JP2018045994A - Cylindrical alkaline secondary battery - Google Patents

Cylindrical alkaline secondary battery Download PDF

Info

Publication number
JP2018045994A
JP2018045994A JP2017099239A JP2017099239A JP2018045994A JP 2018045994 A JP2018045994 A JP 2018045994A JP 2017099239 A JP2017099239 A JP 2017099239A JP 2017099239 A JP2017099239 A JP 2017099239A JP 2018045994 A JP2018045994 A JP 2018045994A
Authority
JP
Japan
Prior art keywords
current collector
positive electrode
lead
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017099239A
Other languages
Japanese (ja)
Other versions
JP6947534B2 (en
Inventor
中村 友美
Tomomi Nakamura
友美 中村
浩行 柴岡
Hiroyuki Shibaoka
浩行 柴岡
哲 山中
Satoru Yamanaka
哲 山中
勲 麦間
Isao Mugima
勲 麦間
伊佐治 秀文
Hidefumi Isaji
秀文 伊佐治
浅沼 英之
Hideyuki Asanuma
英之 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to EP17189889.3A priority Critical patent/EP3293797B1/en
Priority to CN201710801077.2A priority patent/CN107808962B/en
Priority to US15/698,504 priority patent/US10374260B2/en
Publication of JP2018045994A publication Critical patent/JP2018045994A/en
Application granted granted Critical
Publication of JP6947534B2 publication Critical patent/JP6947534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical alkaline secondary battery which is superior in high-rate discharge characteristic, and less in the occurrence of internal short circuit.SOLUTION: A nickel hydrogen secondary battery 1 comprises: an exterior can 2; a sealing body 14 including a positive electrode terminal 22, and serving to seal an opening of the exterior can 2; an electrode group 4 arranged by putting together and spirally winding a positive electrode 6 and a negative electrode 8 with a separator 10 arranged therebetween, and encased in the exterior can 2 together with an alkali electrolyte solution; a positive electrode current collector 28 connected to a positive electrode connecting edge portion 32 protruding from one end face of the electrode group 4; and a collector lead 34 which connects the positive electrode current collector 28 to the sealing body 14. When a material constituting the collector lead 34 is defined as "a" material, and a material constituting the positive electrode current collector 28 is defined as "b" material, a deformation resistance A of the "a" material, and a deformation resistance B of the "b" material satisfy the relation represented by: A<B.SELECTED DRAWING: Figure 1

Description

本発明は、円筒形アルカリ二次電池に関する。   The present invention relates to a cylindrical alkaline secondary battery.

アルカリ二次電池においては、用途が拡大し、高率で充放電が行えるタイプの電池が開発されている。このような電池としては、例えば、以下に示すような円筒形アルカリ二次電池が知られている。   In alkaline secondary batteries, applications are expanding and batteries of a type that can be charged and discharged at a high rate have been developed. As such a battery, for example, a cylindrical alkaline secondary battery as shown below is known.

当該円筒形アルカリ二次電池は、電極群が有底円筒形状の外装缶にアルカリ電解液とともに収容され、外装缶の開口部が正極端子を含む封口体により密閉されることにより形成される。   The cylindrical alkaline secondary battery is formed by accommodating an electrode group together with an alkaline electrolyte in a bottomed cylindrical outer can and sealing the opening of the outer can with a sealing body including a positive electrode terminal.

上記した電極群は、セパレータを間に挟んだ状態で重ね合わされた正極及び負極が渦巻き状に巻回されて形成され、全体としてほぼ円柱形状をなしている。ここで、正極及び負極は、巻回作業に際し、互いに、電極群の軸線に沿う方向に僅かにずれた状態となるように配置されるとともに、これら正極及び負極の間には、所定サイズのセパレータが所定位置に配置される。そして、この状態で、正極、セパレータ及び負極は巻回される。その結果、電極群の一端面側から正極の端縁部が渦巻き状に突出し、電極群の他端面側から負極の端縁部が渦巻き状に突出する。   The electrode group described above is formed by spirally winding a positive electrode and a negative electrode that are overlapped with a separator interposed therebetween, and has a substantially cylindrical shape as a whole. Here, the positive electrode and the negative electrode are arranged so as to be slightly shifted from each other in the direction along the axis of the electrode group during the winding operation, and a separator of a predetermined size is provided between the positive electrode and the negative electrode. Is arranged at a predetermined position. In this state, the positive electrode, the separator, and the negative electrode are wound. As a result, the edge of the positive electrode protrudes spirally from one end surface side of the electrode group, and the edge of the negative electrode protrudes spirally from the other end surface side of the electrode group.

突出した正極端縁部には正極集電体が溶接され、突出した負極端縁部には負極集電体が溶接される。これにより、正極集電体は正極と広い範囲で電気的に接続され、負極集電体は負極と広い範囲で電気的に接続されるので、集電効率が高められる。その結果、当該電池においては高率充放電が可能となる。   A positive electrode current collector is welded to the protruding positive electrode edge, and a negative electrode current collector is welded to the protruding negative electrode edge. Thereby, the positive electrode current collector is electrically connected to the positive electrode in a wide range, and the negative electrode current collector is electrically connected to the negative electrode in a wide range, so that the current collection efficiency is improved. As a result, the battery can be charged / discharged at a high rate.

この円筒形アルカリ二次電池の組み立ての手順としては、例えば、まず、外装缶内に電極群を挿入し、外装缶の底壁内面と負極集電体とが溶接される。これにより、負極端子を兼ねる外装缶と負極とが電気的に接続された状態となる。次いで、正極集電体の所定位置に、金属製の薄板からなる正極リボンの一端が溶接される。更に、正極リボンの他端が封口体の所定位置に溶接される。これにより、正極端子と正極とが電気的に接続された状態となる。その後、封口体が外装缶の上端開口部に絶縁ガスケットを介在させた状態で装着され、外装缶の上端開口部がかしめ加工されることにより、当該外装缶が密閉される。これにより円筒形アルカリ二次電池が形成される。   As a procedure for assembling the cylindrical alkaline secondary battery, for example, an electrode group is first inserted into the outer can, and the inner surface of the bottom wall of the outer can and the negative electrode current collector are welded. Thereby, the outer can which also serves as the negative electrode terminal and the negative electrode are electrically connected. Next, one end of a positive electrode ribbon made of a metal thin plate is welded to a predetermined position of the positive electrode current collector. Further, the other end of the positive electrode ribbon is welded to a predetermined position of the sealing body. As a result, the positive electrode terminal and the positive electrode are electrically connected. Thereafter, the sealing body is attached in a state where an insulating gasket is interposed in the upper end opening of the outer can, and the upper end opening of the outer can is caulked to seal the outer can. Thereby, a cylindrical alkaline secondary battery is formed.

上記したような正極リボンは、封口体への溶接をし易くするために、比較的長めのものが用いられる。また、封口体が外装缶の上端開口部に装着されたとき、正極リボンは、外装缶内で封口体と電極群との間に屈曲するようにして収容される。このため、正極リボンは、屈曲し易いように比較的薄いものが用いられる。   For the positive electrode ribbon as described above, a relatively long one is used in order to facilitate welding to the sealing body. Further, when the sealing body is attached to the upper end opening of the outer can, the positive ribbon is accommodated in the outer can so as to bend between the sealing body and the electrode group. For this reason, a comparatively thin thing is used for a positive electrode ribbon so that it may be bent easily.

ところで、近年、アルカリ二次電池には、より高性能化が望まれており、特に、大電流を効率良く出力できるように高率放電特性をより向上させることが望まれている。   Incidentally, in recent years, higher performance is desired for alkaline secondary batteries, and in particular, it is desired to further improve the high-rate discharge characteristics so that a large current can be efficiently output.

高率放電特性を向上させるためには、電池の内部抵抗をなるべく低くする必要がある。しかしながら、上記したような薄くて長い帯状の正極リボンを用いた場合、この正極リボンの比抵抗が高く、正極リボンが電池の内部抵抗を高める原因となっている。   In order to improve the high rate discharge characteristics, it is necessary to make the internal resistance of the battery as low as possible. However, when the above-described thin and long strip-like positive electrode ribbon is used, the specific resistance of the positive electrode ribbon is high, and the positive electrode ribbon causes the internal resistance of the battery to increase.

そこで、電池の内部抵抗をより低くし、高率放電特性に優れる電池を得るために、従来よりも通電経路を短縮する検討が種々行われている。このような通電経路を短縮するための対策がとられた電池としては、例えば、特許文献1に示されるような電池が知られている。   Therefore, various studies have been made to shorten the energization path as compared with the prior art in order to lower the internal resistance of the battery and to obtain a battery excellent in high rate discharge characteristics. For example, a battery as disclosed in Patent Document 1 is known as a battery in which measures for shortening the energization path are taken.

特許文献1に代表される電池においては、従来の正極リボンに比べ、厚さが厚く長さが短い集電リードを用いる対策がとられている。詳しくは、特許文献1の電池を組み立てる際、正極集電体上には、特許文献1の図1等に示されるような所定形状の集電リードを溶接する。次いで、封口体を外装缶の開口部に絶縁ガスケットを介して配置し、外装缶の開口端縁を内方にかしめることによって電池を封口して、電池を組み立てる。この封口時点で、集電リードと封口体とは接触した状態となっている。その後、電池の正極端子と負極端子との間に通電することにより、正極の集電リードと封口体とが抵抗スポット溶接される。   In the battery represented by Patent Document 1, a measure using a current collecting lead that is thicker and shorter than a conventional positive electrode ribbon is taken. Specifically, when the battery of Patent Document 1 is assembled, a current collecting lead having a predetermined shape as shown in FIG. 1 of Patent Document 1 is welded onto the positive electrode current collector. Next, the sealing body is disposed at the opening of the outer can through an insulating gasket, and the battery is sealed by caulking the opening edge of the outer can inward to assemble the battery. At the time of sealing, the current collecting lead and the sealing body are in contact with each other. Thereafter, the current collector lead and the sealing body of the positive electrode are resistance spot welded by energizing between the positive electrode terminal and the negative electrode terminal of the battery.

特許文献1の電池は、外装缶を封口した後に集電リードと封口体との溶接を行うことが可能となるため、外装缶を封口する前に集電リードと封口体との溶接をする必要がなくなる。これにより、集電リードが短くても容易に外装缶の開口部に封口体を装着することが可能となる。このように、集電リードが短くなれば、通電経路を短縮できるので、電池の内部抵抗を低減することが可能となる。また、特許文献1の電池は、外装缶内で集電リードを屈曲させる必要がないので、厚さの厚い集電リードを用いることが可能になる。このように、集電リードの厚さが厚くなれば、通電経路を太くでき、これによっても電池の内部抵抗を低減することができる。   Since the battery of Patent Document 1 can weld the current collecting lead and the sealing body after sealing the outer can, it is necessary to weld the current collecting lead and the sealing body before sealing the outer can. Disappears. This makes it possible to easily attach the sealing body to the opening of the outer can even if the current collecting lead is short. Thus, if the current collecting lead is shortened, the energization path can be shortened, so that the internal resistance of the battery can be reduced. Further, since the battery of Patent Document 1 does not need to bend the current collecting lead in the outer can, it is possible to use the current collecting lead having a large thickness. Thus, if the thickness of the current collecting lead is increased, the energization path can be increased, and this can also reduce the internal resistance of the battery.

このように、特許文献1の電池は、従来の電池に比べて電池の内部抵抗は低くなるので高率放電特性に優れている。   Thus, since the battery of patent document 1 becomes low in internal resistance of a battery compared with the conventional battery, it is excellent in the high rate discharge characteristic.

特許第3547931号公報Japanese Patent No. 3547931

ところで、外装缶の上端開口縁をかしめ加工して封口体を外装缶に装着する際や、集電体、集電リード及び封口体を抵抗スポット溶接する際、電池には、その軸線方向に沿って圧縮応力が加えられる。このような圧縮応力が加わると、集電体が変形し電極群を圧迫してしまう。そうすると、電池においては、電極群の正極や負極の端部が折れ曲がるなどして内部短絡が引き起こされるおそれがある。   By the way, when the upper end opening edge of the outer can is caulked and the sealing body is attached to the outer can, or when the current collector, the current collecting lead and the sealing body are resistance spot welded, the battery has an axial direction. Compressive stress is applied. When such compressive stress is applied, the current collector is deformed and presses the electrode group. If it does so, in a battery, there exists a possibility that the edge part of the positive electrode of a electrode group or a negative electrode may bend | fold, and an internal short circuit will be caused.

本発明は、上記の事情に基づいてなされたものであり、その目的とするところは、高率放電特性に優れており、且つ、内部短絡の発生が少ないアルカリ二次電池を提供することにある。   The present invention has been made based on the above circumstances, and an object of the present invention is to provide an alkaline secondary battery that is excellent in high-rate discharge characteristics and has few occurrences of internal short circuits. .

上記目的を達成するために、本発明によれば、負極端子を含む有底円筒状の外装缶と、正極端子を含み、前記外装缶の上端開口を封止している封口体と、正極及び負極がセパレータを介して重ね合わされ渦巻き状に巻回されてなり、前記外装缶内にアルカリ電解液とともに収容されている円柱状の電極群と、前記電極群の一端面から突出した前記正極の端縁部に接続されている集電体と、前記集電体と前記封口体とを接続する集電リードと、を備え、前記集電リードを構成する材料をa材料とし、前記集電体を構成する材料をb材料とした場合、前記a材料の変形抵抗Aと、前記b材料の変形抵抗Bとの関係が、A<Bの関係を満たしている、円筒形アルカリ二次電池が提供される。   To achieve the above object, according to the present invention, a bottomed cylindrical outer can including a negative electrode terminal, a sealing body including a positive electrode terminal and sealing an upper end opening of the outer can, a positive electrode, A negative electrode is overlapped via a separator and wound in a spiral shape, and is a cylindrical electrode group housed together with an alkaline electrolyte in the outer can, and an end of the positive electrode protruding from one end surface of the electrode group A current collector connected to an edge; and a current collector lead that connects the current collector and the sealing body; and a material constituting the current collector lead is a material, and the current collector is Provided is a cylindrical alkaline secondary battery in which the relationship between the deformation resistance A of the material a and the deformation resistance B of the material b satisfies the relationship A <B when the material constituting the material is material b. The

また、前記A<Bの関係を満たすために、前記a材料の厚さに比べ、前記b材料の厚さを厚くした構成とすることが好ましい。   In order to satisfy the relationship of A <B, it is preferable that the thickness of the b material is larger than the thickness of the a material.

また、前記A<Bの関係を満たすために、前記a材料の硬度に比べ、前記b材料の硬度を高くした構成とすることが好ましい。   In order to satisfy the relationship of A <B, it is preferable that the hardness of the material b is higher than the hardness of the material a.

また、前記A<Bの関係を満たすために、前記a材料を純Niとし、前記b材料をNiめっき鋼とした構成とすることが好ましい。   In order to satisfy the relationship of A <B, the material a is preferably pure Ni and the material b is preferably Ni-plated steel.

より好ましくは、前記集電リードは、前記封口体に接続されている矩形状の頂壁部と、前記頂壁部の所定の側縁から前記集電体へ向かって延びる側壁部と、前記側壁部の先端縁に設けられ前記集電体に接続されている脚部と、を含み、前記側壁部における前記頂壁部から前記脚部へ向かう方向の長さが、前記封口体と前記集電体との間の長さとほぼ同じである構成とする。   More preferably, the current collecting lead includes a rectangular top wall portion connected to the sealing body, a side wall portion extending from a predetermined side edge of the top wall portion toward the current collector, and the side wall. A leg portion provided at a leading edge of the portion and connected to the current collector, wherein a length of the side wall portion in a direction from the top wall portion to the leg portion is the sealing body and the current collector. The length is approximately the same as that between the body.

また、前記側壁部は、前記集電体と前記封口体とが近づく方向へ圧縮応力を受けたときに、局所的な変形を促進する変形促進部を含む構成とすることが好ましい。   Moreover, it is preferable that the said side wall part is set as the structure containing the deformation | transformation acceleration | stimulation part which accelerates | stimulates local deformation, when a compressive stress is received in the direction in which the said collector and the said sealing body approach.

また、前記集電体は、前記電極群に向かって突出する突起を有している構成とすることが好ましい。   Moreover, it is preferable that the current collector has a protrusion that protrudes toward the electrode group.

また、前記突起は、前記集電体の板面に形成された切欠の縁部に設けられたバリである構成とすることが好ましい。   Further, it is preferable that the protrusion is a burr provided at an edge of a notch formed on the plate surface of the current collector.

本発明によれば、高率放電特性に優れており、且つ、内部短絡の発生が少ない円筒形アルカリ二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cylindrical alkaline secondary battery which is excellent in the high rate discharge characteristic and few generation | occurrence | production of an internal short circuit can be provided.

本発明に係る円筒形のニッケル水素二次電池を示した部分断面図である。1 is a partial cross-sectional view showing a cylindrical nickel-metal hydride secondary battery according to the present invention. 正極集電体を示した平面図である。It is the top view which showed the positive electrode electrical power collector. 集電リードを示した斜視図である。It is the perspective view which showed the current collection lead. 図3におけるIV−IV線に沿った断面図である。It is sectional drawing along the IV-IV line in FIG. 集電リードの中間製品を示した平面図である。It is the top view which showed the intermediate product of the current collection lead. 正極集電体及び集電リードを一体化させた集電部品を示した平面図である。It is the top view which showed the current collection component which integrated the positive electrode current collector and the current collection lead. スリット型の正極集電体を概略的に示した平面図である。FIG. 3 is a plan view schematically showing a slit-type positive electrode current collector. スリット型の正極集電体を図7中の矢印C方向に見た側面図である。It is the side view which looked at the slit-type positive electrode collector in the arrow C direction in FIG. スリット型の正極集電体と組み合わされる正極接続端縁部を概略的に示した平面図である。It is the top view which showed roughly the positive electrode connection edge part combined with a slit-type positive electrode collector. 多孔型の正極集電体を概略的に示した平面図である。FIG. 3 is a plan view schematically showing a porous positive electrode current collector. 多孔型の正極集電体と組み合わされる正極接続端縁部を概略的に示した平面図である。It is the top view which showed roughly the positive electrode connection edge part combined with a porous positive electrode collector. スリット型の正極集電体について得られた電位分布の解析結果を示した平面図である。It is the top view which showed the analysis result of the electric potential distribution obtained about the slit type positive electrode electrical power collector. スリット型の正極集電体と組み合わされた正極接続端縁部について得られた電位分布の解析結果を示した平面図である。It is the top view which showed the analysis result of the electric potential distribution obtained about the positive electrode connection edge part combined with the slit type positive electrode collector. 多孔型の正極集電体について得られた電位分布の解析結果を示した平面図である。It is the top view which showed the analysis result of the electric potential distribution obtained about the porous positive electrode collector. 多孔型の正極集電体と組み合わされた正極接続端縁部について得られた電位分布の解析結果を示した平面図である。It is the top view which showed the analysis result of the electric potential distribution obtained about the positive electrode connection edge part combined with the porous positive electrode collector.

以下、本発明に係るアルカリ二次電池を、図面を参照して説明する。
本発明が適用される一実施形態のアルカリ二次電池として、図1に示すAAサイズの円筒形のニッケル水素二次電池(以下、電池という)1を例に説明する。
Hereinafter, an alkaline secondary battery according to the present invention will be described with reference to the drawings.
As an alkaline secondary battery according to an embodiment to which the present invention is applied, an AA-sized cylindrical nickel-hydrogen secondary battery (hereinafter referred to as a battery) 1 shown in FIG. 1 will be described as an example.

電池1は、上端が開口した有底円筒形状をなす外装缶2を備え、外装缶2は導電性を有し、その底壁は負極端子として機能する。外装缶2の中には、所定量のアルカリ電解液(図示せず)とともに電極群4が収容されている。   The battery 1 includes an outer can 2 having a bottomed cylindrical shape with an open upper end. The outer can 2 has conductivity, and its bottom wall functions as a negative electrode terminal. In the outer can 2, an electrode group 4 is accommodated together with a predetermined amount of an alkaline electrolyte (not shown).

図1に示すように、外装缶2の開口3は封口体14によって閉塞されている。封口体14は、導電性を有する円板形状の蓋板16、この蓋板16の上に配設された弁体20及び正極端子22を含んでいる。蓋板16の外周部には、この蓋板16を囲むようにリング形状の絶縁ガスケット18が配置され、絶縁ガスケット18及び蓋板16は外装缶2の開口縁17をかしめ加工することにより外装缶2の開口縁17に固定されている。即ち、蓋板16及び絶縁ガスケット18は互いに協働して外装缶2の開口3を封止している。ここで、蓋板16は、中央に中央貫通孔19を有し、そして、蓋板16の外面上には、中央貫通孔19を閉塞するようにゴム製の弁体20が配置されている。更に、蓋板16の外面上には弁体20を覆うようにフランジ付きの円筒形状の正極端子22が電気的に接続されている。この正極端子20は弁体18を蓋板16に向けて押圧している。また、この正極端子22は、側面にガス抜き孔23を有している。   As shown in FIG. 1, the opening 3 of the outer can 2 is closed by a sealing body 14. The sealing body 14 includes a disc-shaped lid plate 16 having conductivity, a valve body 20 disposed on the lid plate 16, and a positive electrode terminal 22. A ring-shaped insulating gasket 18 is disposed on the outer periphery of the cover plate 16 so as to surround the cover plate 16, and the insulating gasket 18 and the cover plate 16 are formed by caulking the opening edge 17 of the outer can 2. 2 is fixed to the opening edge 17. That is, the cover plate 16 and the insulating gasket 18 cooperate with each other to seal the opening 3 of the outer can 2. Here, the lid plate 16 has a central through hole 19 in the center, and a rubber valve body 20 is disposed on the outer surface of the lid plate 16 so as to close the central through hole 19. Furthermore, a flanged cylindrical positive terminal 22 is electrically connected to the outer surface of the cover plate 16 so as to cover the valve body 20. The positive terminal 20 presses the valve body 18 toward the cover plate 16. Further, the positive electrode terminal 22 has a gas vent hole 23 on a side surface.

通常時、中央貫通孔19は弁体20によって気密に閉じられている。一方、外装缶2内にガスが発生し、その内圧が高まれば、弁体20は内圧によって圧縮され、中央貫通孔19が開かれる。その結果、外装缶2内から中央貫通孔19及び正極端子22のガス抜き孔23を介して外部にガスが放出される。つまり、中央貫通孔19、弁体20及び正極端子22のガス抜き孔23は電池1のための安全弁を形成している。   Normally, the central through hole 19 is airtightly closed by the valve body 20. On the other hand, if gas is generated in the outer can 2 and its internal pressure increases, the valve body 20 is compressed by the internal pressure, and the central through hole 19 is opened. As a result, gas is released from the outer can 2 to the outside through the central through hole 19 and the gas vent hole 23 of the positive terminal 22. That is, the central through hole 19, the valve body 20, and the gas vent hole 23 of the positive electrode terminal 22 form a safety valve for the battery 1.

電極群4は、それぞれ帯状の正極6、負極8及びセパレータ10からなり、これらは正極6と負極8との間にセパレータ10が挟み込まれた状態で渦巻状に巻回されている。即ち、セパレータ10を介して正極6及び負極8が互いに重ね合わされている。このような電極群4は、全体としては円柱状をなしている。   The electrode group 4 includes a strip-like positive electrode 6, a negative electrode 8, and a separator 10, which are wound in a spiral shape with the separator 10 sandwiched between the positive electrode 6 and the negative electrode 8. That is, the positive electrode 6 and the negative electrode 8 are overlapped with each other via the separator 10. Such an electrode group 4 has a cylindrical shape as a whole.

この電極群4においては、一方の端面から正極6の端縁部が渦巻状に露出しており、他方の端面から負極8の端縁部が渦巻状に露出している。ここで、露出している正極6の端縁部を正極接続端縁部32とし、露出している負極8の端縁部を負極接続端縁部(図示せず)とする。これら露出している正極接続端縁部32及び負極接続端縁部には、後述する正極集電体28及び負極集電体(図示せず)がそれぞれ溶接される。   In this electrode group 4, the edge of the positive electrode 6 is exposed in a spiral shape from one end surface, and the edge of the negative electrode 8 is exposed in a spiral shape from the other end surface. Here, the exposed edge of the positive electrode 6 is defined as a positive electrode connection edge 32, and the exposed edge of the negative electrode 8 is defined as a negative electrode connection edge (not shown). A positive electrode current collector 28 and a negative electrode current collector (not shown), which will be described later, are welded to the exposed positive electrode connection edge 32 and negative electrode connection edge.

負極8は、帯状をなす導電性の負極芯体を有し、この負極芯体に負極合剤が保持されている。   The negative electrode 8 has a conductive negative electrode core having a strip shape, and a negative electrode mixture is held in the negative electrode core.

負極芯体は、その厚さ方向に貫通する貫通孔(図示せず)が多数分布されている帯状の金属材からなる。このような負極芯体としては、例えば、パンチングメタルシートを用いることができる。   The negative electrode core is made of a band-shaped metal material in which a large number of through holes (not shown) penetrating in the thickness direction are distributed. For example, a punching metal sheet can be used as such a negative electrode core.

負極合剤は、負極芯体の貫通孔内に充填されるばかりでなく、負極芯体の両面上にも層状にして保持されている。   The negative electrode mixture is not only filled in the through hole of the negative electrode core, but also held in layers on both surfaces of the negative electrode core.

負極合剤は、水素吸蔵合金の粒子、導電材、結着剤等を含む。ここで、水素吸蔵合金は、負極活物質である水素を吸蔵及び放出可能な合金であり、ニッケル水素二次電池に一般的に用いられている水素吸蔵合金が好適に用いられる。上記した結着剤は水素吸蔵合金の粒子及び導電材を互いに結着させると同時に負極合剤を負極芯体に結着させる働きをなす。ここで、導電材及び結着剤としては、ニッケル水素二次電池に一般的に用いられているものが好適に用いられる。   The negative electrode mixture includes particles of a hydrogen storage alloy, a conductive material, a binder, and the like. Here, the hydrogen storage alloy is an alloy capable of storing and releasing hydrogen, which is a negative electrode active material, and a hydrogen storage alloy generally used in nickel-hydrogen secondary batteries is preferably used. The above-described binder serves to bind the particles of the hydrogen storage alloy and the conductive material to each other and at the same time bind the negative electrode mixture to the negative electrode core. Here, as the conductive material and the binder, those generally used in nickel-hydrogen secondary batteries are preferably used.

負極8は、例えば、以下のようにして製造することができる。   The negative electrode 8 can be manufactured as follows, for example.

まず、水素吸蔵合金粒子からなる水素吸蔵合金粉末、導電材、結着剤及び水を混練して負極合剤のペーストを調製する。得られた負極合剤のペーストは負極芯体に塗着され、乾燥させられる。乾燥後、水素吸蔵合金粒子等を含む負極合剤が付着した負極芯体はロール圧延及び裁断が施され、負極の中間製品が得られる。この負極の中間製品は、全体として長方形状をなしている。そして、この負極の中間製品における負極接続端縁部となるべき所定の端縁部については、負極合剤の除去が行われる。これにより、所定の端縁部は、負極芯体がむき出しの状態とされた負極接続端縁部となる。このようにして、負極接続端縁部を有する負極8が得られる。ここで、負極合剤の除去方法としては、特に限定はされないが、例えば、超音波振動を与えることにより除去することが好適に行われる。なお、負極接続端縁部以外の領域には、負極合剤が保持されたままの状態である。   First, a hydrogen storage alloy powder composed of hydrogen storage alloy particles, a conductive material, a binder, and water are kneaded to prepare a paste of a negative electrode mixture. The obtained paste of the negative electrode mixture is applied to the negative electrode core and dried. After drying, the negative electrode core body to which the negative electrode mixture containing hydrogen storage alloy particles and the like is attached is subjected to roll rolling and cutting to obtain an intermediate product of the negative electrode. The intermediate product of this negative electrode has a rectangular shape as a whole. And about the predetermined | prescribed edge part which should become a negative electrode connection edge part in this intermediate product of a negative electrode, removal of a negative mix is performed. As a result, the predetermined edge portion becomes the negative electrode connection edge portion in which the negative electrode core is exposed. In this way, the negative electrode 8 having the negative electrode connection edge is obtained. Here, the method for removing the negative electrode mixture is not particularly limited, but for example, the removal is preferably performed by applying ultrasonic vibration. Note that the negative electrode mixture is still held in the region other than the negative electrode connection edge.

次に、正極6について説明する。   Next, the positive electrode 6 will be described.

正極6は、多孔質構造をなし多数の空孔を有する導電性の正極基材と、前記した空孔内及び正極基材の表面に保持された正極合剤とを含む。   The positive electrode 6 includes a conductive positive electrode base material having a porous structure and having a large number of pores, and a positive electrode mixture held in the pores and on the surface of the positive electrode base material.

正極基材としては、例えば、発泡ニッケル(ニッケルフォーム)を用いることができる。   As the positive electrode base material, for example, foamed nickel (nickel foam) can be used.

正極合剤は、正極活物質粒子としての水酸化ニッケル粒子、導電材としてのコバルト化合物、結着剤等を含んでいる。上記した結着剤は、水酸化ニッケル粒子及び導電材を互いに結着させると同時に正極合剤を正極基材に結着させる働きをなす。ここで、結着剤としては、ニッケル水素二次電池に一般的に用いられているものが好適に用いられる。   The positive electrode mixture includes nickel hydroxide particles as positive electrode active material particles, a cobalt compound as a conductive material, a binder, and the like. The above-described binder serves to bind the nickel hydroxide particles and the conductive material to each other and simultaneously bind the positive electrode mixture to the positive electrode base material. Here, what is generally used for the nickel-hydrogen secondary battery is suitably used as the binder.

正極6は、例えば、以下のようにして製造することができる。   The positive electrode 6 can be manufactured as follows, for example.

まず、正極活物質粒子からなる正極活物質粉末、導電材、水及び結着剤を含む正極合剤スラリーを調製する。得られた正極合剤スラリーは、例えばニッケルフォームに充填され、乾燥させられる。乾燥後、水酸化ニッケル粒子等が充填されたニッケルフォームは、ロール圧延されてから所定形状に裁断され、正極の中間製品が得られる。この正極の中間製品は、全体として長方形状をなしている。そして、この正極の中間製品における正極接続端縁部32となるべき所定の端縁部については、正極合剤の除去が行われ、正極基材がむき出しの状態とされる。次いで、正極合剤が除去された端縁部は、正極の中間製品の厚さ方向に圧縮加工され正極接続端縁部32となる。このように圧縮加工されることにより、正極基材は、稠密な状態となるので、この正極接続端縁部32は溶接がし易い状態となる。このようにして、正極接続端縁部32を有する正極6が得られる。ここで、正極合剤の除去方法としては、特に限定はされないが、例えば、超音波振動を与えることにより除去することが好適に行われる。なお、正極接続端縁部32以外の領域には、正極合剤が充填されたままの状態である。   First, a positive electrode mixture slurry containing a positive electrode active material powder composed of positive electrode active material particles, a conductive material, water, and a binder is prepared. The obtained positive electrode mixture slurry is filled in, for example, nickel foam and dried. After drying, the nickel foam filled with nickel hydroxide particles and the like is roll-rolled and then cut into a predetermined shape to obtain an intermediate product of the positive electrode. The intermediate product of this positive electrode has a rectangular shape as a whole. And about the predetermined | prescribed edge part which should become the positive electrode connection edge part 32 in this intermediate product of a positive electrode, the positive mix is removed and the positive electrode base material is exposed. Next, the edge part from which the positive electrode mixture has been removed is compressed in the thickness direction of the intermediate product of the positive electrode to become the positive electrode connection edge part 32. Since the positive electrode base material is in a dense state by being compressed in this manner, the positive electrode connection end edge portion 32 is easily welded. In this way, the positive electrode 6 having the positive electrode connection edge portion 32 is obtained. Here, the method for removing the positive electrode mixture is not particularly limited, but for example, it is suitably performed by applying ultrasonic vibration. It should be noted that the region other than the positive electrode connection edge portion 32 is still filled with the positive electrode mixture.

次に、セパレータ10としては、例えば、ポリアミド繊維製不織布に親水性官能基を付与したもの、あるいは、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものを用いることができる。   Next, as the separator 10, for example, a polyamide fiber nonwoven fabric provided with a hydrophilic functional group, or a polyolefin fiber nonwoven fabric such as polyethylene or polypropylene provided with a hydrophilic functional group can be used.

以上のようにして製造された正極6及び負極8は、上記したセパレータ10を介在させた状態で、渦巻き状に巻回され、これにより電極群4が形成される。詳しくは、巻回の際、正極6及び負極8は、互いに、電極群4の軸線方向に沿う方向に僅かにずれた状態となるように配置されるとともに、これら正極6及び負極8の間には、所定サイズのセパレータ10が所定位置に配置され、この状態で巻回作業が行われる。その結果、円柱状の電極群4が得られる。得られた電極群4の態様としては、電極群4の一端側においては、正極6の正極接続端縁部32が、セパレータ10を介して隣り合っている負極8よりも突出した状態となっており、電極群4の他端側においては、負極8の負極接続端縁部が、セパレータ10を介して隣り合っている正極6よりも突出した状態となっている。   The positive electrode 6 and the negative electrode 8 produced as described above are spirally wound with the separator 10 interposed therebetween, whereby the electrode group 4 is formed. Specifically, during winding, the positive electrode 6 and the negative electrode 8 are arranged so as to be slightly shifted from each other in the direction along the axial direction of the electrode group 4, and between the positive electrode 6 and the negative electrode 8. The separator 10 having a predetermined size is disposed at a predetermined position, and the winding operation is performed in this state. As a result, a cylindrical electrode group 4 is obtained. As an aspect of the obtained electrode group 4, in one end side of the electrode group 4, the positive electrode connection edge 32 of the positive electrode 6 protrudes from the adjacent negative electrode 8 through the separator 10. On the other end side of the electrode group 4, the negative electrode connection edge portion of the negative electrode 8 is in a state of protruding from the adjacent positive electrode 6 with the separator 10 interposed therebetween.

なお、電極群4は、上記した正極6、負極8及びセパレータ10が、所定の外径寸法を有する巻芯により巻回されて形成され、巻回作業後は、この巻芯が抜き取られるので、電極群4の中央には貫通孔9が形成されている。   The electrode group 4 is formed by winding the positive electrode 6, the negative electrode 8, and the separator 10 with a core having a predetermined outer diameter, and the core is extracted after the winding operation. A through hole 9 is formed in the center of the electrode group 4.

以上のような電極群4においては、一端側に正極集電体28が接続され、他端側に負極集電体が接続される。   In the electrode group 4 as described above, the positive electrode current collector 28 is connected to one end side, and the negative electrode current collector is connected to the other end side.

まず、負極集電体については、特に限定されるものではなく、例えば、従来から用いられている円板形状の金属板を用いることが好ましい。準備した負極集電体は、電極群4の他端側の負極接続端縁部に溶接される。   First, the negative electrode current collector is not particularly limited, and for example, a conventionally used disk-shaped metal plate is preferably used. The prepared negative electrode current collector is welded to the negative electrode connection edge on the other end side of the electrode group 4.

次に、正極集電体28について説明する。   Next, the positive electrode current collector 28 will be described.

正極集電体28は、導電性材料からなる板状体であり、平面視形状は特に限定されるものではなく、円板形状、多角形状等任意の形状のものを採用することができる。また、正極集電体28の大きさは、電極群4の外径寸法よりも小さく、且つ、電極群4の一端側から突出している正極6の正極接続端縁部32をカバーできる大きさに設定される。   The positive electrode current collector 28 is a plate-like body made of a conductive material, and the shape in plan view is not particularly limited, and any shape such as a disk shape or a polygonal shape can be adopted. Further, the size of the positive electrode current collector 28 is smaller than the outer diameter size of the electrode group 4 and is large enough to cover the positive electrode connection edge 32 of the positive electrode 6 protruding from one end side of the electrode group 4. Is set.

本実施形態においては、図2に示すように、平面視形状が十角形状の板材が用いられる。詳しくは、正極集電体28は、全体として十角形状のNiめっき鋼製の薄板であり、中央に円形の中央貫通孔29と、この中央貫通孔29を囲むように放射状に延びる6個のスリット30とを含んでいる。スリット30は、打ち抜き加工で形成し、スリット30のエッジの部分に下方(電極群4側)へ延びる突起(バリ)を生じさせることが好ましい。   In the present embodiment, as shown in FIG. 2, a plate material having a decagonal shape in plan view is used. Specifically, the positive electrode current collector 28 is a thin plate made of Ni-plated steel having a decagonal shape as a whole, and has a circular central through hole 29 at the center and six radially extending so as to surround the central through hole 29. The slit 30 is included. The slit 30 is preferably formed by punching, and a protrusion (burr) extending downward (on the electrode group 4 side) is generated at an edge portion of the slit 30.

電池1においては、図1に示すように、正極集電体28と封口体14との間に集電リード34が介在し、この集電リード34が、電極群4の正極6に接続されている正極集電体28と、正極端子22を有する封口体14とを電気的に接続する。   In the battery 1, as shown in FIG. 1, a current collecting lead 34 is interposed between the positive electrode current collector 28 and the sealing body 14, and this current collecting lead 34 is connected to the positive electrode 6 of the electrode group 4. The positive electrode current collector 28 and the sealing body 14 having the positive electrode terminal 22 are electrically connected.

集電リード34は、例えば、図3に示すように、封口体14と接続されるほぼ矩形状の頂壁部36と、頂壁部36の所定の側縁38、40から延びる一対の側壁部42、44と、側壁部42、44における頂壁部36とは反対側の端縁46、48から延び、正極集電体28と接続される脚部50、52とを有している。   For example, as shown in FIG. 3, the current collecting lead 34 includes a substantially rectangular top wall portion 36 connected to the sealing body 14, and a pair of side wall portions extending from predetermined side edges 38 and 40 of the top wall portion 36. 42, 44 and leg portions 50, 52 extending from end edges 46, 48 of the side wall portions 42, 44 opposite to the top wall portion 36 and connected to the positive electrode current collector 28.

頂壁部36は、中央に円形の貫通孔54が設けられている。この貫通孔54は、集電リード34が封口体14に接続された際に、蓋板16の中央貫通孔19と連通する。また、貫通孔54の周囲には、溶接部となる突起部56が4個設けられている。   The top wall portion 36 is provided with a circular through hole 54 at the center. The through hole 54 communicates with the central through hole 19 of the cover plate 16 when the current collecting lead 34 is connected to the sealing body 14. In addition, around the through hole 54, four protrusions 56 serving as welds are provided.

側壁部42、44は、頂壁部36の両側縁38、40から延びており、図4に示すように、断面形状がほぼストレート形状をなしている。ここで、側壁部42、44における図4中の上下方向の長さ、つまり、頂壁部36から脚部50、52へ延びる方向への長さが、封口体14と正極集電体28との間の長さとほぼ同じに設定されている。これにより、通電経路を短縮でき、電池の内部抵抗の低減に貢献する。   The side wall portions 42 and 44 extend from both side edges 38 and 40 of the top wall portion 36, and the cross-sectional shape thereof is substantially straight as shown in FIG. Here, the length of the side wall portions 42 and 44 in the vertical direction in FIG. 4, that is, the length in the direction extending from the top wall portion 36 to the leg portions 50 and 52, is the sealing body 14 and the positive electrode current collector 28. It is set to be almost the same as the length between. Thereby, an energization path can be shortened and it contributes to reduction of internal resistance of a battery.

脚部50、52は、側壁部42、44の端縁46、48から延び、頂壁部36と対向する位置に位置付けられている。また、脚部50、52は、図3に示すように、側壁部42、44の長手方向に沿う方向に延びる延出部50a、50b、52a、52bを有している。これら延出部50a、50b、52a、52bが頂壁部36と対向する位置から外側に延びていることにより、集電リード34が正極集電体28に接続された際に集電リード34の安定性を高める働きをする。これら延出部50a、50b、52a、52bには、正極集電体28の側に向かって突出した突起部58が設けられている(図4参照)。この突起部58も溶接部となる。   The leg portions 50 and 52 extend from the end edges 46 and 48 of the side wall portions 42 and 44, and are positioned at positions facing the top wall portion 36. Moreover, the leg parts 50 and 52 have the extension parts 50a, 50b, 52a, and 52b extended in the direction along the longitudinal direction of the side wall parts 42 and 44, as shown in FIG. These extending portions 50 a, 50 b, 52 a, 52 b extend outward from the position facing the top wall portion 36, so that when the current collecting lead 34 is connected to the positive electrode current collector 28, It works to increase stability. These extending portions 50a, 50b, 52a, 52b are provided with protruding portions 58 protruding toward the positive electrode current collector 28 (see FIG. 4). This protrusion 58 also becomes a welded portion.

ここで、突起部56及び突起部58は、例えば、プレス加工により形成される。なお、図3における参照符号60は、脚部50、52に突起部58を設ける際に突起部58の裏側に生じた凹部を示す。   Here, the protruding portion 56 and the protruding portion 58 are formed by, for example, pressing. Note that reference numeral 60 in FIG. 3 indicates a recess formed on the back side of the protrusion 58 when the protrusions 58 are provided on the legs 50 and 52.

この集電リード34は、例えば、以下のようにして製造することができる。   The current collecting lead 34 can be manufactured as follows, for example.

まず、金属製の薄板を加工することにより、図5に示すような、平面視形状がほぼH形の薄板からなる集電リードの中間製品62を準備する。なお、この薄板は、従来の正極リボンに比べて十分厚い。この中間製品62において、両側部に位置付けられた長尺部分が、脚部50、52となる脚部予定領域70、72である。脚部予定領域70、72の内側に連なる領域は、側壁部42、44となる側壁部予定領域74、76である。そして、側壁部予定領域74と側壁部予定領域76との間に挟まれた領域が、頂壁部36となる頂壁部予定領域78である。   First, by processing a metal thin plate, a current collector lead intermediate product 62 made of a thin plate having a substantially H-shaped plan view as shown in FIG. 5 is prepared. In addition, this thin plate is sufficiently thick compared with the conventional positive electrode ribbon. In the intermediate product 62, the long portions positioned on both sides are leg portion planned regions 70 and 72 that become the leg portions 50 and 52. The regions that continue to the inside of the planned leg portions 70 and 72 are the side wall portions 74 and 76 that become the side walls 42 and 44. A region sandwiched between the side wall portion planned region 74 and the side wall portion planned region 76 is a top wall portion planned region 78 that becomes the top wall portion 36.

更にこの中間製品62には、打ち抜き加工により、頂壁予定領域78の中央に貫通孔54が穿設される。   Further, the intermediate product 62 is provided with a through hole 54 at the center of the planned top wall region 78 by punching.

次いで、貫通孔54の周囲の所定位置及び脚部予定領域70、72の両端部の所定位置に、プレス加工により、突起部56、58を設ける。   Next, protrusions 56 and 58 are provided by pressing at a predetermined position around the through hole 54 and at predetermined positions on both ends of the planned leg portions 70 and 72.

その後、仮想線80、82、84、86の部分を折り曲げることにより、図3に示すような集電リード34を形成する。   Thereafter, the portions of the virtual lines 80, 82, 84, 86 are bent to form the current collecting leads 34 as shown in FIG.

次に、電池1の組み立ての手順について説明する。   Next, the procedure for assembling the battery 1 will be described.

上記のような電極群4を準備する。そして、電極群4の他端側に負極集電体を接続した後、当該電極群4を外装缶の中に収容する。そして、外装缶の底壁に負極集電体を抵抗スポット溶接する。   The electrode group 4 as described above is prepared. And after connecting a negative electrode collector to the other end side of the electrode group 4, the said electrode group 4 is accommodated in an exterior can. Then, the negative electrode current collector is resistance spot welded to the bottom wall of the outer can.

次いで、外装缶2内にアルカリ電解液を所定量注入する。外装缶2内に注入されたアルカリ電解液は、電極群4に保持され、その大部分はセパレータ10に保持される。このアルカリ電解液は、正極6と負極8との間での充放電の際の電気化学反応(充放電反応)を進行させる。このアルカリ電解液としては、KOH、NaOH及びLiOHのうちの少なくとも一種を溶質として含むアルカリ電解液を用いることが好ましい。   Next, a predetermined amount of alkaline electrolyte is injected into the outer can 2. The alkaline electrolyte injected into the outer can 2 is held in the electrode group 4, and most of the alkaline electrolyte is held in the separator 10. This alkaline electrolyte advances an electrochemical reaction (charge / discharge reaction) during charge / discharge between the positive electrode 6 and the negative electrode 8. As the alkaline electrolyte, an alkaline electrolyte containing at least one of KOH, NaOH, and LiOH as a solute is preferably used.

次いで、電極群4の一端側に正極集電体28を載置し、更に、正極集電体28の上に集電リード34を載置する。この状態で、外装缶4の上端開口部に絶縁ガスケット18を介して封口体14を配置する。このとき、集電リード34と封口体14とは接触している。   Next, the positive electrode current collector 28 is placed on one end side of the electrode group 4, and the current collector lead 34 is further placed on the positive electrode current collector 28. In this state, the sealing body 14 is disposed through the insulating gasket 18 in the upper end opening of the outer can 4. At this time, the current collecting lead 34 and the sealing body 14 are in contact with each other.

その後、電池1の正極端子22と負極端子との間に加圧しながら電流を流し、抵抗スポット溶接を行う。これにより、正極6の正極接続端縁部32と正極集電体28とが溶接され、正極集電体28と集電リード34の脚部50、52とが溶接され、集電リード34の頂壁部36と封口体14の蓋板16とが溶接される。   Thereafter, a current is applied while pressing between the positive electrode terminal 22 and the negative electrode terminal of the battery 1 to perform resistance spot welding. As a result, the positive electrode connecting edge 32 of the positive electrode 6 and the positive electrode current collector 28 are welded, and the positive electrode current collector 28 and the legs 50 and 52 of the current collector lead 34 are welded. The wall portion 36 and the lid plate 16 of the sealing body 14 are welded.

その後、外装缶2の開口縁17をかしめ加工することにより、外装缶2の開口3を封止する。   Then, the opening 3 of the outer can 2 is sealed by caulking the opening edge 17 of the outer can 2.

ここで、上記したような正極集電体28においては、スリット30のエッジの部分の突起(バリ)が正極6の正極接続端縁部32に当接するように配置される。そして、抵抗スポット溶接が行われるとき、当該突起(バリ)の部分に溶接電流が集中し、突起(バリ)の部分の一部が溶融して溶接部となり、正極集電体28と正極6の正極接続端縁部32とが接続される。また、集電リード34の脚部50、52においては、突起部58が正極集電体28と当接するように配置される。そして、抵抗スポット溶接が行われるとき、突起部58の部分に溶接電流が集中し、突起部58の一部が溶融して集電リード34の脚部50、52と正極集電体28とが接続される。更に、集電リード34の頂壁部36においては、突起部56が封口体14の蓋板16と当接するように配置される。そして、抵抗スポット溶接が行われるとき、突起部56の部分に溶接電流が集中し、突起部56の一部が溶融して集電リード34の頂壁部36と蓋板16とが接続される。   Here, in the positive electrode current collector 28 as described above, the protrusions (burrs) at the edge portions of the slits 30 are arranged so as to abut on the positive electrode connection end edge portion 32 of the positive electrode 6. When resistance spot welding is performed, the welding current concentrates on the protrusion (burr) part, and a part of the protrusion (burr) part melts to become a welded portion, and the positive electrode current collector 28 and the positive electrode 6 The positive connection end edge 32 is connected. Further, in the leg portions 50 and 52 of the current collecting lead 34, the protruding portion 58 is disposed so as to contact the positive electrode current collector 28. When resistance spot welding is performed, the welding current concentrates on the portion of the protrusion 58, and a portion of the protrusion 58 is melted, so that the legs 50 and 52 of the current collecting lead 34 and the positive electrode current collector 28 are connected. Connected. Further, on the top wall portion 36 of the current collecting lead 34, the protruding portion 56 is disposed so as to contact the lid plate 16 of the sealing body 14. When resistance spot welding is performed, the welding current concentrates on the portion of the protruding portion 56, and a portion of the protruding portion 56 is melted to connect the top wall portion 36 of the current collecting lead 34 and the cover plate 16. .

以上のようにして、正極6と正極端子22とが、正極集電体28、集電リード34及び蓋板16を介して電気的に接続され、電池1が形成される。   As described above, the positive electrode 6 and the positive electrode terminal 22 are electrically connected via the positive electrode current collector 28, the current collector lead 34, and the lid plate 16, and the battery 1 is formed.

ここで、集電リード34と正極集電体28との間、及び、正極集電体28と電極群4の正極接続端縁部32との間での主な通電経路(電流が流れる経路)について説明する。   Here, main energization paths (paths through which current flows) between the current collecting lead 34 and the positive electrode current collector 28 and between the positive electrode current collector 28 and the positive electrode connecting edge 32 of the electrode group 4. Will be described.

まず、正極集電体28については簡略化して全体的に円形状のモデルを想定するとともに、電極群4の正極接続端縁部32についても簡略化して同心円状のモデルを想定する。   First, the positive electrode current collector 28 is simplified to assume a circular model as a whole, and the positive electrode connection edge 32 of the electrode group 4 is also simplified to assume a concentric model.

モデル化された正極集電体28を図7に示した。なお、図7において、正極集電体28は、概略的に半分だけの形状が示されている。正極集電体28は、全体としての形状が円形状であり、中央に中央貫通孔29が設けられており、そして、この中央貫通孔29を中心として放射状に延びる6個のスリット30が設けられている。これらのスリット30は、正極集電体28の外周縁まで延びている。そして、正極集電体28を図7中の矢印C方向に見た側面図である図8に示すように、各スリット30の長手方向のエッジ66には、図8中の下方(電極群4の方向)へ突出した突起(バリ)31が設けられている。この正極集電体28をスリット型とする。   The modeled positive electrode current collector 28 is shown in FIG. In FIG. 7, the positive electrode current collector 28 is schematically shown to have only a half shape. The positive electrode current collector 28 has a circular shape as a whole, a central through hole 29 is provided at the center, and six slits 30 extending radially from the central through hole 29 are provided. ing. These slits 30 extend to the outer peripheral edge of the positive electrode current collector 28. Then, as shown in FIG. 8 which is a side view of the positive electrode current collector 28 as viewed in the direction of arrow C in FIG. 7, the longitudinal edge 66 of each slit 30 has a lower side (electrode group 4) in FIG. A protrusion (burr) 31 is provided so as to protrude in the direction of. The positive electrode current collector 28 is a slit type.

図7においては、集電リード34の突起部58が溶接される箇所(以下、リード溶接部68)が、正極集電体28のどの位置に位置付けられるかが概略的に示されている。   In FIG. 7, it is schematically shown at which position of the positive electrode current collector 28 the position where the protrusion 58 of the current collecting lead 34 is welded (hereinafter referred to as the lead welding portion 68).

この図7では、主な通電経路が、太い矢印で表されている。図7に示すように、主な通電経路は、リード溶接部68から最も近いスリット30のエッジ66に電流が流れるような態様となる。   In FIG. 7, the main energization paths are represented by thick arrows. As shown in FIG. 7, the main energization path is such that a current flows through the edge 66 of the slit 30 closest to the lead weld 68.

次に、モデル化された正極接続端縁部32を図9に示した。なお、図9において、正極接続端縁部32は、概略的に半分だけの形状が示されている。図9から明らかなように、正極接続端縁部32は、同心円状に配設されている。   Next, the modeled positive electrode connection edge 32 is shown in FIG. In FIG. 9, the positive electrode connection edge portion 32 is schematically shown to have only a half shape. As is clear from FIG. 9, the positive electrode connection end edge portion 32 is disposed concentrically.

図9においては、正極集電体28のスリット30と、電極群4の正極接続端縁部32との位置関係が概略的に示されている。図9において、参照符号64で示す領域は、正極集電体28のスリット30が位置付けられるスリット領域である。この図9に示すように、スリット領域64におけるエッジ66に相当する部分67と、正極接続端縁部32とは、電極群4の径方向内側から外側にかけて、比較的多くの箇所で交差している。スリット30のエッジ66には突起(バリ)31が形成されており、この突起(バリ)31と正極接続端縁部32とが接触している部分は、溶接部となる。このため、突起(バリ)31を含むスリット30を有する正極集電体28、すなわち、スリット型の正極集電体28は、正極接続端縁部32の多くの箇所で溶接部を形成する。図9において、主な通電経路は太い矢印で表されている。図9に示すように、正極集電体28から正極接続端縁部32への通電経路は、スリット30及び正極接続端縁部32における多数の交差している部分から延びている。つまり、正極集電体28と正極接続端縁部32とは、比較的多くの箇所で接触しているので、正極6に入出力される電流は、比較的広い範囲で流れ、しかもその流れは、比較的均等となる。   In FIG. 9, the positional relationship between the slit 30 of the positive electrode current collector 28 and the positive electrode connection edge 32 of the electrode group 4 is schematically shown. In FIG. 9, an area indicated by reference numeral 64 is a slit area where the slit 30 of the positive electrode current collector 28 is positioned. As shown in FIG. 9, the portion 67 corresponding to the edge 66 in the slit region 64 and the positive electrode connection end edge 32 intersect with each other at relatively many points from the radially inner side to the outer side of the electrode group 4. Yes. A protrusion (burr) 31 is formed on the edge 66 of the slit 30, and a portion where the protrusion (burr) 31 and the positive electrode connecting edge portion 32 are in contact with each other is a welded portion. For this reason, the positive electrode current collector 28 having the slits 30 including the protrusions (burrs) 31, that is, the slit-type positive electrode current collector 28 forms welds at many locations of the positive electrode connection edge portion 32. In FIG. 9, the main energization paths are represented by thick arrows. As shown in FIG. 9, the energization path from the positive electrode current collector 28 to the positive electrode connection end portion 32 extends from a number of intersecting portions in the slit 30 and the positive electrode connection end portion 32. That is, since the positive electrode current collector 28 and the positive electrode connection end edge portion 32 are in contact with each other at a relatively large number of points, the current input to and output from the positive electrode 6 flows in a relatively wide range, and the flow is , Will be relatively even.

このように、電流が比較的広い範囲で比較的均等に流れると電気抵抗値は低くなる。その結果、電池においては、内部抵抗値が低く抑えられ、優れた高率充放電特性を発揮する。   As described above, when the current flows relatively uniformly in a relatively wide range, the electric resistance value becomes low. As a result, the internal resistance value of the battery is kept low, and excellent high rate charge / discharge characteristics are exhibited.

ここで、比較のため、例えば、図10に示すような多孔型の正極集電体88を用いた場合の主な通電経路についても説明する。この多孔型の正極集電体88は、スリット30の代わりに円形の貫通孔92を多数分散させた状態で含んでおり、各貫通孔92は、その周縁に沿って突起(バリ)が形成されている。   Here, for comparison, for example, main energization paths in the case of using a porous positive electrode current collector 88 as shown in FIG. 10 will be described. The porous positive electrode current collector 88 includes a large number of circular through holes 92 dispersed in place of the slits 30, and each through hole 92 has protrusions (burrs) formed along the periphery thereof. ing.

図10は、図7に対応する平面図であって、リード溶接部68が、多孔型の正極集電体88のどの位置に位置付けられるかを概略的に示した平面図である。図10において、主な通電経路は、太い矢印で表されている。この図10に示すように、主な通電経路は、リード溶接部68から最も近い貫通孔92の部分に電流が流れるような態様となる。   FIG. 10 is a plan view corresponding to FIG. 7, and is a plan view schematically showing where the lead welded portion 68 is positioned in the porous positive electrode current collector 88. In FIG. 10, the main energization paths are represented by thick arrows. As shown in FIG. 10, the main energization path is such that a current flows through the portion of the through hole 92 closest to the lead welded portion 68.

次に、図11は、図9に対応する平面図であって、多孔型の正極集電体88の貫通孔92と、電極群4の正極接続端縁部32との位置関係を概略的に示した平面図である。図11において、参照符号94で示す領域は、貫通孔92が位置付けられる貫通孔領域である。ここで、貫通孔92の周縁に形成された突起(バリ)と正極接続端縁部32とが接触している部分は、溶接部となる。図11に示すように、貫通孔領域94のうちの数個は、電極群4の外周部側に位置する正極接続端縁部32上に位置付けられ、また、貫通孔領域94のうちの別の数個は、電極群4の内周部側に位置する正極接続端縁部32上に位置付けられている。図11において、主な通電経路は太い矢印で表されている。図11に示すように、正極集電体88から正極接続端縁部32への通電経路は、貫通孔92の周縁と正極接続端縁部32とが交差する部分から延びている。多孔型の正極集電体88の場合、一つの貫通孔領域94が正極接続端縁部32と交差する箇所の数は、スリット型の正極集電体28における一つのスリット領域64が正極接続端縁部32と交差する箇所の数と比べて少ない。つまり、正極集電体88と正極接続端縁部32とが接触する箇所は比較的少ない。このため、正極6に入出力される電流は、比較的狭い範囲で流れ、しかもその流れは、比較的偏っている。   Next, FIG. 11 is a plan view corresponding to FIG. 9, and schematically shows the positional relationship between the through hole 92 of the porous positive electrode current collector 88 and the positive electrode connection edge 32 of the electrode group 4. It is the shown top view. In FIG. 11, a region indicated by reference numeral 94 is a through hole region where the through hole 92 is positioned. Here, a portion where the protrusion (burr) formed on the periphery of the through hole 92 and the positive electrode connection end edge portion 32 are in contact with each other is a welded portion. As shown in FIG. 11, several of the through-hole regions 94 are positioned on the positive electrode connection edge 32 positioned on the outer peripheral side of the electrode group 4, and Several are positioned on the positive electrode connection edge 32 located on the inner peripheral side of the electrode group 4. In FIG. 11, main energization paths are represented by thick arrows. As shown in FIG. 11, the energization path from the positive electrode current collector 88 to the positive electrode connection end edge 32 extends from a portion where the peripheral edge of the through hole 92 and the positive electrode connection end edge 32 intersect. In the case of the porous positive electrode current collector 88, the number of locations where one through-hole region 94 intersects the positive electrode connection end edge 32 is the same as that of one slit region 64 in the slit type positive electrode current collector 28. The number is smaller than the number of points intersecting the edge 32. That is, there are relatively few places where the positive electrode current collector 88 and the positive electrode connection edge portion 32 are in contact with each other. For this reason, the current inputted to and outputted from the positive electrode 6 flows in a relatively narrow range, and the flow is relatively biased.

このように、電流が比較的狭い範囲で偏って流れると電気抵抗値は高くなる。その結果、多孔型の正極集電体88を採用した電池においては、上記したスリット型の正極集電体28を採用した場合に比べ、内部抵抗値を低く抑えることができない。   Thus, when the current flows in a relatively narrow range, the electrical resistance value increases. As a result, in the battery employing the porous positive electrode current collector 88, the internal resistance value cannot be suppressed lower than when the slit positive electrode current collector 28 is employed.

以上より、スリット型の正極集電体28を用いると、多孔型の正極集電体88に比べて電池の内部抵抗値を低く抑えられ、電池の高率充放電特性を向上させることができるので、好ましい。   As described above, when the slit-type positive electrode current collector 28 is used, the internal resistance value of the battery can be suppressed lower than that of the porous positive electrode current collector 88, and the high rate charge / discharge characteristics of the battery can be improved. ,preferable.

上記したような抵抗スポット溶接の際及びかしめ加工の際、電池1には、その軸線に沿う方向に圧縮応力が加えられる。それにともない、電極群4、正極集電体28、集電リード34等の電池1を構成する部品にも圧縮応力が加えられる。ここで、集電リード34は、頂壁部36と脚部50、52とが近づく方向(図4の矢印A方向及ぶ矢印B方向)に圧縮応力を受けると、図1に示すように、側壁部42、45が側方に湾曲し、頂壁部36と脚部50、52とが近づく方向に変形する。このように集電リード34が変形し易いと、正極集電体28の変形を抑え、電極群4を圧迫することを抑制することができる。その結果、内部短絡の発生を抑制することができる。   In the resistance spot welding and the caulking process as described above, a compressive stress is applied to the battery 1 in a direction along the axis. Accordingly, compressive stress is also applied to the components constituting the battery 1 such as the electrode group 4, the positive electrode current collector 28, and the current collector lead 34. Here, when the current collecting lead 34 receives compressive stress in a direction in which the top wall portion 36 and the leg portions 50 and 52 approach each other (in the direction of arrow B extending in the direction of arrow A in FIG. 4), as shown in FIG. The portions 42 and 45 are bent sideways, and the top wall portion 36 and the leg portions 50 and 52 are deformed in a direction approaching. If the current collecting lead 34 is easily deformed in this way, it is possible to suppress deformation of the positive electrode current collector 28 and to suppress pressing of the electrode group 4. As a result, occurrence of an internal short circuit can be suppressed.

本発明においては、正極集電体28よりも集電リード34を変形し易くするために、集電リード34の変形抵抗Aは、正極集電体28の変形抵抗Bよりも小さく設定する。つまり、A<Bの関係を満たすようにする。このように、集電リード34と正極集電体28とにおいて、変形抵抗のバランスをとることにより、上記したような、かしめ加工及び抵抗スポット溶接の過程で、集電リード34と正極集電体28に圧縮応力が加えられても、集電リード34の方が優先的に変形し、正極集電体28が必要以上に電極群4を圧迫しないようにする。これにより短絡の発生を抑制することができる。   In the present invention, the deformation resistance A of the current collecting lead 34 is set smaller than the deformation resistance B of the positive electrode current collector 28 in order to make the current collecting lead 34 easier to deform than the positive electrode current collector 28. That is, the relationship of A <B is satisfied. In this way, by balancing the deformation resistance between the current collecting lead 34 and the positive electrode current collector 28, the current collecting lead 34 and the positive electrode current collector in the process of caulking and resistance spot welding as described above. Even if compressive stress is applied to 28, the current collector lead 34 is preferentially deformed so that the positive electrode current collector 28 does not press the electrode group 4 more than necessary. Thereby, generation | occurrence | production of a short circuit can be suppressed.

ここで、変形抵抗とは、変形する際の抵抗力、つまり変形させるのに必要な力の度合いをいう。変形抵抗は、材質が同じであれば、例えば、材料の厚さに依存し、厚さが厚いほど変形抵抗は高くなる。また、変形抵抗は、材質が異なれば、その材料の特性、例えば、材料の硬度等に依存し、硬度が高い材料ほど変形抵抗が高くなる。   Here, the deformation resistance means a resistance force at the time of deformation, that is, a degree of force necessary for the deformation. If the material is the same, the deformation resistance depends on, for example, the thickness of the material. The thicker the thickness, the higher the deformation resistance. In addition, if the material is different, the deformation resistance depends on the characteristics of the material, for example, the hardness of the material, and the higher the hardness, the higher the deformation resistance.

好ましくは、集電リード34を構成する材料の厚さに比べ、正極集電体28を構成する材料の厚さを厚くする。   Preferably, the material constituting the positive electrode current collector 28 is made thicker than the material constituting the current collecting lead 34.

また、好ましくは、集電リード34を構成する材料の硬度に比べ、正極集電体28を構成する材料の硬度を大きくする。   Preferably, the hardness of the material constituting the positive electrode current collector 28 is made larger than the hardness of the material constituting the current collector lead 34.

また、好ましくは、集電リード34を構成する材料として純Niを用い、正極集電体28を構成する材料として、炭素の含有量が0.01質量%以上、0.1質量%以下の鋼板にNiめっきを施したNiめっき鋼を用いる。なお、純Niとは、純度99.5%以上の高純度ニッケルを指す。   Preferably, pure Ni is used as a material constituting the current collector lead 34, and a steel plate having a carbon content of 0.01% by mass or more and 0.1% by mass or less as a material constituting the positive electrode current collector 28. Ni-plated steel with Ni plating is used. Pure Ni refers to high purity nickel having a purity of 99.5% or more.

また、好ましくは、集電リード34を構成する材料として、炭素の含有量が0.001質量%以上、0.005質量%以下の極低炭素鋼を用い、正極集電体28を構成する材料として、炭素の含有量が0.01質量%以上、0.1質量%以下の鋼板にNiめっきを施したNiめっき鋼を用いる。   Preferably, the material constituting the positive electrode current collector 28 is an extremely low carbon steel having a carbon content of 0.001 mass% or more and 0.005 mass% or less as a material constituting the current collector lead 34. As described above, a Ni-plated steel obtained by performing Ni plating on a steel sheet having a carbon content of 0.01% by mass or more and 0.1% by mass or less is used.

ここで、近年、各種機器の小型化が進んでおり、小型の機器についても高率での放電が要求されている。このような状況にともない、小型の機器に使用される、AA形(R6形、単3形に相当)やAAA形(R03形、単4形に相当)といった小形の電池についてもより高率での放電が要求されている。   Here, in recent years, various devices have been miniaturized, and discharge at a high rate is required even for small devices. Under these circumstances, small batteries such as AA type (corresponding to R6 type, AA type) and AAA type (corresponding to R03 type, AA type) used for small devices are also at a higher rate. Discharge is required.

しかしながら、これら小形の電池においては、D形(R20形、単1形に相当)やC形(R14形、単2形に相当)の大型の電池の場合に比べ、集電リードを小形化しなければならない。集電リードの小形化にともない、集電リードの可撓性が低下することから、電池の軸線方向に圧縮応力が加えられる際に、集電リードが十分に変形せず、集電体にダイレクトに応力が伝わる。そうすると、正極集電体が変形し、電極群を圧迫して短絡がより発生し易くなっている。また、小形の電池では、電極群の巻回数が少ないため、電極群自体の軸線方向の強度も低くなっている。このため、優れた高率放電特性を得るために単純に小形化した集電リードを用いた小形の電池では、大形の電池に比べ、正極集電体の変形にともなう短絡が発生し易くなっている。   However, in these small batteries, the current collector leads must be downsized compared to large batteries of D type (equivalent to R20 type, single type 1) or C type (equivalent to R14 type, single type 2). I must. As the current collector lead becomes smaller, the flexibility of the current collector lead decreases, so that when the compressive stress is applied in the axial direction of the battery, the current collector lead does not deform sufficiently and directly on the current collector. Stress is transmitted to. If it does so, a positive electrode electrical power collector will deform | transform and it will become easy to generate | occur | produce a short circuit by pressing an electrode group. Further, in a small battery, since the number of turns of the electrode group is small, the strength of the electrode group itself in the axial direction is also low. For this reason, in a small battery using a current collector lead that is simply miniaturized in order to obtain excellent high rate discharge characteristics, a short circuit due to deformation of the positive electrode current collector is more likely to occur than in a large battery. ing.

このような状況に対し、本発明は、正極集電体と集電リードとの間の変形抵抗のバランスをとることにより集電リードを優先的に変形させ、正極集電体の変形を抑制し、それにより電極群への圧迫を回避することができるので、特に、高率放電特性に優れる小形の電池、具体的には、直径19mm以下の電池、より好ましくは、直径18mm以下の電池の短絡の発生を抑えることに有効である。   For such a situation, the present invention preferentially deforms the current collector lead by balancing the deformation resistance between the positive electrode current collector and the current collector lead, and suppresses deformation of the positive electrode current collector. In this way, it is possible to avoid pressure on the electrode group, and in particular, a small battery excellent in high-rate discharge characteristics, specifically a battery having a diameter of 19 mm or less, more preferably a short circuit of a battery having a diameter of 18 mm or less. It is effective in suppressing the occurrence of

ここで、集電リード34が圧縮応力を受けた際に、より変形し易くなるように、側壁部42、44に変形を促進する変形促進部を含ませることが好ましい。側壁部42、44に変形促進部を含ませる態様としては、例えば、側壁部42、44に湾曲形状部を設ける、あるいは、側壁部42、44自体を湾曲形状に加工する態様が挙げられる。予め側壁部42、44が湾曲していれば、圧縮応力を受けた際、側壁部42、44は側方に膨らみ、集電リード34は、圧縮方向に潰され易くなる。このような態様とするために、集電リード34の中間製品62の折り曲げの工程において、側壁部予定領域74、76を湾曲するように曲げ加工することが好ましい。   Here, it is preferable that the side wall portions 42 and 44 include a deformation promoting portion that promotes deformation so that the current collecting lead 34 is more easily deformed when subjected to compressive stress. As an aspect which includes a deformation | transformation promotion part in the side wall parts 42 and 44, the aspect which provides a curved shape part in the side wall parts 42 and 44, or processes the side wall parts 42 and 44 itself into a curved shape is mentioned, for example. If the side wall portions 42 and 44 are curved in advance, the side wall portions 42 and 44 swell laterally when subjected to compressive stress, and the current collecting leads 34 are easily crushed in the compression direction. In order to obtain such an aspect, it is preferable to bend the side wall portions 74 and 76 so as to bend in the step of bending the intermediate product 62 of the current collecting lead 34.

なお、変形促進部の形状としては、上記したような湾曲形状に限定されるものではなく、屈曲形状等、変形を促進できる他の形状を採用しても構わない。   In addition, as a shape of a deformation | transformation acceleration | stimulation part, it is not limited to the above curved shape, You may employ | adopt other shapes which can accelerate | stimulate a deformation | transformation, such as a bending shape.

また、上記した電池1の組み立て手順において、電極郡4を外装缶2に収容してから正極集電体28を溶接したが、この態様に限定されるものではなく、あらかじめ電極郡4に正極集電体28を溶接しておいても構わない。   In the assembly procedure of the battery 1 described above, the electrode group 4 is accommodated in the outer can 2 and the positive electrode current collector 28 is welded. However, the present invention is not limited to this mode. The electric body 28 may be welded.

[実施例]
実施例1
一般的なニッケル水素二次電池に用いられる正極6、負極8及びセパレータ10を準備した。これら正極6、負極8及びセパレータ10はそれぞれ帯状をなしている。準備した正極6及び負極8の間にセパレータ10を介在させた状態で、渦巻き状に巻回し、AAサイズ用の電極群4を形成した。巻回の際、正極6及び負極8を、互いに、電極群4の軸線方向に沿う方向に僅かにずれた状態となるように配置するとともに、これら正極6及び負極8の間の所定位置にセパレータ10を配置し、この状態で巻回作業を行い、円柱状の電極群4を得た。得られた電極群4は、電極群4の一端側において正極6の正極接続端縁部32が、セパレータ10を介して隣り合っている負極8よりも突出した状態となっており、電極群4の他端側において負極8の負極接続端縁部が、セパレータ10を介して隣り合っている正極6よりも突出した状態となっている。
[Example]
Example 1
A positive electrode 6, a negative electrode 8, and a separator 10 used for a general nickel metal hydride secondary battery were prepared. Each of the positive electrode 6, the negative electrode 8, and the separator 10 has a strip shape. With the separator 10 interposed between the prepared positive electrode 6 and negative electrode 8, it was wound in a spiral shape to form an AA size electrode group 4. At the time of winding, the positive electrode 6 and the negative electrode 8 are arranged so as to be slightly shifted from each other in the direction along the axial direction of the electrode group 4, and a separator is provided at a predetermined position between the positive electrode 6 and the negative electrode 8. 10 was placed and the winding operation was performed in this state to obtain a cylindrical electrode group 4. The obtained electrode group 4 is in a state in which the positive electrode connection edge 32 of the positive electrode 6 protrudes from the adjacent negative electrode 8 through the separator 10 on one end side of the electrode group 4. On the other end side, the negative electrode connecting edge of the negative electrode 8 is in a state of protruding from the adjacent positive electrode 6 with the separator 10 interposed therebetween.

次に、円板形状をなし、Niめっき鋼の薄板からなるAAサイズ用の負極集電体を準備した。この負極集電体は、電極群4の負極接続端縁部に溶接した。   Next, a negative electrode current collector for AA size having a disk shape and comprising a thin plate of Ni-plated steel was prepared. This negative electrode current collector was welded to the negative electrode connection edge of the electrode group 4.

次に、図2に示すような、全体として十角形状をなし、中央に円形の中央貫通孔29と、この中央貫通孔29を囲むように放射状に延びる6個のスリット30とを含んでいるAAサイズ用の正極集電体28を準備した。この正極集電体28は、炭素の含有量が0.04質量%の鋼の薄板にNiめっきが施されたNiめっき鋼板からなる。この正極集電体28の厚さは0.30mmである。この厚さの値を集電体の厚さとして表1に示した。   Next, as shown in FIG. 2, the whole has a decagonal shape, and includes a circular central through hole 29 in the center and six slits 30 extending radially so as to surround the central through hole 29. A positive electrode current collector 28 for AA size was prepared. The positive electrode current collector 28 is made of a Ni-plated steel plate obtained by applying Ni plating to a steel thin plate having a carbon content of 0.04% by mass. The thickness of the positive electrode current collector 28 is 0.30 mm. The thickness value is shown in Table 1 as the thickness of the current collector.

次に、炭素の含有量が0.04質量%の鋼の薄板にNiめっきが施されたNiめっき鋼板を準備した。このNiめっき鋼板の厚さは0.25mmである。そして、このNiめっき鋼板を打ち抜き加工することにより、図5に示すような、ほぼH形の集電リードの中間製品62を製造した。この中間製品62の中央に貫通孔54を穿設するとともに、所定位置に、プレス加工により突起部56、58を形成した。そして、仮想線80、82、84、86の部分を折り曲げることにより、図3に示すような集電リード34を形成した。なお、この集電リード34の製造に用いたNiめっき鋼板の厚さの値を集電リードの厚さとして表1に示した。   Next, a Ni-plated steel sheet was prepared by applying Ni plating to a steel sheet having a carbon content of 0.04 mass%. The thickness of this Ni-plated steel sheet is 0.25 mm. Then, by punching the Ni-plated steel sheet, an approximately H-shaped current collecting lead intermediate product 62 as shown in FIG. 5 was manufactured. A through-hole 54 was formed in the center of the intermediate product 62, and projections 56 and 58 were formed at predetermined positions by pressing. And the current collection lead 34 as shown in FIG. 3 was formed by bending the part of the virtual lines 80, 82, 84, 86. The value of the thickness of the Ni-plated steel sheet used for manufacturing the current collecting lead 34 is shown in Table 1 as the thickness of the current collecting lead.

次に、負極集電体が溶接された電極群4を有底円筒形状の外装缶4の中に収容した。そして、外装缶4の底壁の内面と負極集電体とを溶接した。   Next, the electrode group 4 to which the negative electrode current collector was welded was accommodated in a bottomed cylindrical outer can 4. And the inner surface of the bottom wall of the armored can 4 and the negative electrode collector were welded.

次に、電極群4の上端部に圧力センサを配設し、電極群4に加えられる圧縮応力を測定できるようにした。なお、この圧力センサの信号線は、外装缶4の所定位置に開けられた孔より外部に導出し、圧縮応力の測定器に接続した。そして、圧力センサの上に正極集電体28を載置し、更に、正極集電体28の上に集電リード34を載置した。この状態で、外装缶4の上端開口部に絶縁ガスケット18を介して封口体14を配置し、電極群4に加えられる圧縮応力を測定する応力測定用の電池の中間製品を製造した。そして、この応力測定用の電池の中間製品を抵抗スポット溶接機にセットし、溶接電流は流さずに、溶接時と同じ圧力を応力測定用電池の軸線方向に加えた。その後、外装缶2の開口縁17をかしめ加工して外装缶2の開口3を封止し電池1を製造した。   Next, a pressure sensor was provided at the upper end of the electrode group 4 so that the compressive stress applied to the electrode group 4 could be measured. The signal line of this pressure sensor was led out through a hole opened at a predetermined position of the outer can 4 and connected to a measuring device for compressive stress. Then, the positive electrode current collector 28 was placed on the pressure sensor, and further, the current collector lead 34 was placed on the positive electrode current collector 28. In this state, the sealing body 14 was disposed at the upper end opening of the outer can 4 via the insulating gasket 18, and an intermediate product of a battery for stress measurement for measuring the compressive stress applied to the electrode group 4 was manufactured. The intermediate product of the battery for stress measurement was set in a resistance spot welder, and the same pressure as that during welding was applied in the axial direction of the battery for stress measurement without flowing a welding current. Thereafter, the opening edge 17 of the outer can 2 was caulked to seal the opening 3 of the outer can 2 to manufacture the battery 1.

上記した抵抗スポット溶接機での加圧作業及びかしめ加工を通して、電極群4に加えられる圧縮応力を測定した。そして、その測定値のうち最大の値を、電極群への最大応力として表1に示した。   The compressive stress applied to the electrode group 4 was measured through the pressurizing operation and the caulking process with the resistance spot welding machine. The maximum value among the measured values is shown in Table 1 as the maximum stress to the electrode group.

また、正極集電体28及び集電リード34については、抵抗測定用の試料を別途製造した。詳しくは、図6に示すように、正極集電体28の上に集電リード34を載置し、抵抗スポット溶接を行い、正極集電体28及び集電リード34を一体化させた集電部品90を製造した。この集電部品90について、正極集電体28と、集電リード34との間の抵抗値を測定した。その抵抗値を、集電部品の抵抗値として表1に示した。   For the positive electrode current collector 28 and the current collecting lead 34, a sample for resistance measurement was separately manufactured. Specifically, as shown in FIG. 6, a current collector lead 34 is placed on the positive electrode current collector 28, resistance spot welding is performed, and the positive electrode current collector 28 and the current collector lead 34 are integrated. Part 90 was manufactured. With respect to the current collecting component 90, the resistance value between the positive electrode current collector 28 and the current collecting lead 34 was measured. The resistance value is shown in Table 1 as the resistance value of the current collecting component.

比較例1
集電リードの代わりに、厚さが0.01mmのNi箔からなる従来の正極リボンを準備し、この正極リボンを正極集電体に溶接して集電部品としたこと、正極集電体の厚さを0.25mmとしたことを除いては、実施例1と同様にして応力測定用の電池の中間製品を製造した。そして、実施例1と同様に、集電部品の抵抗値及び電極群への最大応力を測定した。
Comparative Example 1
Instead of the current collecting lead, a conventional positive electrode ribbon made of Ni foil with a thickness of 0.01 mm was prepared, and this positive electrode ribbon was welded to the positive electrode current collector to form a current collecting component. A battery intermediate product for stress measurement was manufactured in the same manner as in Example 1 except that the thickness was 0.25 mm. Then, as in Example 1, the resistance value of the current collecting component and the maximum stress on the electrode group were measured.

比較例2
正極集電体の厚さを0.25mmとしたこと、集電リードの厚さを0.30mmとしたことを除いては、実施例1と同様にして応力測定用の電池の中間製品及び集電部品を製造した。そして、実施例1と同様に、集電部品の抵抗値及び電極群への最大応力を測定した。
Comparative Example 2
Except that the thickness of the positive electrode current collector was 0.25 mm and the thickness of the current collector lead was 0.30 mm, an intermediate product and a battery for stress measurement were collected in the same manner as in Example 1. Electric parts were manufactured. Then, as in Example 1, the resistance value of the current collecting component and the maximum stress on the electrode group were measured.

比較例3
集電リードの厚さを0.30mmとしたことを除いては、実施例1と同様にして応力測定用の電池の中間製品及び集電部品を製造した。そして、実施例1と同様に、集電部品の抵抗値及び電極群への最大応力を測定した。
Comparative Example 3
Except that the thickness of the current collecting lead was 0.30 mm, an intermediate product of a battery for stress measurement and current collecting parts were produced in the same manner as in Example 1. Then, as in Example 1, the resistance value of the current collecting component and the maximum stress on the electrode group were measured.

実施例2
正極集電体のNiめっき鋼板の厚さを0.40mmとしたこと、集電リードのNiめっき鋼板の厚さを0.30mmとしたことを除いては、実施例1と同様にして応力測定用の電池の中間製品及び集電部品を製造した。そして、実施例1と同様に、集電部品の抵抗値及び電極群への最大応力を測定した。集電体の厚さ、集電リードの厚さ、集電体の材料、集電リードの材料、集電部品の抵抗値及び電極群への最大応力を表2に示した。
Example 2
Stress measurement was carried out in the same manner as in Example 1 except that the thickness of the Ni-plated steel sheet of the positive electrode current collector was 0.40 mm and the thickness of the Ni-plated steel sheet of the current collector lead was 0.30 mm. Manufactured intermediate products and current collector parts for batteries. Then, as in Example 1, the resistance value of the current collecting component and the maximum stress on the electrode group were measured. Table 2 shows the current collector thickness, current collector lead thickness, current collector material, current collector lead material, current collector resistance, and maximum stress on the electrode group.

実施例3
正極集電体の厚さを0.40mmとしたこと、集電リードの材料として、炭素の含有量が0.04質量%の鋼の薄板にNiめっきが施されたNiめっき鋼板の代わりに、炭素の含有量が0.001質量%の極低炭素鋼の薄板にNiめっきが施されたNiめっき極低炭素鋼板を準備したこと、及び、このNiめっき極低炭素鋼板の厚さを0.30mmとしたことを除いては、実施例1と同様にして応力測定用の電池の中間製品及び集電部品を製造した。そして、実施例1と同様に、集電部品の抵抗値及び電極群への最大応力を測定した。集電体の厚さ、集電リードの厚さ、集電体の材料、集電リードの材料、集電部品の抵抗値及び電極群への最大応力を表2に示した。
Example 3
The thickness of the positive electrode current collector was 0.40 mm, and as a material for the current collector lead, instead of a Ni-plated steel sheet in which Ni plating was applied to a steel thin plate having a carbon content of 0.04% by mass, An Ni-plated ultra-low carbon steel sheet in which a Ni-plated thin steel sheet having a carbon content of 0.001% by mass was prepared, and the thickness of this Ni-plated ultra-low carbon steel sheet was set to 0.00. A battery intermediate product and a current collecting part for stress measurement were manufactured in the same manner as in Example 1 except that the thickness was 30 mm. Then, as in Example 1, the resistance value of the current collecting component and the maximum stress on the electrode group were measured. Table 2 shows the current collector thickness, current collector lead thickness, current collector material, current collector lead material, current collector resistance, and maximum stress on the electrode group.

実施例4
正極集電体の厚さを0.40mmとしたこと、集電リードの材料として、Niめっき鋼板の代わりに、純Niの薄板を準備したこと、及び、この純Niの薄板の厚さを0.30mmとしたことを除いては、実施例1と同様にして応力測定用の電池の中間製品及び集電部品を製造した。そして、実施例1と同様に、集電部品の抵抗値及び電極群への最大応力を測定した。集電体の厚さ、集電リードの厚さ、集電体の材料、集電リードの材料、集電部品の抵抗値及び電極群への最大応力を表2に示した。
Example 4
The thickness of the positive electrode current collector was 0.40 mm, a pure Ni thin plate was prepared instead of the Ni-plated steel plate as the material of the current collector lead, and the thickness of the pure Ni thin plate was 0 An intermediate product of a battery for stress measurement and a current collecting part were produced in the same manner as in Example 1 except that the thickness was 30 mm. Then, as in Example 1, the resistance value of the current collecting component and the maximum stress on the electrode group were measured. Table 2 shows the current collector thickness, current collector lead thickness, current collector material, current collector lead material, current collector resistance, and maximum stress on the electrode group.

ここで、集電部品の抵抗値が0.5mΩを越える場合、電池全体としての内部抵抗は高くなり、得られる電池の高率放電特性は、従来と同等となると考えられる。このような電池については、従来品であるとして表1の判定の欄には−印を記載した。   Here, when the resistance value of the current collecting component exceeds 0.5 mΩ, the internal resistance of the battery as a whole becomes high, and the high rate discharge characteristics of the obtained battery are considered to be equivalent to the conventional one. About such a battery,-mark was described in the column of the judgment of Table 1 as a conventional product.

集電部品の抵抗値が0.5mΩ以下であれば、電池全体としての内部抵抗も低く抑えられ、得られる電池の高率放電特性は優れたものとなる。また、集電部品の抵抗値が0.25mΩ以下であれば、得られる電池の高率放電特性は更に優れたものとなる。   If the resistance value of the current collecting component is 0.5 mΩ or less, the internal resistance of the battery as a whole can be kept low, and the high rate discharge characteristics of the battery obtained are excellent. Further, when the resistance value of the current collecting component is 0.25 mΩ or less, the high rate discharge characteristics of the obtained battery are further improved.

一方、電極群への最大応力が30.0kgf/mmを超えると、正極集電体の変形が大きくなり、電極群への圧迫の度合いが高くなる。その結果、正極や負極の折れ曲がりによる内部短絡の発生が多くなると考えられる。電極群への最大応力が30.0kgf/mm以下であれば、正極集電体の変形による電極群への圧迫の度合いも許容できる範囲内となり正極や負極の折れ曲がりによる内部短絡の発生も抑制されると考えられる。また、電極群への最大応力が20.0kgf/mm以下であれば、正極集電体の変形が抑えられるので好ましく、電極群への最大応力が15.0kgf/mm以下であれば、正極集電体の変形がより抑えられるのでより好ましい。 On the other hand, when the maximum stress on the electrode group exceeds 30.0 kgf / mm 2 , the positive electrode current collector is greatly deformed, and the degree of pressure on the electrode group is increased. As a result, it is considered that the occurrence of an internal short circuit due to the bending of the positive electrode or the negative electrode increases. If the maximum stress on the electrode group is 30.0 kgf / mm 2 or less, the degree of pressure on the electrode group due to deformation of the positive electrode current collector is within an allowable range, and the occurrence of internal short circuit due to bending of the positive electrode or negative electrode is suppressed. It is thought that it is done. Further, if the maximum stress to the electrode group is 20.0 kgf / mm 2 or less, deformation of the positive electrode current collector is preferably suppressed, and if the maximum stress to the electrode group is 15.0 kgf / mm 2 or less, It is more preferable because deformation of the positive electrode current collector can be further suppressed.

よって、集電部品の抵抗値が0.5mΩ以下であるが、電極群への最大応力が30.0kgf/mmを超える電池については、高率放電特性には優れるものの正極集電体の変形が起こり易いと考えられるので不良の判定をした。この不良の判定の電池については、表1の判定の欄に×印を記載した。 Therefore, although the resistance value of the current collecting component is 0.5 mΩ or less, the battery having a maximum stress exceeding 30.0 kgf / mm 2 is excellent in high rate discharge characteristics, but the positive current collector is deformed. Since it is considered that this is likely to occur, it was judged as defective. About the battery of this defective determination, x mark was described in the determination column of Table 1.

集電部品の抵抗値が0.5mΩ以下であり、且つ、電極群への最大応力が30.0kgf/mm以下の電池については、優れた高率放電特性を得つつ、正極集電体の変形もある程度抑えられるとして、良の判定をした。この良の判定の電池については、表1の判定の欄に△印を記載した。 For a battery in which the resistance value of the current collecting component is 0.5 mΩ or less and the maximum stress to the electrode group is 30.0 kgf / mm 2 or less, while obtaining excellent high rate discharge characteristics, The deformation was also judged to be good to the extent that deformation could be suppressed to some extent. For the battery of this good determination, a Δ mark was written in the determination column of Table 1.

集電部品の抵抗値が0.5mΩ以下であり、且つ、電極群への最大応力が20.0kgf/mm以下の電池については、優れた高率放電特性を得つつ、正極集電体の変形が抑えられるとして、優良の判定をした。この優良の判定の電池については、表1の判定の欄に○印を記載した。 For a battery in which the resistance value of the current collecting component is 0.5 mΩ or less and the maximum stress on the electrode group is 20.0 kgf / mm 2 or less, while obtaining excellent high rate discharge characteristics, It was determined that the deformation was suppressed. For the battery judged as good, a circle is shown in the judgment column of Table 1.

集電部品の抵抗値が0.25mΩ以下で、且つ、電極群への最大応力が15.0kgf/mm以下である電池については、優れた高率放電特性を得ることができるとともに、正極集電体の変形がより抑えられ、電池の内部短絡の発生をより抑制することができるので、最良の判定をした。この最良の判定の電池については、表1の判定の欄に◎印を記載した。 For a battery in which the resistance value of the current collecting component is 0.25 mΩ or less and the maximum stress to the electrode group is 15.0 kgf / mm 2 or less, excellent high rate discharge characteristics can be obtained, and the positive electrode current collector can be obtained. Since the deformation of the electric body was further suppressed and the occurrence of an internal short circuit of the battery could be further suppressed, the best judgment was made. The battery of this best judgment is marked with a mark in the judgment column of Table 1.

[解析] [analysis]

実施例3の電池と同じ構成の電池に関して、そこに含まれる正極集電体を図7に示すようなスリット型の正極集電体にモデル化するとともに、そこに含まれる電極群の正極接続端縁部を図9に示すような同心円状にモデル化し、当該電池の正極端子に一定の電圧を印加した場合の電位分布の解析及び電気抵抗値の解析を行った。   Regarding the battery having the same configuration as the battery of Example 3, the positive electrode current collector included therein was modeled as a slit-type positive electrode current collector as shown in FIG. 7 and the positive electrode connection end of the electrode group included therein The edges were modeled concentrically as shown in FIG. 9, and the potential distribution and the electrical resistance value were analyzed when a constant voltage was applied to the positive terminal of the battery.

ここで、解析に際し、スリット型の正極集電体の各部の寸法は以下のように設定した。   Here, in the analysis, the dimensions of each part of the slit-type positive electrode current collector were set as follows.

正極集電体28の直径Dは15.00mm、中央貫通孔29の直径dは3.00mm、スリット30の長さLは3.75mm、スリット30の幅Wは1.20mmとした(図7参照)。また、正極集電体28の厚さT1は0.40mm、突起(バリ)の長さ(正極集電体の下面からの突出長さ)Pは0.35mm、突起(バリ)の厚さT2は0.20mmとした(図8参照)。   The diameter D of the positive electrode current collector 28 is 15.00 mm, the diameter d of the central through hole 29 is 3.00 mm, the length L of the slit 30 is 3.75 mm, and the width W of the slit 30 is 1.20 mm (FIG. 7). reference). Further, the thickness T1 of the positive electrode current collector 28 is 0.40 mm, the length of the protrusion (burr) (the protruding length from the lower surface of the positive electrode current collector) P is 0.35 mm, and the thickness T2 of the protrusion (burr). Was 0.20 mm (see FIG. 8).

電位分布の解析においては、電位の降下の度合いの可視化を行った。スリット型の正極集電体28について得られた電位分布の解析結果を図12に示した。また、スリット型の正極集電体28と組み合わされた正極接続端縁部32について得られた電位分布の解析結果を図13に示した。図12、13においては、灰色の濃淡により電位の降下の度合いを表しており、灰色が濃いほど電位降下の度合いは大きく、灰色が薄いほど電位降下の度合いは小さい。つまり、灰色が濃く電位降下が大きいほど抵抗値が大きくなることを示している。なお、電位降下の度合いの表し方については、後述する図14、15の結果についても同様である。   In the analysis of the potential distribution, the degree of potential drop was visualized. The analysis result of the potential distribution obtained for the slit-type positive electrode current collector 28 is shown in FIG. FIG. 13 shows the analysis result of the potential distribution obtained for the positive electrode connection edge 32 combined with the slit-type positive electrode current collector 28. In FIGS. 12 and 13, the degree of potential drop is represented by gray shades. The darker the gray, the greater the potential drop, and the lighter the gray, the smaller the potential drop. That is, the resistance value increases as the gray is darker and the potential drop is larger. The method of expressing the degree of potential drop is the same for the results shown in FIGS.

電気抵抗値の解析においては、正極集電体28の部分の電気抵抗値を求めた。その結果、スリット型の正極集電体28の電気抵抗値は、0.0313mΩであった。また、スリット型の正極集電体28及び正極接続端縁部32を組み合わせた部分の電気抵抗値は、0.0884mΩであった。   In the analysis of the electric resistance value, the electric resistance value of the positive electrode current collector 28 was determined. As a result, the electrical resistance value of the slit-type positive electrode current collector 28 was 0.0313 mΩ. Moreover, the electrical resistance value of the portion where the slit-type positive electrode current collector 28 and the positive electrode connection end edge portion 32 were combined was 0.0884 mΩ.

また、正極集電体をスリット型の正極集電体28から図10に示す多孔型の正極集電体88に変更した態様についても、上記と同様に電位分布の解析及び電気抵抗値の解析を行った。多孔型の正極集電体88について得られた電位分布の解析結果を図14に示した。また、多孔型の正極集電体88と組み合わされた正極接続端縁部32について得られた電位分布の解析結果を図15に示した。   Further, in the embodiment in which the positive electrode current collector is changed from the slit-type positive electrode current collector 28 to the porous positive electrode current collector 88 shown in FIG. 10, the potential distribution analysis and the electrical resistance value analysis are performed in the same manner as described above. went. The analysis result of the potential distribution obtained for the porous positive electrode current collector 88 is shown in FIG. Further, FIG. 15 shows the analysis result of the potential distribution obtained for the positive electrode connection end portion 32 combined with the porous positive electrode current collector 88.

ここで、多孔型の正極集電体88の各部の寸法は、正極集電体88の直径Dは15.00mm、中央貫通孔29の直径dは3.00mm、貫通孔92の直径dtは1.50mmとした(図10参照)。また、正極集電体88の厚さT1は0.40mm、突起(バリ)の長さ(正極集電体の下面からの突出長さ)Pは0.35mm、突起(バリ)の厚さT2は0.20mmとした。   Here, the dimensions of each part of the porous positive electrode current collector 88 are as follows: the positive electrode current collector 88 has a diameter D of 15.00 mm, the central through hole 29 has a diameter d of 3.00 mm, and the through hole 92 has a diameter dt of 1. 50 mm (see FIG. 10). The thickness T1 of the positive electrode current collector 88 is 0.40 mm, the length of the protrusion (burr) (the protruding length from the lower surface of the positive electrode current collector) P is 0.35 mm, and the thickness T2 of the protrusion (burr). Was 0.20 mm.

電気抵抗値の結果としては、多孔型の正極集電体88の電気抵抗値は、0.0293mΩであった。また、多孔型の正極集電体88及び正極接続端縁部32を組み合わせた部分の電気抵抗値は、0.1164mΩであった。   As a result of the electrical resistance value, the electrical resistance value of the porous positive electrode current collector 88 was 0.0293 mΩ. Moreover, the electrical resistance value of the portion where the porous positive electrode current collector 88 and the positive electrode connection end edge portion 32 were combined was 0.1164 mΩ.

[考察] [Discussion]

(1)従来の正極リボンを用いている比較例1は集電部品の抵抗値が0.95mΩとなっており、集電リードを用いている実施例1、2、3、4、比較例2、3に比べ高い値となっている。つまり、従来の正極リボンに比べ、集電リードを用いた方が高率放電特性に優れていることがわかる。これは、正極リボンが、薄く長尺であることから比抵抗が高くなっているのに比べ、集電リードは、通電経路が短縮されていることから比抵抗が低くなっているためと考えられる。 (1) In Comparative Example 1 using a conventional positive electrode ribbon, the resistance value of the current collecting component is 0.95 mΩ, and Examples 1, 2, 3, 4 and Comparative Example 2 using current collecting leads are used. The value is higher than 3. That is, it can be seen that using the current collecting lead is superior in high rate discharge characteristics as compared with the conventional positive electrode ribbon. This is thought to be because the specific resistance of the current collector lead is low because the current path is shortened compared to the high specific resistance because the positive ribbon is thin and long. .

(2)比較例2、3のように、集電体の厚さが集電リードの厚さよりも薄い場合、又は、集電体の厚さと集電リードの厚さとが同じ場合、電極群への最大応力が30.0kgf/mmを超える高い値となっている。このように、集電体の厚さが集電リードの厚さと同等以下であると、集電体の変形抵抗は、集電リードの変形抵抗よりも小さくなり、圧縮応力が加えられた場合、集電リードよりも集電体の方が変形し易くなる。このため、集電体が変形して電極群に比較的大きな応力がかかってしまう。その結果、内部短絡が起こり易くなると考えられる。 (2) As in Comparative Examples 2 and 3, when the thickness of the current collector is thinner than the thickness of the current collector lead, or when the thickness of the current collector is the same as the thickness of the current collector lead, go to the electrode group Is a high value exceeding 30.0 kgf / mm 2 . Thus, when the thickness of the current collector is equal to or less than the thickness of the current collector lead, the deformation resistance of the current collector is smaller than the deformation resistance of the current collector lead, and when compressive stress is applied, The current collector is more easily deformed than the current collecting lead. For this reason, the current collector is deformed and a relatively large stress is applied to the electrode group. As a result, an internal short circuit is likely to occur.

(3)これに対し、集電リードの厚さに比べ、集電体の厚さが厚い実施例1、2、3、4においては、電極群への最大応力が、比較例2、3に比べ低い値となっている。このように、集電体の厚さが集電リードの厚さよりも厚いと、集電リードの変形抵抗は、集電体の変形抵抗よりも小さくなり、圧縮応力が加えられた場合、集電体よりも集電リードの方が変形し易くなる。このため、集電リードが優先的に変形し、集電体の変形は抑えられるので、電極群にかかる応力は比較的小さくなる。その結果、内部短絡は起こり難くなると考えられる。 (3) On the other hand, in Examples 1, 2, 3, and 4, in which the current collector is thicker than the current collector lead, the maximum stress on the electrode group is in Comparative Examples 2 and 3. It is a low value. Thus, when the thickness of the current collector is larger than the thickness of the current collector lead, the deformation resistance of the current collector lead is smaller than the deformation resistance of the current collector, and when compressive stress is applied, The current collecting lead is more easily deformed than the body. For this reason, the current collecting lead is preferentially deformed and deformation of the current collector is suppressed, so that the stress applied to the electrode group is relatively small. As a result, an internal short circuit is unlikely to occur.

(4)実施例2においては、集電体を構成する材料をNiめっき鋼からなる薄板とし、集電リードを構成する材料も同じNiめっき鋼からなる薄板としている。このため、集電リードと集電体とにおいて、材料に関する変形抵抗は同じである。 (4) In Example 2, the material constituting the current collector is a thin plate made of Ni-plated steel, and the material constituting the current collector lead is also a thin plate made of the same Ni-plated steel. For this reason, the deformation resistance relating to the material is the same between the current collecting lead and the current collector.

(5)実施例3においては、集電体を構成する材料をNiめっき鋼からなる薄板とし、集電リードを構成する材料を極低炭素鋼の薄板にNiめっきを施したNiめっき極低炭素鋼としている。Niめっき極低炭素鋼は、Niめっき鋼に比べ硬度が低い。このため、集電リードの材料に関する変形抵抗は、集電体の材料に関する変形抵抗よりも小さくなり、圧縮応力が加えられた場合、集電体よりも集電リードの方が変形し易くなる。このため、集電リードが優先的に変形し、集電体の変形は抑えられるので、電極群にかかる応力は、比較的小さくなる。このことは、集電リードの材料と集電体の材料とを同じにしている実施例2における電極群への最大応力の値よりも、実施例3における電極群の最大応力の値が小さいことからも明らかである。よって、実施例3は、実施例2に比べ、内部短絡が起こり難くなると考えられる。 (5) In Example 3, the material constituting the current collector is a thin plate made of Ni-plated steel, and the material constituting the current collector lead is Ni-plated ultra-low carbon obtained by applying Ni plating to a thin plate of ultra-low carbon steel It is made of steel. Ni-plated ultra-low carbon steel has a lower hardness than Ni-plated steel. For this reason, the deformation resistance related to the material of the current collector lead is smaller than the deformation resistance related to the material of the current collector, and when a compressive stress is applied, the current collector lead is more easily deformed than the current collector. For this reason, the current collecting lead is preferentially deformed and deformation of the current collector is suppressed, so that the stress applied to the electrode group is relatively small. This means that the value of the maximum stress of the electrode group in Example 3 is smaller than the value of the maximum stress to the electrode group in Example 2 in which the material of the current collector lead and the material of the current collector are the same. It is clear from Therefore, it is considered that Example 3 is less likely to cause an internal short circuit than Example 2.

(6)実施例4においては、集電体を構成する材料をNiめっき鋼からなる薄板とし、集電リードを構成する材料を純Niの薄板としている。純Niは、Niめっき鋼に比べ硬度が低い。このため、集電リードの材料に関する変形抵抗は、集電体の材料に関する変形抵抗よりも小さくなり、圧縮応力が加えられた場合、集電体よりも集電リードの方が変形し易くなる。このため、集電リードが優先的に変形し、集電体の変形は抑えられるので、電極群にかかる応力は、比較的小さくなる。このことは、集電リードの材料と集電体の材料とを同じにしている実施例2における電極群への最大応力の値よりも、実施例4における電極群の最大応力の値が小さいことからも明らかである。よって、実施例4は、実施例2に比べ、内部短絡が、更に起こり難くなると考えられる。 (6) In Example 4, the material constituting the current collector is a thin plate made of Ni-plated steel, and the material constituting the current collector lead is a pure Ni thin plate. Pure Ni has a lower hardness than Ni-plated steel. For this reason, the deformation resistance related to the material of the current collector lead is smaller than the deformation resistance related to the material of the current collector, and when a compressive stress is applied, the current collector lead is more easily deformed than the current collector. For this reason, the current collecting lead is preferentially deformed and deformation of the current collector is suppressed, so that the stress applied to the electrode group is relatively small. This is because the value of the maximum stress of the electrode group in Example 4 is smaller than the value of the maximum stress to the electrode group in Example 2 in which the material of the current collector lead and the material of the current collector are the same. It is clear from Accordingly, it is considered that the internal short circuit is less likely to occur in the fourth embodiment than in the second embodiment.

(7)以上のように、集電リードの厚さを集電体の厚さよりも薄くしたり、集電リードの材料の硬度を集電体の材料の硬度よりも低くしたりすることにより集電リードの変形抵抗を集電体の変形抵抗よりも小さくするというように、集電リードの変形抵抗と集電体の変形抵抗とのバランスをとることで、優れた高率放電特性を維持しつつ内部短絡の発生の抑制を図ることができる。 (7) As described above, the current collector lead is made thinner than the current collector, or the current of the current collector lead is made lower than that of the current collector. Maintaining excellent high rate discharge characteristics by balancing the deformation resistance of the current collector lead and the current collector so that the deformation resistance of the current lead is smaller than that of the current collector. However, it is possible to suppress the occurrence of an internal short circuit.

(8)スリット型の正極集電体28の電位分布の解析結果を示した図12より、リード溶接部68とスリット30との間における灰色の変化の度合いがスリット毎にほぼ均等であることがわかる。このことから、スリット型の正極集電体28では、電位降下量がスリット毎にほぼ均等であり、流れる電流や電気抵抗値の大きさがほぼ均等であると言える。また、スリット型の正極集電体28と組み合わされた正極接続端縁部32について得られた電位分布の解析結果を示した図13より、正極接続端縁部32において、多くの周回において電流が流れており、更に一つの周回の中でも電流がほぼ均等に流れていることがわかる。このことから、スリット型の正極集電体28を用いた場合、電気抵抗値を低減できると言える。 (8) From FIG. 12, which shows the analysis result of the potential distribution of the slit-type positive electrode current collector 28, the degree of gray change between the lead welded portion 68 and the slit 30 is almost equal for each slit. Recognize. From this, it can be said that, in the slit-type positive electrode current collector 28, the potential drop amount is almost equal for each slit, and the flowing current and the electric resistance value are almost equal. Further, from FIG. 13 showing the analysis result of the potential distribution obtained for the positive electrode connection edge 32 combined with the slit-type positive electrode current collector 28, the current flows in many turns in the positive electrode connection edge 32. It can be seen that the current flows almost evenly in one lap. From this, it can be said that when the slit-type positive electrode current collector 28 is used, the electric resistance value can be reduced.

(9)多孔型の正極集電体88の電位分布の解析結果を示した図14より、リード溶接部68と貫通孔92との間における灰色の変化の度合いが貫通孔毎にまちまちであることがわかる。このことから、多孔型の正極集電体88では、電位降下量が貫通孔毎に均等ではなく、流れる電流や電気抵抗値の大きさが不均一であると言える。また、多孔型の正極集電体88と組み合わされた正極接続端縁部32について得られた電位分布の解析結果を示した図15より、正極接続端縁部32において、貫通孔92が存在する周回のみにしか電流が流れておらず、また一つの周回の中でも電流が均等には流れていないことがわかる。このことから、多孔型の正極集電体88を用いた場合、スリット型の正極集電体28を用いた場合に比べ電気抵抗値を低減できる効果は小さくなると言える。 (9) From FIG. 14 showing the analysis result of the potential distribution of the porous positive electrode current collector 88, the degree of gray change between the lead welded portion 68 and the through hole 92 varies for each through hole. I understand. From this, it can be said that in the porous positive electrode current collector 88, the potential drop amount is not uniform for each through-hole, and the flowing current and the electric resistance value are not uniform. Further, from FIG. 15 showing the analysis result of the potential distribution obtained for the positive electrode connection edge portion 32 combined with the porous positive electrode current collector 88, the through hole 92 exists in the positive electrode connection edge portion 32. It can be seen that the current flows only in the laps, and the current does not flow evenly in one lap. From this, it can be said that when the porous positive electrode current collector 88 is used, the effect of reducing the electrical resistance value is smaller than when the slit type positive electrode current collector 28 is used.

(10)スリット型の正極集電体28の電気抵抗値は0.0313mΩであり、多孔型の正極集電体88の電気抵抗値は0.0293mΩであり、正極集電体の部分における電気抵抗値は、スリット型と多孔型とでほぼ同じ値となっていた。一方、正極集電体及び正極接続端縁部を組み合わせた部分の電気抵抗値は、多孔型の場合、0.1164mΩであったのに対し、スリット型の場合、0.0884mΩであり、スリット型の方が電気抵抗値は低い。このことから、正極集電体だけでは、スリット型と多孔型とで、電気抵抗値に大差はないが、正極集電体と正極接続端縁部とを組み合わせた場合に、スリット型の正極集電体28を用いた方が、多孔型の正極集電体88を用いるよりも電気抵抗値を24%低減でき、電気抵抗値の低減効果に有利であることがわかる。スリット型の正極集電体28は、正極接続端縁部32と多くの箇所で接することができるので、電流を比較的広い範囲で比較的均等に流すことができる。その結果、電気抵抗値を低減することができ、電池の高率充放電特性の向上に寄与する。スリット型の正極集電体28においては、スリットの長さをなるべく長くし、より多くの箇所で正極接続端縁部32と接触できるようにすると、電気抵抗値をより低減させることができると考えられる。 (10) The electrical resistance value of the slit-type positive electrode current collector 28 is 0.0313 mΩ, the electrical resistance value of the porous positive electrode current collector 88 is 0.0293 mΩ, and the electric resistance in the positive electrode current collector portion The values were almost the same for the slit type and the porous type. On the other hand, the electrical resistance value of the combined portion of the positive electrode current collector and the positive electrode connection edge is 0.1164 mΩ in the case of the porous type, whereas it is 0.0884 mΩ in the case of the slit type, The electric resistance value is lower. Therefore, there is no large difference in electrical resistance value between the positive electrode current collector and the slit type and the porous type, but when the positive electrode current collector and the positive electrode connection edge are combined, the slit type positive electrode current collector is used. It can be seen that the use of the electric body 28 can reduce the electric resistance value by 24%, and is advantageous in the effect of reducing the electric resistance value, compared to the case where the porous positive electrode current collector 88 is used. Since the slit-type positive electrode current collector 28 can be in contact with the positive electrode connection edge 32 at many places, it is possible to flow a current relatively uniformly in a relatively wide range. As a result, the electric resistance value can be reduced, which contributes to improvement of the high rate charge / discharge characteristics of the battery. In the slit-type positive electrode current collector 28, it is considered that the electrical resistance value can be further reduced by making the length of the slit as long as possible so that it can come into contact with the positive electrode connection edge 32 at more places. It is done.

なお、本発明は上記した一実施形態及び実施例に限定されることはなく、種々の変形が可能であって、例えば、電池の種類は、ニッケル水素二次電池に限定されず、ニッケル−カドミウム二次電池等であってもよい。   The present invention is not limited to the above-described embodiment and examples, and various modifications are possible. For example, the type of battery is not limited to a nickel-metal hydride secondary battery, but nickel-cadmium. A secondary battery or the like may be used.

1 ニッケル水素二次電池
2 外装缶
4 電極群
6 正極
8 負極
10 セパレータ
14 封口体
18 絶縁ガスケット
22 正極端子
28 正極集電体
32 正極接続端縁部
34 集電リード
DESCRIPTION OF SYMBOLS 1 Nickel metal hydride secondary battery 2 Exterior can 4 Electrode group 6 Positive electrode 8 Negative electrode 10 Separator 14 Sealing body 18 Insulating gasket 22 Positive electrode terminal 28 Positive electrode current collector 32 Positive electrode connection edge 34 Current collecting lead

Claims (8)

負極端子を含む有底円筒状の外装缶と、
正極端子を含み、前記外装缶の上端開口を封止している封口体と、
正極及び負極がセパレータを介して重ね合わされ渦巻き状に巻回されてなり、前記外装缶内にアルカリ電解液とともに収容されている円柱状の電極群と、
前記電極群の一端面から突出した前記正極の端縁部に接続されている集電体と、
前記集電体と前記封口体とを接続する集電リードと、を備え、
前記集電リードを構成する材料をa材料とし、前記集電体を構成する材料をb材料とした場合、前記a材料の変形抵抗Aと、前記b材料の変形抵抗Bとの関係が、A<Bの関係を満たしている、円筒形アルカリ二次電池。
A cylindrical outer can with a bottom including a negative electrode terminal;
A sealing body including a positive electrode terminal and sealing an upper end opening of the outer can;
A positive electrode and a negative electrode are overlapped via a separator and wound in a spiral shape, and a cylindrical electrode group housed together with an alkaline electrolyte in the outer can,
A current collector connected to an edge portion of the positive electrode protruding from one end surface of the electrode group;
A current collecting lead for connecting the current collector and the sealing body,
When the material constituting the current collector lead is a material and the material constituting the current collector is b material, the relationship between the deformation resistance A of the material a and the deformation resistance B of the material b is A A cylindrical alkaline secondary battery satisfying the relationship <B.
前記A<Bの関係を満たすために、前記a材料の厚さに比べ、前記b材料の厚さを厚くした、請求項1に記載の円筒形アルカリ二次電池。   2. The cylindrical alkaline secondary battery according to claim 1, wherein the thickness of the b material is larger than the thickness of the a material in order to satisfy the relationship of A <B. 前記A<Bの関係を満たすために、前記a材料の硬度に比べ、前記b材料の硬度を高くした、請求項1に記載の円筒形アルカリ二次電池。   2. The cylindrical alkaline secondary battery according to claim 1, wherein the hardness of the b material is higher than the hardness of the a material in order to satisfy the relationship of A <B. 前記A<Bの関係を満たすために、前記a材料を純Niとし、前記b材料をNiめっき鋼とした、請求項1に記載の円筒形アルカリ二次電池。   2. The cylindrical alkaline secondary battery according to claim 1, wherein in order to satisfy the relationship of A <B, the material a is pure Ni and the material b is Ni-plated steel. 前記集電リードは、前記封口体に接続されている矩形状の頂壁部と、前記頂壁部の所定の側縁から前記集電体へ向かって延びる側壁部と、前記側壁部の先端縁に設けられ前記集電体に接続されている脚部と、を含み、
前記側壁部における前記頂壁部から前記脚部へ向かう方向の長さが、前記封口体と前記集電体との間の長さとほぼ同じである、請求項1〜4の何れかに記載の円筒形アルカリ二次電池。
The current collecting lead includes a rectangular top wall portion connected to the sealing body, a side wall portion extending from a predetermined side edge of the top wall portion toward the current collector, and a leading edge of the side wall portion And a leg connected to the current collector, and
The length in the direction from the top wall portion to the leg portion in the side wall portion is substantially the same as the length between the sealing body and the current collector. Cylindrical alkaline secondary battery.
前記側壁部は、前記集電体と前記封口体とが近づく方向へ圧縮応力を受けたときに、局所的な変形を促進する変形促進部を含む、請求項5に記載の円筒形アルカリ二次電池。   The cylindrical alkali secondary according to claim 5, wherein the side wall includes a deformation promoting portion that promotes local deformation when subjected to a compressive stress in a direction in which the current collector and the sealing body approach each other. battery. 前記集電体は、前記電極群に向かって突出する突起を有している、請求項1〜6の何れかに記載の円筒形アルカリ二次電池。   The cylindrical alkaline secondary battery according to claim 1, wherein the current collector has a protrusion protruding toward the electrode group. 前記突起は、前記集電体の板面に形成された切欠の縁部に設けられたバリである、請求項7に記載の円筒形アルカリ二次電池。   The cylindrical alkaline secondary battery according to claim 7, wherein the protrusion is a burr provided at an edge of a notch formed on a plate surface of the current collector.
JP2017099239A 2016-09-08 2017-05-18 Cylindrical alkaline secondary battery Active JP6947534B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17189889.3A EP3293797B1 (en) 2016-09-08 2017-09-07 Cylindrical alkaline secondary battery
CN201710801077.2A CN107808962B (en) 2016-09-08 2017-09-07 Cylindrical alkaline secondary battery
US15/698,504 US10374260B2 (en) 2016-09-08 2017-09-07 Cylindrical alkaline secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016175807 2016-09-08
JP2016175807 2016-09-08

Publications (2)

Publication Number Publication Date
JP2018045994A true JP2018045994A (en) 2018-03-22
JP6947534B2 JP6947534B2 (en) 2021-10-13

Family

ID=61694956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099239A Active JP6947534B2 (en) 2016-09-08 2017-05-18 Cylindrical alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP6947534B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004236A (en) * 2018-07-17 2018-12-14 江苏海基新能源股份有限公司 A kind of full tab wound lithium-ion battery current collector structure and processing method
JP2019215965A (en) * 2018-06-11 2019-12-19 Fdk株式会社 Secondary battery
JP2020047528A (en) * 2018-09-20 2020-03-26 Fdk株式会社 Secondary battery and method of manufacturing the secondary battery
WO2023101352A1 (en) * 2021-12-01 2023-06-08 주식회사 엘지에너지솔루션 Cylindrical battery and current collector applied thereto, and battery pack and vehicle including such cylindrical battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015732A (en) * 2000-06-29 2002-01-18 Ishikawajima Harima Heavy Ind Co Ltd Secondary cell
JP2006324180A (en) * 2005-05-20 2006-11-30 Matsushita Electric Ind Co Ltd Storage battery and its manufacturing method
JP2006331993A (en) * 2005-05-30 2006-12-07 Gs Yuasa Corporation:Kk Reed for sealed type battery, sealed type battery using the reed, and method of manufacturing the battery
JP2016149300A (en) * 2015-02-13 2016-08-18 Fdk株式会社 Alkaline secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015732A (en) * 2000-06-29 2002-01-18 Ishikawajima Harima Heavy Ind Co Ltd Secondary cell
JP2006324180A (en) * 2005-05-20 2006-11-30 Matsushita Electric Ind Co Ltd Storage battery and its manufacturing method
JP2006331993A (en) * 2005-05-30 2006-12-07 Gs Yuasa Corporation:Kk Reed for sealed type battery, sealed type battery using the reed, and method of manufacturing the battery
JP2016149300A (en) * 2015-02-13 2016-08-18 Fdk株式会社 Alkaline secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215965A (en) * 2018-06-11 2019-12-19 Fdk株式会社 Secondary battery
JP7128666B2 (en) 2018-06-11 2022-08-31 Fdk株式会社 secondary battery
CN109004236A (en) * 2018-07-17 2018-12-14 江苏海基新能源股份有限公司 A kind of full tab wound lithium-ion battery current collector structure and processing method
CN109004236B (en) * 2018-07-17 2023-05-30 江苏海基新能源股份有限公司 Processing method of full-lug winding lithium ion battery current collector structure
JP2020047528A (en) * 2018-09-20 2020-03-26 Fdk株式会社 Secondary battery and method of manufacturing the secondary battery
JP7084267B2 (en) 2018-09-20 2022-06-14 Fdk株式会社 Secondary battery and manufacturing method of this secondary battery
WO2023101352A1 (en) * 2021-12-01 2023-06-08 주식회사 엘지에너지솔루션 Cylindrical battery and current collector applied thereto, and battery pack and vehicle including such cylindrical battery

Also Published As

Publication number Publication date
JP6947534B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP5018087B2 (en) An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
JP7128666B2 (en) secondary battery
JP6947534B2 (en) Cylindrical alkaline secondary battery
WO2006059733A1 (en) Sealed cell, manufacturing method thereof, and battery formed by a plurality of sealed cells
CN108376758B (en) Current collecting lead and method for manufacturing secondary battery including the same
US10374260B2 (en) Cylindrical alkaline secondary battery
JP2018055812A (en) Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method
JP6853052B2 (en) A current collector reed and a method for manufacturing a secondary battery including the current collector reed.
JP2007234486A (en) Battery
JP5157049B2 (en) Sealed battery, method for manufacturing the same, assembled battery including a plurality of sealed batteries, and method for manufacturing the same
JP5383154B2 (en) Cylindrical secondary battery
JP6835451B2 (en) Current collector reed, manufacturing method of secondary battery including this current collector reed, and secondary battery
JP5110889B2 (en) Nickel metal hydride secondary battery
JP2000251871A (en) Alkaline secondary battery
JP7161373B2 (en) secondary battery
JP2010061892A (en) Secondary battery with spirally-rolled electrode group
JP2016149300A (en) Alkaline secondary battery
CN110931698B (en) Secondary battery and method for manufacturing the same
JP2015220118A (en) Alkali secondary battery
JP4334386B2 (en) battery
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
JP2009245771A (en) Alkaline storage battery and method of manufacturing the same
JP2019117690A (en) Collector and secondary battery with the collector
JP2009206024A (en) Battery pack
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R150 Certificate of patent or registration of utility model

Ref document number: 6947534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150