003097777 A JP2003097777 A JP 2003097777A JP 2003097777 A JP2003097777 A JP 2003097777A JP 2004303678 A JP2004303678 A JP 2004303678A
Authority
JP
Japan
Prior art keywords
energy storage
battery
active material
storage element
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003097777A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
浩史 阿部
Hiroshi Fukunaga
浩 福永
Naoaki Matsumoto
修明 松本
Jun Sato
佐藤  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2003097777A priority Critical patent/JP2004303678A/en
Publication of JP2004303678A publication Critical patent/JP2004303678A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy storage element of a high voltage resistance and a high capacity, and a combined energy storage element in which polarization accompanying high load fluctuations is suppressed, and in which downsizing and weight reduction are possible. <P>SOLUTION: The energy storage element is constituted by having as main components a negative electrode which contains as an active material at least one kind selected from a hydrogen storage alloy and a mineral nano-tube, a positive electrode which contains as the active material at least one kind of transition metal oxide with a specific surface area by BET method of 50 to 300 m<SP>2</SP>/g, and an electrolytic solution composed of an acid aqueous solution or an alkaline aqueous solution, and the combined energy storage element is constituted by connecting in parallel an element assembly composed of the main components of that energy storage element and a battery assembly composed of the main components of a nickel hydrogen battery and by housing them in the interior of the same exterior material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エネルギー貯蔵素子および前記エネルギー貯蔵素子の主構成要素とニッケル水素電池の主構成要素とを並列に接続し同一の外装材の内部に収容して構成した複合エネルギー貯蔵素子に関するものであり、さらに詳しくは、静電容量とレドックス容量とを併せ持ったエネルギー貯蔵素子および複合エネルギー貯蔵素子に関するものである。
【0002】
【従来の技術】
近年、携帯電話、パーソナルコンピューター、デジタルカメラ、ビデオカメラなどのモバイル機器は、需要が年々拡大しており、それに伴って高性能化、小型軽量化されているのが現状である。そして、それらのモバイル機器は携帯用の機器であるため、電源として電池が使用されている。
【0003】
このモバイル機器では、電源を入れる場合やカメラでフラッシュを用いて撮影する際に、瞬間的に大電流が流れ、そのとき電池電圧が急激に低下する。そして、ある特定の電池電圧まで低下すると、一次電池は交換をし、二次電池は再充電をすることになる。
【0004】
ところが、交換または充電をする電池自体には、アルカリ一次電池では80%以上の容量が残存し、二次電池では30%以上の容量が残存している場合が多い。これは、高負荷時の電圧降下が大きいため、低電流では残存する容量を持ちながらも電池の交換や再充電をしなければならないためである。
【0005】
そこで、瞬間的な高負荷変動に対応させるため、電池に負荷特性の良い電気二重層キャパシタを併用するシステムが提案されている。例えば、J.Millerらは、電池と電気二重層キャパシタとを並列に接続したシステムを前記モバイル機器用の電源として採用すれば、高負荷時の電圧降下を抑制することができ、電池の使用時間を5倍程度のばすことができると報告している(例えば、非特許文献1参照)。
【0006】
【非特許文献1】
5th Intl.Seminar on Double−Layer Capacitors and Similar Energy Stronge Devices,S.P.Wolsky and N.Marincic,eds.Florida Educational Seminars,Boca Ration,Fla.p.3および7(1995)
【0007】
電気二重層キャパシタは、電解液中のカチオンやアニオンを活性炭などの分極性電極表面に吸脱着させ、それにより生じた電気二重層容量をエネルギー源とするものであり、電池のように電気化学的な酸化還元反応を起こさないので、瞬間的に大電流を流す用途に適している。特に電解液として酸水溶液やアルカリ水溶液などのイオン伝導性の高い水溶液を用いた水溶液系電気二重層キャパシタは、低インピーダンスタイプのキャパシタとして広く知られており、前記高負荷変動に対応させるシステム用途に好適である。
【0008】
電池と電気二重層キャパシタとを併用したシステムを、モバイル機器用の電源として採用すれば、高負荷時の電池の電圧降下を抑制することができるので、使用する電池の寿命を大幅に改善できるものと期待される。つまり、1回の使用時間が伸び、電池の容量を無駄なく使用できるなどの効果が得られる。
【0009】
電気二重層キャパシタは、前記の通り、通常、高比表面積の活性炭を電極としているが、活性炭などの炭素は水溶液系電解液中では約1Vをこえた付近で酸化されて、炭酸ガスを発生する。すなわち、電気二重層キャパシタでは、1Vをこえる電圧領域で電極が酸化により劣化すると共にガス発生によりキャパシタの外装材が膨張して破損する問題がある。従って、通常の水溶液系電解液を用いた電気二重層キャパシタでは0.8〜1.0Vを充電の上限電圧としている。しかし、電池は作動電圧が1Vをこえるものがほとんどであり、電気二重層キャパシタを前記モバイル機器の電源として電池と併用化するためには、電圧をそろえるために複数個のキャパシタを直列に接続して用いるか、または電気二重層キャパシタが過充電になるのを防止するための回路が通常組み込まれている。
【0010】
そこで、より高い電圧を得るために、ゾルゲル法で得られたSnOなどの多孔性導電性セラミックスを一対の分極性電極としたキャパシタが提案されている(例えば、特許文献1参照)。
【0011】
【特許文献1】
特開2002−299164公報(第1頁)
【0012】
しかし、この多孔性導電性セラミックスを電極としたキャパシタも、従来の活性炭電極と同様に、細孔部分へイオンを吸脱着させる系なので、充分な出力持続時間を得るにいたらなかった。
【0013】
また、電池と電気二重層キャパシタとを併用化したシステムの具体的なモデルも既に提案されている(例えば、特許文献2参照)。
【0014】
【特許文献2】
特開平10−294135号公報(第1頁および図5)
【0015】
このシステムは、図5に示すように、1個の独立した電気二重層キャパシタ21に対して、同様に独立した1個の電池22を負極は外装缶同士で並列に接続し、正極は金属リード線23を介して並列に接続して外装フィルム24で被覆したものである。しかし、このシステムは、図5に示されているように、電気二重層キャパシタ21と電池22とがそれぞれ別々の外装材で外装されているため、それらの電気二重層キャパシタ21と電池22とを並列接続するための端子による抵抗増加や、収納スペースの拡大などの併用化システムの小型化・軽量化の面などで課題を残している。
【0016】
【発明が解決しようとする課題】
本発明は、従来の水溶液系電解液を用いた電気二重層キャパシタ(以下、これを「水溶液系電気二重層キャパシタ」という)において課題となっていた耐電圧の向上と高容量化とを両立したエネルギー貯蔵素子を提供することを目的とする。また、本発明は、電気二重層キャパシタと電池とを併用した高負荷変動に伴う分極を抑制する併用化システムにおいて、小型で軽量な複合エネルギー貯蔵素子を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明は、水素吸蔵合金および無機質ナノチューブから選ばれる少なくとも1種を活物質として含んだ負極と、BET法における比表面積が50〜300m/gの遷移金属酸化物の少なくとも1種を活物質として含んだ正極と、酸水溶液またはアルカリ水溶液からなる電解液とを主構成要素としてエネルギー貯蔵素子を構成し、また、そのエネルギー貯蔵素子とニッケル水素電池とを併用化して複合エネルギー貯蔵素子を構成することにより、前記課題を解決したものである。
【0018】
すなわち、本発明のエネルギー貯蔵素子では、負極を水素イオンの挿入および脱離が可能な水素吸蔵合金や無機質ナノチューブを活物質として用いているので、電池と同様にレドックス容量を有している。従って、上記負極を用いた本発明のエネルギー貯蔵素子は、従来の水溶液系電気二重層キャパシタに比べて容量が大きく、また、正極には活性炭のように低電位で酸化する材料ではなくバルク表面で疑似容量も発現する遷移金属酸化物を活物質として用いているので、より高容量化が可能であるとともに、耐電圧も約1.7Vにすることができ、従来の水溶液系電気二重層キャパシタに比べて耐電圧を2倍近く高めることができる。
【0019】
また、本発明の複合エネルギー貯蔵素子は、上記エネルギー貯蔵素子とニッケル水素電池とを併用化することによって、高負荷変動に伴う分極を抑制しながら、小型化・軽量化を達成したものである。
【0020】
すなわち、本発明の複合エネルギー貯蔵素子は、水素イオンの挿入および脱離が可能な水素吸蔵合金および無機質ナノチューブから選ばれる少なくとも1種を活物質として含んだ負極と、アニオンの吸着および脱着または活物質表面で疑似容量を発現するBET法における比表面積が50〜300m/gの遷移金属酸化物の少なくとも1種を活物質として含んだ正極と、アルカリ水溶液からなる電解液とを主構成要素とする素子集合体と、水素イオンの挿入および脱離が可能な水素吸蔵合金および無機質ナノチューブから選ばれる少なくとも1種を活物質として含んだ負極と、水酸化ニッケルまたはオキシ水酸化ニッケルを活物質として含んだ正極と、アルカリ水溶液からなる電解液とを主構成要素とする電池集合体とを、並列に接続し同一の外装材の内部に収容したものであって、この本発明の複合エネルギー貯蔵素子によれば、瞬間的に大電流が流れるパルス負荷時の分極を抑制することができ、また、エネルギー貯蔵素子の主構成要素とニッケル水素電池の主構成要素とを同一の外装材の内部に収容しているので、小型化・軽量化が可能である。
【0021】
【発明の実施の形態】
つぎに、本発明のエネルギー貯蔵素子の一例を図面を参照しつつ説明するとともに、本発明の実施の形態について詳細に説明する。図1は本発明のエネルギー貯蔵素子の一例を模式的に示す断面図であり、この図1に示すエネルギー貯蔵素子は円筒形をしていて、水素イオンの挿入および脱離が可能な水素吸蔵合金および無機質ナノチューブから選ばれる少なくとも1種を活物質として含んだ負極と、アニオンの吸着および脱着または活物質表面で疑似容量を発現する遷移金属酸化物を活物質として含んだ正極とをセパレータを介して渦巻状に巻回した素子集合体1を円筒形の外装材2の内部に収容している。そして、上記素子集合体1には電解液が含浸されていて、この素子集合体1からは封止体3を介して負極端子4および正極端子5が外部に引き出されている。
【0022】
本発明のエネルギー貯蔵素子の構成にあたって、負極の活物質として用いる水素吸蔵合金としては、通常のニッケル水素電池の負極活物質として用いられているLa、Ti、Zr、Mgなどの安定な水素化物を形成しやすい元素と、Ni、Mn、Fe、Coなどの水素化物を形成しにくい元素から構成されたAB型の水素吸蔵合金や、AB型、AB型などの水素吸蔵合金を好適に用いることができる。そして、無機質ナノチューブとしては、例えば、カーボンナノチューブやMoSナノチューブなどを好適に用いることができる。
【0023】
これらの水素吸蔵合金や無機質ナノチューブは、それぞれ単独で用いてもよいし、2種以上を混合して用いてもよい。また、金属箔やメッシュ、パンチングメタルなどの集電体との接着性を確保するなどの目的で活物質に高分子バインダーなどを添加してもよい。
【0024】
正極の活物質としては、アニオンの吸着および脱着または活物質表面で二次元的な酸化還元反応による疑似容量を発現する遷移金属酸化物が用いられるが、この遷移金属酸化物としては、例えば、MoO、Co、WO、Ti、CrO、NbO、RuO、IrOなどが好適に用いられる。
【0025】
これら遷移金属酸化物は、その表面でファラデー反応による疑似容量を示すので、従来の水溶液系電気二重層キャパシタより高容量化が可能になる。また、疑似容量は遷移金属酸化物の比表面積に依存するため、本発明においては、この遷移金属酸化物としてはBET法による比表面積が50〜300m/gであることを要する。これは、遷移金属酸化物の比表面積が50m/gより小さい場合は、ファラデー反応による疑似容量を示すための表面積が小さすぎて、充分な容量が得られないからであり、遷移金属酸化物の比表面積が300m/gより大きい場合は、遷移金属酸化物の多孔質化が進行して構造が破壊されたり、かさ密度が低くなり充填性が上がらないなどの問題が生じるからである。
【0026】
高比表面積の遷移金属酸化物の製造方法はゾルゲル法が主であり、これまでは50m/gを上回る比表面積のものを得るのが困難であったが、本発明で用いる遷移金属酸化物は、ゾルゲル法で遷移金属酸化物を製造した後、さらにアルカリまたは酸などの溶液中で適時、温度と時間をかけ、遷移金属酸化物の外表面を荒らすことにより、飛躍的に比表面積を増加させたものである。
【0027】
本発明において、正極活物質の遷移金属酸化物は、それぞれを単独で用いてもよいし、2種以上を混合して用いてもよい。また、金属箔、メッシュ、パンチングメタル、金属発泡体などの集電体との接着性を高めるなどの目的で遷移金属酸化物に高分子バインダーなどを添加してもよい。さらに、より高出力化を図るために、前記遷移金属酸化物を金属微粒子などの高導電材料と混合したり、複合化して用いてもよい。
【0028】
本発明において、電解液としては、従来の電気二重層キャパシタに用いられている酸水溶液やニッケル水素電池などで用いられているアルカリ水溶液などを用いることができる。例えば、酸水溶液としてはイオン伝導性の高い硫酸水溶液が特に好ましく、アルカリ水溶液としてはKOH、NaOH、LiOHなどのアルカリ金属の水酸化物を含んだアルカリ水溶液が特に好ましい。
【0029】
図1では本発明のエネルギー貯蔵素子の一例として円筒形素子の例を示したが、本発明のエネルギー貯蔵素子はその形状に制限はなく円筒形以外にも角形、アルミラミネート形、コイン形、ボタン形などを採用することができる。
【0030】
本発明の複合エネルギー貯蔵素子は、前記エネルギー貯蔵素子の素子集合体とニッケル水素電池の電池集合体とを並列に接続し、同一の外装材の内部に収容した構成を有するものである。従来の水溶液系電気二重層キャパシタとニッケル水素電池とでは、耐電圧が違うため同一の外装材に収容した場合にはキャパシタが過充電状態になり、特に正極の活性炭電極が酸化分解してしまうという問題があったが、本発明の複合エネルギー貯蔵素子では、前記のように素子の正極が遷移金属酸化物を活物質として構成され、負極が水素吸蔵合金や無機質ナノチューブを活物質として構成されていて、いずれもニッケル水素電池の電圧に追随可能なので過充電になるなどの問題は起こらない。ここで電池集合体は、水素吸蔵合金や無機質などの水素イオンの挿入および脱離が可能な活物質として含んだ負極と、水酸化ニッケルまたはオキシ水酸化ニッケルを活物質として含んだ正極と、アルカリ水溶液からなる電解液とを主構成要素として構成される。水素吸蔵合金や無機質ナノチューブは前記素子集合体を構成する負極の活物質と同等のものを用いることができる。水酸化ニッケルまたはオキシ水酸化ニッケルは通常のニッケル水素電池の正極の活物質として用いられているものを用いることができる。
【0031】
つぎに、本発明の複合エネルギー貯蔵素子の一例を図面を参照しつつ説明する。図2は本発明の複合エネルギー貯蔵素子の一例を模式的に示す断面図である。この本発明の複合エネルギー貯蔵素子では、素子集合体11と電池集合体12とが金属製で円筒形の外装材13の内部に収容されており、上記外装材13の開口部は封止体14で封口されている。なお、封止体14は従来の電池にみられる封止体のように、金属などの電気導電体で構成されるが、その外周部で外装材13と直接接触する部分は絶縁パッキング19の嵌合により絶縁化されている。
【0032】
素子集合体11は、素子正極と素子負極とをセパレータを介して渦巻状に巻回してなり、セパレータなどには電解液が含浸されている。素子正極は例えば金属シートまたはメッシュからなる正極集電体上に正極活物質含有層を形成してなり、素子負極は例えば金属シートまたはメッシュからなる負極集電体上に負極活物質含有層に形成してなり、これらの素子正極と素子負極はセパレータを介して渦巻状に巻回されて前記のように素子集合体11を形成している。そして、素子正極リード15の一端は素子正極に接続し、素子正極リード15の他端は前記封止体14の下端部に接続して、素子正極と封止体14とを電気的に導通させている。また、素子集合体11の最外周部では素子負極の負極活物質含有層の一部が露出していて、外装材13のグルービング部13a付近で外装材13の内面と接触し、素子負極と外装材13が電気的に接続された状態になっている。なお、外装材13の内面に接触するのは上記例示のように素子負極の負極活物質含有層でもよいし、素子負極の負極活物質含有層が形成されている負極集電体であってもよい。
【0033】
電池集合体12は、電池正極と電池負極とをセパレータを介して渦巻状に巻回してなり、上記セパレータなどには電解液が含浸されている。電池正極は例えば金属シートまたはメッシュからなる正極集電体上に正極活物質含有層を形成してなり、電池負極は例えば金属シートまたはメッシュからなる負極集電体上に負極活物質含有層を形成してなり、これらの電池正極と電池負極とはセパレータを介して渦巻状に巻回され、前記のように電池集合体12を形成している。そして、電池正極リード16の一端は電池正極に接続し、電池正極リード16の他端は封止体14の下端部に接続して、電池正極と封止体14とを電気的に接続している。また、電池負極は電池負極リード17を介して外装材13の内底部に接続され、電池負極と外装材13は電気的に導通した状態になっている。
【0034】
上記のように、この図2に示す本発明の複合エネルギー貯蔵素子では、素子集合体11の正極と電池集合体12の正極は封止体14で接続され、素子集合体11の負極と電池集合体12の負極は外装材13で電気的に接続されているので、素子集合体11と電池集合体12とは電気的に並列に接続された状態になっている。
【0035】
なお、素子集合体11や電池集合体12から活物質が脱落して短絡するのを防止するなどの理由で、外装材13の内底面や素子集合体11と電池集合体12との間に絶縁フィルムなどからなるインシュレーター18を設置してもよい。
【0036】
【実施例】
つぎに、実施例および比較例を挙げて本発明をより具体的に説明する。ただし、本発明は例示の実施例のみに限定されるものではない。なお、以下の実施例などにおいて、溶液や分散液などの濃度を示す%はいずれも質量%である。
【0037】
実施例1
負極活物質としてMmNi3.7 Co0.7 Mn0.4 Al0.4 (Mmはミッシュメタルであり、La:Ce:Nd:Pr=55:25:10:10の質量比で構成されている)の組成で示される平均粒径5μmの水素吸蔵合金を用い、この水素吸蔵合金100質量部に50%のSBR(スチレンブタジエンゴム)を含む水系分散液をSBRが2質量部になるように加え、さらに増粘剤であるCMC(カルボキシメチルセルロース)0.4質量部と若干量の水を添加し、混合して負極形成用のスラリーを調製した。このスラリーをニッケルメッキ鋼板製のパンチングメタルに塗布し、乾燥およびプレス処理した後、10%NaBH水溶液に浸漬し、70℃で2時間放置して、前記水素吸蔵合金中に水素イオンを導入させた。ついで、水洗および乾燥した後、中央部にニッケル製タブを溶接して、これをエネルギー貯蔵素子用の負極とした。
【0038】
つぎに、原料としてMo粉末と30%の過酸化水素水を用い、ゾルゲル法で平均粒径0.02μm(20nm)のMoOを製造した。このMoOを45%のKOH(水酸化カリウム)水溶液に加え、90℃で2時間表面処理した後、水洗し、100℃で2時間乾燥して正極活物質とした。得られたMoOの比表面積(窒素吸着によるBET法で測定)は150m/gであった。このMoOを100質量部用い、これにCo粉末5質量部および60%のポリテトラフルオロエチレンを含む水系分散液をポリテトラフルオロエチレンが2質量部になるように加え、さらに増粘剤であるCMC0.4質量部と若干量の水を添加し混合して正極形成用のスラリーを調製した。得られたスラリーをニッケル製発泡体に塗布し、乾燥およびプレス処理した後、中央部にニッケル製タブを溶接して、これをエネルギー貯蔵素子用の正極とした。
【0039】
上記負極と正極とをポリプロピレン系不織布からなるセパレータを介して渦巻状に巻回し、直径9.5mm、長さ40mmの巻回体を得た。そして、電解液として30%KOH水溶液を用い、この電解液を前記巻回体に真空含浸させた。そして、その電解液を真空含浸させた巻回体からなる素子集合体を直径10mm、長さ45mmのニッケルメッキ鋼板を素材とした有底円筒状の外装材に装填し、厚さ5mmのブチルゴム製の封止体を外装材の開口部に嵌合し、封止して図1に示す構造の円筒形のエネルギー貯蔵素子を得た。
【0040】
上記のように作製したエネルギー貯蔵素子を、30mAの定電流で充電電圧1.7V、放電電圧1.0Vとして充放電させて初回の放電容量(以下、「放電容量」はいずれも「初回の放電容量」を示す)を測定した。得られた放電容量を表1に示し、放電曲線を図3に示す。
【0041】
実施例2
負極活物質として平均直径50nm、平均長さ3μmのMoSナノチューブを用いた。前記MoSナノチューブ100質量部とアセチレンブラック5質量部に、50%のSBRを含む水系分散液をSBRが2質量部になるように加え、さらに増粘剤であるCMC0.4質量部と若干量の水を添加し混合して負極形成用のスラリーを調製した。得られたスラリーをニッケルメッキ鋼板製のパンチングメタルに塗布し、乾燥およびプレス処理した後、10%NaBH水溶液に浸漬し、70℃で2時間放置して、前記MoSナノチューブ中に水素イオンを導入させ、水洗および乾燥した後、中央部にニッケル製タブを溶接して、これをエネルギー貯蔵素子用の負極とした。
【0042】
つぎに、原料としてCo粉末と30%過酸化水素水を用い、ゾルゲル法で平均粒径0.025μm(25nm)のCoを製造した。このCoを45%のKOH水溶液に加え、90℃で2時間表面処理した後、水洗し、100℃で2時間乾燥して正極活物質とした。得られたCoの比表面積(窒素吸着によるBET法で測定)は130m/gであった。このCo100質量部用い、これに60%のポリテトラフルオロエチレンを含む水系分散液をポリテトラフルオロエチレンが2質量部になるように加え、さらに増粘剤であるCMC0.4質量部と若干量の水を添加し混合して正極形成用のスラリーを調製した。得られたスラリーをニッケル製発泡体に塗布し、乾燥およびプレス処理した後、中央部にニッケル製タブを溶接して、これをエネルギー貯蔵素子の正極とした。
【0043】
上記のように作製した負極と正極を用いた以外は、実施例1と同様にしてエネルギー貯蔵素子を作製した。そして、このエネルギー貯蔵素子について実施例1と同様に30mAの定電流で充電電圧1.7V、放電電圧1.0Vとして充放電させて放電容量を測定した。得られた放電容量を表1に示す。
【0044】
実施例3
30%のHSO(硫酸)を含む水溶液を電解液として用い前記実施例2と同様の巻回体に真空含浸させた以外は、実施例2と同様にエネルギー貯蔵素子を作製した。このエネルギー貯蔵素子について実施例1と同様に30mAの定電流で充電電圧1.7V、放電電圧1.0Vとして充放電させて放電容量を測定した。得られた放電容量を表1に示す。
【0045】
比較例1
負極活物質および正極活物質として平均粒径5μmの水蒸気賦活活性炭を用いた以外は、実施例3と同様にして水溶液系電気二重層キャパシタを作製した。この電気二重層キャパシタについて実施例1と同様に30mAの定電流で充電電圧1.7V、放電電圧1.0Vとして充放電させて放電容量を測定した。得られた放電容量を表1に示す。
【0046】
比較例2
比較例1と同様の方法で作製した水溶液系電気二重層キャパシタを、30mAの定電流で充電電圧1.0V、放電電圧0Vとして充放電させて放電容量を測定した。得られた放電容量を表1に示し、放電曲線を図3に示す。
【0047】
【表1】

Figure 2004303678
【0048】
表1に示すように、実施例1〜3では、36〜38mAhという大きい放電容量が得られたのに対し、同じ充放電条件で測定した比較例1は5mAhの放電容量しか得られなかった。これは、実施例1〜3と同様に1.7Vまで充電したため、電気二重層キャパシタが過充電状態になって充分な容量が得られなかったことによるものと推察される。なお、充電電圧を1.0Vとした比較例2では、比較例1より高い容量が得られたものの、実施例1〜3には及ばなかった。
【0049】
また、図3に示すように、実施例1では1.7〜1.0Vの間という比較例2より高い電圧範囲で38mAhという大きい放電容量が得られているのに対し、比較例2では1.0V〜0Vという低い電圧範囲にもかかわらず、10mAhという小さい放電容量しか得られなかった。
【0050】
実施例4
この実施例4および後記の比較例3では複合エネルギー貯蔵素子を作製し、本発明による実施例4の複合エネルギー貯蔵素子が従来法による比較例3の複合エネルギー貯蔵素子に比べて高負荷変動に伴う分極が少ないことをパルス放電の繰り返しで示す。そして、この実施例4では、複合エネルギー貯蔵素子の作製にあたって素子集合体には前記実施例1で作製した負極および正極を用い、電池集合体の負極および正極は以下に示すように作製した。
【0051】
電池の負極活物質としてMmNi3.7 Co0.7 Mn0.4 Al0.4 (Mmはミッシュメタルであり、La:Ce:Nd:Pr=55:25:10:10の質量比で構成されている)の組成で示される平均粒径10μmの水素吸蔵合金を用い、この水素吸蔵合金100質量部に50%のSBRを含むディスパージョン水溶液をSBRが2質量部になるよう加え、さらに増粘剤であるCMC0.4質量部と若干量の水を添加し混合して負極形成用のスラリーを調製した。得られたスラリーをニッケルメッキ鋼板製のパンチングメタルに塗布し、乾燥およびプレス処理をした後、電極の端にニッケル製タブを溶接して、これを複合エネルギー貯蔵素子用の電池負極とした。
【0052】
電池の正極活物質として、亜鉛とコバルトをそれぞれ3%ずつ固溶した平均粒径10μmのNi(OH)(水酸化ニッケル)を100質量部用い、これにCo粉末5質量部と、60%のポリテトラフルオロエチレンを含む水系分散液をポリテトラフルオロエチレンが2質量部になるように加え、さらに増粘剤であるCMC0.4質量部と若干量の水を添加し混合して正極形成用のスラリーを調製した。得られたスラリーをニッケル製発泡体に塗布し、乾燥およびプレス処理をした後、中央部にニッケル製タブを溶接して、これを複合エネルギー貯蔵素子用の電池正極とした。
【0053】
上記のように作製した電池負極と電池正極とを実施例1で用いたセパレータと同様のセパレータを介して渦巻状に巻回して直径13.5mm、長さ45mmの巻回構造の電池集合体を得た。
【0054】
また、実施例1で作製したエネルギー貯蔵素子用の負極および正極をセパレータを介して渦巻状に巻回して直径11.5mm、長さ3mmの巻回体を作製し、その最外周部の負極を露出させて素子集合体を得た。
【0055】
そして、上記のようにして得た電池集合体および素子集合体を用いて、図2に示す構造の複合エネルギー貯蔵素子を作製した。これを図2を参照しつつ説明する。まず、電池集合体12を直径が14mm、高さが50mmの円筒形外装缶からなる外装材13内に装填し、電池負極リード17を外装材13の内底部に溶接した。なお、上記電池集合体12の外装材13への装填にあたって外装材13の内底部に部分的に開口したインシュレーター18を配置しておいた。ついで、上記電池集合体12の上部に部分的に開口したインシュレーター18を配設した後、素子集合体11を外装材13内に装填し、外装材13の素子集合体11が装填された部分にくびれを入れた。このとき素子集合体11の最外周部にある素子負極は外装材13のグルービング部13aの内面と電気的に接続した状態にされた。そして、外周部にポリエチレン製の絶縁パッキング19を嵌合したニッケル製ディスクからなる封止体14の下端部に電池正極リード16および素子正極リード15をそれぞれ溶接した。そして、電解液として30%のKOHを含む水溶液を外装材13の開口部から注入して2つの電池集合体と素子集合体に電解液を含浸させ、封止体14で外装材13の開口部を封口し、かしめて図2に示す構造の複合エネルギー貯蔵素子を得た。
【0056】
上記のように作製した複合エネルギー貯蔵素子を500mAの定電流で満充電させたのち、パルス放電を行った。パルス放電モードは0.5Aの電流を28秒間流したのち、1.5Aの電流を2秒間流すことを1パターンとした。電圧が1.0Vとなるまでパターンを繰り返し放電カット電圧までの繰り返し数を調べた。その結果を表2に示す。また、放電初期のパルス放電曲線を図4に示す。
【0057】
比較例3
実施例4と同様の方法でニッケル水素電池を作製し、かつ実施例4と同様に満充電させたニッケル水素電池のみを用いて実施例4と同様にパルス放電を行った。その結果を表2に示し、放電初期のパルス放電曲線を図4に示す。
【0058】
【表2】
Figure 2004303678
【0059】
表2に示すように、実施例4では400回以上のパルス繰り返しが可能であって、比較例3のそれを大幅に上回った。実施例4のパルス繰り返し数が比較例3のそれより多かったのは、パルス負荷がかかる場合の電池1回あたりの使用時間が長くなったことを意味し、図4の放電曲線から明らかなように、1.5Aの電流を流したときの電池の電圧降下が上記の実施例4では比較例3よりも抑制されていることに基づくものであると考えられる。
【0060】
【発明の効果】
以上説明したように、本発明によれば、耐電圧が高く、かつ高容量のエネルギー貯蔵素子を提供することができ、また、そのエネルギー貯蔵素子の主構成要素とニッケル水素電池の主構成要素とを併用することに基づいて、高負荷変動に伴う分極が少なく、負荷特性が優れ、かつ高容量で小型化・軽量化が可能な複合エネルギー貯蔵素子を提供することができる。
【図面の簡単な説明】
【図1】本発明のエネルギー貯蔵素子の一例を模式的に示す断面図である。
【図2】本発明の複合エネルギー貯蔵素子の一例を模式的に示す断面図である。
【図3】実施例1および比較例2の放電電圧変化を示す図である。
【図4】実施例3および比較例3のパルス放電による放電電圧変化を示す図である。
【図5】従来の電池と電気二重層キャパシタ併用システムの一例を示す斜視図である。
【符号の説明】
1 素子集合体
2 外装材
3 封止体
4 負極端子
5 正極端子
11 素子集合体
12 電池集合体
13 外装材
13a グルービング部
14 封止体
15 素子正極リード
16 電池正極リード
17 電池負極リード
18 インシュレーター
19 絶縁パッキング[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an energy storage device and a composite energy storage device in which main components of the energy storage device and main components of a nickel-metal hydride battery are connected in parallel and housed in the same exterior material. More particularly, the present invention relates to an energy storage device having a combination of a capacitance and a redox capacitance and a composite energy storage device.
[0002]
[Prior art]
In recent years, demands for mobile devices such as mobile phones, personal computers, digital cameras, and video cameras have been increasing year by year, and accordingly, at present, performance and size and weight have been reduced. Since these mobile devices are portable devices, batteries are used as power supplies.
[0003]
In this mobile device, when turning on the power or photographing with a flash using a camera, a large current flows instantaneously, at which time the battery voltage drops sharply. Then, when the voltage drops to a certain specific battery voltage, the primary battery is replaced and the secondary battery is recharged.
[0004]
However, in the battery itself to be replaced or charged, 80% or more of the capacity of the alkaline primary battery remains and 30% or more of the capacity of the secondary battery often remains. This is because the voltage drop under a high load is large, and the battery must be replaced or recharged while having a remaining capacity at a low current.
[0005]
In order to cope with the instantaneous high load fluctuation, a system using an electric double layer capacitor having good load characteristics together with a battery has been proposed. For example, J. Miller et al. Can use a system in which a battery and an electric double layer capacitor are connected in parallel as a power source for the mobile device, thereby suppressing a voltage drop under a high load and increasing the battery usage time by about five times. It is reported that it can be extended (for example, see Non-Patent Document 1).
[0006]
[Non-patent document 1]
5th Intl. Seminar on Double-Layer Capacitors and Similiar Energy Strong Devices, S.M. P. Wolsky and N.W. See Marinec, eds. Florida Educational Seminars, Boca Rate, Fla. p. 3 and 7 (1995)
[0007]
Electric double layer capacitors absorb and desorb cations and anions in the electrolyte onto the surface of a polarizable electrode such as activated carbon, and use the resulting electric double layer capacity as an energy source. Since it does not cause any significant redox reaction, it is suitable for applications in which a large current is applied instantaneously. In particular, an aqueous solution type electric double layer capacitor using an aqueous solution having high ion conductivity such as an acid aqueous solution or an alkaline aqueous solution as an electrolytic solution is widely known as a low impedance type capacitor, and is used for system applications corresponding to the high load fluctuation. It is suitable.
[0008]
If a system that uses a battery and an electric double layer capacitor together is used as a power supply for mobile devices, the voltage drop of the battery under high load can be suppressed, and the life of the battery used can be significantly improved. Is expected. In other words, the effect is obtained that one use time is extended and the capacity of the battery can be used without waste.
[0009]
As described above, an electric double layer capacitor usually uses activated carbon having a high specific surface area as an electrode, but carbon such as activated carbon is oxidized in an aqueous electrolytic solution at a voltage exceeding about 1 V to generate carbon dioxide gas. . That is, in the electric double layer capacitor, there is a problem that the electrode is deteriorated by oxidation in a voltage region exceeding 1 V, and the exterior material of the capacitor is expanded and damaged by gas generation. Therefore, in an electric double layer capacitor using a normal aqueous electrolytic solution, the upper limit voltage for charging is 0.8 to 1.0 V. However, most batteries have an operating voltage of more than 1 V. In order to use an electric double layer capacitor together with a battery as a power source of the mobile device, a plurality of capacitors are connected in series to make the voltage uniform. Or a circuit for preventing the electric double layer capacitor from being overcharged.
[0010]
Therefore, in order to obtain a higher voltage, a capacitor has been proposed in which a porous conductive ceramic such as SnO obtained by a sol-gel method is used as a pair of polarizing electrodes (for example, see Patent Document 1).
[0011]
[Patent Document 1]
JP 2002-299164 A (page 1)
[0012]
However, the capacitor using the porous conductive ceramics as an electrode is also a system that adsorbs and desorbs ions to the fine pores, as in the case of the conventional activated carbon electrode. Therefore, a sufficient output duration time has not been obtained.
[0013]
A specific model of a system using both a battery and an electric double layer capacitor has already been proposed (for example, see Patent Document 2).
[0014]
[Patent Document 2]
JP-A-10-294135 (page 1 and FIG. 5)
[0015]
In this system, as shown in FIG. 5, a single independent battery 22 is connected in parallel to one independent electric double-layer capacitor 21 between the outer cans, and the positive electrode is a metal lead. It is connected in parallel via a wire 23 and covered with an exterior film 24. However, in this system, as shown in FIG. 5, since the electric double layer capacitor 21 and the battery 22 are each provided with a different outer material, the electric double layer capacitor 21 and the battery 22 are separated from each other. Problems remain in terms of reducing the size and weight of the combined system, such as increasing the resistance due to terminals for parallel connection and expanding the storage space.
[0016]
[Problems to be solved by the invention]
The present invention achieves both the improvement in withstand voltage and the increase in capacity, which have been issues in a conventional electric double layer capacitor using an aqueous electrolytic solution (hereinafter referred to as “aqueous electric double layer capacitor”). It is an object to provide an energy storage element. Another object of the present invention is to provide a small and lightweight composite energy storage element in a combined system that suppresses polarization caused by high load fluctuation by using an electric double layer capacitor and a battery together.
[0017]
[Means for Solving the Problems]
The present invention provides a negative electrode containing, as an active material, at least one selected from a hydrogen storage alloy and an inorganic nanotube, and a specific surface area in a BET method of 50 to 300 m. 2 / G of a transition metal oxide as an active material, and an electrolyte comprising an aqueous acid solution or an aqueous alkali solution as a main component, constitute an energy storage element. This problem has been solved by forming a composite energy storage element by using a hydrogen battery in combination.
[0018]
That is, the energy storage element of the present invention has a redox capacity like a battery because the negative electrode uses a hydrogen storage alloy or an inorganic nanotube capable of inserting and removing hydrogen ions as an active material. Therefore, the energy storage device of the present invention using the above-described negative electrode has a larger capacity than a conventional aqueous solution type electric double layer capacitor, and the positive electrode has a bulk surface instead of a material that oxidizes at a low potential like activated carbon. Since a transition metal oxide that also exhibits pseudo capacitance is used as an active material, it is possible to increase the capacity and to achieve a withstand voltage of about 1.7 V. The withstand voltage can be increased almost twice as compared with the above.
[0019]
Further, the composite energy storage element of the present invention achieves miniaturization and weight reduction by using the above-mentioned energy storage element and a nickel-metal hydride battery in combination, while suppressing polarization accompanying high load fluctuation.
[0020]
That is, the composite energy storage element of the present invention comprises a negative electrode containing, as an active material, at least one selected from a hydrogen storage alloy capable of inserting and removing hydrogen ions and an inorganic nanotube, and an anion adsorption and desorption or an active material. Specific surface area in the BET method that expresses pseudo capacitance on the surface is 50 to 300 m 2 / G of a transition metal oxide as an active material, an element assembly mainly composed of an electrolytic solution composed of an aqueous alkaline solution, and hydrogen storage capable of inserting and removing hydrogen ions. A battery comprising, as main components, a negative electrode containing at least one selected from alloys and inorganic nanotubes as an active material, a positive electrode containing nickel hydroxide or nickel oxyhydroxide as an active material, and an electrolytic solution composed of an aqueous alkaline solution. And the assembly is connected in parallel and housed in the same exterior material. According to the composite energy storage element of the present invention, polarization during a pulse load in which a large current flows instantaneously is suppressed. In addition, the main components of the energy storage element and the nickel hydrogen battery are housed in the same exterior material, so that the size and weight can be reduced. It is a function.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an example of the energy storage element of the present invention will be described with reference to the drawings, and embodiments of the present invention will be described in detail. FIG. 1 is a sectional view schematically showing an example of the energy storage element of the present invention. The energy storage element shown in FIG. 1 has a cylindrical shape and is a hydrogen storage alloy capable of inserting and removing hydrogen ions. And a negative electrode containing at least one selected from inorganic nanotubes as an active material, and a positive electrode containing, as an active material, a transition metal oxide that exhibits adsorption and desorption of anions or a pseudo capacitance on the active material surface through a separator. The spirally wound element assembly 1 is housed inside a cylindrical exterior material 2. The element assembly 1 is impregnated with an electrolytic solution, and a negative electrode terminal 4 and a positive electrode terminal 5 are drawn out of the element assembly 1 via a sealing body 3.
[0022]
In the configuration of the energy storage element of the present invention, as the hydrogen storage alloy used as the negative electrode active material, a stable hydride such as La, Ti, Zr, and Mg used as the negative electrode active material of a normal nickel-metal hydride battery is used. AB composed of elements that are easy to form and elements that are difficult to form hydrides such as Ni, Mn, Fe, and Co 5 Type hydrogen storage alloy, AB 2 And AB type hydrogen storage alloys can be suitably used. As the inorganic nanotube, for example, carbon nanotube or MoS 2 Nanotubes and the like can be suitably used.
[0023]
These hydrogen storage alloys and inorganic nanotubes may be used alone or in combination of two or more. Further, a polymer binder or the like may be added to the active material for the purpose of securing adhesion to a current collector such as a metal foil, a mesh, and a punching metal.
[0024]
As the active material of the positive electrode, a transition metal oxide that exhibits pseudo capacity by adsorption and desorption of an anion or a two-dimensional oxidation-reduction reaction on the surface of the active material is used. Examples of the transition metal oxide include MoO. 3 , Co 3 O 4 , WO 3 , Ti 3 O 6 , CrO 2 , NbO 2 , RuO 2 , IrO 2 Etc. are preferably used.
[0025]
These transition metal oxides exhibit a pseudo capacitance due to the Faraday reaction on the surface thereof, and thus can have a higher capacity than the conventional aqueous double-layer capacitor. Further, since the pseudo capacitance depends on the specific surface area of the transition metal oxide, in the present invention, the transition metal oxide has a specific surface area of 50 to 300 m by the BET method. 2 / G. This is because the specific surface area of the transition metal oxide is 50 m. 2 If the specific surface area of the transition metal oxide is less than 300 m / g, the surface area for exhibiting the pseudo capacity by the Faraday reaction is too small to obtain a sufficient capacity. 2 If the ratio is more than / g, the transition metal oxide becomes porous, and the structure is destroyed, and the bulk density becomes low and the filling property does not increase.
[0026]
The method for producing a transition metal oxide having a high specific surface area is mainly a sol-gel method, and has been used up to 50 m. 2 / G, it is difficult to obtain a transition metal oxide used in the present invention. The specific surface area is drastically increased by roughening the outer surface of the transition metal oxide over time and temperature.
[0027]
In the present invention, each of the transition metal oxides of the positive electrode active material may be used alone or in combination of two or more. Further, a polymer binder or the like may be added to the transition metal oxide for the purpose of enhancing the adhesiveness to a current collector such as a metal foil, a mesh, a punched metal, and a metal foam. Further, in order to achieve higher output, the transition metal oxide may be mixed with a highly conductive material such as metal fine particles, or may be used in combination.
[0028]
In the present invention, as the electrolytic solution, an acid aqueous solution used for a conventional electric double layer capacitor, an alkaline aqueous solution used for a nickel-metal hydride battery, or the like can be used. For example, a sulfuric acid aqueous solution having high ion conductivity is particularly preferable as the acid aqueous solution, and an alkaline aqueous solution containing a hydroxide of an alkali metal such as KOH, NaOH, or LiOH is particularly preferable as the alkaline aqueous solution.
[0029]
FIG. 1 shows an example of a cylindrical element as an example of the energy storage element of the present invention. However, the shape of the energy storage element of the present invention is not limited and may be square, aluminum laminated, coin-shaped, button other than cylindrical. Shapes and the like can be adopted.
[0030]
The composite energy storage device of the present invention has a configuration in which the device assembly of the energy storage device and the battery assembly of the nickel-metal hydride battery are connected in parallel and housed in the same exterior material. The conventional solution-based electric double-layer capacitor and nickel-metal hydride battery have different withstand voltages, so if they are housed in the same exterior material, the capacitor will be overcharged, and in particular, the activated carbon electrode of the positive electrode will be oxidatively decomposed. Although there was a problem, in the composite energy storage device of the present invention, as described above, the positive electrode of the device was configured using a transition metal oxide as an active material, and the negative electrode was configured using a hydrogen storage alloy or an inorganic nanotube as an active material. However, since any of them can follow the voltage of the nickel-metal hydride battery, problems such as overcharging do not occur. Here, the battery assembly includes a negative electrode containing an active material capable of inserting and removing hydrogen ions, such as a hydrogen storage alloy and an inorganic substance; a positive electrode containing nickel hydroxide or nickel oxyhydroxide as an active material; And an electrolytic solution comprising an aqueous solution as a main component. As the hydrogen storage alloy and the inorganic nanotube, those equivalent to the negative electrode active material constituting the element assembly can be used. As the nickel hydroxide or nickel oxyhydroxide, those used as an active material of a positive electrode of a normal nickel-metal hydride battery can be used.
[0031]
Next, an example of the composite energy storage device of the present invention will be described with reference to the drawings. FIG. 2 is a sectional view schematically showing one example of the composite energy storage element of the present invention. In the composite energy storage device of the present invention, the element assembly 11 and the battery assembly 12 are housed inside a cylindrical outer casing 13 made of metal, and the opening of the outer casing 13 is It is sealed with. The sealing body 14 is made of an electric conductor such as a metal like a sealing body found in a conventional battery, and a portion of the outer peripheral portion which is in direct contact with the exterior material 13 is fitted with an insulating packing 19. Insulated if necessary.
[0032]
The element assembly 11 is formed by spirally winding an element positive electrode and an element negative electrode via a separator, and the separator and the like are impregnated with an electrolytic solution. The element positive electrode is formed by forming a positive electrode active material-containing layer on a positive electrode current collector made of, for example, a metal sheet or a mesh, and the element negative electrode is formed on a negative electrode active material-containing layer on a negative electrode current collector made of, for example, a metal sheet or a mesh. The element positive electrode and the element negative electrode are spirally wound via a separator to form the element assembly 11 as described above. One end of the element positive electrode lead 15 is connected to the element positive electrode, and the other end of the element positive electrode lead 15 is connected to the lower end of the sealing body 14 to electrically connect the element positive electrode and the sealing body 14. ing. Further, a part of the negative electrode active material-containing layer of the element negative electrode is exposed at the outermost peripheral portion of the element assembly 11, and comes into contact with the inner surface of the external material 13 near the grooving portion 13 a of the external material 13. The material 13 is in a state of being electrically connected. The contact with the inner surface of the exterior material 13 may be the negative electrode active material-containing layer of the element negative electrode as described above, or may be the negative electrode current collector on which the negative electrode active material-containing layer of the element negative electrode is formed. Good.
[0033]
The battery assembly 12 is formed by spirally winding a battery positive electrode and a battery negative electrode with a separator interposed therebetween, and the separator and the like are impregnated with an electrolytic solution. The battery positive electrode has a positive electrode active material-containing layer formed on a positive electrode current collector made of, for example, a metal sheet or a mesh, and the battery negative electrode has a negative electrode active material-containing layer formed on a negative electrode current collector made of, for example, a metal sheet or a mesh. The battery positive electrode and the battery negative electrode are spirally wound with a separator interposed therebetween, thereby forming the battery assembly 12 as described above. One end of the battery positive electrode lead 16 is connected to the battery positive electrode, the other end of the battery positive electrode lead 16 is connected to the lower end of the sealing body 14, and the battery positive electrode and the sealing body 14 are electrically connected. I have. In addition, the battery negative electrode is connected to the inner bottom of the exterior material 13 via the battery negative electrode lead 17, and the battery negative electrode and the exterior material 13 are in an electrically conductive state.
[0034]
As described above, in the composite energy storage device of the present invention shown in FIG. 2, the positive electrode of the element assembly 11 and the positive electrode of the battery assembly 12 are connected by the sealing body 14, and the negative electrode of the element assembly 11 is connected to the battery assembly. Since the negative electrode of the body 12 is electrically connected by the exterior material 13, the element assembly 11 and the battery assembly 12 are electrically connected in parallel.
[0035]
Note that the insulating material 13 is insulated from the inner bottom surface or between the element assembly 11 and the battery assembly 12 in order to prevent the active material from dropping from the element assembly 11 and the battery assembly 12 to cause a short circuit. An insulator 18 made of a film or the like may be provided.
[0036]
【Example】
Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the invention is not limited to only the exemplary embodiments. In the following examples and the like, all percentages indicating the concentration of a solution, a dispersion, and the like are mass%.
[0037]
Example 1
MmNi as negative electrode active material 3.7 Co 0.7 Mn 0.4 Al 0.4 (Mm is a misch metal, and is constituted by a mass ratio of La: Ce: Nd: Pr = 55: 25: 10: 10). An aqueous dispersion containing 50% of SBR (styrene butadiene rubber) in 100 parts by mass of the storage alloy was added so that the SBR became 2 parts by mass, and 0.4 part by mass of CMC (carboxymethylcellulose) as a thickener was further added. An amount of water was added and mixed to prepare a slurry for forming a negative electrode. This slurry was applied to a punching metal made of nickel-plated steel sheet, dried and pressed, and then 10% NaBH 4 It was immersed in an aqueous solution and left at 70 ° C. for 2 hours to introduce hydrogen ions into the hydrogen storage alloy. Next, after washing with water and drying, a nickel tab was welded to the central portion to obtain a negative electrode for an energy storage element.
[0038]
Next, Mo powder having an average particle size of 0.02 μm (20 nm) was obtained by a sol-gel method using Mo powder and 30% hydrogen peroxide as raw materials. 3 Was manufactured. This MoO 3 Was added to a 45% aqueous solution of KOH (potassium hydroxide), surface-treated at 90 ° C. for 2 hours, washed with water, and dried at 100 ° C. for 2 hours to obtain a positive electrode active material. MoO obtained 3 Specific surface area (measured by BET method with nitrogen adsorption) is 150m 2 / G. This MoO 3 100 parts by mass, and an aqueous dispersion containing 5 parts by mass of Co powder and 60% of polytetrafluoroethylene was added thereto so that the polytetrafluoroethylene became 2 parts by mass, and CMC 0.4 as a thickener was further added. A slurry for forming a positive electrode was prepared by adding and mixing parts by mass and a small amount of water. The resulting slurry was applied to a nickel foam, dried and pressed, and then a nickel tab was welded to the center to obtain a positive electrode for an energy storage element.
[0039]
The negative electrode and the positive electrode were spirally wound through a separator made of a polypropylene-based nonwoven fabric to obtain a wound body having a diameter of 9.5 mm and a length of 40 mm. Then, a 30% KOH aqueous solution was used as an electrolytic solution, and the wound body was vacuum-impregnated with the electrolytic solution. Then, an element assembly consisting of a wound body impregnated with the electrolytic solution in vacuum is loaded into a bottomed cylindrical exterior material made of nickel-plated steel plate having a diameter of 10 mm and a length of 45 mm, and is made of butyl rubber having a thickness of 5 mm. Was fitted into the opening of the exterior material and sealed to obtain a cylindrical energy storage element having the structure shown in FIG.
[0040]
The energy storage element manufactured as described above is charged and discharged at a constant current of 30 mA at a charge voltage of 1.7 V and a discharge voltage of 1.0 V, and the first discharge capacity (hereinafter, “discharge capacity” is “first discharge”). Capacity). The obtained discharge capacity is shown in Table 1, and the discharge curve is shown in FIG.
[0041]
Example 2
MoS having an average diameter of 50 nm and an average length of 3 μm as a negative electrode active material 2 Nanotubes were used. The MoS 2 To 100 parts by mass of the nanotubes and 5 parts by mass of acetylene black, an aqueous dispersion containing 50% of SBR was added so that the SBR became 2 parts by mass, and 0.4 part by mass of CMC as a thickener and a small amount of water were further added. The mixture was added and mixed to prepare a slurry for forming a negative electrode. The obtained slurry was applied to a punched metal made of a nickel-plated steel sheet, dried and pressed, and then 10% NaBH 4 Immersed in an aqueous solution and left at 70 ° C. for 2 hours to obtain the MoS 2 Hydrogen ions were introduced into the nanotubes, washed with water, and dried, and then a nickel tab was welded to the central portion to obtain a negative electrode for an energy storage element.
[0042]
Next, Co powder having an average particle size of 0.025 μm (25 nm) was obtained by a sol-gel method using Co powder and 30% hydrogen peroxide 3 O 4 Was manufactured. This Co 3 O 4 Was added to a 45% KOH aqueous solution, surface-treated at 90 ° C. for 2 hours, washed with water, and dried at 100 ° C. for 2 hours to obtain a positive electrode active material. Co obtained 3 O 4 Has a specific surface area (measured by the BET method using nitrogen adsorption) of 130 m 2 / G. This Co 3 O 4 100 parts by mass, an aqueous dispersion containing 60% of polytetrafluoroethylene was added thereto so that the polytetrafluoroethylene became 2 parts by mass, and 0.4 part by mass of a thickener CMC and a small amount of water were added. Was added and mixed to prepare a slurry for forming a positive electrode. The obtained slurry was applied to a nickel foam, dried and pressed, and then a nickel tab was welded to the center to obtain a positive electrode of the energy storage element.
[0043]
An energy storage element was produced in the same manner as in Example 1, except that the negative electrode and the positive electrode produced as described above were used. Then, the energy storage element was charged and discharged at a constant current of 30 mA at a charge voltage of 1.7 V and a discharge voltage of 1.0 V in the same manner as in Example 1, and the discharge capacity was measured. Table 1 shows the obtained discharge capacities.
[0044]
Example 3
30% H 2 SO 4 An energy storage element was produced in the same manner as in Example 2, except that the wound body similar to that in Example 2 was vacuum-impregnated using an aqueous solution containing (sulfuric acid) as the electrolytic solution. This energy storage element was charged and discharged at a constant current of 30 mA at a charge voltage of 1.7 V and a discharge voltage of 1.0 V as in Example 1, and the discharge capacity was measured. Table 1 shows the obtained discharge capacities.
[0045]
Comparative Example 1
An aqueous solution type electric double layer capacitor was produced in the same manner as in Example 3, except that water vapor activated carbon having an average particle size of 5 μm was used as the negative electrode active material and the positive electrode active material. This electric double layer capacitor was charged and discharged at a constant current of 30 mA at a charge voltage of 1.7 V and a discharge voltage of 1.0 V as in Example 1, and the discharge capacity was measured. Table 1 shows the obtained discharge capacities.
[0046]
Comparative Example 2
The aqueous solution type electric double layer capacitor produced in the same manner as in Comparative Example 1 was charged and discharged at a constant current of 30 mA at a charge voltage of 1.0 V and a discharge voltage of 0 V, and the discharge capacity was measured. The obtained discharge capacity is shown in Table 1, and the discharge curve is shown in FIG.
[0047]
[Table 1]
Figure 2004303678
[0048]
As shown in Table 1, in Examples 1 to 3, a large discharge capacity of 36 to 38 mAh was obtained, whereas in Comparative Example 1 measured under the same charge and discharge conditions, only a discharge capacity of 5 mAh was obtained. This is presumed to be due to the fact that the electric double layer capacitor was overcharged and sufficient capacity could not be obtained because it was charged to 1.7 V as in Examples 1 to 3. Note that, in Comparative Example 2 in which the charging voltage was 1.0 V, a higher capacity was obtained than in Comparative Example 1, but was lower than Examples 1 to 3.
[0049]
Further, as shown in FIG. 3, in Example 1, a large discharge capacity of 38 mAh was obtained in a higher voltage range of 1.7 to 1.0 V than in Comparative Example 2, whereas in Comparative Example 2, 1 was obtained. Despite the low voltage range of 0.0 V to 0 V, only a small discharge capacity of 10 mAh was obtained.
[0050]
Example 4
In Example 4 and Comparative Example 3 to be described later, a composite energy storage element was manufactured, and the composite energy storage element of Example 4 according to the present invention was accompanied by a higher load variation than the composite energy storage element of Comparative Example 3 according to the conventional method. Repetition of pulse discharge indicates that the polarization is small. In Example 4, the negative electrode and the positive electrode manufactured in Example 1 were used for the element assembly when manufacturing the composite energy storage element, and the negative electrode and the positive electrode of the battery assembly were manufactured as described below.
[0051]
MmNi as negative electrode active material for battery 3.7 Co 0.7 Mn 0.4 Al 0.4 (Mm is a misch metal and is constituted by a mass ratio of La: Ce: Nd: Pr = 55: 25: 10: 10), and a hydrogen storage alloy having an average particle diameter of 10 μm is used. A dispersion aqueous solution containing 50% SBR was added to 100 parts by mass of the storage alloy so that the SBR became 2 parts by mass, and 0.4 part by mass of CMC as a thickener and a small amount of water were added and mixed to form a negative electrode. Slurry was prepared. The obtained slurry was applied to a punching metal made of a nickel-plated steel plate, dried and pressed, and then a nickel tab was welded to an end of the electrode to obtain a battery negative electrode for a composite energy storage element.
[0052]
Ni (OH) having an average particle diameter of 10 μm in which 3% each of zinc and cobalt are dissolved as a positive electrode active material of a battery. 2 (Nickel hydroxide) was used in an amount of 100 parts by mass, and an aqueous dispersion containing 5 parts by mass of Co powder and 60% of polytetrafluoroethylene was added thereto so that the polytetrafluoroethylene became 2 parts by mass, and the viscosity was further increased. A slurry for forming a positive electrode was prepared by adding and mixing 0.4 part by mass of CMC as an agent and a small amount of water. The obtained slurry was applied to a nickel foam, dried and pressed, and then a nickel tab was welded to the center to obtain a battery positive electrode for a composite energy storage element.
[0053]
The battery negative electrode and the battery positive electrode manufactured as described above are spirally wound through a separator similar to the separator used in Example 1 to obtain a battery assembly having a wound structure of 13.5 mm in diameter and 45 mm in length. Obtained.
[0054]
Further, the negative electrode and the positive electrode for an energy storage element produced in Example 1 were spirally wound through a separator to produce a wound body having a diameter of 11.5 mm and a length of 3 mm. The resultant was exposed to obtain an element assembly.
[0055]
Then, using the battery assembly and the device assembly obtained as described above, a composite energy storage device having the structure shown in FIG. 2 was produced. This will be described with reference to FIG. First, the battery assembly 12 was loaded into an outer package 13 composed of a cylindrical outer can having a diameter of 14 mm and a height of 50 mm, and the battery negative electrode lead 17 was welded to the inner bottom of the outer package 13. In addition, when the battery assembly 12 is loaded into the exterior material 13, an insulator 18 partially opened at the inner bottom portion of the exterior material 13 was arranged. Next, after disposing an insulator 18 partially opened above the battery assembly 12, the element assembly 11 is loaded into the exterior material 13, and a portion of the exterior material 13 where the element assembly 11 is loaded is provided. I got a constriction. At this time, the element negative electrode at the outermost peripheral portion of the element assembly 11 was electrically connected to the inner surface of the grooving portion 13a of the exterior material 13. Then, a battery positive electrode lead 16 and a device positive electrode lead 15 were welded to the lower end of a nickel disk sealing body 14 fitted with a polyethylene insulating packing 19 on the outer periphery. Then, an aqueous solution containing 30% KOH as an electrolytic solution is injected through the opening of the exterior material 13 to impregnate the two battery assemblies and the element assembly with the electrolyte solution. Was sealed and swaged to obtain a composite energy storage device having the structure shown in FIG.
[0056]
After the composite energy storage element manufactured as described above was fully charged with a constant current of 500 mA, pulse discharge was performed. In the pulse discharge mode, a pattern in which a current of 0.5 A is applied for 28 seconds and then a current of 1.5 A is applied for 2 seconds is defined as one pattern. The pattern was repeated until the voltage reached 1.0 V, and the number of repetitions up to the discharge cut voltage was examined. Table 2 shows the results. FIG. 4 shows a pulse discharge curve at the beginning of discharge.
[0057]
Comparative Example 3
A nickel-metal hydride battery was fabricated in the same manner as in Example 4, and pulse discharge was performed in the same manner as in Example 4 using only the fully charged nickel-metal hydride battery as in Example 4. The results are shown in Table 2, and the pulse discharge curve at the beginning of discharge is shown in FIG.
[0058]
[Table 2]
Figure 2004303678
[0059]
As shown in Table 2, in Example 4, pulse repetition of 400 times or more was possible, which was significantly higher than that of Comparative Example 3. The reason why the pulse repetition number of Example 4 was larger than that of Comparative Example 3 means that the use time per battery in the case of applying a pulse load was longer, as is apparent from the discharge curve of FIG. In addition, it is considered that this is based on the fact that the voltage drop of the battery when a current of 1.5 A flows is suppressed in Example 4 above compared to Comparative Example 3.
[0060]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an energy storage element having a high withstand voltage and a high capacity, and a main component of the energy storage element and a main component of the nickel-metal hydride battery. Based on the combined use of the above, it is possible to provide a composite energy storage element that is less polarized due to high load fluctuation, has excellent load characteristics, and has high capacity and can be reduced in size and weight.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing one example of an energy storage element of the present invention.
FIG. 2 is a cross-sectional view schematically showing one example of the composite energy storage element of the present invention.
FIG. 3 is a diagram showing a change in discharge voltage in Example 1 and Comparative Example 2.
FIG. 4 is a diagram showing a change in discharge voltage due to pulse discharge in Example 3 and Comparative Example 3.
FIG. 5 is a perspective view showing an example of a conventional battery / electric double layer capacitor combined system.
[Explanation of symbols]
1 element assembly
2 Exterior materials
3 Sealed body
4 Negative electrode terminal
5 Positive terminal
11 Element assembly
12 Battery assembly
13 Exterior materials
13a Grooving part
14 Sealed body
15-element positive electrode lead
16 Battery positive lead
17 Battery negative electrode lead
18 Insulator
19 Insulation packing

Claims (4)

水素吸蔵合金および無機質ナノチューブから選ばれる少なくとも1種を活物質として含んだ負極と、BET法による比表面積が50〜300m/gの遷移金属酸化物の少なくとも1種を活物質として含んだ正極と、酸水溶液またはアルカリ水溶液からなる電解液とを主構成要素とすることを特徴とするエネルギー貯蔵素子。A negative electrode containing at least one selected from a hydrogen storage alloy and an inorganic nanotube as an active material, and a positive electrode containing at least one transition metal oxide having a specific surface area of 50 to 300 m 2 / g by a BET method as an active material. And an electrolytic solution comprising an aqueous acid solution or aqueous alkali solution as a main component. 遷移金属化合物が、MoO、Co、WO、Ti、CrO、NbO、RuOおよびIrOから選ばれる少なくとも1種であることを特徴とする請求項1記載のエネルギー貯蔵素子。Transition metal compound, the MoO 3, Co 3 O 4, WO 3, Ti 3 O 6, CrO 2, NbO 2, claim 1, wherein the at least one selected from RuO 2 and IrO 2 Energy storage element. 水素吸蔵合金および無機質ナノチューブから選ばれる少なくとも1種を活物質として含んだ素子負極と、BET法による比表面積が50〜300m/gの遷移金属酸化物の少なくとも1種を活物質として含んだ素子正極と、アルカリ水溶液からなる電解液とを主構成要素とする素子集合体と、水素吸蔵合金および無機質ナノチューブから選ばれる少なくとも1種を活物質として含んだ電池負極と、水酸化ニッケルまたはオキシ水酸化ニッケルを活物質として含んだ電池正極と、アルカリ水溶液からなる電解液とを主構成要素とする電池集合体とを、並列に接続し同一の外装材の内部に収容したことを特徴とする複合エネルギー貯蔵素子。A device negative electrode containing at least one selected from a hydrogen storage alloy and an inorganic nanotube as an active material, and a device containing at least one transition metal oxide having a specific surface area of 50 to 300 m 2 / g by a BET method as an active material. An element assembly mainly including a positive electrode and an electrolytic solution composed of an alkaline aqueous solution; a battery negative electrode including at least one selected from a hydrogen storage alloy and an inorganic nanotube as an active material; and nickel hydroxide or oxyhydroxide. A composite energy comprising a battery positive electrode containing nickel as an active material and a battery assembly mainly composed of an electrolytic solution composed of an aqueous alkaline solution connected in parallel and housed in the same exterior material. Storage element. 遷移金属化合物が、MoO、Co、WO、Ti、CrO、NbO、RuOおよびIrOから選ばれた少なくとも1種であることを特徴とする請求項3記載の複合エネルギー貯蔵素子。Transition metal compound, MoO 3, Co 3 O 4 , WO 3, Ti 3 O 6, CrO 2, NbO 2, claim 3, wherein the at least one selected from RuO 2 and IrO 2 Composite energy storage device.
JP2003097777A 2003-04-01 2003-04-01 Energy storage element and combined energy storage element Withdrawn JP2004303678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097777A JP2004303678A (en) 2003-04-01 2003-04-01 Energy storage element and combined energy storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097777A JP2004303678A (en) 2003-04-01 2003-04-01 Energy storage element and combined energy storage element

Publications (1)

Publication Number Publication Date
JP2004303678A true JP2004303678A (en) 2004-10-28

Family

ID=33409476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097777A Withdrawn JP2004303678A (en) 2003-04-01 2003-04-01 Energy storage element and combined energy storage element

Country Status (1)

Country Link
JP (1) JP2004303678A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420330A (en) * 2010-09-28 2012-04-18 比亚迪股份有限公司 Electrode material of nickel-hydrogen battery and preparation method thereof and nickel-hydrogen battery
CN102522139A (en) * 2011-10-28 2012-06-27 泉州师范学院 Cobalt iridium hydrous oxide, cobalt iridium hydrous oxide film and film preparation method
CN103531854A (en) * 2012-07-04 2014-01-22 北京精密机电控制设备研究所 Novel power supply with comprehensive performances of supercapacitor and zinc-silver battery
JP2015207558A (en) * 2014-04-17 2015-11-19 乾坤科技股▲ふん▼有限公司 Battery device with high energy density and power density
CN107658150A (en) * 2017-10-18 2018-02-02 德清鼎兴电子有限公司 A kind of cobalt nickel super capacitor electrode and its preparation technology
JP2020515102A (en) * 2016-12-27 2020-05-21 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド Electromechanical resonators based on metal chalcogenide nanotubes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420330A (en) * 2010-09-28 2012-04-18 比亚迪股份有限公司 Electrode material of nickel-hydrogen battery and preparation method thereof and nickel-hydrogen battery
CN102522139A (en) * 2011-10-28 2012-06-27 泉州师范学院 Cobalt iridium hydrous oxide, cobalt iridium hydrous oxide film and film preparation method
CN103531854A (en) * 2012-07-04 2014-01-22 北京精密机电控制设备研究所 Novel power supply with comprehensive performances of supercapacitor and zinc-silver battery
JP2015207558A (en) * 2014-04-17 2015-11-19 乾坤科技股▲ふん▼有限公司 Battery device with high energy density and power density
JP2020515102A (en) * 2016-12-27 2020-05-21 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド Electromechanical resonators based on metal chalcogenide nanotubes
US11411551B2 (en) 2016-12-27 2022-08-09 Yeda Research And Development Co. Ltd. Electromechanical resonators based on metal-chalcogenide nanotubes
US11757428B2 (en) 2016-12-27 2023-09-12 Yeda Research And Development Co. Ltd. Electromechanical resonators based on metal-chalcogenide nanotubes
CN107658150A (en) * 2017-10-18 2018-02-02 德清鼎兴电子有限公司 A kind of cobalt nickel super capacitor electrode and its preparation technology

Similar Documents

Publication Publication Date Title
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP5119577B2 (en) Nickel metal hydride battery
JP2004055541A (en) Compound energy element
JP5959003B2 (en) Nickel metal hydride secondary battery and negative electrode for nickel metal hydride secondary battery
KR100189808B1 (en) Wound electrode plate
JP2012227106A (en) Nickel-metal hydride battery
JP2003317694A (en) Nickel hydride storage battery
JP2004303678A (en) Energy storage element and combined energy storage element
JP6057369B2 (en) Nickel metal hydride secondary battery
JP4836351B2 (en) Electrode plate for alkaline storage battery and alkaline storage battery using the same
JP5110889B2 (en) Nickel metal hydride secondary battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JPH0935718A (en) Alkaline secondary battery
JP2000030736A (en) Nickel hydrogen secondary battery
JP2002100396A (en) Cylindrical alkaline secondary cell
JP3731455B2 (en) Hydrogen storage alloy electrode
JP3387763B2 (en) Manufacturing method of alkaline storage battery
JP5258375B2 (en) Cylindrical alkaline secondary battery
JP3742149B2 (en) Alkaline secondary battery
JP2022115451A (en) Iron-carbon composite material, manufacturing method of the same, negative electrode, and nickel-hydrogen battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606