JP5110889B2 - Nickel metal hydride secondary battery - Google Patents

Nickel metal hydride secondary battery Download PDF

Info

Publication number
JP5110889B2
JP5110889B2 JP2007017679A JP2007017679A JP5110889B2 JP 5110889 B2 JP5110889 B2 JP 5110889B2 JP 2007017679 A JP2007017679 A JP 2007017679A JP 2007017679 A JP2007017679 A JP 2007017679A JP 5110889 B2 JP5110889 B2 JP 5110889B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode plate
substrate
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007017679A
Other languages
Japanese (ja)
Other versions
JP2008186658A (en
Inventor
俊毅 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007017679A priority Critical patent/JP5110889B2/en
Publication of JP2008186658A publication Critical patent/JP2008186658A/en
Application granted granted Critical
Publication of JP5110889B2 publication Critical patent/JP5110889B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はニッケル水素二次電池に関する。   The present invention relates to a nickel metal hydride secondary battery.

ニッケル水素二次電池は、携帯電話やノート型パソコン等の携帯機器をはじめとして種々の電気・電子機器の電源として用いられる。
このニッケル水素二次電池においては一端が開口した筒状の導電性有底外装缶に、正極板と負極板をセバレータを間に挟んで渦巻状に巻回した電極群を、正負の極板のどちらか一方がその外装缶の内壁に接するようにして収容される。このため、外装缶自体がどちらか一方の極の端子となる。そして、外装缶内にアルカリ電解液を注入して電極群に浸透させ、蓋体により外装缶の開口を密閉して組み立てられる。蓋体は、外装缶の内壁に接する極板とは反対の極が電気的に接続する端子を含む。
Nickel metal hydride secondary batteries are used as a power source for various electric and electronic devices including portable devices such as mobile phones and laptop computers.
In this nickel-metal hydride secondary battery, an electrode group in which a positive electrode plate and a negative electrode plate are wound in a spiral shape with a separator between them is formed on a cylindrical conductive bottomed outer can that is open at one end. Either one is accommodated in contact with the inner wall of the outer can. For this reason, the outer can itself becomes a terminal of one of the poles. Then, an alkaline electrolyte is injected into the outer can and allowed to permeate the electrode group, and the opening of the outer can is sealed by the lid and assembled. The lid includes a terminal to which a pole opposite to the electrode plate in contact with the inner wall of the outer can is electrically connected.

正極板としては金属製パンチングメタル基板やニッケルめっき発泡板のような多孔性の基板に、活物質である水酸化ニッケルの粉末、導電材、結着剤及び水を混練してなるペーストを充填することにより活物質を保持させたものが用いられる。セパレー夕としては、例えばポリオレフイン繊維、ナイロン繊維等からなる不織布が用いられる。
また、負極板としては、例えば所定の開孔率(基板の面積に占める開孔面積の割合)のニッケルパンチング基板に、LaNi、MmNi(Mmはミッシュメタル)等の水素吸蔵合金の粒子、導電材、結着剤及び水を混練してなるペーストを塗布して乾燥させ、水素吸蔵合金粒子を保持させたものが用いられる。
As a positive electrode plate, a porous substrate such as a metal punching metal substrate or a nickel-plated foam plate is filled with a paste formed by kneading a powder of nickel hydroxide as an active material, a conductive material, a binder and water. In this way, a material holding an active material is used. As the separator evening, for example, a nonwoven fabric made of polyolefin fiber, nylon fiber or the like is used.
Further, as the negative electrode plate, for example, a nickel punching substrate having a predetermined hole area ratio (percentage of the hole area in the substrate area), particles of hydrogen storage alloy such as LaNi 5 , MmNi 5 (Mm is Misch metal), A paste in which a paste formed by kneading a conductive material, a binder and water is applied and dried to hold the hydrogen storage alloy particles is used.

他方、アルカリ電解液としては例えば水酸化ナトリウムと水酸化リチウムの混合液、水酸化カリウムと水酸化リチウムの混合液等が用いられる。
このようなニッケル水素二次電池については、大電流で放電したときの電池電圧確保と電池寿命の両立、更には限られた電池容積の中で一層の高容量化が要求されている。
そこで、特許文献1及び特許文献2は、パンチングメタル基板の近傍に粒径の小さい水素吸蔵合金粒子からなる層(内層)を形成し、この内層の上に粒径の大きい水素吸蔵合金粒子からなる層(外層)を重ねた二層構造の負極板を開示している。
On the other hand, as the alkaline electrolyte, for example, a mixed solution of sodium hydroxide and lithium hydroxide, a mixed solution of potassium hydroxide and lithium hydroxide, or the like is used.
Such nickel-metal hydride secondary batteries are required to achieve both battery voltage securing and battery life when discharged with a large current, and to further increase the capacity within a limited battery volume.
Therefore, in Patent Document 1 and Patent Document 2, a layer (inner layer) made of hydrogen storage alloy particles having a small particle diameter is formed in the vicinity of the punching metal substrate, and the hydrogen storage alloy particles having a large particle diameter are formed on the inner layer. A negative electrode plate having a two-layer structure in which layers (outer layers) are stacked is disclosed.

この負極板では、内層に粒径の小さな水素吸蔵合金粒子を配置することで、電池電圧、すなわち放電容量が確保される。そして、外層に粒径の大きな水素吸蔵合金粒子を配置することにより、電池寿命が確保される。すなわちガス吸収能力を高めて電池内圧の上昇を抑えることにより、アルカリ電解液減少による電池寿命の劣化が防止される。
また、電池の高容量化のためには、正極板の活物質を増量すればよい。そのための手段としては、電極群を収容する外装缶の大きさは一定であるため、渦巻状の電極群の高緊密化やセパレータの薄化が知られている。
特開平11−233105号公報 特開2002−216749号公報
In this negative electrode plate, the battery voltage, that is, the discharge capacity is secured by arranging the hydrogen storage alloy particles having a small particle diameter in the inner layer. And battery life is ensured by arrange | positioning a hydrogen storage alloy particle with a large particle diameter in an outer layer. That is, by increasing the gas absorption capacity and suppressing the increase in battery internal pressure, deterioration of the battery life due to the decrease in alkaline electrolyte is prevented.
Moreover, what is necessary is just to increase the active material of a positive electrode plate in order to raise the capacity | capacitance of a battery. As means for that, since the size of the outer can that accommodates the electrode group is constant, it is known that the spiral electrode group is highly dense and the separator is thin.
JP 11-233105 A JP 2002-216749 A

しかしながら、電極群の高緊密化やセパレータの薄化を図りながら、特許文献1のように負極板の表面に粒径の大きい水素吸蔵合金粒子を配した場合、内部短絡が発生し易くなる。これは、正極板と負極板との極間距離が短いにもかかわらず、負極板表面の凹凸が大きくなるため、正極板と負極板とがセパレータを突き破って接触し易くなるからである。
また、負極板を二層構造とする場合、粒径の小さい水素吸蔵合金粒子を塗着した後、粒径の大きい水素吸蔵合金粒子を塗着せねばならず、製造工程が煩雑になる。
However, when hydrogen storage alloy particles having a large particle diameter are arranged on the surface of the negative electrode plate as in Patent Document 1 while increasing the density of the electrode group and thinning the separator, an internal short circuit is likely to occur. This is because, although the distance between the positive electrode plate and the negative electrode plate is short, the unevenness on the surface of the negative electrode plate becomes large, so that the positive electrode plate and the negative electrode plate easily break through the separator and come into contact with each other.
In addition, when the negative electrode plate has a two-layer structure, the hydrogen storage alloy particles having a small particle size must be applied after the hydrogen storage alloy particles having a small particle size are applied, which complicates the manufacturing process.

本発明は上述した事情に基づいてなされ、その目的は、電極群の高緊密化やセパレータの薄化を図っても内部短絡の発生が抑制されるとともに長寿命であり、更には製造が容易なニッケル水素二次電池を提供することにある。   The present invention has been made based on the above-described circumstances, and its purpose is to suppress the occurrence of an internal short circuit and to have a long life even if the electrode group is made denser or the separator is made thinner, and further easy to manufacture. The object is to provide a nickel metal hydride secondary battery.

上記した目的を達成するため、本発明によれば、導電性を有する筒状の外装缶と、前記外装缶内にアルカリ電解液とともに収容され、正極板及び負極板をセパレータを介して渦巻状に巻回して形成される電極群とを備えるニッケル水素二次電池において、前記負極板は、複数の孔を有する金属製の基板と、前記基板に保持された水素吸蔵合金粒子とを含み、前記水素吸蔵合金粒子のうち、前記孔内に位置する第1の水素吸蔵合金粒子の平均粒径は、前記基板の厚さよりも大きく、且つ、前記孔の外に位置する第2の水素吸蔵合金粒子の平均粒径に比べて大きいことを特徴とするニッケル水素二次電池が提供される(請求項1)。   In order to achieve the above-described object, according to the present invention, a cylindrical outer can having conductivity, and the outer can are accommodated together with an alkaline electrolyte, and the positive electrode plate and the negative electrode plate are spirally arranged through a separator. In a nickel metal hydride secondary battery comprising an electrode group formed by winding, the negative electrode plate includes a metal substrate having a plurality of holes, and hydrogen storage alloy particles held on the substrate, and the hydrogen Among the storage alloy particles, the average particle diameter of the first hydrogen storage alloy particles located in the holes is larger than the thickness of the substrate and the second hydrogen storage alloy particles located outside the holes. A nickel metal hydride secondary battery characterized by being larger than the average particle diameter is provided.

好ましくは、前記第2の水素吸蔵合金粒子の平均粒径は、前記第1及び第2の水素吸蔵合金粒子の共通の原材料である原材料粒子が付着した前記基板を圧延することにより、前記第1の水素吸蔵合金粒子の平均粒径よりも小にされる(請求項2)。
好ましくは、前記原材料粒子の平均粒径は、前記基板の厚さの1.5倍以上2.5倍以下の範囲にある(請求項3)。
Preferably, the average particle diameter of the second hydrogen storage alloy particles is set by rolling the substrate to which the raw material particles that are common raw materials of the first and second hydrogen storage alloy particles are attached. The average particle size of the hydrogen storage alloy particles is made smaller (claim 2).
Preferably, the average particle diameter of the raw material particles is in the range of 1.5 to 2.5 times the thickness of the substrate (Claim 3).

本発明の請求項1のニッケル水素二次電池では、孔の外に位置する第2の水素吸蔵合金粒子の平均粒径が第1の水素吸蔵合金粒子の平均粒径よりも小さい。
この場合、負極板の表面には、第2の水素吸蔵合金粒子が配置されるため、負極板の表面の凹凸が小さい。このため、電極群の高緊密化やセパレータの薄化を図ったとしても、電極群の形成時や電極群を外層缶内に収容するときに、正極板及び負極板がセパレータを突き破って相互に接触するのが防止される。
In the nickel hydride secondary battery according to claim 1 of the present invention, the average particle size of the second hydrogen storage alloy particles located outside the hole is smaller than the average particle size of the first hydrogen storage alloy particles.
In this case, since the second hydrogen storage alloy particles are arranged on the surface of the negative electrode plate, the unevenness of the surface of the negative electrode plate is small. For this reason, even if the electrode group is made highly dense or the separator is thinned, when the electrode group is formed or when the electrode group is accommodated in the outer layer can, the positive electrode plate and the negative electrode plate break through the separator to each other. Contact is prevented.

また、このニッケル水素二次電池では、基板の孔内に配置される第1の水素吸蔵合金粒子の平均粒径が基板の厚さよりも大きい。
この場合、第1の水素吸蔵合金粒子は、アルカリ電解液との接触面積が小さいため腐食し難く、長期に亘り良好なガス吸収能力を維持する。このため、電池内圧の異常な上昇が長期間抑制され、漏出によるアルカリ電解液の減少が防止される。
In this nickel metal hydride secondary battery, the average particle diameter of the first hydrogen storage alloy particles disposed in the hole of the substrate is larger than the thickness of the substrate.
In this case, since the first hydrogen storage alloy particles have a small contact area with the alkaline electrolyte, the first hydrogen storage alloy particles hardly corrode and maintain a good gas absorption capacity for a long period of time. For this reason, an abnormal increase in the battery internal pressure is suppressed for a long period of time, and a decrease in the alkaline electrolyte due to leakage is prevented.

従って、このニッケル水素二次電池によれば、内部短絡の発生が抑制された長寿命で高容量の電池が実現される。
請求項2のニッケル水素二次電池では、第2の水素吸蔵合金粒子の平均粒径が、原材料粒子が付着した基板を圧延することにより、第1の水素吸蔵合金粒子の平均粒径よりも小にされる。すなわち、原材料粒子の一部が圧延により割れて第2の水素吸蔵合金粒子になる。
Therefore, according to the nickel metal hydride secondary battery, a long-life and high-capacity battery in which the occurrence of an internal short circuit is suppressed is realized.
In the nickel-metal hydride secondary battery according to claim 2, the average particle size of the second hydrogen storage alloy particles is smaller than the average particle size of the first hydrogen storage alloy particles by rolling the substrate on which the raw material particles are adhered. To be. That is, some of the raw material particles are broken by rolling to become second hydrogen storage alloy particles.

この場合、第1及び第2の水素吸蔵合金粒子を別々に基板に付着させる必要がない。この結果として、このニッケル水素二次電池は、製造が容易である。
請求項3のニッケル水素二次電池では、原材料粒子の平均粒径が、基板の厚さの1.5倍以上2.5倍以下の範囲にあることで、第2の水素吸蔵合金粒子の平均粒径が内部短絡の抑制と長寿命化とのバランスという観点から適当な大きさになる。この結果として、このニッケル水素二次電池によれば内部短絡の抑制及び長寿命化が確実に達成される。
In this case, it is not necessary to separately attach the first and second hydrogen storage alloy particles to the substrate. As a result, the nickel hydride secondary battery is easy to manufacture.
In the nickel-metal hydride secondary battery according to claim 3, the average particle size of the raw material particles is in the range of 1.5 times to 2.5 times the thickness of the substrate, so that the average particle size of the second hydrogen storage alloy particles is internal. It becomes an appropriate size from the viewpoint of the balance between the suppression of short circuit and the extension of life. As a result, according to the nickel metal hydride secondary battery, it is possible to reliably suppress internal short circuit and extend the life.

図1は、本発明の一実施形態に係る円筒形のニッケル水素二次電池を示す。
ニッケル水素二次電池は、一端が開口した円筒状の外装缶2を備え、外装缶2は導電性を有する。外装缶2の中には、アルカリ電解液(図示せず)とともに略円筒状の電極群4が収容され、電極群4は、それぞれ帯状の負極板6及び正極板8をセパレータ10を介して渦巻き状に巻回して形成される。電極群4の外周は、負極板6の最外周部により形成され、この負極板6の最外周部が外装缶2の内壁に接する。
FIG. 1 shows a cylindrical nickel-metal hydride secondary battery according to an embodiment of the present invention.
The nickel metal hydride secondary battery includes a cylindrical outer can 2 having one end opened, and the outer can 2 has conductivity. In the outer can 2, a substantially cylindrical electrode group 4 is accommodated together with an alkaline electrolyte (not shown). The electrode group 4 swirls a strip-shaped negative electrode plate 6 and a positive electrode plate 8 via a separator 10, respectively. It is formed by winding in a shape. The outer periphery of the electrode group 4 is formed by the outermost peripheral portion of the negative electrode plate 6, and the outermost peripheral portion of the negative electrode plate 6 is in contact with the inner wall of the outer can 2.

外装缶2の開口は蓋体14によって閉塞され、蓋体14は、中央に弁孔16aを有する略円形の蓋板16を含む。蓋板16の外周部は、絶縁ガスケット18を介して外装缶2の開口縁をかしめ加工して固定され、蓋板16の外面上には、弁孔16aを閉塞するようにゴムと金属板とを張り合わせた弁体20が配置されている。また、蓋板16の外面上には、弁体20を覆うようにフランジ付きの円筒形状の正極端子22が固定され、正極端子22内には、弁体20を付勢する圧縮コイルばね24が収容されている。   The opening of the outer can 2 is closed by a lid body 14, and the lid body 14 includes a substantially circular lid plate 16 having a valve hole 16a at the center. The outer peripheral portion of the cover plate 16 is fixed by caulking the opening edge of the outer can 2 via an insulating gasket 18. The valve body 20 which stuck together is arrange | positioned. A cylindrical positive terminal 22 with a flange is fixed on the outer surface of the cover plate 16 so as to cover the valve body 20, and a compression coil spring 24 that biases the valve body 20 is provided in the positive terminal 22. Contained.

更に蓋体14は、電極群4の一端近傍に配置される円形の集電板26を含み、集電板26は正極板8と溶接される。集電板26からは一体に正極リード28が延び、正極リード28の先端側は蓋板16の内面に溶接されている。
図2は、負極板6の一部の概略的な拡大断面を示し、負極板6は、導電性を有する金属製の基板30を有する。基板30も帯状をなし、基板30には、その全域に亘り無数の孔30aが形成されている。孔30aは所定のパターンで配列され、基板30の両面に開口している。基板30としては、例えば、パンチングメタルやエキスパンデッドメタル等を用いることができる。
Further, the lid 14 includes a circular current collecting plate 26 disposed near one end of the electrode group 4, and the current collecting plate 26 is welded to the positive electrode plate 8. A positive electrode lead 28 extends integrally from the current collector plate 26, and the tip end side of the positive electrode lead 28 is welded to the inner surface of the lid plate 16.
FIG. 2 shows a schematic enlarged cross section of a part of the negative electrode plate 6, and the negative electrode plate 6 has a metal substrate 30 having conductivity. The substrate 30 also has a strip shape, and the substrate 30 is formed with innumerable holes 30a over the entire area. The holes 30 a are arranged in a predetermined pattern and open on both surfaces of the substrate 30. As the substrate 30, for example, a punching metal or an expanded metal can be used.

また、負極板6は、基板30によって保持された無数の水素吸蔵合金粒子32を有する。水素吸蔵合金粒子32としては、LaNi、MmNi(Mmはミッシュメタル)等の水素吸蔵合金の粒子を用いることができる。
なお、図2では、導電材及び結着剤を省略したけれども、水素吸蔵合金粒子32は、必要に応じて導電材とともに、結着剤により基板30に付着している。
In addition, the negative electrode plate 6 has countless hydrogen storage alloy particles 32 held by the substrate 30. As the hydrogen storage alloy particles 32, particles of a hydrogen storage alloy such as LaNi 5 and MmNi 5 (Mm is Misch metal) can be used.
In FIG. 2, although the conductive material and the binder are omitted, the hydrogen storage alloy particles 32 are adhered to the substrate 30 by the binder together with the conductive material as necessary.

ここで、水素吸蔵合金粒子32は、第1の水素吸蔵合金粒子32aと第2の水素吸蔵合金粒子32bとに大別される。第1の水素吸蔵合金粒子32aは、基板30の孔30a内に位置し、第2の水素吸蔵合金粒子32bは、孔30aの外に位置している。そして、第1の水素吸蔵合金粒子32aの平均粒径は、基板30の厚さよりも大きく、且つ、第2の水素吸蔵合金粒子32bの平均粒径よりも大きい。   Here, the hydrogen storage alloy particles 32 are roughly classified into first hydrogen storage alloy particles 32a and second hydrogen storage alloy particles 32b. The first hydrogen storage alloy particles 32a are located in the holes 30a of the substrate 30, and the second hydrogen storage alloy particles 32b are located outside the holes 30a. And the average particle diameter of the 1st hydrogen storage alloy particle 32a is larger than the thickness of the board | substrate 30, and is larger than the average particle diameter of the 2nd hydrogen storage alloy particle 32b.

なお、第1の水素吸蔵合金粒子32aの平均粒径は、孔30aの深さよりも大きいため、孔30a内に位置しているとは、孔30aによって少なくとも一部が囲まれていることをいう。
上述した負極板6は、例えば以下のようにして製造することができる。
まず、基板30に、第1の水素吸蔵合金粒子32a及び第2の水素吸蔵合金粒子32bの共通の原材料である原材料粒子、導電材、結着剤及び水を混練してなるペーストを塗布して乾燥させる。これにより原材料粒子が基板30に付着する。この後、原材料粒子が付着した基板を圧延してから、所定寸法に裁断して負極板6が得られる。
In addition, since the average particle diameter of the 1st hydrogen storage alloy particle 32a is larger than the depth of the hole 30a, being located in the hole 30a means that at least one part is enclosed by the hole 30a. .
The negative electrode plate 6 described above can be manufactured, for example, as follows.
First, a paste formed by kneading raw material particles, a conductive material, a binder, and water, which are common raw materials of the first hydrogen storage alloy particles 32a and the second hydrogen storage alloy particles 32b, is applied to the substrate 30. dry. As a result, the raw material particles adhere to the substrate 30. Then, after rolling the board | substrate with which raw material particle adhered, it cut | judged to a predetermined dimension and the negative electrode plate 6 is obtained.

なお、原材料粒子の平均粒径は、基板30の厚さの1.5倍以上2.5倍以下の範囲にあるのが好ましい。換言すれば、第1の原材料粒子の平均粒径は、基板30の厚さの1.5倍以上2.5倍以下の範囲にあるのが好ましい。
この負極板6の製造方法では、圧延の際、原材料粒子の一部が割れて第2の水素吸蔵合金粒子32bになり、原材料粒子の残部は割れずにそのまま第1の水素吸蔵合金粒子32aになる。すなわち、基板30の孔30aの外に存在する原材料粒子は粉砕、高密度化される。この一方、孔30a内に位置する原材料粒子は粉砕されず圧縮され、高密度化の程度は小さい。
The average particle diameter of the raw material particles is preferably in the range of 1.5 to 2.5 times the thickness of the substrate 30. In other words, the average particle diameter of the first raw material particles is preferably in the range of 1.5 to 2.5 times the thickness of the substrate 30.
In this method of manufacturing the negative electrode plate 6, during rolling, some of the raw material particles are broken to become the second hydrogen storage alloy particles 32b, and the remainder of the raw material particles are not broken and are directly broken into the first hydrogen storage alloy particles 32a. Become. That is, the raw material particles existing outside the holes 30a of the substrate 30 are pulverized and densified. On the other hand, the raw material particles located in the holes 30a are compressed without being crushed, and the degree of densification is small.

上述した実施形態のニッケル水素二次電池では、孔30aの外に位置する第2の水素吸蔵合金粒子32bの平均粒径が第1の水素吸蔵合金粒子32aの平均粒径よりも小さい。
この場合、負極板6の表面には、第2の水素吸蔵合金粒子32bが配置されるため、負極板6の表面の凹凸が小さい。このため、電極群4の高緊密化やセパレータの薄化を図ったとしても、電極群4の形成時や電極群4を外層缶2内に収容するときに、正極板8及び負極板6がセパレータ10を突き破って相互に接触するのが防止される。
In the nickel hydride secondary battery of the above-described embodiment, the average particle size of the second hydrogen storage alloy particles 32b located outside the hole 30a is smaller than the average particle size of the first hydrogen storage alloy particles 32a.
In this case, since the second hydrogen storage alloy particles 32 b are arranged on the surface of the negative electrode plate 6, the unevenness on the surface of the negative electrode plate 6 is small. For this reason, even if the electrode group 4 is made highly dense or the separator is thinned, the positive electrode plate 8 and the negative electrode plate 6 are not used when the electrode group 4 is formed or when the electrode group 4 is accommodated in the outer layer can 2. It is prevented that the separator 10 breaks through and comes into contact with each other.

またこのニッケル水素二次電池では、基板30の孔30a内に配置される第1の水素吸蔵合金粒子32aの平均粒径が基板30の厚さよりも大きい。
この場合、第1の水素吸蔵合金粒子32aは、アルカリ電解液との接触面積が小さいため腐食し難く、長期に亘り良好なガス吸収能力を維持する。このため、電池内圧の異常な上昇が長期間抑制され、漏出によるアルカリ電解液の減少が防止される。
In this nickel metal hydride secondary battery, the average particle diameter of the first hydrogen storage alloy particles 32 a disposed in the holes 30 a of the substrate 30 is larger than the thickness of the substrate 30.
In this case, since the first hydrogen storage alloy particles 32a have a small contact area with the alkaline electrolyte, the first hydrogen storage alloy particles 32a are hardly corroded and maintain a good gas absorption capacity over a long period of time. For this reason, an abnormal increase in the battery internal pressure is suppressed for a long period of time, and a decrease in the alkaline electrolyte due to leakage is prevented.

従って、このニッケル水素二次電池によれば、内部短絡の発生が抑制された長寿命で高容量の電池が実現される。
また、上述のニッケル水素二次電池の負極板6の製造方法では、第2の水素吸蔵合金粒子32bの平均粒径が、原材料粒子が付着した基板30を圧延することにより、第1の水素吸蔵合金粒子32aの平均粒径よりも小にされる。すなわち、原材料粒子の一部が圧延により割れて第2の水素吸蔵合金粒子32bになる。
Therefore, according to the nickel metal hydride secondary battery, a long-life and high-capacity battery in which the occurrence of an internal short circuit is suppressed is realized.
Moreover, in the manufacturing method of the negative electrode plate 6 of the nickel hydride secondary battery described above, the average particle size of the second hydrogen storage alloy particles 32b is obtained by rolling the substrate 30 to which the raw material particles are adhered, thereby The average particle diameter of the alloy particles 32a is made smaller. That is, some of the raw material particles are broken by rolling to become the second hydrogen storage alloy particles 32b.

この場合、第1及び第2の水素吸蔵合金粒子32a,32bを別々に基板30に付着させる必要がない。この結果として、このニッケル水素二次電池は製造が容易である。
その上、上述したニッケル水素二次電池では、原材料粒子の平均粒径が、基板30の厚さの1.5倍以上2.5倍以下の範囲にあることで、第2の水素吸蔵合金粒子32bの平均粒径が適当な大きさになる。この結果として、このニッケル水素二次電池によれば、内部短絡の抑制及び長寿命化が確実に達成される。
In this case, it is not necessary to adhere the first and second hydrogen storage alloy particles 32a and 32b to the substrate 30 separately. As a result, the nickel-hydrogen secondary battery is easy to manufacture.
In addition, in the above-described nickel-metal hydride secondary battery, the average particle size of the raw material particles is in the range of 1.5 times to 2.5 times the thickness of the substrate 30, so that the average particle size of the second hydrogen storage alloy particles 32 b is increased. The diameter becomes an appropriate size. As a result, according to the nickel metal hydride secondary battery, the suppression of internal short circuit and the extension of the service life are reliably achieved.

1.負極板の作製
原材料粒子として表1に示した平均粒径を有するLaNiの粉末10質量部に対し、導電材としてのカーボンブラック粉末0.05質量部、0.005質量部のカルボキシルメチルセルロース結着剤および水2.5質量部を混合してペース卜を調製した。
このペーストをパンチングメタル基板に塗布したものを、ペーストの乾燥後、ローラー圧延装置にて圧延成形してから裁断し、実施例1〜4及び比較例1,2の負極板を作製した。パンチングメタル基板は、厚さが45μmで開口率が43%のSPCC鋼板に、厚さ1μmのNiめっき処理及び熱処理を順次施したものである。
1. Production of Negative Electrode Plate As compared with 10 parts by mass of LaNi 5 powder having the average particle size shown in Table 1 as raw material particles, 0.05 parts by mass of carbon black powder as a conductive material, 0.005 parts by mass of carboxymethylcellulose binder and water 2.5 Pace porridge was prepared by mixing parts by mass.
What apply | coated this paste to the punching metal board | substrate was cut after rolling with a roller rolling apparatus after drying the paste, and produced the negative electrode plate of Examples 1-4 and Comparative Examples 1 and 2. The punched metal substrate is a SPCC steel plate having a thickness of 45 μm and an aperture ratio of 43%, which is successively subjected to Ni plating treatment and heat treatment of 1 μm thickness.

また、パンチングメタル基板の孔に平均粒径30μmの原材料粒子を含むペーストを充填し、それ以外の部分に平均粒径90μmの原材料粒子を含むペーストを塗布したものを、ペーストの乾燥後、ローラー圧延装置にて圧延成形してから裁断し、比較例3の負極板を作製した。この圧延成形は、平均粒径90μmの原材料粒子が割れないように実施した。
更に、パンチングメタル基板に平均粒径90μmの原材料粒子を含むペーストを塗布したものを、ペーストの乾燥後、ローラー圧延装置にて圧延成形してから裁断し、比較例4の負極板を作製した。この圧延成形も比較例3同様、パンチングメタル基板の孔内及び孔外の原材料粒子が割れないよう実施した。
In addition, a hole in a punching metal substrate filled with a paste containing raw material particles with an average particle size of 30 μm, and other portions coated with a paste containing raw material particles with an average particle size of 90 μm are dried by roller rolling after the paste is dried. A negative electrode plate of Comparative Example 3 was produced by rolling with an apparatus and then cutting. This rolling was performed so that raw material particles having an average particle diameter of 90 μm were not broken.
Further, a punching metal substrate coated with a paste containing raw material particles having an average particle size of 90 μm was cut with a roller rolling device after the paste was dried, and then cut to produce a negative electrode plate of Comparative Example 4. This rolling was also performed in the same manner as in Comparative Example 3 so that the raw material particles inside and outside the hole of the punching metal substrate were not broken.

2.正極板の作製
水酸化ニッケル粉末10質量部に対し、導電材としての一酸化コバルト粉末1質量部、0.3質量部のカルボキシルメチルセルロース結着剤および5質量部の水を混合してペーストを調製した。
このペーストを多孔性のニッケルメッキ発泡メタル基板に充填したものを、ペーストの乾燥後、圧延成形してから裁断し、正極板を形成した。
2. Production of Positive Electrode Plate A paste was prepared by mixing 1 part by mass of cobalt monoxide powder as a conductive material, 0.3 part by mass of a carboxymethylcellulose binder and 5 parts by mass of water with 10 parts by mass of nickel hydroxide powder.
A porous nickel-plated foam metal substrate filled with this paste was dried and then formed by rolling and then cut to form a positive electrode plate.

3.電池の作製
ポリプロピレン製不織布からなるセパレータを2枚用意し、セパレータ、正極板、セパレータおよび負極板の順序で積層し、最下層のセパレータの一方の端に巻き芯を配置し、負極板を外側にして巻回した。こうして渦巻状で最外層に負極板が位置する電極群を形成し、Niめっきを施したSFCC製の筒状外装缶に収納した。この後、集電板の溶接及びアルカリ電解液の注液を行ってから、外装缶を蓋体で閉塞し、ニッケル水素二次電池を作製した。
3. Preparation of battery Prepare two separators made of polypropylene nonwoven fabric, laminate them in the order of separator, positive electrode plate, separator and negative electrode plate, place a winding core on one end of the bottom layer separator, and make the negative electrode plate outside I wound it. In this way, a spiral electrode group in which the negative electrode plate is located on the outermost layer was formed and housed in a SFCC cylindrical outer can coated with Ni. Thereafter, the current collector plate was welded and the alkaline electrolyte was injected, and then the outer can was closed with a lid to produce a nickel metal hydride secondary battery.

4.電池の評価
(1)短絡不良
得られた実施例1〜4及び比較例1〜4の電池について、それぞれ10000個ずつ短絡不良数を検査した。この結果を表1に示す。
(2)サイクル寿命特性
-ΔV制御(-ΔV=5mV)での1Cの充電及び1Cで1Vまでの放電を1サイクルとして、放電容量が初期の放電容量の60%に低下するまで充放電を繰り返し、サイクル数を計数した。この結果を表1に示す。
4). Evaluation of Battery (1) Short-circuit failure The number of short-circuit failures was inspected by 10,000 for each of the obtained batteries of Examples 1 to 4 and Comparative Examples 1 to 4. The results are shown in Table 1.
(2) Cycle life characteristics
-1V charge with -ΔV control (-ΔV = 5mV) and discharge to 1V with 1C as one cycle, charge and discharge were repeated until the discharge capacity dropped to 60% of the initial discharge capacity, and the number of cycles was counted . The results are shown in Table 1.

Figure 0005110889
Figure 0005110889

(3)結果
(i)原材料粒子の平均粒径が90μmのものについてみると、実施例2の短絡不良数は、比較例3,4に比べて少ない。これは実施例2では、孔の外の原材料粒子が割れて小さくなることで、比較例3,4に比べ負極板表面の凹凸が小さくなったためである。すなわち比較例3,4では、負極板表面の凹凸が大きく、その凸部と対向する正極板との極間距離が短くなって短絡不良が発生したのである。
(ii)比較例1,2及び実施例1〜4においては、基板の孔の外に配置される原材料粒子の平均粒径が大きくなるにつれて短絡不良が増加している。これは圧延成形によって原材料粒子が粉砕されるものの、平均粒径が大きい原材料粒子を用いた負極板では、平均粒径が小さい原材料粒子を用いた負極板に比較すると負極板表面の凹凸が大きいためである。
(3) Results (i) When the average particle diameter of the raw material particles is 90 μm, the number of short-circuit defects in Example 2 is smaller than those in Comparative Examples 3 and 4. This is because in Example 2, the raw material particles outside the holes were broken and made smaller, so that the irregularities on the surface of the negative electrode plate were smaller than in Comparative Examples 3 and 4. That is, in Comparative Examples 3 and 4, the unevenness on the surface of the negative electrode plate was large, the distance between the positive electrode plate facing the convex part was shortened, and a short circuit failure occurred.
(Ii) In Comparative Examples 1 and 2 and Examples 1 to 4, the short-circuit failure increases as the average particle diameter of the raw material particles arranged outside the holes in the substrate increases. This is because the raw material particles are pulverized by rolling, but the negative electrode plate using raw material particles having a large average particle size has larger irregularities on the surface of the negative electrode plate than the negative electrode plate using raw material particles having a small average particle size. It is.

(iii)一方、比較例1,2及び実施例1〜4においては、サイクル寿命については、原材料粒子の平均粒径が大きくなるにつれて延びる傾向にはあるが、平均粒径が70μm以上の実施例1〜4では、サイクル寿命向上率は小さい。このように平均粒径が大きくなってもサイクル寿命が向上しないのは、圧延成形において、パンチングメタル基板上の合金が粉砕され、結果として平均粒径の小さい原材料粒子を含むペーストを塗布した場合と同じになるためである。なお当然、水素吸蔵合金の硬度及びローラー圧延装置の能力によって、この結果は異なるものとなる。
(iv)なお、実施例1,2については、実施例3,4と比べると短絡不良数が小さく、比較例1,2と比べると短絡不良数が略同じである。一方、実施例1,2のサイクル寿命は、比較例1,2と比べ長い。これより、短絡不良とサイクル寿命とのバランスを考えた場合、原材料粒子の平均粒径は1.5倍〜2.5倍の範囲内にあるのが好ましいことがわかる。
(Iii) On the other hand, in Comparative Examples 1 and 2 and Examples 1 to 4, the cycle life tends to increase as the average particle size of the raw material particles increases, but the average particle size is 70 μm or more. In 1-4, the cycle life improvement rate is small. The cycle life is not improved even when the average particle size is increased in this way, because the alloy on the punching metal substrate is pulverized in rolling forming, and as a result, a paste containing raw material particles having a small average particle size is applied. It is because it becomes the same. Of course, this result varies depending on the hardness of the hydrogen storage alloy and the capability of the roller rolling device.
(Iv) In Examples 1 and 2, the number of short-circuit defects is smaller than in Examples 3 and 4, and the number of short-circuit defects is substantially the same as in Comparative Examples 1 and 2. On the other hand, the cycle life of Examples 1 and 2 is longer than that of Comparative Examples 1 and 2. From this, it is understood that the average particle diameter of the raw material particles is preferably in the range of 1.5 times to 2.5 times in consideration of the balance between short circuit failure and cycle life.

本発明は、上記した実施形態及び実施例に限定されることはなく、種々の変形が可能であり、例えば、一実施形態では、負極板6が外装缶2の内壁に接触していたけれども、正極板8が外装缶2の内壁に接触するように電極群を形成してもよい。
また、蓋体14の構成は特には限定されず、弁体20及び圧縮コイルばね24を弾性体からなる円柱状の弁体に変更してもよい。
The present invention is not limited to the above-described embodiments and examples, and various modifications are possible. For example, in one embodiment, the negative electrode plate 6 is in contact with the inner wall of the outer can 2. The electrode group may be formed so that the positive electrode plate 8 contacts the inner wall of the outer can 2.
Moreover, the structure of the cover body 14 is not specifically limited, You may change the valve body 20 and the compression coil spring 24 to the column-shaped valve body which consists of an elastic body.

更に、外装缶2は円筒形状以外の筒形状を有していてもよく、例えば角筒形状や楕円柱形状であってもよい。   Furthermore, the outer can 2 may have a cylindrical shape other than the cylindrical shape, and may be, for example, a rectangular tube shape or an elliptical column shape.

本発明の一実施形態のニッケル水素二次電池をその一部を展開するとともに一部を縦断面にして示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a nickel hydride secondary battery according to an embodiment of the present invention with a part thereof expanded and a part with a longitudinal section. 図1の電池に用いられる負極板の一部を展開して概略的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a part of a negative electrode plate used in the battery of FIG. 1.

符号の説明Explanation of symbols

6 負極板
30 基板
30a 孔
32 水素吸蔵合金粒子
32a 第1の水素吸蔵合金粒子
32b 第2の水素吸蔵合金粒子
6 Negative electrode plate 30 Substrate 30a Hole 32 Hydrogen storage alloy particle 32a First hydrogen storage alloy particle 32b Second hydrogen storage alloy particle

Claims (3)

導電性を有する筒状の外装缶と、前記外装缶内にアルカリ電解液とともに収容され、正極板及び負極板をセパレータを介して渦巻状に巻回して形成される電極群とを備えるニッケル水素二次電池において、
前記負極板は、複数の孔を有する金属製の基板と、前記基板に保持された水素吸蔵合金粒子とを含み、
前記水素吸蔵合金粒子のうち、前記孔内に位置する第1の水素吸蔵合金粒子の平均粒径は、前記基板の厚さよりも大きく、且つ、前記孔の外に位置する第2の水素吸蔵合金粒子の平均粒径に比べて大きい
ことを特徴とするニッケル水素二次電池。
Nickel metal hydride provided with a cylindrical outer can having conductivity, and an electrode group that is housed together with an alkaline electrolyte in the outer can and formed by spirally winding a positive electrode plate and a negative electrode plate through a separator. In the next battery,
The negative electrode plate includes a metal substrate having a plurality of holes, and hydrogen storage alloy particles held on the substrate,
Of the hydrogen storage alloy particles, the first hydrogen storage alloy particles located in the holes have an average particle diameter larger than the thickness of the substrate, and the second hydrogen storage alloys located outside the holes. A nickel-metal hydride secondary battery characterized by being larger than the average particle diameter of the particles.
前記第2の水素吸蔵合金粒子の平均粒径は、前記第1及び第2の水素吸蔵合金粒子の共通の原材料である原材料粒子が付着した前記基板を圧延することにより、前記第1の水素吸蔵合金粒子の平均粒径よりも小にされたことを特徴とする請求項1に記載のニッケル水素二次電池。   The average particle diameter of the second hydrogen storage alloy particles is determined by rolling the substrate to which the raw material particles, which are common raw materials of the first and second hydrogen storage alloy particles, are rolled. The nickel-metal hydride secondary battery according to claim 1, wherein the nickel-hydrogen secondary battery is made smaller than an average particle diameter of the alloy particles. 前記原材料粒子の平均粒径は、前記基板の厚さの1.5倍以上2.5倍以下の範囲にあることを特徴とする請求項2に記載のニッケル水素二次電池。   The nickel metal hydride secondary battery according to claim 2, wherein the average particle diameter of the raw material particles is in the range of 1.5 to 2.5 times the thickness of the substrate.
JP2007017679A 2007-01-29 2007-01-29 Nickel metal hydride secondary battery Expired - Fee Related JP5110889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017679A JP5110889B2 (en) 2007-01-29 2007-01-29 Nickel metal hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017679A JP5110889B2 (en) 2007-01-29 2007-01-29 Nickel metal hydride secondary battery

Publications (2)

Publication Number Publication Date
JP2008186658A JP2008186658A (en) 2008-08-14
JP5110889B2 true JP5110889B2 (en) 2012-12-26

Family

ID=39729557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017679A Expired - Fee Related JP5110889B2 (en) 2007-01-29 2007-01-29 Nickel metal hydride secondary battery

Country Status (1)

Country Link
JP (1) JP5110889B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151106B2 (en) * 2013-06-26 2017-06-21 Fdk株式会社 Nickel metal hydride storage battery
JP2016139521A (en) * 2015-01-27 2016-08-04 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JP7067019B2 (en) * 2017-10-30 2022-05-16 セイコーエプソン株式会社 Secondary battery electrode, secondary battery, electronic device, secondary battery electrode manufacturing method, secondary battery manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302591A (en) * 1994-05-06 1995-11-14 Shin Kobe Electric Mach Co Ltd Cadmium anode plate for sealed alkaline storage battery and its manufacture
JP3478030B2 (en) * 1996-12-24 2003-12-10 松下電器産業株式会社 Alkaline storage battery
JP3475033B2 (en) * 1997-01-29 2003-12-08 三洋電機株式会社 Manufacturing method of hydrogen storage alloy electrode
JP2000357510A (en) * 1999-06-16 2000-12-26 Toshiba Battery Co Ltd Manufacture of nickel-hydrogen secondary battery
JP2001266859A (en) * 2000-03-16 2001-09-28 Toshiba Battery Co Ltd Hydrogen storage alloy electrode and nickel hydrogen secondary battery incorporating the same
JP2002184409A (en) * 2000-12-15 2002-06-28 Sumitomo Electric Ind Ltd Negative electrode collector for nickel hydrogen battery, its manufacturing method, and negative electrode for nickel hydrogen battery
JP2005235436A (en) * 2004-02-17 2005-09-02 Yuasa Corp Hydrogen storage alloy electrode, its manufacturing method and nickel-hydrogen storage battery

Also Published As

Publication number Publication date
JP2008186658A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP6020442B2 (en) Cylindrical battery and battery electrode structure
JP5602092B2 (en) Alkaline secondary battery using negative electrode plate for alkaline secondary battery
WO2017168963A1 (en) Nickel-hydrogen battery
JP2019016423A (en) Cylindrical battery
JP2018045994A (en) Cylindrical alkaline secondary battery
KR100189808B1 (en) Wound electrode plate
JP2005056674A (en) Cylindrical alkaline battery
JP5110889B2 (en) Nickel metal hydride secondary battery
JP5655808B2 (en) Cylindrical alkaline storage battery
JP2000251871A (en) Alkaline secondary battery
JP4967229B2 (en) A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied.
JP2004303678A (en) Energy storage element and combined energy storage element
JP7488008B2 (en) Alkaline storage battery
JP6151106B2 (en) Nickel metal hydride storage battery
JP4359099B2 (en) Cylindrical alkaline storage battery
JP6075619B2 (en) Cylindrical battery
JP6719101B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JP2002100396A (en) Cylindrical alkaline secondary cell
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JP2022124195A (en) alkaline storage battery
JP2005056675A (en) Cylindrical alkaline battery
JP5258375B2 (en) Cylindrical alkaline secondary battery
JP2011008930A (en) Cylindrical type alkaline storage battery
JP2013134940A (en) Cylindrical battery
JP2006032304A (en) Storage battery equipped with winding electrode plate group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370