JP2009245771A - Alkaline storage battery and method of manufacturing the same - Google Patents

Alkaline storage battery and method of manufacturing the same Download PDF

Info

Publication number
JP2009245771A
JP2009245771A JP2008091477A JP2008091477A JP2009245771A JP 2009245771 A JP2009245771 A JP 2009245771A JP 2008091477 A JP2008091477 A JP 2008091477A JP 2008091477 A JP2008091477 A JP 2008091477A JP 2009245771 A JP2009245771 A JP 2009245771A
Authority
JP
Japan
Prior art keywords
current collector
electrode
welding
positive electrode
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008091477A
Other languages
Japanese (ja)
Inventor
Kohei Karasumi
浩平 唐住
Masayuki Saito
雅之 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008091477A priority Critical patent/JP2009245771A/en
Publication of JP2009245771A publication Critical patent/JP2009245771A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline storage battery with improved reliability by increasing welding current flowing at a contact part of a collector and ends of an electrode, and reducing reactive current flowing in the collector to prevent the occurrence of short circuit at an electrode group through restraint of break or explosion of the collector. <P>SOLUTION: The alkaline storage battery includes a spiral electrode group 10a wound around in a spiral shape, and at the same time, a negative electrode collector 14 is welded to one of the electrode ends 12c of the electrode group 10a, and a positive electrode collector 15 is welded to the other electrode end 11c. Further, a conductive thin film 16 excellent in conductivity is arranged between one of the electrode ends 12c and the negative electrode collector 14, and another conductive thin film 16 excellent in conductivity is arranged between the other electrode end 11c and the positive electrode collector 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はニッケル−カドミウム蓄電池、ニッケル−水素蓄電池などのアルカリ蓄電池に係り、特に、渦巻状に巻回された渦巻状電極群の少なくとも一方の電極端部に集電体が溶接された電極体を備えたアルカリ蓄電池およびその製造方法に関する。   The present invention relates to an alkaline storage battery such as a nickel-cadmium storage battery or a nickel-hydrogen storage battery, and in particular, an electrode body in which a current collector is welded to at least one electrode end of a spiral electrode group wound in a spiral shape. The present invention relates to an alkaline storage battery and a manufacturing method thereof.

電気自動車、電動バイク、アシスト自転車あるいは電動工具等の大電流用途向けの電池として、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池などのアルカリ蓄電池が用いられるようになった。この種の用途に用いられるアルカリ蓄電池は、高出力特性、高エネルギー密度が要求される。高出力特性を達成するためには集電部品の低抵抗化等が必要であり、集電体と電極板の端部との接触を密にする必要がある。また、振動などにより集電体が外れる恐れがあるため、集電体と電極板の端部との溶接強度を強くする必要がある。   Alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries have come to be used as batteries for large current applications such as electric vehicles, electric motorcycles, assist bicycles, and electric tools. Alkaline storage batteries used for this type of application are required to have high output characteristics and high energy density. In order to achieve high output characteristics, it is necessary to reduce the resistance of the current collecting component, and it is necessary to close contact between the current collector and the end of the electrode plate. Moreover, since there exists a possibility that a collector may remove | deviate by vibration etc., it is necessary to strengthen the welding strength of a collector and the edge part of an electrode plate.

この種のアルカリ蓄電池は、通常、正極板と負極板とをセパレータを介して渦巻状に巻回して渦巻状電極群とした後、この渦巻状電極群の負極板の端部に負極集電体を溶接するとともに、正極板の端部に正極集電体を溶接して電極体とする。ついで、この電極体を負極端子を兼ねる金属製外装缶に挿入し、負極集電体を金属製外装缶の内面側底部に溶接するとともに、正極集電体より延出するリード部を正極端子を兼ねる封口体の底部に溶接した後、電解液を注液し、外装缶の開口部に絶縁ガスケットを介して封口体を装着して密閉することにより作製されている。   In this type of alkaline storage battery, normally, a positive electrode plate and a negative electrode plate are spirally wound through a separator to form a spiral electrode group, and then a negative electrode current collector is disposed at the end of the negative electrode plate of the spiral electrode group. , And a positive electrode current collector is welded to the end of the positive electrode plate to form an electrode body. Next, this electrode body is inserted into a metal outer can also serving as a negative electrode terminal, and the negative electrode current collector is welded to the bottom of the inner surface of the metal outer can, and the lead portion extending from the positive electrode current collector is connected to the positive electrode terminal. After being welded to the bottom of the sealing body that also serves as the sealing member, an electrolytic solution is injected, and the sealing body is attached to the opening of the outer can through an insulating gasket and sealed.

ところで、渦巻状電極群の極板端部と集電体とを溶接するに際しては、極板端部の上に集電体を配置した後、この集電体の上に一対の溶接電極を押し当て、これらの一対の溶接電極間に溶接電流を流すことにより、抵抗熱を生じさせて溶接する抵抗溶接法により行われる。この抵抗溶接法においては、集電体と渦巻状電極群の極板端部との間に電流を流すことにより、その接触部分で抵抗熱を生じさせて溶接するものである。このため、効率よく抵抗溶接するには、できるだけ溶接電流が集電体と極板端部との間に流れるようにして、集電体表面に流れる電流、所謂、無効電流を低減することが重要となる。   By the way, when welding the electrode plate end of the spiral electrode group and the current collector, after arranging the current collector on the electrode plate end, the pair of welding electrodes is pushed onto the current collector. By applying a welding current between the pair of welding electrodes, resistance heat is generated to perform welding. In this resistance welding method, a current is passed between the current collector and the electrode plate end of the spiral electrode group, thereby generating resistance heat at the contact portion and welding. Therefore, for efficient resistance welding, it is important to reduce the current that flows on the current collector surface, the so-called reactive current, so that the welding current flows between the current collector and the end of the electrode plate as much as possible. It becomes.

このため、このような無効電流を低減する技術手法が、例えば、特許文献1(実開昭55−40970号公報)や特許文献2(特開2000−315490号公報)にて提案されるようになった。この場合、特許文献1においては、集電体と電極群の極板端部との接触を集電体に形成されたバーリング突起により行うという技術手法が提案されている。一方、特許文献2においては、集電体にスリットを入れ、集電体内に溶接電流を通りにくくする技術手法が提案されている。
このような技術手法を用いることにより溶接工程の効率化や溶接品質の向上に一定の効果をあげることができるようになった。
実開昭55−40970号公報 特開2000−315490号公報
For this reason, for example, Patent Document 1 (Japanese Utility Model Publication No. 55-40970) and Patent Document 2 (Japanese Patent Application Laid-Open No. 2000-315490) propose a technique for reducing such reactive current. became. In this case, Patent Document 1 proposes a technical technique in which contact between the current collector and the electrode plate end portion of the electrode group is performed by a burring protrusion formed on the current collector. On the other hand, Patent Document 2 proposes a technical technique in which a slit is provided in a current collector so that a welding current does not easily pass through the current collector.
By using such a technical method, it has become possible to achieve a certain effect in improving the efficiency of the welding process and improving the welding quality.
Japanese Utility Model Publication No. 55-40970 JP 2000-315490 A

しかしながら、近年の高容量化の要望に応えるためには、溶接品質を更に向上させることが必要とされており、特に、発泡ニッケル(ニッケルスポンジ)を極板芯体(電極基板)とする電極に集電体を溶接する場合に、溶接品質を更に向上させることが強く求められるようになった。この場合、例えば、溶接強度を向上させるためには溶接電流を大きくすればよいが、溶接電流を大きくすると、それに比例して無効電流も大きくなる。このため、集電体に破断が生じたり、爆飛が発生するという新たな問題も生じるようになった。   However, in order to meet the demand for higher capacity in recent years, it is necessary to further improve the welding quality. In particular, it is necessary to use an electrode having a foam core (nickel sponge) as an electrode plate core (electrode substrate). When welding a current collector, it has been strongly required to further improve the welding quality. In this case, for example, in order to improve the welding strength, the welding current may be increased. However, if the welding current is increased, the reactive current also increases in proportion thereto. For this reason, a new problem has arisen that the current collector breaks or blows off.

ここで、集電体に破断が生じると、集電効率が低下し、放電時の作動電圧が低下するという問題を生じるようになる。また、爆飛が生じると、その爆飛が飛び散って電極群内に入り込み、短絡発生の原因となるという新たな問題が生じることとなる。この場合、小さな溶接電流を流すようにすれば、集電体に破断が生じたり、爆飛が発生するという問題は生じにくくなるが、逆に、溶接が不十分になるとともに、必要とする溶接強度も得られないという問題も生じるようになる。   Here, when the current collector breaks, the current collection efficiency is lowered, and the operating voltage during discharge is lowered. Further, when explosion occurs, a new problem arises that the explosion is scattered and enters the electrode group, causing a short circuit. In this case, if a small welding current is allowed to flow, the problem that the current collector breaks or blows off is less likely to occur, but conversely, the welding becomes insufficient and the required welding There also arises a problem that the strength cannot be obtained.

そこで、本発明は上記問題点を解決するためになされたものであって、集電体に流れる無効電流を低減させて、集電体に破断が生じたり、爆飛が生じにくくなるようにして、電極群でのショートの発生が防止できるようにするとともに、集電体と電極群の極板端部との接触部での溶接電流を大きくできるようにして、集電体と電極群の極板端部との溶接強度が向上し、信頼性が向上したアルカリ蓄電池を提供できることを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and reduces the reactive current flowing in the current collector so that the current collector is not broken or blown out easily. In addition to preventing the occurrence of a short circuit in the electrode group, the welding current at the contact portion between the current collector and the electrode plate end of the electrode group can be increased, so that the electrode of the current collector and the electrode group can be increased. It is an object of the present invention to provide an alkaline storage battery having improved weld strength with a plate end and improved reliability.

本発明のアルカリ蓄電池は、渦巻状に巻回された渦巻状電極群の少なくとも一方の電極端部に集電体が溶接された電極体を備えている。そして、上記課題を解決するため、電極端部と集電体との間に導電性薄膜フィルムを介在させて、当該電極端部と当該集電体とが溶接されていることを特徴とする。
このように、導電性薄膜フィルムを介在させて電極端部と集電体とが溶接されていると、溶接電流が電極群の方へ流れやすくなる。これにより、集電体の溶接時に、集電体の表面に流れる無効電流を大幅に低減できるようになる。この結果、大きな溶接電流を流しても爆飛や破断を生じることがなくなって、集電体との溶接強度が向上するとともに溶接品質も安定することとなる。また、集電体との溶接強度を高めることができるので、内部抵抗を低減させることができ、大電流放電などで優れた放電特性を有するアルカリ蓄電池が得られるようになる。
The alkaline storage battery of the present invention includes an electrode body in which a current collector is welded to at least one electrode end of a spiral electrode group wound in a spiral shape. And in order to solve the said subject, the electroconductive thin film is interposed between an electrode edge part and an electrical power collector, and the said electrode edge part and the said electrical power collector are welded, It is characterized by the above-mentioned.
As described above, when the electrode end portion and the current collector are welded with the conductive thin film interposed, the welding current easily flows toward the electrode group. As a result, the reactive current flowing on the surface of the current collector can be greatly reduced during welding of the current collector. As a result, even if a large welding current is passed, no explosion or breakage occurs, so that the welding strength with the current collector is improved and the welding quality is stabilized. In addition, since the welding strength with the current collector can be increased, the internal resistance can be reduced, and an alkaline storage battery having excellent discharge characteristics in a large current discharge or the like can be obtained.

この場合、導電性薄膜フィルムが電極端部と接する部分の集電体の径よりも大きい円形状に形成されていると、電極端部と接する部分のほぼ全ての面に対して電気接続できるので、渦巻状電極群のより広範囲の部位の電極から集電できるようになる。これにより、正極板あるいは負極板からの電流分布が均一になり、集電体一電極体間の内部抵抗が低下して、集電効率が上がり、放電特性が向上する。なお、集電体の電極端部と接する部分には、中心部に配置された中心開口と、この開口に対して対称の位置に配置された一対のスリットと、中心開口の周囲に配置された多数のバーリング孔とが形成されているのが望ましい。これは、スリットを形成することにより、スリット部分には電流が流れないため、無効電流が低減するためである。また、多数のバーリング孔を形成すると、強固な溶接部が形成されるためである。   In this case, when the conductive thin film is formed in a circular shape larger than the diameter of the current collector in the portion in contact with the electrode end, it can be electrically connected to almost all surfaces in the portion in contact with the electrode end. Thus, current can be collected from electrodes in a wider range of the spiral electrode group. Thereby, the current distribution from the positive electrode plate or the negative electrode plate becomes uniform, the internal resistance between the current collector and the electrode body decreases, the current collection efficiency increases, and the discharge characteristics improve. In addition, in the part which contact | connects the electrode edge part of an electrical power collector, it arrange | positioned around the center opening arrange | positioned in a center part, a pair of slit arrange | positioned in the symmetrical position with respect to this opening, and a center opening It is desirable that a large number of burring holes are formed. This is because by forming the slit, no current flows through the slit portion, so that the reactive current is reduced. Moreover, it is because a strong welding part will be formed when many burring holes are formed.

そして、電極端部と集電体との間に導電性に優れた導電性薄膜フィルムを介在させて、当該電極端部と当該集電体とが溶接されるようにするためには、電極端部と集電体との間に導電性薄膜フィルムを配置する導電性薄膜フィルム配置工程と、導電性薄膜フィルムの上に集電体を配置する集電体配置工程と、集電体の上に一対の溶接電極を配置して溶接電流を印加して、電極端部と当該集電体とを溶接する溶接工程とを備えるようにすればよい。   And, in order to weld the electrode end and the current collector by interposing a conductive thin film having excellent conductivity between the electrode end and the current collector, A conductive thin film placement step for placing a conductive thin film between the electrode and the current collector, a current collector placement step for placing a current collector on the conductive thin film, and a current collector What is necessary is just to provide a welding process which arrange | positions a pair of welding electrodes, applies a welding current, and welds an electrode edge part and the said collector.

本発明においては、導電性薄膜フィルムを介在させて電極端部と集電体とが溶接されているので、溶接電流が電極群の方向に流れやすくなって、集電体の表面に流れる無効電流を大幅に低減できるとともに、大きな溶接電流を流しても爆飛や破断を生じるのが防止できるようになる。これにより、集電体との溶接強度が向上して溶接品質も安定するとともに、内部抵抗を低減させることもでき、大電流放電などで優れた放電特性を有するアルカリ蓄電池を提供できるようになる。   In the present invention, the electrode end and the current collector are welded with the conductive thin film interposed therebetween, so that the welding current easily flows in the direction of the electrode group, and the reactive current flows on the surface of the current collector. Can be significantly reduced, and even if a large welding current is passed, explosion and breakage can be prevented. As a result, the welding strength with the current collector is improved, the welding quality is stabilized, the internal resistance can be reduced, and an alkaline storage battery having excellent discharge characteristics such as a large current discharge can be provided.

以下に、本発明をニッケル−カドミウム蓄電池に適用した場合の一実施の形態を図1〜図5に基づいて説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。
なお、図1は本発明の電極体の構成要素を模式的に示す斜視図である。図2は本発明の導電性薄膜フィルムを模式的に示す正面図である。図3は正極集電体を模式的に示す図であり、図3(a)は平面図であり、図3(b)は、図3(a)のA−A断面を示す断面図である。図4は電極群に正極集電体を溶接する状態を模式的に示す図であり、図4(a)は一対の溶接電極を示す斜視図であり、図4(b)は正極集電体の上に図4(a)に示す一対の溶接電極を配置した状態を模式的に示す上面図であり、図4(c)は、図4(b)の要部側面の状態を模式的に示す側面図である。図5は本発明のニッケル−カドミウム蓄電池を模式的に示す断面図である。
Hereinafter, an embodiment in which the present invention is applied to a nickel-cadmium storage battery will be described with reference to FIGS. 1 to 5, but the present invention is not limited to this and the scope does not change the gist thereof. And can be implemented with appropriate changes.
FIG. 1 is a perspective view schematically showing components of the electrode body of the present invention. FIG. 2 is a front view schematically showing the conductive thin film of the present invention. FIG. 3 is a diagram schematically showing a positive electrode current collector, FIG. 3 (a) is a plan view, and FIG. 3 (b) is a cross-sectional view showing an AA cross section of FIG. 3 (a). . 4 is a diagram schematically showing a state in which the positive electrode current collector is welded to the electrode group, FIG. 4 (a) is a perspective view showing a pair of welding electrodes, and FIG. 4 (b) is a positive electrode current collector. FIG. 4C is a top view schematically showing a state in which the pair of welding electrodes shown in FIG. 4A is arranged on the top, and FIG. 4C schematically shows the state of the side surface of the main part of FIG. FIG. FIG. 5 is a cross-sectional view schematically showing a nickel-cadmium storage battery of the present invention.

1.電極体の構成要素
(1)ニッケル正極板
ニッケル正極板11は、極板芯体11aに水酸化ニッケルを主体とする正極活物質11bが充填され、所定の寸法(例えば、長さが200mmで、幅が33mmで、厚みが0.5mm)になるように圧延や切断などがなされて作製されている。なお、作製後のニッケル正極板11の上端部には活物質未充填部11cが形成されるようになされていて、後に、この活物質未充填部11cに正極集電体15が溶接されることとなる。ここで、極板芯体11aとして発泡ニッケルを用いたものをニッケル正極板αとし、極板芯体11aとしてニッケルメッキが施されたパンチングメタルに焼結体が形成した焼結基板を用いたものをニッケル正極板βとした。
1. Component of electrode body (1) Nickel positive electrode plate The nickel positive electrode plate 11 is a positive electrode active material 11b mainly composed of nickel hydroxide filled in an electrode plate core 11a, and has a predetermined dimension (for example, a length of 200 mm, The width is 33 mm, and the thickness is 0.5 mm). An active material unfilled portion 11c is formed at the upper end of the nickel positive electrode plate 11 after fabrication, and the positive electrode current collector 15 is later welded to the active material unfilled portion 11c. It becomes. Here, a nickel positive electrode plate α is used as the electrode plate core body 11a, and a sintered substrate in which a sintered body is formed on a punched metal plated with nickel is used as the electrode plate core body 11a. Was a nickel positive electrode plate β.

(2)カドミウム負極板
カドミウム負極板12は、パンチングメタルからなる極板芯体12aの両面に酸化カドミウムを主体とする負極活物質と導電剤と結着剤とからなる負極活物質スラリー12bが塗布され、乾燥後、所定の厚み(例えば、0.6mm)になるまで圧延された後、所定の寸法(例えば、長さが240mmで、幅が33mm)になるように切断されて作製されている。なお、作製後のカドミウム負極板12の下端部後には活物質未充填部12cが形成されるようになされていて、後に、この活物質未充填部12cに負極集電体14が溶接されることとなる。
(2) Cadmium negative electrode plate The cadmium negative electrode plate 12 is coated with a negative electrode active material slurry 12b composed of a negative electrode active material mainly composed of cadmium oxide, a conductive agent, and a binder on both surfaces of an electrode plate core 12a made of punching metal. After drying, it is rolled to a predetermined thickness (for example, 0.6 mm), and then cut to a predetermined dimension (for example, a length of 240 mm and a width of 33 mm). . Note that an active material unfilled portion 12c is formed after the lower end portion of the cadmium negative electrode plate 12 after fabrication, and the negative electrode current collector 14 is welded to the active material unfilled portion 12c later. It becomes.

(3)渦巻状電極群
これらのニッケル正極板11(α,β)とカドミウム負極板12との間に、ポリプロピレン製不織布からなるセパレータ(例えば、幅が34mmのもの)13を介在させて渦巻状に巻回することにより渦巻状電極群10aとなされている。この場合、図1に示すように、ニッケル正極板11(α,β)の活物質未充填部11cがセパレータ13の上端部より突出し、カドミウム負極板12の活物質未充填部12cがセパレータ13の下端部より突出するように積層して配置した後、渦巻状に巻回するようになされている。
(3) Spiral electrode group Between these nickel positive electrode plates 11 (α, β) and the cadmium negative electrode plate 12, a separator (for example, having a width of 34 mm) 13 made of polypropylene non-woven fabric is interposed to form a spiral shape. Is wound into a spiral electrode group 10a. In this case, as shown in FIG. 1, the active material unfilled portion 11 c of the nickel positive electrode plate 11 (α, β) protrudes from the upper end portion of the separator 13, and the active material unfilled portion 12 c of the cadmium negative electrode plate 12 After being laminated and arranged so as to protrude from the lower end, it is wound in a spiral shape.

このようにして作製された渦巻状電極群10aの上部は、ニッケル正極板11の活物質未充填部11cが露出するとともに、その下部にはカドミウム負極板12の活物質未塗着部12cが露出することとなる。なお、渦巻状電極群10aの中心部には、巻芯軸が除去されて形成された空間部を備えており、後に負極側端部に溶接された後述する負極集電体14を外装缶17(図5参照)の内面側底部に溶接するための溶接電極を挿入することができるようになされている。   In the upper part of the spiral electrode group 10a thus manufactured, the active material unfilled portion 11c of the nickel positive electrode plate 11 is exposed, and the active material uncoated portion 12c of the cadmium negative electrode plate 12 is exposed below the upper portion. Will be. The spiral electrode group 10a has a space formed by removing the core shaft, and a negative electrode current collector 14 to be described later welded to the negative electrode side end portion is provided in an outer can 17. A welding electrode for welding to the inner surface side bottom of (see FIG. 5) can be inserted.

(4)負極集電体
負極集電体14は、図1に示すように、平面形状が円形状(例えば、直径が17.5mm)となる本体部14aを備えていて、この本体部14aに多数の開孔14bと一対のスリット14cとが形成されている。ここで、多数の開孔14bはバーリング加工により形成されていて、開孔14bの周縁には、図の下方から上方に突出する突縁(図3(b)参照)が形成されている。また、一対のスリット14cは円形状の本体部14aを略半分に分割するように形成されている。なお、この一対のスリット14cを設けることにより、溶接時に負極集電体14に流れる無効電流を低減することが可能となる。
(4) Negative electrode current collector As shown in FIG. 1, the negative electrode current collector 14 includes a main body portion 14a having a circular planar shape (for example, a diameter of 17.5 mm). A large number of apertures 14b and a pair of slits 14c are formed. Here, a large number of apertures 14b are formed by burring, and a protruding edge (see FIG. 3B) is formed on the periphery of the aperture 14b so as to protrude upward from below in the figure. The pair of slits 14c is formed so as to divide the circular main body 14a into approximately half. By providing this pair of slits 14c, it becomes possible to reduce the reactive current flowing through the negative electrode current collector 14 during welding.

(5)正極集電体
正極集電体15は、図1および図3に示すように、平面形状が略円形状(例えば、直径が17.5mm)の本体部15aと、この本体部15aから延出して形成された平面形状が略長方形状のリード部15bとを備えている。そして、本体部15aの中心部には中心開口(例えば、直径は5.3mm)15cが形成されているとともに、中心開口15cの周囲には多数の開孔15dと一対のスリット15eが形成されている。
(5) Positive electrode current collector As shown in FIGS. 1 and 3, the positive electrode current collector 15 includes a main body portion 15a having a substantially circular planar shape (for example, a diameter of 17.5 mm), and a main body portion 15a. The planar shape formed by extending includes a lead portion 15b having a substantially rectangular shape. A central opening (for example, a diameter of 5.3 mm) 15c is formed at the center of the main body 15a, and a number of apertures 15d and a pair of slits 15e are formed around the central opening 15c. Yes.

なお、中心開口15cは、負極側端部に接続された負極集電体14と外装缶17の底部を溶接するための溶接電極を挿入するために設けられている。この場合も、多数の開孔15dはバーリング加工により形成されていて、開孔15dの周縁には、図の上方から下方に突出する突縁15fが形成されている。また、一対のスリット15eは円形状の本体部15aを略半分に分割するように形成されていて、溶接時に正極集電体15に流れる無効電流を低減することが可能となる。   The central opening 15c is provided for inserting a negative electrode current collector 14 connected to the negative electrode side end and a welding electrode for welding the bottom of the outer can 17. Also in this case, a large number of apertures 15d are formed by burring, and projecting edges 15f projecting downward from above in the figure are formed on the periphery of the apertures 15d. Further, the pair of slits 15e are formed so as to divide the circular main body portion 15a into approximately half, and the reactive current flowing through the positive electrode current collector 15 during welding can be reduced.

(6)導電性薄膜フィルム
導電性薄膜フィルム16は、図1および図2に示すように、不織布からなる基材(例えば、厚みが0.07mmのもの)16aの両面に導電性粘着材(例えば、アクリル系粘着材に導電材としてのカーボンブラックを混入したもの)16b,16bが塗布(厚みが0.045mmとなるように塗布)され、電気抵抗が50Ω/inch2になるように形成されたものである。この導電性薄膜フィルム16は平面形状が円形状(例えば、直径が18.0mm)になるように切断されていて、その中心部には中心開口(例えば、直径は5.3mm)16cが形成されていて、負極側端部に接続された負極集電体14と外装缶17の底部を溶接するための溶接電極を挿入することができるようになされている。なお、導電材としては、カーボンブラックの外、金粉などの金属粉を用いることもできる。また、導電性フィルムとしては金属箔を用いることもできる。
(6) Conductive thin film film As shown in FIGS. 1 and 2, the conductive thin film film 16 has a conductive adhesive material (for example, on both sides of a base material 16a having a thickness of 0.07 mm) made of a nonwoven fabric. 16b, 16b were applied (applied to have a thickness of 0.045 mm), and the electrical resistance was 50Ω / inch 2 . Is. The conductive thin film 16 is cut so that the planar shape is circular (for example, the diameter is 18.0 mm), and a central opening (for example, the diameter is 5.3 mm) 16c is formed at the center. In addition, a welding electrode for welding the negative electrode current collector 14 connected to the negative electrode side end and the bottom of the outer can 17 can be inserted. In addition, as the conductive material, metal powder such as gold powder can be used in addition to carbon black. Moreover, metal foil can also be used as a conductive film.

2.電極体
ついで、上述のような構成となる渦巻状電極群10aと、負極集電体14と、正極集電体15と、導電性薄膜フィルム16とを用いて電極体を作製する例について、以下に詳述する。
(1)実施例1
上述のように作製された渦巻状電極群10aのニッケル正極板11(α)の活物質未充填部11cの上端面に導電性薄膜フィルム16を貼着するとともに、この導電性薄膜フィルム16の上に正極集電体15を貼着する。この場合、渦巻状電極群10aの中心部に形成された空間部と、導電性薄膜フィルム16の中心部に形成された中心開口16cと、正極集電体15の本体部15aの中心部に形成された中心開口15cとが一致するようにこれらを貼着する。
2. Next, an example of producing an electrode body using the spiral electrode group 10a, the negative electrode current collector 14, the positive electrode current collector 15, and the conductive thin film 16 having the above-described configuration will be described below. It will be described in detail.
(1) Example 1
The conductive thin film 16 is attached to the upper end surface of the active material unfilled portion 11c of the nickel positive electrode plate 11 (α) of the spiral electrode group 10a manufactured as described above, and the conductive thin film 16 A positive electrode current collector 15 is attached to the substrate. In this case, the space formed in the central portion of the spiral electrode group 10 a, the central opening 16 c formed in the central portion of the conductive thin film 16, and the central portion of the main body portion 15 a of the positive electrode current collector 15 are formed. These are stuck so as to coincide with the center opening 15c.

ついで、正極集電体15の本体部15aの上に一対の溶接電極R1,R2(図4参照)をそれぞれ載置する。このとき、一対の溶接電極R1,R2が正極集電体15の本体部15aに形成された一対のスリット15e,15eを間にしてそれぞれが相対向するように載置する。この後、一対の溶接電極R1,R2間に溶接電源(60Hzの交流電源)Vから溶接電流(3.0kAで2サイクル)を印加する。これにより、バーリング加工により開孔15dの周縁に形成された突縁15f(図3(b)参照)とニッケル正極11の活物質未充填部11cとが抵抗溶接され、渦巻状電極群10aの上端面に正極集電体15が溶接されることとなる。   Next, a pair of welding electrodes R1 and R2 (see FIG. 4) are mounted on the main body 15a of the positive electrode current collector 15, respectively. At this time, the pair of welding electrodes R <b> 1 and R <b> 2 are placed so as to face each other with a pair of slits 15 e and 15 e formed in the main body portion 15 a of the positive electrode current collector 15 therebetween. Thereafter, a welding current (2 cycles at 3.0 kA) is applied from a welding power source (60 Hz AC power source) V between the pair of welding electrodes R1, R2. As a result, the protruding edge 15f (see FIG. 3B) formed at the periphery of the opening 15d by burring is resistance-welded to the active material unfilled portion 11c of the nickel positive electrode 11, and the spiral electrode group 10a The positive electrode current collector 15 is welded to the end face.

一方、渦巻状電極群10aのカドミウム負極板12の活物質未充填部12cの下端面に導電性薄膜フィルム16を貼着するとともに、この導電性薄膜フィルム16の下に負極集電体14を貼着する。この場合も、渦巻状電極群10aの中心部に形成された空間部と、導電性薄膜フィルム16の中心部に形成された中心開口16cとが一致するようにこれらを貼着する。ついで、負極集電体14に上述と同様に一対の溶接電極R1,R2を当接させた後、一対の溶接電極R1,R2間に溶接電源(60Hzの交流電源)Vから溶接電流(3.0kAで1サイクル)を印加してカドミウム負極板12の活物質未塗着部12cと負極集電体14との接触部を抵抗溶接する。これにより、実施例1の渦巻状電極体a1が作製されることとなる。   On the other hand, the conductive thin film 16 is attached to the lower end surface of the active material unfilled portion 12 c of the cadmium negative electrode plate 12 of the spiral electrode group 10 a, and the negative electrode current collector 14 is attached to the lower side of the conductive thin film 16. To wear. Also in this case, these are pasted so that the space part formed in the center part of the spiral electrode group 10a and the center opening 16c formed in the center part of the conductive thin film 16 coincide. Then, after making the pair of welding electrodes R1, R2 contact the negative electrode current collector 14 in the same manner as described above, a welding current (3. (1 cycle at 0 kA) is applied, and the contact portion between the active material uncoated portion 12 c of the cadmium negative electrode plate 12 and the negative electrode current collector 14 is resistance welded. Thereby, the spiral electrode body a1 of Example 1 is produced.

(2)実施例2
上述のように作製された渦巻状電極群10aのニッケル正極板11(β)の活物質未充填部11cの上端面に導電性薄膜フィルム16を貼着するとともに、この導電性薄膜フィルム16の上に正極集電体15を貼着する。この場合、渦巻状電極群10aの中心部に形成された空間部と、導電性薄膜フィルム16の中心部に形成された中心開口16cと、正極集電体15の本体部15aの中心部に形成された中心開口15cとが一致するようにこれらを貼着する。
(2) Example 2
The conductive thin film 16 is attached to the upper end surface of the active material unfilled portion 11c of the nickel positive electrode plate 11 (β) of the spiral electrode group 10a produced as described above, and the conductive thin film 16 A positive electrode current collector 15 is attached to the substrate. In this case, the space formed in the central portion of the spiral electrode group 10 a, the central opening 16 c formed in the central portion of the conductive thin film 16, and the central portion of the main body portion 15 a of the positive electrode current collector 15 are formed. These are stuck so as to coincide with the center opening 15c.

ついで、正極集電体15の本体部15aの上に一対の溶接電極R1,R2(図4参照)をそれぞれ載置する。このとき、一対の溶接電極R1,R2が正極集電体15の本体部15aに形成された一対のスリット15e,15eを間にしてそれぞれが相対向するように載置する。この後、一対の溶接電極R1,R2間に溶接電源(60Hzの交流電源)Vから溶接電流(3.0kAで1サイクル)を印加する。これにより、バーリング加工により開孔15dの周縁に形成された突縁15f(図3(b)参照)とニッケル正極11の活物質未充填部11cとが抵抗溶接され、渦巻状電極群10aの上端面に正極集電体15が溶接されることとなる。   Next, a pair of welding electrodes R1 and R2 (see FIG. 4) are mounted on the main body 15a of the positive electrode current collector 15, respectively. At this time, the pair of welding electrodes R <b> 1 and R <b> 2 are placed so as to face each other with a pair of slits 15 e and 15 e formed in the main body portion 15 a of the positive electrode current collector 15 therebetween. Thereafter, a welding current (one cycle at 3.0 kA) is applied from a welding power source (60 Hz AC power source) V between the pair of welding electrodes R1, R2. As a result, the protruding edge 15f (see FIG. 3B) formed at the periphery of the opening 15d by burring is resistance-welded to the active material unfilled portion 11c of the nickel positive electrode 11, and the spiral electrode group 10a The positive electrode current collector 15 is welded to the end face.

一方、渦巻状電極群10aのカドミウム負極板12の活物質未充填部12cの下端面に導電性薄膜フィルム16を貼着するとともに、この導電性薄膜フィルム16の下に負極集電体14を貼着する。この場合も、渦巻状電極群10aの中心部に形成された空間部と、導電性薄膜フィルム16の中心部に形成された中心開口16cとが一致するようにこれらを貼着する。ついで、負極集電体14に上述と同様に一対の溶接電極R1,R2を当接させた後、一対の溶接電極R1,R2間に溶接電源(60Hzの交流電源)Vから溶接電流(3.0kAで1サイクル)を印加してカドミウム負極板12の活物質未塗着部12cと負極集電体14との接触部を抵抗溶接する。これにより、実施例2の渦巻状電極体a2が作製されることとなる。   On the other hand, the conductive thin film 16 is attached to the lower end surface of the active material unfilled portion 12 c of the cadmium negative electrode plate 12 of the spiral electrode group 10 a, and the negative electrode current collector 14 is attached to the lower side of the conductive thin film 16. To wear. Also in this case, these are pasted so that the space part formed in the center part of the spiral electrode group 10a and the center opening 16c formed in the center part of the conductive thin film 16 coincide. Then, after making the pair of welding electrodes R1, R2 contact the negative electrode current collector 14 in the same manner as described above, a welding current (3. (1 cycle at 0 kA) is applied, and the contact portion between the active material uncoated portion 12 c of the cadmium negative electrode plate 12 and the negative electrode current collector 14 is resistance welded. Thereby, the spiral electrode body a2 of Example 2 is produced.

(3)比較例1
上述のように作製された渦巻状電極群10aのニッケル正極板11(α)の活物質未充填部11cの上端面に正極集電体15を配置する。この場合、渦巻状電極群10aの中心部に形成された空間部と、正極集電体15の本体部15aの中心部に形成された中心開口15cとが一致するように配置する。ついで、正極集電体15の本体部15aの上に一対の溶接電極R1,R2(図4参照)をそれぞれ載置する。このとき、一対の溶接電極R1,R2が正極集電体15の本体部15aに形成された一対のスリット15e,15eを間にしてそれぞれが相対向するように載置する。
(3) Comparative Example 1
The positive electrode current collector 15 is disposed on the upper end surface of the active material unfilled portion 11c of the nickel positive electrode plate 11 (α) of the spiral electrode group 10a manufactured as described above. In this case, it arrange | positions so that the space part formed in the center part of the spiral electrode group 10a and the center opening 15c formed in the center part of the main-body part 15a of the positive electrode collector 15 may correspond. Next, a pair of welding electrodes R1 and R2 (see FIG. 4) are mounted on the main body 15a of the positive electrode current collector 15, respectively. At this time, the pair of welding electrodes R <b> 1 and R <b> 2 are placed so as to face each other with a pair of slits 15 e and 15 e formed in the main body portion 15 a of the positive electrode current collector 15 therebetween.

この後、一対の溶接電極R1,R2間に溶接電源(60Hzの交流電源)Vから溶接電流(2.0kAで2サイクル)を印加する。これにより、バーリング加工により開孔15dの周縁に形成された突縁15f(図3(b)参照)とニッケル正極11の活物質未充填部11cとが抵抗溶接され、渦巻状電極群10aの上端面に正極集電体15が溶接されることとなる。この場合、2.0kA以上の溶接電流で溶接しようとすると、爆飛が発生し、2.5kA以上の溶接電流で溶接しようとすると、正極集電体15の破断が生じた。   Thereafter, a welding current (2 cycles at 2.0 kA) is applied from a welding power source (60 Hz AC power source) V between the pair of welding electrodes R1, R2. As a result, the protruding edge 15f (see FIG. 3B) formed at the periphery of the opening 15d by burring is resistance-welded to the active material unfilled portion 11c of the nickel positive electrode 11, and the spiral electrode group 10a The positive electrode current collector 15 is welded to the end face. In this case, explosion occurred when attempting to weld with a welding current of 2.0 kA or more, and breaking of the positive electrode current collector 15 occurred when attempting to weld with a welding current of 2.5 kA or more.

一方、渦巻状電極群10aの下端部に負極集電体14を載置して、負極集電体14の上に上述と同様に一対の溶接電極R1,R2を当接させた後、一対の溶接電極R1,R2間に溶接電源(60Hzの交流電源)Vから溶接電流(2.0kAで1サイクル)を印加してカドミウム負極板12の活物質未塗着部12cと負極集電体14との接触部を抵抗溶接する。これにより、比較例1の渦巻状電極体x1が作製されることとなる。   On the other hand, after placing the negative electrode current collector 14 on the lower end of the spiral electrode group 10a and bringing the pair of welding electrodes R1, R2 into contact with the negative electrode current collector 14 in the same manner as described above, A welding current (one cycle at 2.0 kA) is applied from the welding power source (60 Hz AC power source) V between the welding electrodes R1 and R2, and the active material uncoated portion 12c of the cadmium negative electrode plate 12 and the negative electrode current collector 14 Resistance contact welding of Thereby, the spiral electrode body x1 of the comparative example 1 is produced.

(4)比較例2
上述のように作製された渦巻状電極群10aのニッケル正極板11(β)の活物質未充填部11cの上端面に正極集電体15を配置する。この場合、渦巻状電極群10aの中心部に形成された空間部と、正極集電体15の本体部15aの中心部に形成された中心開口15cとが一致するように配置する。ついで、正極集電体15の本体部15aの上に一対の溶接電極R1,R2(図4参照)をそれぞれ載置する。このとき、一対の溶接電極R1,R2が正極集電体15の本体部15aに形成された一対のスリット15e,15eを間にしてそれぞれが相対向するように載置する。
(4) Comparative Example 2
The positive electrode current collector 15 is disposed on the upper end surface of the active material unfilled portion 11c of the nickel positive electrode plate 11 (β) of the spiral electrode group 10a manufactured as described above. In this case, it arrange | positions so that the space part formed in the center part of the spiral electrode group 10a and the center opening 15c formed in the center part of the main-body part 15a of the positive electrode collector 15 may correspond. Next, a pair of welding electrodes R1 and R2 (see FIG. 4) are mounted on the main body 15a of the positive electrode current collector 15, respectively. At this time, the pair of welding electrodes R <b> 1 and R <b> 2 are placed so as to face each other with a pair of slits 15 e and 15 e formed in the main body portion 15 a of the positive electrode current collector 15 therebetween.

この後、一対の溶接電極R1,R2間に溶接電源(60Hzの交流電源)Vから溶接電流(2.0kAで1サイクル)を印加する。これにより、バーリング加工により開孔15dの周縁に形成された突縁15f(図3(b)参照)とニッケル正極11の活物質未充填部11cとが抵抗溶接され、渦巻状電極群10aの上端面に正極集電体15が溶接されることとなる。この場合、2.0kA以上の溶接電流で溶接しようとすると、爆飛が発生し、3.0kA以上の溶接電流で溶接しようとすると、正極集電体15の破断が生じた。   Thereafter, a welding current (one cycle at 2.0 kA) is applied from a welding power source (60 Hz AC power source) V between the pair of welding electrodes R1, R2. As a result, the protruding edge 15f (see FIG. 3B) formed at the periphery of the opening 15d by burring is resistance-welded to the active material unfilled portion 11c of the nickel positive electrode 11, and the spiral electrode group 10a The positive electrode current collector 15 is welded to the end face. In this case, explosion occurred when attempting to weld with a welding current of 2.0 kA or more, and breaking of the positive electrode current collector 15 occurred when attempting to weld with a welding current of 3.0 kA or more.

一方、渦巻状電極群10aの下端部に負極集電体14を載置して、負極集電体14の上に上述と同様に一対の溶接電極R1,R2を当接させた後、一対の溶接電極R1,R2間に溶接電源(60Hzの交流電源)Vから溶接電流(2.0kAで1サイクル)を印加してカドミウム負極板12の活物質未塗着部12cと負極集電体14との接触部を抵抗溶接する。これにより、比較例2の渦巻状電極体x2が作製されることとなる。   On the other hand, after placing the negative electrode current collector 14 on the lower end of the spiral electrode group 10a and bringing the pair of welding electrodes R1, R2 into contact with the negative electrode current collector 14 in the same manner as described above, A welding current (one cycle at 2.0 kA) is applied from the welding power source (60 Hz AC power source) V between the welding electrodes R1 and R2, and the active material uncoated portion 12c of the cadmium negative electrode plate 12 and the negative electrode current collector 14 Resistance contact welding of Thereby, the spiral electrode body x2 of Comparative Example 2 is manufactured.

3.溶接強度の測定
ついで、上述のようにして作製された渦巻状電極体a1,a2,x1,x2をそれぞれ2個ずつ用意し、これらの溶接強度を測定すると下記の表1に示すような結果が得られた。この場合、溶接強度を測定するに際しては、各渦巻状電極体a1,a2,x1,x2の正極集電体15のリード部15bを本体部15aに対して垂直に立ち上げ、各電極体a1,a2,x1,x2を固定してリード部15bを垂直方向に引っ張り、各集電体15が外れるまでの荷重を測定して行った。なお、下記の表1の溶接強度においては、平均溶接強度を示し、括弧内にそれらの最小値と最大値とを示している。

Figure 2009245771
3. Measurement of welding strength Next, two spiral electrode bodies a1, a2, x1 and x2 prepared as described above were prepared, and when these welding strengths were measured, the results shown in Table 1 below were obtained. Obtained. In this case, when measuring the welding strength, the lead portion 15b of the positive electrode current collector 15 of each spiral electrode body a1, a2, x1, x2 is raised vertically to the main body portion 15a, and each electrode body a1, The test was performed by fixing a2, x1, and x2, pulling the lead portion 15b in the vertical direction, and measuring the load until each current collector 15 was detached. In addition, in the welding strength of the following Table 1, average welding strength is shown and those minimum values and maximum values are shown in parentheses.
Figure 2009245771

上記表1の結果から明らかなように、発泡ニッケルを極板芯体11aとするニッケル正極板11(α)を用いた電極体a1と電極体x1とを比較すると、電極体x1の平均溶接強度が6.9Nであるのに対して、電極体a1の平均溶接強度は21.6Nとなっていて、電極体a1の方が14.7N(+214%)だけ向上していることが分かる。また、パンチングメタルを極板芯体11aとする焼結基板を用いたニッケル正極板11(β)を有する電極体a2と電極体x2とを比較すると、電極体x2の平均溶接強度が56.8Nであるのに対して、電極体a2の平均溶接強度は72.5Nとなっていて、電極体a2の方が15.7N(+28.7%)だけ向上していることが分かる。  As is apparent from the results of Table 1 above, when the electrode body a1 using the nickel positive electrode plate 11 (α) with the foamed nickel as the electrode plate core body 11a is compared with the electrode body x1, the average welding strength of the electrode body x1 is compared. Is 6.9N, the average welding strength of the electrode body a1 is 21.6N, and it can be seen that the electrode body a1 is improved by 14.7N (+ 214%). Further, when the electrode body a2 having the nickel positive electrode plate 11 (β) using the sintered substrate having the punching metal as the electrode plate core body 11a is compared with the electrode body x2, the average welding strength of the electrode body x2 is 56.8N. On the other hand, the average weld strength of the electrode body a2 is 72.5N, and it can be seen that the electrode body a2 is improved by 15.7N (+ 28.7%).

これは、電極体a1,a2においては、ニッケル正極11の活物質未充填部11cと正極集電体15との間に導電性薄膜フィルム16が貼着されているので、活物質未充填部11cと正極集電体15の開孔15dの周縁に形成された突縁15fとの接触抵抗が低減することとなる。これにより、正極集電体15の表面を流れる無効電流が低減するとともに、これらの接触部に流れる溶接電流が増大するようになる。この結果、電極体a1においては3.0kAで2サイクル、電極体a2においては3.0kAで1サイクルというような大きな溶接電流を流せるようになって、溶接部の溶接強度が向上したためと考えられる。   This is because, in the electrode bodies a1 and a2, the conductive thin film 16 is stuck between the active material unfilled portion 11c of the nickel positive electrode 11 and the positive electrode current collector 15, and therefore the active material unfilled portion 11c. And the contact resistance between the projecting edge 15f formed at the periphery of the opening 15d of the positive electrode current collector 15 is reduced. Thereby, the reactive current flowing through the surface of the positive electrode current collector 15 is reduced, and the welding current flowing through these contact portions is increased. As a result, a large welding current such as 2 cycles at 3.0 kA for the electrode body a1 and 1 cycle at 3.0 kA for the electrode body a2 can flow, and the weld strength of the welded portion is improved. .

4.ニッケル−カドミウム蓄電池
ついで、上述のようにして作製された電極体a2,x2を用いてニッケル−カドミウム蓄電池を作製する例を図5に基づいて以下に説明する。まず、上述のようにして作製された電極体a2,x2を外装缶17内に挿入した後、負極集電体14と外装缶17の底部とを溶接する。また、正極蓋18aと正極キャップ18bとからなる封口体18を用意し、正極集電体15から延出するリード部15bを封口体18に設けられた正極蓋18aの底部に溶接する。なお、正極蓋18aと正極キャップ18bとからなる封口体18内には、弁体18cと、この弁体18cを付勢するスプリング18dとが配置されている。
4). Nickel-cadmium storage battery Next, an example of manufacturing a nickel-cadmium storage battery using the electrode bodies a2 and x2 manufactured as described above will be described with reference to FIG. First, after the electrode bodies a2 and x2 produced as described above are inserted into the outer can 17, the negative electrode current collector 14 and the bottom of the outer can 17 are welded. Further, a sealing body 18 composed of a positive electrode lid 18 a and a positive electrode cap 18 b is prepared, and a lead portion 15 b extending from the positive electrode current collector 15 is welded to the bottom of the positive electrode lid 18 a provided on the sealing body 18. A valve body 18c and a spring 18d for urging the valve body 18c are disposed in the sealing body 18 composed of the positive electrode lid 18a and the positive electrode cap 18b.

ついで、電極体a2,x2の上部外周部にリング状のスペーサ19aを配置した後、外装缶17の上部外周面に溝入れ加工を施して環状溝部17aを形成する。この後、金属製外装缶17内に電解液(例えば、30質量%の水酸化カリウム(KOH)水溶液)を注液し、封口体18の外周部に装着された封口ガスケット19aを外装缶17の環状溝部17aの上に載置するとともに、外装缶17の先端部17bを封口体18側にカシメて封口して、ニッケル−カドミウム蓄電池A2,X2をそれぞれ組み立てる。ここで、電極体a2を用いたものを電池A2とし、電極体x2を用いたものを電池X2とした。なお、これらの電池A2,X2の電池容量は2.5Ahである。   Next, after the ring-shaped spacer 19a is disposed on the upper outer peripheral portion of the electrode bodies a2 and x2, the upper outer peripheral surface of the outer can 17 is grooved to form the annular groove portion 17a. Thereafter, an electrolytic solution (for example, 30 mass% potassium hydroxide (KOH) aqueous solution) is injected into the metal outer can 17, and the sealing gasket 19 a attached to the outer periphery of the sealing body 18 is attached to the outer can 17. The nickel-cadmium storage batteries A2 and X2 are each assembled by placing on the annular groove portion 17a and crimping and sealing the distal end portion 17b of the outer can 17 to the sealing body 18 side. Here, a battery using the electrode body a2 is referred to as a battery A2, and a battery using the electrode body x2 is referred to as a battery X2. The battery capacities of these batteries A2 and X2 are 2.5 Ah.

5.電池特性試験
ついで、上述のように作製されたニッケル−カドミウム蓄電池A2,X2を用いて電池特性試験を行った。なお、この電池特性試験においては、これらの各電池A2、X2をそれぞれ2個ずつ用いて行った。
(活性化処理)
まず、各電池A2,X2をそれぞれ25℃の温度雰囲気下で、250mAの充電電流で16時間充電を行った。この後、1時間放置し、500mAの電流で各電池A2,X2の電圧が1.0Vになるまで放電を行い、活性化処理を行った。
5. Battery characteristic test Next, a battery characteristic test was performed using the nickel-cadmium storage batteries A2 and X2 produced as described above. In this battery characteristic test, two of each of these batteries A2 and X2 were used.
(Activation process)
First, each of the batteries A2 and X2 was charged for 16 hours at a charging current of 250 mA in a temperature atmosphere of 25 ° C. Thereafter, the battery was left for 1 hour, discharged at a current of 500 mA until the voltage of each battery A2, X2 became 1.0 V, and an activation process was performed.

(放電容量・放電時作動電圧)
ついで、上述のように活性化処理を行った後、以下のようにして放電容量と放電時作動電圧の測定を行った。
この場合、まず、25℃の温度雰囲気下で、電池A2,X2に2.5Aの充電電流で、いわゆる−ΔV充電を施した(電池電圧が最大値から10mV低下した時点で充電を停止する)。その後、1時間放置し、40Aの電流値で電池電圧が0.8Vになるまで放電を行った。この40Aで放電したときの容量を放電容量とし、放電が終了するまでの時間の半分の時点での放電電圧を放電作動電圧とした。なお、下記の表2の放電容量においては、平均放電容量(mAh)を示し、括弧内にそれらの最小値と最大値とを示している。

Figure 2009245771
(Discharge capacity and discharge operating voltage)
Next, after the activation treatment was performed as described above, the discharge capacity and the discharge operating voltage were measured as follows.
In this case, first, in a temperature atmosphere of 25 ° C., the batteries A2 and X2 were subjected to a so-called −ΔV charging with a charging current of 2.5 A (the charging was stopped when the battery voltage decreased by 10 mV from the maximum value). . Thereafter, the battery was left for 1 hour and discharged at a current value of 40 A until the battery voltage reached 0.8V. The capacity when discharging at 40 A was defined as the discharge capacity, and the discharge voltage at half the time until the discharge was completed was defined as the discharge operating voltage. In addition, in the discharge capacity | capacitance of following Table 2, an average discharge capacity | capacitance (mAh) is shown, and those minimum values and maximum values are shown in the parenthesis.
Figure 2009245771

上記表2の結果から明らかなように、ニッケル正極板11の活物質未充填部11cと正極集電体15との間、およびカドミウム負極板12の活物質未充填部12cと負極集電体14との間に導電性薄膜フィルム16が貼着され電極体a2を有する電池A2と、導電性薄膜フィルム16を用いない電極体x2を有する電池X2とを比較すると、電池X2の平均放電容量が2319mAhであるのに対して、電池A2の平均放電容量は2355mAhとなっていて、電池A2の方が平均放電容量が36mAh(+1.6%)だけ向上していることが分かる。   As apparent from the results in Table 2, the active material unfilled portion 11c of the nickel positive electrode plate 11 and the positive electrode current collector 15 and the active material unfilled portion 12c and the negative electrode current collector 14 of the cadmium negative electrode plate 12 are shown. When the battery A2 having the electrode body a2 with the conductive thin film 16 attached between the battery X2 and the battery X2 having the electrode body x2 not using the conductive thin film 16 is compared, the average discharge capacity of the battery X2 is 2319 mAh. On the other hand, the average discharge capacity of the battery A2 is 2355 mAh, and it can be seen that the average discharge capacity of the battery A2 is improved by 36 mAh (+ 1.6%).

また、電池X2の直流抵抗は5.96mΩであるのに対して、電池A2の直流抵抗は5.24mΩとなっていて、電池A2の方が直流抵抗が0.72mΩ(−12.1%)だけ向上していることが分かる。さらに、電池X2の40A放電時作動電圧は0.986Vであるのに対して、電池A2の40A放電時作動電圧は1.007Vとなっていて、電池A2の方が40A放電時作動電圧が21mV(+2.1%)だけ向上していることが分かる。   The direct current resistance of the battery X2 is 5.96 mΩ, whereas the direct current resistance of the battery A2 is 5.24 mΩ, and the direct current resistance of the battery A2 is 0.72 mΩ (−12.1%). It can be seen that it has only improved. Further, the operating voltage at 40A discharge of the battery X2 is 0.986V, whereas the operating voltage at 40A discharge of the battery A2 is 1.007V, and the operating voltage at 40A discharge of the battery A2 is 21mV. It can be seen that it is improved by (+ 2.1%).

これは、電極体a2においては、ニッケル正極11の活物質未充填部11cと正極集電体15との間に導電性薄膜フィルム16が貼着されているとともに、カドミウム負極12の活物質未充填部12cと負極集電体14との間に導電性薄膜フィルム16が貼着されているので、各集電体と各極板端部との溶接強度が向上して内部抵抗が低減する。そして、内部抵抗が低減することにより、40A放電時(高率放電時)の作動電圧が向上し、放電容量も向上したと考えられる。   This is because, in the electrode body a2, the conductive thin film 16 is adhered between the active material unfilled portion 11c of the nickel positive electrode 11 and the positive electrode current collector 15, and the active material of the cadmium negative electrode 12 is not filled. Since the conductive thin film 16 is adhered between the portion 12c and the negative electrode current collector 14, the welding strength between each current collector and each electrode plate end portion is improved, and the internal resistance is reduced. And it is thought that the operating voltage at the time of 40A discharge (at the time of high rate discharge) was improved and the discharge capacity was improved by reducing the internal resistance.

なお、上述した実施の形態においては、ニッケル正極11の活物質未充填部11cと正極集電体15との間、およびカドミウム負極12の活物質未充填部12cと負極集電体14との間に導電性薄膜フィルム16を介在させる例について説明したが、導電性薄膜フィルム16はこれらの少なくとも一方に介在させるようにしてもほぼ同様な効果が得られる。また、上述した実施の形態においては、本発明をニッケル−カドミウム蓄電池に適用する例について説明したが、本発明はニッケル−カドミウム蓄電池以外にも、ニッケル−水素蓄電池などのアルカリ蓄電池に適用しても同様の効果が得られることは明らかである。   In the above-described embodiment, between the active material unfilled portion 11 c of the nickel positive electrode 11 and the positive electrode current collector 15 and between the active material unfilled portion 12 c of the cadmium negative electrode 12 and the negative electrode current collector 14. Although the example in which the conductive thin film 16 is interposed is described above, the same effect can be obtained even if the conductive thin film 16 is interposed in at least one of them. Moreover, in embodiment mentioned above, although the example which applies this invention to a nickel cadmium storage battery was demonstrated, even if this invention is applied to alkaline storage batteries, such as a nickel hydride storage battery, besides a nickel cadmium storage battery. It is clear that the same effect can be obtained.

本発明の電極体の構成要素を模式的に示す斜視図である。It is a perspective view which shows typically the component of the electrode body of this invention. 本発明の導電性薄膜フィルムを模式的に示す正面図である。It is a front view which shows typically the electroconductive thin film of this invention. 正極集電体を模式的に示す図であり、図3(a)は平面図であり、図3(b)は、図3(a)のA−A断面を示す断面図である。It is a figure which shows a positive electrode electrical power collector typically, Fig.3 (a) is a top view, FIG.3 (b) is sectional drawing which shows the AA cross section of Fig.3 (a). 電極群に正極集電体を溶接する状態を模式的に示す図であり、図4(a)は一対の溶接電極を示す斜視図であり、図4(b)は正極集電体の上に図4(a)に示す一対の溶接電極を配置した状態を模式的に示す上面図であり、図4(c)は、図4(b)の要部側面の状態を模式的に示す側面図である。It is a figure which shows typically the state which welds a positive electrode electrical power collector to an electrode group, Fig.4 (a) is a perspective view which shows a pair of welding electrode, FIG.4 (b) is on a positive electrode electrical power collector. 4A is a top view schematically showing a state in which the pair of welding electrodes shown in FIG. 4A is arranged, and FIG. 4C is a side view schematically showing the state of the side surface of the main part of FIG. It is. 本発明のニッケル−カドミウム蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the nickel-cadmium storage battery of this invention.

符号の説明Explanation of symbols

10a…渦巻状電極群、11…ニッケル正極板、11a…極板芯体、11b…正極活物質スラリー、11c…活物質未充填部、12…カドミウム負極板、12a…極板芯体、12b…負極活物質スラリー、12c…活物質未充填部、13…セパレータ、14…負極集電体、14a…本体部、14b…開孔、14c…スリット、15…正極集電体、15a…本体部、15b…リード部、15c…中心開口、15d…開孔、15e…スリット、15f…突縁、16…導電性薄膜フィルム、16a…カーボンフィルムからなる基材、16b…粘着材、16c…中心開口、17…外装缶、17a…環状溝部、17b…先端部、18…封口体、18a…正極蓋、18b…正極キャップ、18c…弁体、18d…スプリング、19a…スペーサ、19a…封口ガスケット DESCRIPTION OF SYMBOLS 10a ... Spiral electrode group, 11 ... Nickel positive electrode plate, 11a ... Electrode plate core, 11b ... Positive electrode active material slurry, 11c ... Active material unfilled part, 12 ... Cadmium negative electrode plate, 12a ... Electrode plate core, 12b ... Negative electrode active material slurry, 12c ... Active material unfilled part, 13 ... Separator, 14 ... Negative electrode current collector, 14a ... Main body part, 14b ... Opening, 14c ... Slit, 15 ... Positive electrode current collector, 15a ... Main body part, 15b ... lead portion, 15c ... center opening, 15d ... opening, 15e ... slit, 15f ... edge, 16 ... conductive thin film, 16a ... base material made of carbon film, 16b ... adhesive material, 16c ... center opening, 17 ... outer can, 17a ... annular groove, 17b ... tip, 18 ... sealing body, 18a ... positive electrode lid, 18b ... positive electrode cap, 18c ... valve body, 18d ... spring, 19a ... spacer, 19a ... Mouth gasket

Claims (4)

渦巻状に巻回された渦巻状電極群の少なくとも一方の電極端部に集電体が溶接された電極体を備えたアルカリ蓄電池であって、
前記電極端部と前記集電体との間に導電性薄膜フィルムを介在させて、当該電極端部と当該集電体とが溶接されていることを特徴とするアルカリ蓄電池。
An alkaline storage battery comprising an electrode body in which a current collector is welded to at least one electrode end of a spiral electrode group wound in a spiral shape,
An alkaline storage battery, wherein the electrode end and the current collector are welded with a conductive thin film interposed between the electrode end and the current collector.
前記導電性薄膜フィルムは前記電極端部と接する部分の前記集電体の径よりも大きい円形状に形成されていることを特徴とする請求項1に記載のアルカリ蓄電池。   2. The alkaline storage battery according to claim 1, wherein the conductive thin film is formed in a circular shape larger than a diameter of the current collector at a portion in contact with the electrode end portion. 前記集電体の前記電極端部と接する部分には、中心部に配置された中心開口と、該開口に対して対称の位置に配置された一対のスリットと、前記中心開口の周囲に配置された多数のバーリング孔とが形成されていることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池。   A portion of the current collector that is in contact with the electrode end portion is disposed around a central opening disposed at a central portion, a pair of slits disposed at symmetrical positions with respect to the opening, and the central opening. 3. The alkaline storage battery according to claim 1, wherein a large number of burring holes are formed. 渦巻状に巻回された渦巻状電極群の少なくとも一方の電極端部に集電体が溶接された電極体を備えたアルカリ蓄電池の製造方法であって、
前記電極端部と前記集電体との間に導電性薄膜フィルムを配置する導電性薄膜フィルム配置工程と、
前記導電性薄膜フィルムの上に前記集電体を配置する集電体配置工程と、
前記集電体の上に一対の溶接電極を配置して溶接電流を印加して、前記電極端部と当該集電体とを溶接する溶接工程とを備えたことを特徴とするアルカリ蓄電池の製造方法。
A method for producing an alkaline storage battery comprising an electrode body in which a current collector is welded to at least one electrode end of a spiral electrode group wound in a spiral shape,
A conductive thin film film disposing step of disposing a conductive thin film between the electrode end and the current collector;
A current collector arranging step of arranging the current collector on the conductive thin film; and
A manufacturing process for an alkaline storage battery comprising: a welding step of arranging a pair of welding electrodes on the current collector and applying a welding current to weld the electrode end and the current collector. Method.
JP2008091477A 2008-03-31 2008-03-31 Alkaline storage battery and method of manufacturing the same Withdrawn JP2009245771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091477A JP2009245771A (en) 2008-03-31 2008-03-31 Alkaline storage battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091477A JP2009245771A (en) 2008-03-31 2008-03-31 Alkaline storage battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009245771A true JP2009245771A (en) 2009-10-22

Family

ID=41307433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091477A Withdrawn JP2009245771A (en) 2008-03-31 2008-03-31 Alkaline storage battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009245771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593405A (en) * 2011-01-06 2012-07-18 深圳市艾诺锂电池有限公司 Novel cylindrical storage battery
WO2022196937A1 (en) * 2021-03-18 2022-09-22 삼성에스디아이(주) Cylindrical secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593405A (en) * 2011-01-06 2012-07-18 深圳市艾诺锂电池有限公司 Novel cylindrical storage battery
WO2022196937A1 (en) * 2021-03-18 2022-09-22 삼성에스디아이(주) Cylindrical secondary battery

Similar Documents

Publication Publication Date Title
JP4817871B2 (en) battery
JP5018087B2 (en) An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
JP6947534B2 (en) Cylindrical alkaline secondary battery
WO2005020351A1 (en) Cylindrical cell and manufacturing method thereof
JP4868809B2 (en) Cylindrical alkaline storage battery
JP4931492B2 (en) Cylindrical storage battery
JP5055809B2 (en) Cylindrical storage battery
JP5116228B2 (en) Alkaline storage battery and method of manufacturing the same
JP2008066048A (en) Lithium-ion secondary battery
JP2018055812A (en) Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method
US10374260B2 (en) Cylindrical alkaline secondary battery
JP4836428B2 (en) Storage battery
JP4079563B2 (en) Storage battery and manufacturing method thereof
JP2009245771A (en) Alkaline storage battery and method of manufacturing the same
KR101148017B1 (en) Secondary battery with a spirally-rolled electrode group
JP5183251B2 (en) Assembled battery
JP2000251871A (en) Alkaline secondary battery
JP2004063272A (en) Battery and its manufacturing method
JP3619706B2 (en) Storage battery
JP5064713B2 (en) Storage battery
JP2010108847A (en) Cylindrical-type secondary battery
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
JP2016012393A (en) Storage battery module
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JP2010033990A (en) Sealed type storage battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607