JPH11162447A - Cylindrical battery with spiral electrode body and its manufacture - Google Patents

Cylindrical battery with spiral electrode body and its manufacture

Info

Publication number
JPH11162447A
JPH11162447A JP9329135A JP32913597A JPH11162447A JP H11162447 A JPH11162447 A JP H11162447A JP 9329135 A JP9329135 A JP 9329135A JP 32913597 A JP32913597 A JP 32913597A JP H11162447 A JPH11162447 A JP H11162447A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
negative electrode
welding
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9329135A
Other languages
Japanese (ja)
Other versions
JP3869540B2 (en
Inventor
Tadashi Ise
忠司 伊勢
Yoriyasu Ishimaru
順康 石丸
Hiroshi Fukuda
博 福田
Hideo Kasuga
秀夫 春日
Toshihiro Akazawa
俊裕 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32913597A priority Critical patent/JP3869540B2/en
Publication of JPH11162447A publication Critical patent/JPH11162447A/en
Application granted granted Critical
Publication of JP3869540B2 publication Critical patent/JP3869540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical battery with an improved high-rate discharge characteristic by improving the current collecting property of an unwelded portion even if the unwelded portion occurs on a positive electrode current collector. SOLUTION: A positive electrode 10 and a negative electrode 20 are spirally wound via a separator 30 to form a spiral electrode body A. The upper end section of the positive electrode 10 of the spiral electrode body A is welded to a positive electrode current collector 40 except for a part, and a current collecting tab 12 is provided at the upper end section of the positive electrode 10 not connected to the positive electrode current collector 40. The lower end section of the negative electrode 20 of the spiral electrode body A is welded to a negative electrode current collector 50. The spiral electrode body A is inserted into a metal cylindrical exterior can 70 concurrently serving as a negative electrode terminal, the negative electrode current collector 50 is welded to the bottom section of the exterior can 70, the current collecting tab 12 is welded to the positive electrode current collector 40, and a guide section 42 extended from the positive electrode current collector 40 is welded to the bottom face of a sealing body 60 concurrently serving as a positive electrode terminal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル・水素蓄電
池、ニッケル・カドミウム蓄電池、ニッケル・亜鉛蓄電
池、リチウムイオン電池などの正・負極板をセパレータ
を介して渦巻状に巻回した渦巻状電極体を備えた円筒状
電池に係り、特に、渦巻状電極体と集電体との導電接続
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spiral electrode body formed by spirally winding positive / negative plates of a nickel-hydrogen storage battery, a nickel-cadmium storage battery, a nickel-zinc storage battery, a lithium ion battery or the like via a separator. More particularly, the present invention relates to a conductive connection between a spiral electrode body and a current collector.

【0002】[0002]

【従来の技術】従来、ニッケル・カドミウム蓄電池、ニ
ッケル・水素蓄電池、ニッケル・亜鉛蓄電池、リチウム
イオン電池などの円筒状電池においては、図5,図6に
示すように、正極板10と負極板20とをセパレータ3
0を介して渦巻状に巻回して渦巻状電極体D,Eとす
る。
2. Description of the Related Art Conventionally, in a cylindrical battery such as a nickel-cadmium storage battery, a nickel-hydrogen storage battery, a nickel-zinc storage battery, and a lithium ion battery, as shown in FIGS. And separator 3
The spirally wound electrode bodies D and E are formed by spirally winding the electrodes through 0.

【0003】そして、図5に示すように、このように形
成した渦巻状電極体Dの負極板20の芯体21を負極集
電体50に溶接するとともに、渦巻状電極体Dの正極板
10の芯体11aを正極集電体40に溶接した後、この
渦巻状電極体Dを負極端子を兼ねる金属製円筒状外装缶
70に挿入し、負極集電体50を金属製外装缶70の底
部に溶接するとともに、正極集電体40より延出する導
出部42を正極端子を兼ねる封口体60の底部に溶接し
て構成する。
[0005] As shown in FIG. 5, the core 21 of the negative electrode plate 20 of the spiral electrode body D thus formed is welded to the negative electrode current collector 50 and the positive electrode plate 10 of the spiral electrode body D is welded. Is welded to the positive electrode current collector 40, the spiral electrode body D is inserted into a metal cylindrical outer can 70 also serving as a negative electrode terminal, and the negative electrode current collector 50 is attached to the bottom of the metal outer can 70. And the lead-out portion 42 extending from the positive electrode current collector 40 is welded to the bottom of the sealing body 60 also serving as a positive electrode terminal.

【0004】あるいは、図6に示すように、このように
形成した渦巻状電極体Eを負極端子を兼ねる金属製円筒
状外装缶70に挿入し、渦巻状電極体Eの負極板20の
芯体21を金属製外装缶70の底部に接触させるととも
に、芯体21より延出する集電タブ21aを金属製外装
缶70の底部に溶接する。一方、渦巻状電極体Eの正極
板10の芯体11aを正極集電体40に溶接し、正極集
電体40より延出する導出部42を正極端子を兼ねる封
口体60の底部に溶接して構成するのが一般的である。
Alternatively, as shown in FIG. 6, the spiral electrode body E thus formed is inserted into a metal cylindrical outer can 70 also serving as a negative electrode terminal, and the core of the negative electrode plate 20 of the spiral electrode body E is formed. 21 is brought into contact with the bottom of the metal outer can 70, and the current collecting tab 21 a extending from the core 21 is welded to the bottom of the metal outer can 70. On the other hand, the core 11a of the positive electrode plate 10 of the spiral electrode body E is welded to the positive electrode current collector 40, and the lead-out portion 42 extending from the positive electrode current collector 40 is welded to the bottom of the sealing body 60 also serving as a positive electrode terminal. In general, it is constituted by.

【0005】このように渦巻状電極体D,Eの負極板2
0の芯体21を金属製外装缶70の底部に電気的に接続
するとともに、渦巻状電極体D,Eの正極板10の芯体
11aを正極集電体40に溶接すると、正極板10から
正極端子(封口体60)までの電流分布、および負極板
20から負極端子(金属製外装缶70)までの電流分布
が均一になるため、高率放電特性が向上した電池が得ら
れるようになる。
As described above, the negative electrode plate 2 of the spiral electrode bodies D and E
0 is electrically connected to the bottom of the metal outer can 70, and the core 11 a of the positive electrode plate 10 of the spiral electrode bodies D and E is welded to the positive electrode current collector 40. Since the current distribution up to the positive electrode terminal (sealing body 60) and the current distribution from the negative electrode plate 20 to the negative electrode terminal (metal outer can 70) become uniform, a battery with improved high-rate discharge characteristics can be obtained. .

【0006】[0006]

【発明が解決しようとする課題】ところで、上述のよう
に形成する電池においては、金属製外装缶70は負極端
子を兼ねているため、正極集電体40と金属製外装缶7
0が接触すると内部短絡を生じるため、正極集電体40
は金属製外装缶70と接触しない程度の大きさにする必
要がある。しかしながら、正極集電体40を金属製外装
缶70と接触しない程度の大きさにすると、図8(a)
(なお、図8(a)は図5,図6の渦巻状電極体D,E
の渦巻を平板に引き延ばした正極板10のみを示す)に
示すように、正極板10と正極集電体40との溶接部に
正極集電体40が溶接されない部分10aが生じる。
In the battery formed as described above, since the metal outer can 70 also serves as the negative electrode terminal, the positive electrode current collector 40 and the metal outer can 7
0 causes an internal short circuit when contacted with the positive electrode current collector 40.
Needs to be small enough not to contact the metal outer can 70. However, when the size of the positive electrode current collector 40 is small enough not to come into contact with the metal outer can 70, FIG.
(Note that FIG. 8A shows the spiral electrode bodies D and E shown in FIGS. 5 and 6.
(Only the positive electrode plate 10 in which the spiral is drawn to a flat plate is shown)), a portion 10a where the positive electrode current collector 40 is not welded occurs at the welded portion between the positive electrode plate 10 and the positive electrode current collector 40.

【0007】正極板10が正極集電体40に溶接されて
いる部分は、図8(a)の矢印で示すように、正極集電
体40から正極板10の下端までの集電経路の電流分布
は均一になるが、正極板10が正極集電体40に溶接さ
れない部分10aは、図8(a)の矢印で示すように、
正極集電体40から正極板10の下端までの集電経路の
電流分布が不均一になって、図8(b)に示すように、
正極板10の正極集電体40に溶接されない部分10a
に電圧降下を生じる。そして、正極板10に電圧降下を
生じると、高率放電特性が低下するという問題を生じ
る。
[0007] The portion where the positive electrode plate 10 is welded to the positive electrode current collector 40 is, as shown by an arrow in FIG. 8A, the current in the current collecting path from the positive electrode current collector 40 to the lower end of the positive electrode plate 10. Although the distribution is uniform, the portion 10a where the positive electrode plate 10 is not welded to the positive electrode current collector 40 is, as shown by the arrow in FIG.
As shown in FIG. 8B, the current distribution in the current collecting path from the positive electrode current collector 40 to the lower end of the positive electrode plate 10 becomes non-uniform.
Portion 10a of positive electrode plate 10 not welded to positive electrode current collector 40
Causes a voltage drop. Then, when a voltage drop occurs in the positive electrode plate 10, there arises a problem that high-rate discharge characteristics deteriorate.

【0008】そこで、本発明は上記問題点に鑑みてなさ
れたものであり、正極板上端部と正極集電体との溶接部
に溶接されない部分が生じても、この溶接されない部分
の集電性を向上させて、高率放電特性を向上させた円筒
状電池を得ることにある。
In view of the above, the present invention has been made in view of the above problems. Even if a non-welded portion is formed at a weld between the upper end portion of the positive electrode plate and the positive electrode current collector, the current collecting property of the non-welded portion is obtained. To obtain a cylindrical battery having improved high-rate discharge characteristics.

【0009】[0009]

【課題を解決するための手段およびその作用・効果】本
発明は正・負極板をセパレータを介して渦巻状に巻回し
た渦巻状電極体を負極端子を兼ねる金属製円筒状外装缶
内に備えた円筒状電池であって、上記課題を解決するた
めに、本発明の渦巻状電極体を備えた円筒状電池は、渦
巻状電極体の正極板上端部はその一部を除いて正極端子
を兼ねる封口体に接続される正極集電体に接続され、か
つこの正極集電体に接続されない正極板上端部に集電タ
ブを備え、渦巻状電極体の負極板下端部は負極端子を兼
ねる金属製円筒状外装缶に電気的に接続され、集電タブ
は正極集電体に接続されたことを特徴とする。
The present invention provides a spirally wound electrode body in which a positive / negative electrode plate is spirally wound via a separator in a metal cylindrical outer can also serving as a negative electrode terminal. Cylindrical battery provided with a spiral electrode body of the present invention, the upper end of the positive electrode plate of the spiral electrode body has a positive terminal except for a part thereof. A metal plate that is connected to the positive electrode current collector connected to the sealing body that also serves as the positive electrode current collector, and that is not connected to the positive electrode current collector, has a current collecting tab on the upper end of the positive electrode plate. It is electrically connected to the cylindrical outer can, and the current collecting tab is connected to the positive electrode current collector.

【0010】このように、正極集電体に接続されない正
極板の上端部に集電タブを設け、この集電タブと正極集
電体とを接続するようにすると、正極集電体に接続され
ない部分の正極板内の電流分布も均一になるため、電圧
降下が低減して、高率放電特性が向上する。
As described above, if the current collecting tab is provided at the upper end of the positive electrode plate that is not connected to the positive electrode current collector, and the current collecting tab is connected to the positive electrode current collector, the current collecting tab is not connected to the positive electrode current collector. Since the current distribution in the portion of the positive electrode plate is also uniform, the voltage drop is reduced, and the high-rate discharge characteristics are improved.

【0011】また、負極板の下端部を負極集電体に接続
するとともに、この負極集電体を負極端子を兼ねる金属
製円筒状外装缶に接続するようにすると、負極集電体と
負極端子を兼ねる金属製円筒状外装缶が接触しても問題
を生じない。このため、負極集電体を大きく形成するこ
とができるので、負極板の下端部を負極集電体に接続す
ると負極板内の電流分布も均一になるため、さらに電圧
降下が低減して、さらに高率放電特性が向上する。そし
て、正極集電体に接続された部分の端部近傍に集電タブ
を設けてもそれほど電圧降下が低減しないため、集電タ
ブを設ける位置は正極集電体に接続されない部分の正極
板の渦巻状に巻回した巻終わり端から1/2以内の位置
とすることが好ましい。
The lower end of the negative electrode plate is connected to a negative electrode current collector, and the negative electrode current collector is connected to a metal cylindrical outer can also serving as a negative electrode terminal. No problem occurs even if the metal cylindrical outer can also serves as a contact. For this reason, since the negative electrode current collector can be formed large, when the lower end of the negative electrode plate is connected to the negative electrode current collector, the current distribution in the negative electrode plate is also uniform, so that the voltage drop is further reduced, and High rate discharge characteristics are improved. Further, even if a current collecting tab is provided near the end of the portion connected to the positive electrode current collector, the voltage drop does not decrease so much. Therefore, the position where the current collecting tab is provided is a portion of the positive electrode plate that is not connected to the positive electrode current collector. It is preferable to set the position within 1/2 of the spirally wound end.

【0012】また、本発明は、正・負極板をセパレータ
を介して渦巻状に巻回した渦巻状電極体を負極端子を兼
ねる金属製円筒状外装缶内に挿入して製造する円筒状電
池の製造方法であって、上記課題を解決するために、本
発明の円筒状電池の製造方法は、正極板上端部の渦巻状
電極体としたときに正極端子を兼ねる封口体に接続され
る正極集電体に接続されない部位に集電タブを溶接する
集電タブ溶接工程と、渦巻状電極体の正極板上端部をそ
の一部を除いて正極集電体に溶接する正極集電体溶接工
程と、正極板上端部に溶接された集電タブを正極集電体
に溶接する集電タブ−正極集電体溶接工程と、正極集電
体が溶接された渦巻状電極体を負極端子を兼ねる金属製
円筒状外装缶内に挿入する電極体挿入工程と、渦巻状電
極体の負極板下端部を金属製円筒状外装缶の底部に電気
的に接続する接続工程と、正極集電体を正極端子を兼ね
る封口体に溶接する封口体溶接工程とを備えたことを特
徴とする。
The present invention also relates to a cylindrical battery manufactured by inserting a spiral electrode body in which a positive / negative electrode plate is spirally wound via a separator into a metal cylindrical outer can also serving as a negative electrode terminal. In order to solve the above-mentioned problems, a method of manufacturing a cylindrical battery according to the present invention is directed to a method of manufacturing a positive electrode plate connected to a sealing body also serving as a positive electrode terminal when a spiral electrode body at the upper end of a positive electrode plate is used. A current collecting tab welding step of welding a current collecting tab to a portion not connected to the current collector, and a positive electrode current collector welding step of welding the upper end of the positive electrode plate of the spiral electrode body to the positive electrode current collector except for a part thereof. Current collector tab-positive current collector welding step of welding the current collector tab welded to the upper end of the positive electrode plate to the positive electrode current collector, and a spiral electrode body welded with the positive electrode current collector to a metal serving as the negative electrode terminal. An electrode body insertion step of inserting the electrode body into a cylindrical outer can, and a lower end of the negative electrode plate of the spiral electrode body The characterized by comprising a connecting step of electrically connecting the bottom of the metal cylindrical outer can, the sealing body welding step of welding the sealing body serving as a positive electrode terminal of the positive electrode current collector.

【0013】このように、集電タブが溶接された正極板
を用いて形成された渦巻状電極体の正極板上端部を正極
集電体に溶接した後、集電タブを正極集電体に溶接する
と、正極板内の正極集電体に接続されない部分の電流分
布も均一になるため、電圧降下が低減して、高率放電特
性が向上する。
After the upper end of the positive electrode plate of the spiral electrode body formed by using the positive electrode plate to which the current collecting tab is welded is welded to the positive electrode current collector, the current collecting tab is connected to the positive electrode current collector. When welding is performed, the current distribution in the portion of the positive electrode plate not connected to the positive electrode current collector is also uniform, so that the voltage drop is reduced and the high-rate discharge characteristics are improved.

【0014】また、本発明の円筒状電池の製造方法は、
正極板上端部の渦巻状電極体としたときに正極端子を兼
ねる封口体に接続される正極集電体に接続されない部位
に集電タブを溶接する集電タブ溶接工程と、正極板上端
部に溶接された集電タブを正極集電体に溶接する集電タ
ブ−正極集電体溶接工程と、渦巻状電極体の正極板上端
部を集電タブが溶接された正極集電体に溶接する正極集
電体溶接工程と、正極集電体をその上端部に溶接した渦
巻状電極体を負極端子を兼ねる金属製円筒状外装缶内に
挿入する電極体挿入工程と、正極集電体の集電部を正極
端子を兼ねる封口体に溶接する封口体溶接工程とを備え
たことを特徴とする。
Further, the method for manufacturing a cylindrical battery according to the present invention comprises:
A current collecting tab welding step of welding a current collecting tab to a portion not connected to the positive electrode current collector connected to the sealing body also serving as a positive electrode terminal when the spiral electrode body at the upper end of the positive electrode plate is formed, A current collecting tab-positive electrode current collector welding step of welding the welded current collecting tab to the positive electrode current collector, and welding the upper end of the positive electrode plate of the spiral electrode body to the positive electrode current collector to which the current collecting tab is welded A positive electrode current collector welding step, an electrode body inserting step of inserting a spiral electrode body in which the positive electrode current collector is welded to the upper end thereof into a metal cylindrical outer can also serving as a negative electrode terminal, and a positive electrode current collector collecting step. A sealing member welding step of welding the electrical part to the sealing member also serving as the positive electrode terminal.

【0015】このように、集電タブが溶接された正極板
を用いて形成された渦巻状電極体の集電タブと正極集電
体とを溶接した後、正極板上端部を正極集電体に溶接す
るようにしても、正極板内の正極集電体に接続されない
部分の電流分布も均一になるため、電圧降下が低減し
て、高率放電特性が向上する。
After the current collector tab of the spiral electrode body formed by using the positive electrode plate to which the current collector tab is welded is welded to the positive electrode current collector, the upper end of the positive electrode plate is contacted with the positive electrode current collector. Even when welding is performed, the current distribution in the portion of the positive electrode plate that is not connected to the positive electrode current collector is also uniform, so that the voltage drop is reduced and the high-rate discharge characteristics are improved.

【0016】そして、電極体挿入工程前に、渦巻状電極
体の負極板下端部を負極集電体に溶接する負極集電体溶
接工程とを備えるとともに、電極体挿入工程後に、負極
集電体を金属製円筒状外装缶の底部に溶接する外装缶溶
接工程とを備えるようにすると、負極板内の電流分布も
均一になるため、さらに電圧降下が低減して、さらに高
率放電特性が向上する。
A step of welding the lower end of the negative electrode plate of the spiral electrode body to the negative electrode current collector before the step of inserting the electrode body, and a step of welding the negative electrode current collector after the step of inserting the electrode body. And the outer can welding process of welding to the bottom of the cylindrical outer can made of metal, the current distribution in the negative electrode plate is also uniform, further reducing the voltage drop and improving the high rate discharge characteristics I do.

【0017】[0017]

【発明の実施の形態】以下に、本発明の渦巻状電極体を
備えた円筒状電池をニッケル・水素蓄電池に適用した場
合の一実施の形態を図に基づいて説明する。なお、図1
はニッケル正極板を示し、図1(a)は渦巻状に巻回し
たニッケル正極板を平板に引き延ばした状態を示し、図
1(b)はこのニッケル正極板の位置に対する電圧を示
す図である。図2はニッケル正極板と水素吸蔵合金から
なる負極板を渦巻状に巻回した電極体に正・負の集電体
を溶接した後、金属製円筒状外装缶内に収納して正極集
電タブと正極集電体とを溶接した状態を示す図であり、
図2(a)は断面図であり、図2(b)は封口体を封口
する前の上面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which a cylindrical battery provided with a spiral electrode body of the present invention is applied to a nickel-metal hydride storage battery will be described below with reference to the drawings. FIG.
1 shows a nickel positive plate, FIG. 1 (a) shows a state in which a spirally wound nickel positive plate is stretched into a flat plate, and FIG. 1 (b) shows a voltage with respect to the position of the nickel positive plate. . Fig. 2 shows a positive and negative current collector after welding a positive and negative current collector to an electrode body in which a nickel positive electrode plate and a negative electrode plate made of a hydrogen storage alloy are spirally wound, and then housed in a metal cylindrical outer can. It is a diagram showing a state where the tab and the positive electrode current collector are welded,
FIG. 2A is a cross-sectional view, and FIG. 2B is a top view before the sealing body is sealed.

【0018】図3はニッケル正極板と水素吸蔵合金から
なる負極板を渦巻状に巻回した電極体の正極集電タブと
正極集電体とを溶接した後、金属製円筒状外装缶内に収
納して各集電体を電極体に溶接した状態を示す図であ
り、図3(a)は断面図であり、図3(b)は封口体を
封口する前の上面図である。図4はニッケル正極板と水
素吸蔵合金からなる負極板を渦巻状に巻回した電極体に
正極集電体を溶接して金属製円筒状外装缶内に収納した
後、正極集電タブと正極集電体とを溶接した状態を示す
図であり、その断面を示す図である。
FIG. 3 shows a state in which a positive electrode current collector tab and a positive electrode current collector of an electrode body in which a nickel positive electrode plate and a negative electrode plate made of a hydrogen storage alloy are spirally wound are welded and then placed in a metal cylindrical outer can. It is a figure which shows the state which accommodated and each collector was welded to the electrode body, FIG.3 (a) is sectional drawing, FIG.3 (b) is a top view before sealing a sealing body. FIG. 4 shows a positive electrode current collector welded to an electrode body in which a nickel positive electrode plate and a negative electrode plate made of a hydrogen storage alloy are spirally wound and housed in a metal cylindrical outer can. It is a figure which shows the state which welded the collector, and is a figure which shows the cross section.

【0019】1.ニッケル正極板の作製 (1)焼結式電極 ニッケル粉末にカルボキシメチルセルロース等の増粘剤
および水を混練してスラリーを調整し、このスラリーを
ニッケル多孔体からなる導電性芯体に塗着する。スラリ
ーを導電性芯体に塗着するに際しては、この導電性芯体
の中央部に帯状に未塗着部分を形成するように塗着す
る。なお、この帯状の未塗着部分は電流の導出部とな
り、後の工程で正極集電体との溶接部となる。
1. Preparation of Nickel Positive Electrode (1) Sintered Electrode A thickener such as carboxymethylcellulose and water are kneaded with nickel powder to prepare a slurry, and this slurry is applied to a conductive core made of a nickel porous material. When applying the slurry to the conductive core, the slurry is applied so as to form a band-shaped uncoated portion at the center of the conductive core. Note that the strip-shaped uncoated portion serves as a current lead-out portion, and will be a welded portion with the positive electrode current collector in a later step.

【0020】この後、スラリーを塗着した導電性芯体を
還元性雰囲気下で焼結し、多孔度80%の焼結基板11
を作製する。このように作成した焼結基板11を硝酸ニ
ッケル溶液に浸漬して、この焼結基板11中に硝酸ニッ
ケルを含浸する。その後、水酸化ナトリウム水溶液中に
浸漬し、硝酸ニッケルを水酸化ニッケルに置換する。こ
のような硝酸ニッケルの含浸工程と水酸化ニッケルへの
置換工程とを繰り返して、硝酸ニッケルを水酸化ニッケ
ル活物質にする活物質充填操作を行って、長尺の焼結式
ニッケル正極板を作製する。
Thereafter, the conductive core coated with the slurry is sintered in a reducing atmosphere to form a sintered substrate 11 having a porosity of 80%.
Is prepared. The sintered substrate 11 thus produced is immersed in a nickel nitrate solution to impregnate the sintered substrate 11 with nickel nitrate. Then, it is immersed in a sodium hydroxide aqueous solution to replace nickel nitrate with nickel hydroxide. Such a nickel nitrate impregnation step and a substitution step with nickel hydroxide are repeated, and an active material filling operation for converting nickel nitrate into a nickel hydroxide active material is performed to produce a long sintered nickel positive electrode plate. I do.

【0021】このようにして作製された長尺の焼結式ニ
ッケル正極板を長さ方向の中央部で帯状に形成された芯
体の未塗着部分(導電性芯体)11aの中央で切断する
とともに、長さが210mmになるように切断して焼結
式ニッケル正極板10(焼結式ニッケル正極板a)を作
製する。ついで、厚みが0.10mmのニッケル金属板
を幅が3.0mmになるように切断して作製した舌片状
の集電タブ12を用意し、この舌片状の集電タブ12を
焼結式ニッケル正極板10の端部(渦巻状に巻回された
際の巻終わり端、x=0mm)の位置に溶接して焼結式
ニッケル正極板a1を作製する。
The long sintered nickel positive electrode plate manufactured as described above is cut at the center of the uncoated portion (conductive core) 11a of the core formed in a band shape at the center in the length direction. At the same time, the sintered nickel positive electrode plate 10 (sintered nickel positive electrode plate a) is manufactured by cutting to a length of 210 mm. Next, a tongue-shaped current collecting tab 12 prepared by cutting a nickel metal plate having a thickness of 0.10 mm so as to have a width of 3.0 mm is prepared, and the tongue-shaped current collecting tab 12 is sintered. The sintered nickel positive electrode plate a1 is manufactured by welding at the position of the end of the type nickel positive electrode plate 10 (end of winding when spirally wound, x = 0 mm).

【0022】同様に、渦巻状に巻回された際の巻終わり
端より25mm(x=25mm)の位置に集電タブ12
を溶接して焼結式ニッケル正極板a2を、33mm(x
=33mm)の位置に集電タブ12を溶接して焼結式ニ
ッケル正極板a3を、50mm(x=50mm)の位置
に集電タブ12を溶接して焼結式ニッケル正極板a4
を、66mm(x=66mm)の位置に集電タブ12を
溶接して焼結式ニッケル正極板a5を、75mm(x=
75mm)の位置に集電タブ12を溶接して焼結式ニッ
ケル正極板a6を、100mm(x=100mm)の位
置に集電タブ12を溶接して焼結式ニッケル正極板a7
をそれぞれ作製する。
Similarly, the current collecting tab 12 is located at a position 25 mm (x = 25 mm) from the end of the spirally wound end.
By welding to form a sintered nickel positive electrode plate a2 of 33 mm (x
= 33 mm), and the sintered nickel positive electrode plate a3 was welded to the sintered nickel positive electrode plate a3 at a position of 50 mm (x = 50 mm).
The current collecting tab 12 is welded to a position of 66 mm (x = 66 mm) to make the sintered nickel positive plate a5 75 mm (x = 66 mm).
The current collecting tab 12 is welded to the position of 75 mm) and the sintered nickel positive plate a6 is welded to the position of 100 mm (x = 100 mm).
Are prepared respectively.

【0023】(2)非焼結式電極 水酸化ニッケル90重量部と、金属コバルト粉末5重量
部と、水酸化コバルト粉末5重量部とを混合し、これを
メチルセルロース1重量%水溶液20重量部とを混練し
てペースト状活物質を作製する。このようにして作製し
たペースト状活物質を、基体目付が600g/m2(な
お、基体目付は400〜700g/m2の間で使用可能
である)で厚みが1.5mmであるニッケル発泡体(ニ
ッケルスポンジ)11に充填する。ついで、ペースト状
活物質を充填したニッケル発泡体11を乾燥させた後、
厚みが約0.7mmになるまで圧延する。
(2) Non-sintered electrode 90 parts by weight of nickel hydroxide, 5 parts by weight of metal cobalt powder and 5 parts by weight of cobalt hydroxide powder were mixed, and this was mixed with 20 parts by weight of a 1% by weight aqueous solution of methylcellulose. Is kneaded to produce a paste-like active material. Such a paste active material was produced in the base body a basis weight of 600 g / m 2 (Note that the substrate basis weight can be used is between 400~700g / m 2) nickel foam is 1.5mm and a thickness (Nickel sponge) 11 is filled. Then, after drying the nickel foam 11 filled with the paste-like active material,
Roll to a thickness of about 0.7 mm.

【0024】ついで、このようにペースト状活物質を充
填したニッケル発泡体11の上辺部に超音波ホーンを押
し当てて、上辺部に垂直方向に超音波振動を加えて、上
辺部に充填された活物質をニッケル発泡体11より脱落
させて剥離部を形成する。このとき、超音波ホーンを押
し当てて超音波振動を与えることにより、上辺部は圧縮
されて薄肉部となる。一方、厚みが0.06mmのニッ
ケル金属製の帯状金属薄板11aを用意し、この帯状金
属薄板11aをニッケル発泡体11の剥離部に載置し、
溶接棒を用いて2mm間隔で抵抗溶接を行い、非焼結式
ニッケル正極板を作製する。
Next, an ultrasonic horn was pressed against the upper side of the nickel foam 11 filled with the paste-like active material as described above, and ultrasonic vibration was applied vertically to the upper side to fill the upper side. The active material is dropped from the nickel foam 11 to form a peeled portion. At this time, by applying an ultrasonic vibration by pressing the ultrasonic horn, the upper side portion is compressed to become a thin portion. On the other hand, a nickel metal strip-shaped metal sheet 11a having a thickness of 0.06 mm is prepared, and this strip-shaped metal sheet 11a is placed on the peeling portion of the nickel foam 11,
Resistance welding is performed at intervals of 2 mm using a welding rod to produce a non-sintered nickel positive electrode plate.

【0025】このようにして作成された非焼結式ニッケ
ル正極板10を長さが210mmになるように切断して
非焼結式ニッケル正極板10(非焼結式ニッケル正極板
b)を作製する。ついで、厚みが0.10mmのニッケ
ル金属板を幅が3.0mmになるように切断して作製し
た舌片状の集電タブ12を用意し、この舌片状の集電タ
ブ12を非焼結式ニッケル正極板10の帯状金属薄板1
1aの端部(渦巻状に巻回された際の巻終わり端、x=
0mm)の位置に溶接して非焼結式ニッケル正極板b1
を作製する。
The non-sintered nickel positive electrode plate 10 (non-sintered nickel positive electrode plate b) is prepared by cutting the non-sintered nickel positive electrode plate 10 thus formed so as to have a length of 210 mm. I do. Next, a tongue-shaped current collecting tab 12 prepared by cutting a nickel metal plate having a thickness of 0.10 mm so as to have a width of 3.0 mm was prepared. Strip-shaped metal thin plate 1 of tie-down nickel positive plate 10
1a (end of winding when spirally wound, x =
0 mm) and non-sintered nickel positive electrode plate b1
Is prepared.

【0026】同様に、渦巻状に巻回された際の巻終わり
端より25mm(x=25mm)の位置の位置に集電タ
ブ12を溶接して非焼結式ニッケル正極板b2を、33
mm(x=33mm)の位置に集電タブ12を溶接して
非焼結式ニッケル正極板b3を、50mm(x=50m
m)の位置に集電タブ12を溶接して非焼結式ニッケル
正極板b4を、66mm(x=66mm)の位置に集電
タブ12を溶接して非焼結式ニッケル正極板b5を、7
5mm(x=75mm)の位置に集電タブ12を溶接し
て非焼結式ニッケル正極板b6を、100mm(x=1
00mm)の位置に集電タブ12を溶接して非焼結式ニ
ッケル正極板b7をそれぞれ作成する。
Similarly, the current-collecting tab 12 is welded to a position 25 mm (x = 25 mm) from the end of the spiral when wound in a spiral shape, so that the non-sintered nickel positive electrode plate b2 is 33
The non-sintered nickel positive plate b3 is welded to the position of 50 mm (x = 50 m) by welding the current collecting tab 12 to a position of 50 mm (x = 33 m).
The non-sintered nickel positive electrode plate b4 is welded to the current collecting tab 12 at the position m), and the non-sintered nickel positive electrode plate b5 is welded to the current collecting tab 12 at the 66 mm (x = 66 mm) position. 7
The current collecting tab 12 was welded to a position of 5 mm (x = 75 mm) to remove the non-sintered nickel positive electrode plate b6 to 100 mm (x = 1
(00 mm), the non-sintered nickel positive electrode plate b7 is formed by welding the current collecting tab 12 to each position.

【0027】2.ニッケル・水素蓄電池の作製 (1)焼結式ニッケル正極板を用いたニッケル・水素蓄
電池 a.実施例1〜7 ついで、上述のように作製した各焼結式ニッケル正極板
a1、a2、a3、a4、a5、a6、a7を用いた実
施例1〜7のニッケル・水素蓄電池の作製例を図2に基
づいて説明する。上述のように作製した各焼結式ニッケ
ル正極板a1、a2、a3、a4、a5、a6、a7
と、水素吸蔵合金をパンチングメタル(芯体)21に塗
布した負極板20とをそれぞれポリプロピレン製不織布
からなるセパレータ30を介して、最外周が負極板20
となるようにして渦巻状に卷回して、図2(a)に示す
ように、それぞれ渦巻状電極体Aを作製する。このと
き、各焼結式ニッケル正極板a1、a2、a3、a4、
a5、a6、a7の芯体の未塗着部分11aがセパレー
タ30より突出するとともに、負極板20の芯体21が
セパレータ30より突出するように巻回する。このよう
に渦巻状に巻回した渦巻状電極体Aの直径は約22mm
であった。
2. Preparation of nickel-metal hydride storage battery (1) Nickel-metal hydride storage battery using sintered nickel positive electrode plate a. Examples 1 to 7 Next, examples of the production of the nickel-hydrogen storage batteries of Examples 1 to 7 using the sintered nickel positive plates a1, a2, a3, a4, a5, a6, and a7 produced as described above are described. A description will be given based on FIG. Each sintered nickel positive electrode plate a1, a2, a3, a4, a5, a6, a7 produced as described above
And a negative electrode plate 20 obtained by applying a hydrogen storage alloy to a punching metal (core) 21 via a separator 30 made of a nonwoven fabric made of polypropylene.
As shown in FIG. 2A, spirally wound electrode bodies A are produced. At this time, each sintered nickel positive electrode plate a1, a2, a3, a4,
The cores a5, a6, and a7 are wound so that the uncoated portion 11a of the core protrudes from the separator 30 and the core 21 of the negative electrode plate 20 protrudes from the separator 30. The diameter of the spirally wound electrode body A thus spirally wound is about 22 mm.
Met.

【0028】一方、正極集電体40はニッケル金属から
なり、図2(b)に示すように、この正極集電体40は
直径18mmの略円板状集電部41と導出部42とを備
え、略円板状集電部41は下部に突起を有する多数の開
口43を有するとともに、中心部には電解液注液孔44
が設けられている。また、負極集電体50はニッケル金
属を直径21mmの円板状に形成して構成されるもので
ある。そして、上述のようにして作成した渦巻状電極体
Aの負極板20の芯体21の負極集電体50とを抵抗溶
接するとともに、各焼結式ニッケル正極板a1、a2、
a3、a4、a5、a6、a7の芯体の未塗着部分11
aと正極集電体40の集電部41とを抵抗溶接する。
On the other hand, the positive electrode current collector 40 is made of nickel metal. As shown in FIG. 2 (b), the positive electrode current collector 40 has a substantially disk-shaped current collector 41 having a diameter of 18 mm and a lead-out section 42. The substantially disk-shaped current collector 41 has a large number of openings 43 having projections at the bottom, and an electrolyte injection hole 44 at the center.
Is provided. The negative electrode current collector 50 is formed by forming nickel metal into a disk shape having a diameter of 21 mm. Then, while resistance welding is performed on the negative electrode current collector 50 of the core body 21 of the negative electrode plate 20 of the spiral electrode body A prepared as described above, each sintered nickel positive electrode plate a1, a2,
Uncoated portion 11 of core body of a3, a4, a5, a6, a7
a and the current collector 41 of the positive electrode current collector 40 are resistance-welded.

【0029】なお、この溶接工程において、各焼結式ニ
ッケル正極板a1、a2、a3、a4、a5、a6、a
7の芯体の未塗着部分11aは正極集電体40の集電部
41と溶接されない部分(巻終わり端から100mmま
で)が生じることになる。そのため、各焼結式ニッケル
正極板a1、a2、a3、a4、a5、a6、a7に形
成した集電タブ12を正極集電体40の集電部41側に
折り曲げた後、集電タブ12の上部に一対の溶接電極
(図示せず)を配置し、これらの一対の溶接電極間に溶
接電流を流して抵抗溶接を行う。なお、図1(a)の符
号12の仮想線(二点鎖線)は集電タブ12が正極集電
体40に溶接された状態を模式的に示している。
In this welding step, each sintered nickel positive electrode plate a1, a2, a3, a4, a5, a6, a
The uncoated portion 11a of the core of No. 7 has a portion (up to 100 mm from the end of the winding) that is not welded to the current collecting portion 41 of the positive electrode current collector 40. Therefore, after the current collecting tabs 12 formed on each of the sintered nickel positive electrode plates a1, a2, a3, a4, a5, a6, and a7 are bent toward the current collecting portion 41 of the positive electrode current collector 40, the current collecting tabs 12 A pair of welding electrodes (not shown) are arranged on the upper part of the electrode, and a welding current is applied between the pair of welding electrodes to perform resistance welding. 1A schematically shows a state in which the current collecting tab 12 is welded to the positive electrode current collector 40.

【0030】このように、正極集電体40に溶接されな
い正極板10の上端部に集電タブ12を溶接し、この集
電タブ12と正極集電体40とを溶接するようにする
と、正極集電体40に接続されない部分の正極板10内
の電流分布も均一になるため、電圧降下が低減して、高
率放電特性が向上する。
As described above, when the current collecting tab 12 is welded to the upper end portion of the positive electrode plate 10 that is not welded to the positive electrode current collector 40, and the current collecting tab 12 and the positive electrode current collector 40 are welded, Since the current distribution in the portion of the positive electrode plate 10 not connected to the current collector 40 is also uniform, the voltage drop is reduced, and the high-rate discharge characteristics are improved.

【0031】ついで、有底円筒形の金属外装缶70を用
意し、上記のように各集電体40,50を溶接した渦巻
状電極体Aを金属外装缶70内に挿入し、集電体40の
電解液注液孔44より一方の溶接電極を挿入して負極集
電体50に当接させるとともに金属外装缶70の底部に
他方の溶接電極を当接して、負極集電体50と金属外装
缶70の底部をスポット溶接する。
Next, a cylindrical metal outer can 70 having a bottom is prepared, and the spirally wound electrode body A, to which the current collectors 40 and 50 are welded as described above, is inserted into the metal outer can 70. 40, one of the welding electrodes is inserted from the electrolyte injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70 so that the negative electrode current collector 50 The bottom of the outer can 70 is spot-welded.

【0032】一方、正極キャップと蓋体(なお、正極キ
ャップと蓋体との間には圧力弁が配置されている)とか
らなる封口体60を用意し、正極集電体40の導出部4
2を封口体60の蓋体底部に接触させて、蓋体底部と導
出部42とを溶接して接続する。この後、金属外装缶7
0内にそれぞれ30重量%の水酸化カリウム(KOH)
水溶液よりなる電解液を注液し、封口体60を封口ガス
ケット61を介して外装缶70の開口部71に載置する
とともに、この開口部71を封口体60側にカシメて封
口する。これにより、公称容量2000mAHの各実施
例1〜7の円筒形ニッケル・水素蓄電池をそれぞれ作製
する。
On the other hand, a sealing body 60 comprising a positive electrode cap and a lid (a pressure valve is disposed between the positive electrode cap and the lid) is prepared, and the lead-out section 4 of the positive electrode current collector 40 is provided.
2 is brought into contact with the bottom of the lid of the sealing body 60, and the bottom of the lid and the lead-out portion 42 are connected by welding. After this, metal outer can 7
30% by weight potassium hydroxide (KOH)
An electrolytic solution composed of an aqueous solution is injected, the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61, and the opening 71 is swaged toward the sealing body 60 to seal the opening. Thereby, the cylindrical nickel-metal hydride storage batteries of Examples 1 to 7 each having a nominal capacity of 2000 mAH are manufactured.

【0033】b.実施例8 ついで、上述のように作製した焼結式ニッケル正極板a
3を用いた実施例8のニッケル・水素蓄電池の作製例を
図3に基づいて説明する。上述のように作製した焼結式
ニッケル正極板a3(渦巻状に巻回された際の巻終わり
端より33mm(x=33mm)の位置に予め集電タブ
12が溶接されている)と、水素吸蔵合金をパンチング
メタル(芯体)21に塗布した負極板20とをポリプロ
ピレン製不織布からなるセパレータ30を介して、最外
周が負極板20となるようにして渦巻状に卷回して渦巻
状電極体Bを作製する。このとき、焼結式ニッケル正極
板a3の芯体の未塗着部分11aがセパレータ30より
突出するとともに、負極板20の芯体21がセパレータ
50より突出するように巻回する。このように渦巻状に
巻回した渦巻状電極体Bの直径は約22mmであった。
B. Example 8 Next, the sintered nickel positive electrode plate a produced as described above was used.
An example of manufacturing a nickel-metal hydride storage battery of Example 8 using No. 3 will be described with reference to FIG. The sintered nickel positive electrode plate a3 prepared as described above (the current collection tab 12 is welded in advance at a position 33 mm (x = 33 mm) from the end of winding when wound in a spiral shape) and hydrogen A negative electrode plate 20 obtained by applying an occlusion alloy to a punching metal (core) 21 is spirally wound with a separator 30 made of a nonwoven fabric made of polypropylene so that the outermost periphery becomes the negative electrode plate 20 to form a spiral electrode body. B is manufactured. At this time, the core is wound so that the uncoated portion 11a of the core of the sintered nickel positive electrode plate a3 protrudes from the separator 30 and the core 21 of the negative electrode plate 20 protrudes from the separator 50. The diameter of the spirally wound electrode body B thus spirally wound was about 22 mm.

【0034】ついで、焼結式ニッケル正極板a3に形成
した集電タブ12と、上述の実施例1〜7と同様に形成
した正極集電体40の集電部41とを抵抗溶接した後、
渦巻状電極体Bの負極板20の芯体21と、上述の実施
例1〜7と同様に形成した負極集電体50とを抵抗溶接
する。この後、焼結式ニッケル正極板a3に形成した集
電タブ12が溶接された正極集電体40を渦巻状電極体
Bの上に載置し、焼結式ニッケル正極板a3の芯体の未
塗着部分11aと正極集電体40の集電部41とを抵抗
溶接する。
Then, the current collecting tab 12 formed on the sintered nickel positive electrode plate a3 and the current collecting portion 41 of the positive electrode current collector 40 formed in the same manner as in Examples 1 to 7 are resistance-welded.
The core 21 of the negative electrode plate 20 of the spiral electrode body B is resistance-welded to the negative electrode current collector 50 formed in the same manner as in Examples 1 to 7 described above. Thereafter, the positive electrode current collector 40 to which the current collecting tab 12 formed on the sintered nickel positive electrode plate a3 is welded is placed on the spiral electrode body B, and the core of the sintered nickel positive electrode plate a3 is The uncoated portion 11a and the current collector 41 of the positive electrode current collector 40 are resistance-welded.

【0035】なお、この溶接工程において、焼結式ニッ
ケル正極板a3の巻終わり端から100mmまでの芯体
の未塗着部分11aは正極集電体40の集電部41と溶
接されないこととなるが、渦巻状に巻回された際の巻終
わり端より33mm(x=33mm)の位置には予め溶
接された集電タブ12が正極集電体40の集電部41の
下面に溶接されている。このように、正極集電体40に
溶接されない正極板10の上端部に集電タブ12を溶接
し、この集電タブ12と正極集電体40とを溶接するよ
うにすると、正極集電体40に接続されない部分の正極
板10内の電流分布も均一になるため、電圧降下が低減
して、高率放電特性が向上する。
In this welding step, the uncoated portion 11a of the core from the end of winding of the sintered nickel positive electrode plate a3 to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40. However, at a position 33 mm (x = 33 mm) from the end of the spirally wound coil, a current-collecting tab 12 welded in advance is welded to the lower surface of the current collector 41 of the positive electrode current collector 40. I have. As described above, when the current collecting tab 12 is welded to the upper end of the positive electrode plate 10 that is not welded to the positive electrode current collector 40 and the current collecting tab 12 and the positive electrode current collector 40 are welded, Since the current distribution in the portion of the positive electrode plate 10 not connected to 40 is also uniform, the voltage drop is reduced, and the high-rate discharge characteristics are improved.

【0036】ついで、有底円筒形の金属外装缶70を用
意し、上記のように各集電体40,50を溶接した渦巻
状電極体Bを金属外装缶70内に挿入し、集電体40の
電解液注液孔44より一方の溶接電極を挿入して負極集
電体50に当接させるとともに金属外装缶70の底部に
他方の溶接電極を当接して、負極集電体50と金属外装
缶70の底部をスポット溶接する。
Next, a cylindrical metal outer can 70 having a bottom is prepared, and the spirally wound electrode body B, to which the current collectors 40 and 50 are welded as described above, is inserted into the metal outer can 70. 40, one of the welding electrodes is inserted from the electrolyte injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70 so that the negative electrode current collector 50 The bottom of the outer can 70 is spot-welded.

【0037】一方、上述の実施例1〜7と同様の封口体
60を用意し、正極集電体40の導出部42を封口体6
0の蓋体底部に接触させて、蓋体底部と導出部42とを
溶接して接続する。この後、金属外装缶70内にそれぞ
れ30重量%の水酸化カリウム(KOH)水溶液よりな
る電解液を注液し、封口体60を封口ガスケット61を
介して外装缶70の開口部71に載置するとともに、こ
の開口部71を封口体60側にカシメて封口する。これ
により、公称容量2000mAHの実施例8の円筒形ニ
ッケル・水素蓄電池を作製する。
On the other hand, a sealing member 60 similar to those of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is connected to the sealing member 6.
No. 0, and the bottom of the lid and the lead-out portion 42 are connected by welding. Thereafter, an electrolytic solution comprising a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is swaged toward the sealing body 60 and sealed. Thus, a cylindrical nickel-metal hydride storage battery of Example 8 having a nominal capacity of 2000 mAH is manufactured.

【0038】c.実施例9 ついで、上述のように作製した焼結式ニッケル正極板a
3を用いた実施例9のニッケル・水素蓄電池の作製例を
図4に基づいて説明する。上述のように作製した焼結式
ニッケル正極板a3(渦巻状に巻回された際の巻終わり
端より33mm(x=33mm)の位置に予め集電タブ
12が溶接されている)と、水素吸蔵合金をパンチング
メタル(芯体)21に塗布した負極板20とをポリプロ
ピレン製不織布からなるセパレータ30を介して、最外
周が負極板20となるようにして渦巻状に卷回して渦巻
状電極体Cを作製する。このとき、焼結式ニッケル正極
板a3の芯体11aがセパレータ30より突出するよう
に巻回する。このように渦巻状に巻回した渦巻状電極体
Cの直径は約22mmであった。なお、負極板20の芯
体21の一部には負極用集電タブ21aが設けられてい
る。
C. Example 9 Next, the sintered nickel positive plate a produced as described above was used.
An example of manufacturing the nickel-metal hydride storage battery of Example 9 using No. 3 will be described with reference to FIG. The sintered nickel positive electrode plate a3 prepared as described above (the current collection tab 12 is welded in advance at a position 33 mm (x = 33 mm) from the end of winding when wound in a spiral shape) and hydrogen A negative electrode plate 20 obtained by applying an occlusion alloy to a punching metal (core) 21 is spirally wound with a separator 30 made of a nonwoven fabric made of polypropylene so that the outermost periphery becomes the negative electrode plate 20 to form a spiral electrode body. C is produced. At this time, the core 11a of the sintered nickel positive plate a3 is wound so as to protrude from the separator 30. The diameter of the spirally wound electrode body C thus spirally wound was about 22 mm. A part of the core body 21 of the negative electrode plate 20 is provided with a negative electrode current collecting tab 21a.

【0039】ついで、焼結式ニッケル正極板a3の芯体
の未塗着部分11aと、上述の実施例1〜7と同様に形
成した正極集電体40の集電部41と上述の実施例1〜
7と同様に抵抗溶接する。なお、この溶接工程におい
て、焼結式ニッケル正極板a3の巻終わり端から100
mmまでの芯体露出部は正極集電体40の集電部41と
溶接されないこととなる。そのため、渦巻状に巻回され
た際の巻終わり端より33mm(x=33mm)の位置
に予め溶接された集電タブ12を正極集電体40の集電
部41側に折り曲げた後、集電タブ12の上部に一対の
溶接電極(図示せず)を配置し、これらの一対の溶接電
極間に溶接電流を流して抵抗溶接を行う。
Next, the uncoated portion 11a of the core of the sintered nickel positive electrode plate a3, the current collector 41 of the positive electrode current collector 40 formed in the same manner as in Examples 1 to 7, and the above-described example. 1 to
Resistance welding is performed in the same manner as in step 7. In this welding step, 100 mm from the end of winding of the sintered nickel positive electrode plate a3.
The exposed portion of the core up to mm is not welded to the current collector 41 of the positive electrode current collector 40. Therefore, after the current collection tab 12 welded in advance at a position 33 mm (x = 33 mm) from the end of the spirally wound coil to the current collector 41 side of the positive electrode current collector 40 is bent, A pair of welding electrodes (not shown) is arranged on the upper part of the electric tab 12, and a welding current is applied between the pair of welding electrodes to perform resistance welding.

【0040】ついで、有底円筒形の金属外装缶70を用
意し、上記のように集電体40を溶接した渦巻状電極体
Cを金属外装缶70内に挿入し、集電体40の電解液注
液孔44より一方の溶接電極を挿入して負極用集電タブ
21aに当接させるとともに金属外装缶70の底部に他
方の溶接電極を当接して、負極用集電タブ21aと金属
外装缶70の底部をスポット溶接する。
Next, a cylindrical metal outer can 70 having a bottom is prepared, and the spirally wound electrode body C to which the current collector 40 is welded as described above is inserted into the metal outer can 70, and the current collector 40 is electrolyzed. One of the welding electrodes is inserted from the liquid injection hole 44 and is brought into contact with the negative electrode current collecting tab 21a, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collecting tab 21a and the metal outer case are formed. The bottom of the can 70 is spot-welded.

【0041】一方、上述の実施例1〜7と同様の封口体
60を用意し、正極集電体40の導出部42を封口体6
0の蓋体底部に接触させて、蓋体底部と導出部42とを
溶接して接続する。この後、金属外装缶70内にそれぞ
れ30重量%の水酸化カリウム(KOH)水溶液よりな
る電解液を注液し、封口体60を封口ガスケット61を
介して外装缶70の開口部71に載置するとともに、こ
の開口部71を封口体60側にカシメて封口する。これ
により、公称容量2000mAHの実施例9の円筒形ニ
ッケル・水素蓄電池を作製する。
On the other hand, a sealing member 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is connected to the sealing member 6.
No. 0, and the bottom of the lid and the lead-out portion 42 are connected by welding. Thereafter, an electrolytic solution comprising a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is swaged toward the sealing body 60 and sealed. Thus, a cylindrical nickel-metal hydride storage battery of Example 9 having a nominal capacity of 2000 mAH is manufactured.

【0042】d.比較例1 ついで、上述のように作製した焼結式ニッケル正極板a
を用いた比較例1のニッケル・水素蓄電池の作製例を図
5に基づいて説明する。なお、図5は正・負極板を渦巻
状に巻回した渦巻状電極体に正極集電体と負極集電体を
溶接した後、金属製円筒状外装缶内に収納した状態を示
す図であり、図5(a)は断面図であり、図5(b)は
封口体を封口する前の上面図である。
D. Comparative Example 1 Next, the sintered nickel positive electrode plate a produced as described above
A production example of the nickel-metal hydride storage battery of Comparative Example 1 using the method will be described with reference to FIG. FIG. 5 is a diagram showing a state in which a positive electrode collector and a negative electrode current collector are welded to a spiral electrode body in which positive and negative electrode plates are spirally wound, and then housed in a metal cylindrical outer can. FIG. 5A is a cross-sectional view, and FIG. 5B is a top view before the sealing body is sealed.

【0043】上述のように作製した焼結式ニッケル正極
板aと、水素吸蔵合金をパンチングメタル(芯体)21
に塗布した負極板20とをポリプロピレン製不織布から
なるセパレータ30を介して、最外周が負極板20とな
るようにして渦巻状に卷回して渦巻状電極体Dを作製す
る。このとき、焼結式ニッケル正極板aの芯体の未塗着
部分11aがセパレータ30より突出するとともに、負
極板20の芯体21がセパレータ30より突出するよう
に巻回する。このように渦巻状に巻回した渦巻状電極体
Dの直径は約22mmであった。
The sintered nickel positive electrode plate a manufactured as described above and a hydrogen storage alloy were punched with a punching metal (core) 21.
The spirally wound electrode body D is produced by spirally winding the negative electrode plate 20 applied on the substrate 1 through a separator 30 made of a polypropylene nonwoven fabric so that the outermost periphery becomes the negative electrode plate 20. At this time, the core is wound so that the uncoated portion 11a of the core of the sintered nickel positive electrode plate a protrudes from the separator 30 and the core 21 of the negative electrode plate 20 protrudes from the separator 30. The diameter of the spiral electrode body D spirally wound in this way was about 22 mm.

【0044】そして、上述のようにして作成した渦巻状
電極体Dの負極板20の芯体21と上述の実施例1〜7
と同様の負極集電体50とを上述の実施例1〜7と同様
に抵抗溶接するとともに、焼結式ニッケル正極板aの芯
体の未塗着部分11aと上述の実施例1〜7と同様の正
極集電体40の集電部41とを上述の実施例1〜7と同
様に抵抗溶接する。なお、この溶接工程において、焼結
式ニッケル正極板aの巻終わり端から100mmまでの
芯体の未塗着部分11aは正極集電体40の集電部41
と溶接されないこととなる。
Then, the core 21 of the negative electrode plate 20 of the spirally wound electrode body D prepared as described above and the above-mentioned Embodiments 1 to 7
The same negative electrode current collector 50 as above is resistance-welded in the same manner as in Examples 1 to 7 described above, and the uncoated portion 11a of the core of the sintered nickel positive electrode plate a and the above-described Examples 1 to 7 The current collector 41 of the similar positive electrode current collector 40 is resistance-welded in the same manner as in Examples 1 to 7 described above. In this welding step, the uncoated portion 11a of the core body from the end of winding of the sintered nickel positive electrode plate a to the end of 100 mm is connected to the current collector 41 of the positive electrode current collector 40.
Will not be welded.

【0045】ついで、有底円筒形の金属外装缶70を用
意し、上記のように各集電体40,50を溶接した渦巻
状電極体Dを金属外装缶70内に挿入し、集電体40の
電解液注液孔44より一方の溶接電極を挿入して負極集
電体50に当接させるとともに金属外装缶70の底部に
他方の溶接電極を当接して、負極集電体50と金属外装
缶70の底部をスポット溶接する。
Next, a cylindrical metal outer can 70 having a bottom is prepared, and the spirally wound electrode body D to which the current collectors 40 and 50 are welded as described above is inserted into the metal outer can 70. 40, one of the welding electrodes is inserted from the electrolyte injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70 so that the negative electrode current collector 50 The bottom of the outer can 70 is spot-welded.

【0046】一方、上述の実施例1〜7と同様の封口体
60を用意し、正極集電体40の導出部42を封口体6
0の蓋体底部に接触させて、蓋体底部と導出部42とを
溶接して接続する。この後、金属外装缶70内にそれぞ
れ30重量%の水酸化カリウム(KOH)水溶液よりな
る電解液を注液し、封口体60を封口ガスケット61を
介して外装缶70の開口部71に載置するとともに、こ
の開口部71を封口体60側にカシメて封口する。これ
により、公称容量2000mAHの比較例1の円筒形ニ
ッケル・水素蓄電池を作製する。
On the other hand, a sealing member 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is connected to the sealing member 6.
No. 0, and the bottom of the lid and the lead-out portion 42 are connected by welding. Thereafter, an electrolytic solution comprising a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is swaged toward the sealing body 60 and sealed. Thus, a cylindrical nickel-metal hydride storage battery of Comparative Example 1 having a nominal capacity of 2000 mAH is manufactured.

【0047】e.比較例2 ついで、上述のように作製した焼結式ニッケル正極板a
を用いた比較例2のニッケル・水素蓄電池の作製例を図
6に基づいて説明する。なお、図6は正・負極板を渦巻
状に巻回した渦巻状電極体に正極集電体を溶接し、金属
製円筒状外装缶内に収納した後、負極集電タブと金属製
円筒状外装缶とを溶接した状態を示す図であり、図6
(a)は断面図であり、図6(b)は封口体を封口する
前の上面図である。
E. Comparative Example 2 Next, the sintered nickel positive plate a produced as described above
An example of manufacturing a nickel-metal hydride storage battery of Comparative Example 2 using the method will be described with reference to FIG. FIG. 6 shows a positive electrode current collector welded to a spiral electrode body in which a positive / negative electrode plate is spirally wound and stored in a metal cylindrical outer can. FIG. 6 is a view showing a state where the outer can is welded, and FIG.
(A) is a cross-sectional view, and (b) of FIG. 6 is a top view before the sealing body is sealed.

【0048】上述のように作製した焼結式ニッケル正極
板aと、水素吸蔵合金をパンチングメタル(芯体)21
に塗布した負極板20とをポリプロピレン製不織布から
なるセパレータ30を介して、最外周が負極板20とな
るようにして渦巻状に卷回して渦巻状電極体Eを作製す
る。このとき、焼結式ニッケル正極板aの芯体11aが
セパレータ30より突出するように巻回する。このよう
に渦巻状に巻回した渦巻状電極体Eの直径は約22mm
であった。なお、負極板20の芯体21には負極用集電
タブ21aが設けられている。
The sintered nickel positive electrode plate a manufactured as described above and a hydrogen absorbing alloy were punched with a punching metal (core) 21.
The spirally wound electrode body E is manufactured by spirally winding the negative electrode plate 20 applied on the substrate 1 through a separator 30 made of a nonwoven fabric made of polypropylene such that the outermost periphery becomes the negative electrode plate 20. At this time, the core 11 a of the sintered nickel positive plate a is wound so as to protrude from the separator 30. The diameter of the spirally wound electrode body E thus spirally wound is about 22 mm.
Met. The core 21 of the negative electrode plate 20 is provided with a negative electrode current collecting tab 21a.

【0049】ついで、焼結式ニッケル正極板aの芯体の
未塗着部分11aと、上述の実施例1〜7と同様の正極
集電体40の集電部41とを上述の実施例1〜7と同様
に抵抗溶接する。なお、この溶接工程において、焼結式
ニッケル正極板aの巻終わり端から100mmまでの芯
体の未塗着部分11aは正極集電体40の集電部41と
溶接されないこととなる。
Next, the uncoated portion 11a of the core of the sintered nickel positive electrode plate a and the current collector 41 of the positive electrode current collector 40 similar to those of the above-described first to seventh embodiments are combined with the above-described first embodiment. Resistance welding is performed in the same manner as in No. 7 to 7. In this welding step, the uncoated portion 11a of the core from the end of winding of the sintered nickel positive electrode plate a to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40.

【0050】ついで、有底円筒形の金属外装缶70を用
意し、上記のように集電体40を溶接した渦巻状電極体
Eを金属外装缶70内に挿入し、集電体40の電解液注
液孔44より一方の溶接電極を挿入して負極用集電タブ
21aに当接させるとともに金属外装缶70の底部に他
方の溶接電極を当接して、負極用集電タブ21aと金属
外装缶70の底部をスポット溶接する。
Next, a cylindrical metal outer can 70 having a bottom is prepared, and the spirally wound electrode body E to which the current collector 40 is welded as described above is inserted into the metal outer can 70, and the current collector 40 is electrolyzed. One of the welding electrodes is inserted from the liquid injection hole 44 and is brought into contact with the negative electrode current collecting tab 21a, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collecting tab 21a and the metal outer case are formed. The bottom of the can 70 is spot-welded.

【0051】一方、上述の実施例1〜7と同様の封口体
60を用意し、正極集電体40の導出部42を封口体6
0の蓋体底部に接触させて、蓋体底部と導出部42とを
溶接して接続する。この後、金属外装缶70内にそれぞ
れ30重量%の水酸化カリウム(KOH)水溶液よりな
る電解液を注液し、封口体60を封口ガスケット61を
介して外装缶70の開口部71に載置するとともに、こ
の開口部71を封口体60側にカシメて封口する。これ
により、公称容量2000mAHの比較例2の円筒形ニ
ッケル・水素蓄電池を作製する。
On the other hand, a sealing member 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is connected to the sealing member 6.
No. 0, and the bottom of the lid and the lead-out portion 42 are connected by welding. Thereafter, an electrolytic solution comprising a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is swaged toward the sealing body 60 and sealed. Thus, a cylindrical nickel-metal hydride storage battery of Comparative Example 2 having a nominal capacity of 2000 mAH is manufactured.

【0052】f.比較例3 ついで、上述のように作製した焼結式ニッケル正極板a
を用いた比較例3のニッケル・水素蓄電池の作製例を図
7に基づいて説明する。なお、集電タブを備えた正・負
極板を渦巻状に巻回した渦巻状電極体を金属製円筒状外
装缶内に収納した状態を示す図であり、その断面を示し
ている。
F. Comparative Example 3 Next, the sintered nickel positive electrode plate a produced as described above
An example of manufacturing a nickel-metal hydride storage battery of Comparative Example 3 using the method will be described with reference to FIG. It is a diagram showing a state in which a spiral electrode body in which positive and negative plates provided with a current collecting tab are spirally wound is housed in a metal cylindrical outer can, and shows a cross section thereof.

【0053】上述のように作製した焼結式ニッケル正極
板aと、水素吸蔵合金をパンチングメタル(芯体)21
に塗布した負極板20とをポリプロピレン製不織布から
なるセパレータ30を介して、最外周が負極板20とな
るようにして渦巻状に卷回して渦巻状電極体Fを作製す
る。このとき、負極板20の芯体21がセパレータ30
より突出するように巻回する。このように渦巻状に巻回
した渦巻状電極体Fの直径は約22mmであった。な
お、焼結式ニッケル正極板aの芯体の未塗着部分11a
には正極用集電タブ11bが形成されている。
The sintered nickel positive electrode plate a manufactured as described above and a hydrogen absorbing alloy were punched with a punching metal (core) 21.
The spirally wound electrode body F is manufactured by spirally winding the negative electrode plate 20 applied on the substrate 1 through a separator 30 made of a nonwoven fabric made of polypropylene so that the outermost periphery becomes the negative electrode plate 20. At this time, the core 21 of the negative electrode plate 20 is
Wind so that it protrudes more. The diameter of the spirally wound electrode body F thus wound in a spiral was about 22 mm. The uncoated portion 11a of the core of the sintered nickel positive plate a
Is formed with a positive electrode current collecting tab 11b.

【0054】ついで、上述のようにして作成した渦巻状
電極体Fの負極板20の芯体21と、上述の実施例1〜
7と同様の負極集電体50とを上述の実施例1〜7と同
様に抵抗溶接する。ついで、有底円筒形の金属外装缶7
0を用意し、上記のように負極集電体50を溶接した渦
巻状電極体Fを金属外装缶70内に挿入し、渦巻状電極
体Fの中心部の空隙内に一方の溶接電極を挿入して負極
集電体50に当接させるとともに金属外装缶70の底部
に他方の溶接電極を当接して、負極集電体50と金属外
装缶70の底部をスポット溶接する。
Next, the core 21 of the negative electrode plate 20 of the spirally wound electrode body F prepared as described above,
The negative electrode current collector 50 similar to 7 is resistance-welded in the same manner as in Examples 1 to 7 described above. Next, a bottomed cylindrical metal outer can 7
0, the spiral electrode body F to which the negative electrode current collector 50 has been welded as described above is inserted into the metal outer can 70, and one of the welding electrodes is inserted into the space at the center of the spiral electrode body F. Then, the negative electrode current collector 50 and the bottom of the metal outer can 70 are spot-welded while the other welding electrode is in contact with the bottom of the metal outer can 70.

【0055】一方、上述の実施例1〜7と同様の封口体
60を用意し、正極用集電タブ11bを封口体60の蓋
体底部に接触させて、蓋体底部と正極用集電タブ11b
とを溶接して接続する。この後、金属外装缶70内にそ
れぞれ30重量%の水酸化カリウム(KOH)水溶液よ
りなる電解液を注液し、封口体60を封口ガスケット6
1を介して外装缶70の開口部71に載置するととも
に、この開口部71を封口体60側にカシメて封口す
る。これにより、公称容量2000mAHの比較例3の
円筒形ニッケル・水素蓄電池を作製する。
On the other hand, a sealing body 60 similar to that of the above-mentioned Examples 1 to 7 is prepared, and the current collecting tab 11b for the positive electrode is brought into contact with the bottom of the lid of the sealing body 60, so that the bottom of the lid and the current collecting tab for the positive electrode 11b
And are connected by welding. Thereafter, an electrolytic solution composed of a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the metal outer can 70, and the sealing body 60 is sealed with the sealing gasket 6.
1 and placed on the opening 71 of the outer can 70, and the opening 71 is swaged toward the sealing body 60 and sealed. Thus, a cylindrical nickel-metal hydride storage battery of Comparative Example 3 having a nominal capacity of 2000 mAH is manufactured.

【0056】(2)非焼結式電極を用いたニッケル・水
素蓄電池 a.実施例10〜16 ついで、上述のように作製した各非焼結式ニッケル正極
板b1、b2、b3、b4、b5、b6、b7を用いた
実施例10〜16のニッケル・水素蓄電池の作製例を図
2に基づいて説明する。上述のように作製した各非焼結
式ニッケル正極板b1、b2、b3、b4、b5、b
6、b7と、水素吸蔵合金をパンチングメタル(芯体)
21に塗布した負極板20とをそれぞれポリプロピレン
製不織布からなるセパレータ30を介して、最外周が負
極板20となるようにして渦巻状に卷回してそれぞれ渦
巻状電極体Aを作製する。このとき、各非焼結式ニッケ
ル正極板b1、b2、b3、b4、b5、b6、b7の
帯状金属薄板11aがセパレータ30より突出するとと
もに、負極板20の芯体21がセパレータ30より突出
するように巻回する。このように渦巻状に巻回した渦巻
状電極体Aの直径は約22mmであった。
(2) Nickel / hydrogen storage battery using non-sintered electrodes a. Examples 10 to 16 Next, examples of manufacturing the nickel-hydrogen storage batteries of Examples 10 to 16 using each of the non-sintered nickel positive plates b1, b2, b3, b4, b5, b6, and b7 manufactured as described above. Will be described with reference to FIG. Each of the non-sintered nickel positive plates b1, b2, b3, b4, b5, b produced as described above
6, b7 and punching metal (core) of hydrogen storage alloy
The spirally wound electrode bodies A are produced by spirally winding the negative electrode plate 20 applied on the substrate 21 through the separator 30 made of a nonwoven fabric made of polypropylene so that the outermost periphery becomes the negative electrode plate 20. At this time, the strip-shaped thin metal plates 11a of the non-sintered nickel positive plates b1, b2, b3, b4, b5, b6, and b7 protrude from the separator 30, and the core 21 of the negative plate 20 protrudes from the separator 30. Wound. The diameter of the spirally wound electrode body A thus wound in a spiral was about 22 mm.

【0057】ついで、上述のようにして作製した渦巻状
電極体Aの負極板20の芯体21と、上述の実施例1〜
7と同様の直径21mmの負極集電体50とを抵抗溶接
するとともに、各非焼結式ニッケル正極板b1、b2、
b3、b4、b5、b6、b7の帯状金属薄板11aと
上述の実施例1〜7と同様の直径18mmの正極集電体
40の集電部41とを、上述の実施例1〜7と同様にし
て抵抗溶接する。この後、各非焼結式ニッケル正極板b
1、b2、b3、b4、b5、b6、b7に形成した集
電タブ12を正極集電体40の集電部41側に折り曲げ
た後、抵抗溶接する。
Next, the core body 21 of the negative electrode plate 20 of the spirally wound electrode body A manufactured as described above,
7 and a negative electrode current collector 50 having a diameter of 21 mm, which is the same as that of the negative electrode current collector 50, and each of the non-sintered nickel positive plates b1, b2,
The strip-shaped metal thin plates 11a of b3, b4, b5, b6, and b7 and the current collector 41 of the positive electrode current collector 40 having a diameter of 18 mm similar to those of the above-described first to seventh embodiments are similar to the first to seventh embodiments. And resistance welding. Thereafter, each non-sintered nickel positive plate b
After the current collecting tabs 12 formed on 1, b2, b3, b4, b5, b6, and b7 are bent toward the current collecting portion 41 of the positive electrode current collector 40, resistance welding is performed.

【0058】ついで、有底円筒形の金属外装缶70を用
意し、上記のように各集電体40,50を溶接した渦巻
状電極体Aを金属外装缶70内に挿入し、集電体40の
電解液注液孔44より一方の溶接電極を挿入して負極集
電体50に当接させるとともに金属外装缶70の底部に
他方の溶接電極を当接して、負極集電体50と金属外装
缶70の底部をスポット溶接する。
Next, a metal outer can 70 having a bottomed cylindrical shape is prepared, and the spirally wound electrode body A to which the current collectors 40 and 50 are welded as described above is inserted into the metal outer can 70. 40, one of the welding electrodes is inserted from the electrolyte injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70 so that the negative electrode current collector 50 The bottom of the outer can 70 is spot-welded.

【0059】一方、上述の実施例1〜7と同様の封口体
60を用意し、正極集電体40の導出部42を封口体6
0の蓋体底部に接触させて、蓋体底部と導出部42とを
溶接して接続する。この後、金属外装缶70内にそれぞ
れ30重量%の水酸化カリウム(KOH)水溶液よりな
る電解液を注液し、封口体60を封口ガスケット61を
介して外装缶70の開口部71に載置するとともに、こ
の開口部71を封口体60側にカシメて封口する。これ
により、公称容量2000mAHの各実施例10〜16
の円筒形ニッケル・水素蓄電池をそれぞれ作製する。
On the other hand, a sealing member 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is connected to the sealing member 6.
No. 0, and the bottom of the lid and the lead-out portion 42 are connected by welding. Thereafter, an electrolytic solution comprising a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is swaged toward the sealing body 60 and sealed. Thereby, each of Examples 10 to 16 having a nominal capacity of 2000 mAH
Are manufactured, respectively.

【0060】b.実施例17 ついで、上述のように作製した非焼結式ニッケル正極板
b3を用いた実施例17のニッケル・水素蓄電池の作製
例を図3に基づいて説明する。上述のように作製した非
焼結式ニッケル正極板b3と、水素吸蔵合金をパンチン
グメタル(芯体)21に塗布した負極板20とをポリプ
ロピレン製不織布からなるセパレータ30を介して、最
外周が負極板20となるようにして渦巻状に卷回して渦
巻状電極体Bを作製する。このとき、非焼結式ニッケル
正極板b3の上端部がセパレータ50より突出するとと
もに、負極板40の下端部がセパレータ50より突出す
るように巻回する。このように渦巻状に巻回した渦巻状
電極体Bの直径は約22mmであった。
B. Example 17 Next, an example of manufacturing a nickel-metal hydride storage battery of Example 17 using the non-sintered nickel positive electrode plate b3 manufactured as described above will be described with reference to FIG. The non-sintered nickel positive electrode plate b3 produced as described above and the negative electrode plate 20 obtained by applying a hydrogen storage alloy to a punching metal (core) 21 are sandwiched between separators 30 made of polypropylene non-woven fabric. The spirally wound electrode body B is formed by spirally winding the plate 20 into a plate 20. At this time, the non-sintered nickel positive electrode plate b3 is wound so that the upper end portion protrudes from the separator 50 and the lower end portion of the negative electrode plate 40 protrudes from the separator 50. The diameter of the spirally wound electrode body B thus spirally wound was about 22 mm.

【0061】ついで、非焼結式ニッケル正極板b3の帯
状金属薄板11aに溶接した集電タブ12と、上述の実
施例1〜7と同様に形成した正極集電体40の集電部4
1とを抵抗溶接した後、渦巻状電極体Aの負極板20の
端部21と、上述の実施例1〜7と同様に形成した負極
集電体50とを抵抗溶接する。この後、非焼結式ニッケ
ル正極板b3の集電タブ12に溶接された正極集電体4
0を渦巻状電極体Bの上に載置し、非焼結式ニッケル正
極板b3の帯状金属薄板11aの端部と正極集電体40
の集電部41とを抵抗溶接する。
Next, the current collecting tab 12 welded to the strip-shaped thin metal plate 11a of the non-sintered nickel positive electrode plate b3, and the current collecting portion 4 of the positive electrode current collector 40 formed in the same manner as in the first to seventh embodiments.
After resistance welding is performed, the end 21 of the negative electrode plate 20 of the spiral electrode body A and the negative electrode current collector 50 formed in the same manner as in Examples 1 to 7 are resistance-welded. Thereafter, the positive electrode current collector 4 welded to the current collecting tab 12 of the non-sintered nickel positive electrode plate b3
0 on the spiral electrode body B, and the end of the strip-shaped thin metal plate 11a of the non-sintered nickel positive electrode plate b3 and the positive electrode current collector 40
Is resistance-welded to the current collector 41.

【0062】なお、この溶接工程において、非焼結式ニ
ッケル正極板b3の巻終わり端から100mmまでの帯
状金属薄板11aは正極集電体40の集電部41と溶接
されないこととなるが、非焼結式ニッケル正極板b3に
形成した集電タブ12は予め正極集電体40の集電部4
1の下面に溶接されている。
In this welding step, the strip-shaped thin metal plate 11a from the end of winding of the non-sintered nickel positive electrode plate b3 to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40. The current collecting tab 12 formed on the sintered nickel positive electrode plate b3 is
1 is welded to the lower surface.

【0063】ついで、有底円筒形の金属外装缶70を用
意し、上記のように各集電体40,50を溶接した渦巻
状電極体Bを金属外装缶70内に挿入し、集電体40の
電解液注液孔44より一方の溶接電極を挿入して負極集
電体50に当接させるとともに金属外装缶70の底部に
他方の溶接電極を当接して、負極集電体50と金属外装
缶70の底部をスポット溶接する。
Then, a metal outer can 70 having a bottomed cylindrical shape is prepared, and the spirally wound electrode body B to which the current collectors 40 and 50 are welded as described above is inserted into the metal outer can 70, and the current collector 40, one of the welding electrodes is inserted from the electrolyte injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70 so that the negative electrode current collector 50 The bottom of the outer can 70 is spot-welded.

【0064】一方、上述の実施例1〜7と同様の封口体
60を用意し、正極集電体40の導出部42を封口体6
0の蓋体底部に接触させて、蓋体底部と導出部42とを
溶接して接続する。この後、金属外装缶70内にそれぞ
れ30重量%の水酸化カリウム(KOH)水溶液よりな
る電解液を注液し、封口体60を封口ガスケット61を
介して外装缶70の開口部71に載置するとともに、こ
の開口部71を封口体60側にカシメて封口する。これ
により、公称容量2000mAHの実施例17の円筒形
ニッケル・水素蓄電池を作製する。
On the other hand, a sealing member 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is connected to the sealing member 6.
No. 0, and the bottom of the lid and the lead-out portion 42 are connected by welding. Thereafter, an electrolytic solution comprising a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is swaged toward the sealing body 60 and sealed. In this way, a cylindrical nickel-metal hydride storage battery of Example 17 having a nominal capacity of 2000 mAH is manufactured.

【0065】c.実施例18 ついで、上述のように作製した非焼結式ニッケル正極板
b3を用いた実施例18のニッケル・水素蓄電池の作製
例を図4に基づいて説明する。上述のように作製した非
焼結式ニッケル正極板b3と、水素吸蔵合金をパンチン
グメタル(芯体)21に塗布した負極板20とをポリプ
ロピレン製不織布からなるセパレータ30を介して、最
外周が負極板20となるようにして渦巻状に卷回して渦
巻状電極体Cを作製する。このとき、非焼結式ニッケル
正極板b3の帯状金属薄板11aがセパレータ30より
突出するように巻回する。このように渦巻状に巻回した
渦巻状電極体Cの直径は約22mmであった。なお、負
極板20の下端部には負極用集電タブ21aが設けられ
ている。
C. Example 18 Next, an example of manufacturing a nickel-metal hydride storage battery of Example 18 using the non-sintered nickel positive electrode plate b3 manufactured as described above will be described with reference to FIG. The non-sintered nickel positive electrode plate b3 produced as described above and the negative electrode plate 20 obtained by applying a hydrogen storage alloy to a punching metal (core) 21 are sandwiched between separators 30 made of polypropylene non-woven fabric. The spirally wound electrode body C is formed by spirally winding the plate 20 into a plate 20. At this time, the non-sintered nickel positive electrode plate b3 is wound so that the strip-shaped thin metal plate 11a protrudes from the separator 30. The diameter of the spirally wound electrode body C thus spirally wound was about 22 mm. A negative electrode current collecting tab 21a is provided at the lower end of the negative electrode plate 20.

【0066】ついで、非焼結式ニッケル正極板b3の帯
状金属薄板11aの端部と、上述の実施例1〜7と同様
に形成した正極集電体40の集電部41とを上述の実施
例1〜7と同様に抵抗溶接する。なお、この溶接工程に
おいて、非焼結式ニッケル正極板b3の巻終わり端から
100mmまでの帯状金属薄板11aは正極集電体40
の集電部41と溶接されないこととなる。そのため、非
焼結式ニッケル正極板b3に形成した集電タブ12を正
極集電体40の集電部41側に折り曲げた後、集電タブ
12の上部に一対の溶接電極(図示せず)を配置し、こ
れらの一対の溶接電極間に溶接電流を流して抵抗溶接を
行う。
Next, the end of the strip-shaped thin metal plate 11a of the non-sintered nickel positive electrode plate b3 and the current collecting portion 41 of the positive electrode current collector 40 formed in the same manner as in the above-described first to seventh embodiments are connected. Resistance welding is performed in the same manner as in Examples 1 to 7. In this welding step, the strip-shaped metal sheet 11a from the end of winding of the non-sintered nickel positive electrode plate b3 to the end of 100 mm is connected to the positive electrode current collector 40.
Is not welded to the current collector 41. Therefore, after the current collecting tab 12 formed on the non-sintered nickel positive electrode plate b3 is bent toward the current collecting portion 41 of the positive electrode current collector 40, a pair of welding electrodes (not shown) is provided on the upper part of the current collecting tab 12. Are arranged, and a welding current is applied between the pair of welding electrodes to perform resistance welding.

【0067】ついで、有底円筒形の金属外装缶70を用
意し、上記のように集電体40を溶接した渦巻状電極体
Cを金属外装缶70内に挿入し、集電体40の電解液注
液孔44より一方の溶接電極を挿入して負極用集電タブ
21aに当接させるとともに金属外装缶70の底部に他
方の溶接電極を当接して、負極用集電タブ21aと金属
外装缶70の底部をスポット溶接する。
Next, a metal outer can 70 having a bottomed cylindrical shape is prepared, and the spirally wound electrode body C to which the current collector 40 is welded as described above is inserted into the metal outer can 70, and the current collector 40 is electrolyzed. One of the welding electrodes is inserted from the liquid injection hole 44 and is brought into contact with the negative electrode current collecting tab 21a, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collecting tab 21a and the metal outer case are formed. The bottom of the can 70 is spot-welded.

【0068】一方、上述の実施例1〜7と同様の封口体
60を用意し、正極集電体40の導出部42を封口体6
0の蓋体底部に接触させて、蓋体底部と導出部42とを
溶接して接続する。この後、金属外装缶70内にそれぞ
れ30重量%の水酸化カリウム(KOH)水溶液よりな
る電解液を注液し、封口体60を封口ガスケット61を
介して外装缶70の開口部71に載置するとともに、こ
の開口部71を封口体60側にカシメて封口する。これ
により、公称容量2000mAHの実施例18の円筒形
ニッケル・水素蓄電池を作製する。
On the other hand, a sealing member 60 similar to that of the above-described Examples 1 to 7 was prepared, and the lead-out portion 42 of the positive electrode current collector 40 was connected to the sealing member 6.
No. 0, and the bottom of the lid and the lead-out portion 42 are connected by welding. Thereafter, an electrolytic solution comprising a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is swaged toward the sealing body 60 and sealed. Thus, a cylindrical nickel-metal hydride storage battery of Example 18 having a nominal capacity of 2000 mAH is manufactured.

【0069】d.比較例4 ついで、上述のように作製した非焼結式ニッケル正極板
bを用いた比較例4のニッケル・水素蓄電池の作製例を
図5に基づいて説明する。上述のように作製した非焼結
式ニッケル正極板bと、水素吸蔵合金をパンチングメタ
ル(芯体)21に塗布した負極板20とをポリプロピレ
ン製不織布からなるセパレータ30を介して、最外周が
負極板20となるようにして渦巻状に卷回して渦巻状電
極体Dを作製する。このとき、非焼結式ニッケル正極板
bの帯状金属薄板11aの上端部がセパレータ30より
突出するとともに、負極板20の芯体21の下端部がセ
パレータ30より突出するように巻回する。このように
渦巻状に巻回した渦巻状電極体Dの直径は約22mmで
あった。
D. Comparative Example 4 Next, an example of manufacturing a nickel-metal hydride storage battery of Comparative Example 4 using the non-sintered nickel positive electrode plate b manufactured as described above will be described with reference to FIG. The non-sintered nickel positive electrode plate b produced as described above and the negative electrode plate 20 obtained by applying a hydrogen storage alloy to a punching metal (core) 21 are interposed between the non-sintered nickel positive electrode plate b and a separator 30 made of a nonwoven fabric made of polypropylene. The spirally wound electrode body D is produced by spirally winding the plate 20 into the plate 20. At this time, the winding is performed so that the upper end of the strip-shaped thin metal plate 11a of the non-sintered nickel positive electrode plate b protrudes from the separator 30 and the lower end of the core 21 of the negative electrode plate 20 protrudes from the separator 30. The diameter of the spiral electrode body D spirally wound in this way was about 22 mm.

【0070】そして、上述のようにして作成した渦巻状
電極体Dの負極板20の芯体21の下端部21と上述の
実施例1〜7と同様に形成した負極集電体50とを上述
の実施例1〜7と同様に抵抗溶接するとともに、非焼結
式ニッケル正極板bの帯状金属薄板11aの端部と正極
集電体40の集電部41とを抵抗溶接する。なお、この
溶接工程において、非焼結式ニッケル正極板bの巻終わ
り端から100mmまでの帯状金属薄板11aは正極集
電体40の集電部41と溶接されないこととなる。
Then, the lower end portion 21 of the core 21 of the negative electrode plate 20 of the spirally wound electrode body D prepared as described above and the negative electrode current collector 50 formed in the same manner as in the above-described Examples 1 to 7 are combined. In addition to the resistance welding in the same manner as in Examples 1 to 7, the end of the strip-shaped thin metal plate 11a of the non-sintered nickel positive electrode plate b and the current collector 41 of the positive electrode current collector 40 are resistance-welded. In this welding step, the strip-shaped thin metal plate 11 a from the end of winding of the non-sintered nickel positive electrode plate b to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40.

【0071】ついで、有底円筒形の金属外装缶70を用
意し、上記のように各集電体40,50を溶接した渦巻
状電極体Dを金属外装缶70内に挿入し、集電体40の
電解液注液孔44より一方の溶接電極を挿入して負極集
電体50に当接させるとともに金属外装缶70の底部に
他方の溶接電極を当接して、負極集電体50と金属外装
缶70の底部をスポット溶接する。
Next, a metal outer can 70 having a bottomed cylindrical shape is prepared, and the spirally wound electrode body D to which the current collectors 40 and 50 are welded as described above is inserted into the metal outer can 70, and the current collector 40, one of the welding electrodes is inserted from the electrolyte injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70 so that the negative electrode current collector 50 The bottom of the outer can 70 is spot-welded.

【0072】一方、上述の実施例1〜7と同様の封口体
60を用意し、正極集電体40の導出部42を封口体6
0の蓋体底部に接触させて、蓋体底部と導出部42とを
溶接して接続する。この後、金属外装缶70内にそれぞ
れ30重量%の水酸化カリウム(KOH)水溶液よりな
る電解液を注液し、封口体60を封口ガスケット61を
介して外装缶70の開口部71に載置するとともに、こ
の開口部71を封口体60側にカシメて封口する。これ
により、公称容量2000mAHの比較例4の円筒形ニ
ッケル・水素蓄電池を作製する。
On the other hand, a sealing member 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is connected to the sealing member 6.
No. 0, and the bottom of the lid and the lead-out portion 42 are connected by welding. Thereafter, an electrolytic solution comprising a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is swaged toward the sealing body 60 and sealed. Thus, a cylindrical nickel-metal hydride storage battery of Comparative Example 4 having a nominal capacity of 2000 mAH is manufactured.

【0073】e.比較例5 ついで、上述のように作製した非焼結式ニッケル正極板
bを用いた比較例5のニッケル・水素蓄電池の作製例を
図6に基づいて説明する。上述のように作製した非焼結
式ニッケル正極板bと、水素吸蔵合金をパンチングメタ
ル(芯体)21に塗布した負極板20とをポリプロピレ
ン製不織布からなるセパレータ30を介して、最外周が
負極板20となるようにして渦巻状に卷回して渦巻状電
極体Eを作製する。このとき、非焼結式ニッケル正極板
bの帯状金属薄板11aの上端部がセパレータ30より
突出するように巻回する。このように渦巻状に巻回した
渦巻状電極体Eの直径は約22mmであった。なお、負
極板20の芯体21には負極用集電タブ21aが設けら
れている。
E. Comparative Example 5 Next, an example of manufacturing a nickel-metal hydride storage battery of Comparative Example 5 using the non-sintered nickel positive electrode plate b manufactured as described above will be described with reference to FIG. The non-sintered nickel positive electrode plate b produced as described above and the negative electrode plate 20 obtained by applying a hydrogen storage alloy to a punching metal (core) 21 are interposed between the non-sintered nickel positive electrode plate b and a separator 30 made of a nonwoven fabric made of polypropylene. The spirally wound electrode body E is manufactured by spirally winding the plate 20 into the plate 20. At this time, the non-sintered nickel positive electrode plate b is wound so that the upper end portion of the strip-shaped thin metal plate 11 a protrudes from the separator 30. The diameter of the spirally wound electrode body E thus spirally wound was about 22 mm. The core 21 of the negative electrode plate 20 is provided with a negative electrode current collecting tab 21a.

【0074】ついで、非焼結式ニッケル正極板bの帯状
金属薄板11aの上端部と、上述の実施例1〜7と同様
に形成した正極集電体40の集電部41とを上述の実施
例1〜7と同様に抵抗溶接する。なお、この溶接工程に
おいて、非焼結式ニッケル正極板bの巻終わり端から1
00mmまでの帯状金属薄板11aは正極集電体40の
集電部41と溶接されないこととなる。
Next, the upper end of the strip-shaped thin metal plate 11a of the non-sintered nickel positive electrode plate b and the current collector 41 of the positive electrode current collector 40 formed in the same manner as in Examples 1 to 7 described above Resistance welding is performed in the same manner as in Examples 1 to 7. In this welding step, one end from the end of winding of the non-sintered nickel positive electrode plate b.
The strip-shaped thin metal plate 11 a of up to 00 mm is not welded to the current collector 41 of the positive electrode current collector 40.

【0075】ついで、有底円筒形の金属外装缶70を用
意し、上記のように集電体40を溶接した渦巻状電極体
Eを金属外装缶70内に挿入し、集電体40の電解液注
液孔44より一方の溶接電極を挿入して負極用集電タブ
21aに当接させるとともに金属外装缶70の底部に他
方の溶接電極を当接して、負極用集電タブ21aと金属
外装缶70の底部をスポット溶接する。
Then, a metal outer can 70 having a bottomed cylindrical shape was prepared, and the spirally wound electrode body E to which the current collector 40 was welded as described above was inserted into the metal outer can 70, and the current collector 40 was electrolyzed. One of the welding electrodes is inserted from the liquid injection hole 44 and is brought into contact with the negative electrode current collecting tab 21a, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collecting tab 21a and the metal outer case are formed. The bottom of the can 70 is spot-welded.

【0076】一方、上述の実施例1〜7と同様の封口体
60を用意し、正極集電体40の導出部42を封口体6
0の蓋体底部に接触させて、蓋体底部と導出部42とを
溶接して接続する。この後、金属外装缶70内にそれぞ
れ30重量%の水酸化カリウム(KOH)水溶液よりな
る電解液を注液し、封口体60を封口ガスケット61を
介して外装缶70の開口部71に載置するとともに、こ
の開口部71を封口体60側にカシメて封口する。これ
により、公称容量2000mAHの比較例5の円筒形ニ
ッケル・水素蓄電池を作製する。
On the other hand, a sealing member 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is connected to the sealing member 6.
No. 0, and the bottom of the lid and the lead-out portion 42 are connected by welding. Thereafter, an electrolytic solution comprising a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is swaged toward the sealing body 60 and sealed. Thus, a cylindrical nickel-metal hydride storage battery of Comparative Example 5 having a nominal capacity of 2000 mAH is manufactured.

【0077】f.比較例6 ついで、上述のように作製した非焼結式ニッケル正極板
bを用いた比較例6のニッケル・水素蓄電池の作製例を
図7に基づいて説明する。上述のように作製した非焼結
式ニッケル正極板bと、水素吸蔵合金をパンチングメタ
ル(芯体)21に塗布した負極板20とをポリプロピレ
ン製不織布からなるセパレータ30を介して、最外周が
負極板20となるようにして渦巻状に卷回して渦巻状電
極体Fを作製する。このとき、負極板20の帯状金属薄
板11aの下端部がセパレータ30より突出するように
巻回する。このように渦巻状に巻回した渦巻状電極体F
の直径は約22mmであった。なお、非焼結式ニッケル
正極板bの帯状金属薄板11aには正極用集電タブ11
bが溶接されている。
F. Comparative Example 6 Next, an example of manufacturing a nickel-hydrogen storage battery of Comparative Example 6 using the non-sintered nickel positive electrode plate b manufactured as described above will be described with reference to FIG. The non-sintered nickel positive electrode plate b produced as described above and the negative electrode plate 20 obtained by applying a hydrogen storage alloy to a punching metal (core) 21 are interposed between the non-sintered nickel positive electrode plate b and a separator 30 made of a nonwoven fabric made of polypropylene. The spirally wound electrode body F is manufactured by spirally winding the plate 20 into the plate 20. At this time, the negative electrode plate 20 is wound so that the lower end portion of the strip-shaped metal thin plate 11 a protrudes from the separator 30. The spirally wound electrode body F thus spirally wound
Had a diameter of about 22 mm. The strip-shaped metal sheet 11a of the non-sintered nickel positive electrode plate b has a current collecting tab 11 for the positive electrode.
b is welded.

【0078】ついで、上述のようにして作成した渦巻状
電極体Fの負極板20の芯体21との上述の実施例1〜
7と同様に形成した負極集電体50と上述の実施例1〜
7と同様に抵抗溶接する。ついで、有底円筒形の金属外
装缶70を用意し、上記のように集電体50を溶接した
渦巻状電極体Fを金属外装缶70内に挿入し、渦巻状電
極体Fの中心部の空隙内に一方の溶接電極を挿入して負
極集電体50に当接させるとともに金属外装缶70の底
部に他方の溶接電極を当接して、負極集電体50と金属
外装缶70の底部をスポット溶接する。
Next, the spirally wound electrode body F produced as described above and the core 21 of the negative electrode plate 20 described in Examples 1 to 3 above were used.
7 and the negative electrode current collector 50 formed in the same manner as in the first to seventh embodiments.
Resistance welding is performed in the same manner as in step 7. Then, a metal outer can 70 having a bottomed cylindrical shape is prepared, and the spiral electrode body F to which the current collector 50 is welded as described above is inserted into the metal outer can 70, and the center of the spiral electrode body F is formed. One of the welding electrodes is inserted into the gap to make contact with the negative electrode current collector 50, and the other welding electrode is made to contact the bottom of the metal outer can 70 so that the bottoms of the negative electrode current collector 50 and the metal outer can 70 are separated. Spot welding.

【0079】一方、上述の実施例1〜7の封口体60を
用意し、正極用集電タブ11bを封口体60の蓋体底部
に接触させて、蓋体底部と正極用集電タブ11bとを溶
接して接続する。この後、金属外装缶70内にそれぞれ
30重量%の水酸化カリウム(KOH)水溶液よりなる
電解液を注液し、封口体60を封口ガスケット61を介
して外装缶70の開口部71に載置するとともに、この
開口部71を封口体60側にカシメて封口する。これに
より、公称容量2000mAHの比較例6の円筒形ニッ
ケル・水素蓄電池を作製する。
On the other hand, the sealing body 60 of the above-mentioned Examples 1 to 7 is prepared, and the current collecting tab 11b for the positive electrode is brought into contact with the bottom of the lid of the sealing body 60, and the bottom of the lid and the current collecting tab 11b for the positive electrode are connected. Are connected by welding. Thereafter, an electrolytic solution comprising a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is swaged toward the sealing body 60 and sealed. Thus, a cylindrical nickel-metal hydride storage battery of Comparative Example 6 having a nominal capacity of 2000 mAH is manufactured.

【0080】3.ニッケル・水素蓄電池の活性化 上述のように作製した実施例1〜18および比較例1〜
6の24種類のニッケル・水素蓄電池を200mA
(0.1C)の充電々流で16時間充電した後、1時間
休止させる。その後、400mA(0.2C)の放電々
流で終止電圧が1.0Vになるまで放電させた後、1時
間休止させる。この充放電を室温で3サイクル繰り返し
て、実施例1〜18および比較例1〜6の24種類のニ
ッケル・水素蓄電池を活性化する。
3. Activation of Nickel / Hydrogen Storage Battery Examples 1 to 18 and Comparative Examples 1 to 1 manufactured as described above
6 types of nickel-metal hydride storage batteries of 200 mA
After charging for 16 hours with the (0.1 C) charging current, the system is paused for 1 hour. Thereafter, the battery is discharged with a discharge current of 400 mA (0.2 C) until the final voltage becomes 1.0 V, and then the apparatus is paused for 1 hour. This charge / discharge cycle is repeated three times at room temperature to activate the 24 types of nickel-metal hydride storage batteries of Examples 1 to 18 and Comparative Examples 1 to 6.

【0081】4.高率放電試験 上述のようにして作製した実施例1〜9および比較例1
〜3の12種類のニッケル・水素蓄電池を200mA
(0.1C)の充電々流で16時間充電した後、1時間
休止させる。その後、10A(5C)の放電々流で終止
電圧が0.5Vになるまで放電させて高率放電を行い、
放電容量が50%のときの電圧(作動電圧)の測定を行
うと、下記の表1に示すような結果となった。
4. High rate discharge test Examples 1 to 9 and Comparative Example 1 produced as described above
200 mA for 12 types of nickel-metal hydride storage batteries
After charging for 16 hours with the (0.1 C) charging current, the system is paused for 1 hour. Thereafter, discharge is performed at a discharge rate of 10 A (5 C) until the final voltage becomes 0.5 V, and high-rate discharge is performed.
When the voltage (operating voltage) at a discharge capacity of 50% was measured, the results shown in Table 1 below were obtained.

【0082】[0082]

【表1】 [Table 1]

【0083】上記表1より明らかなように、負極集電体
50を用いた実施例1〜8のニッケル・水素蓄電池と比
較例1,3のニッケル・水素蓄電池とを比較すると、実
施例1〜8のニッケル・水素蓄電池の作動電圧が向上す
ることが分かる。また、負極集電体50を用いないで負
極集電タブ21aを用いた実施例9のニッケル・水素蓄
電池と比較例2のニッケル・水素蓄電池とを比較する
と、実施例9のニッケル・水素蓄電池の作動電圧が向上
することが分かる。このように、正極板10の正極集電
体40との未接続部11a(図1(a)参照)に集電タ
ブ12を溶接すると、図1(b)に示すように、正極板
10内での電流分布が均一化するため、電圧降下が低減
されて高率放電時の作動電圧が向上する。
As is clear from Table 1, when the nickel-hydrogen storage batteries of Examples 1 to 8 using the negative electrode current collector 50 and the nickel-hydrogen storage batteries of Comparative Examples 1 and 3 are compared, 8 that the operating voltage of the nickel-metal hydride storage battery is improved. Also, comparing the nickel-metal hydride storage battery of Example 9 using the negative electrode current collecting tab 21a without using the negative electrode current collector 50 and the nickel-metal hydride storage battery of Comparative Example 2, the nickel-metal hydride storage battery of Example 9 was compared. It can be seen that the operating voltage is improved. When the current collecting tab 12 is welded to the unconnected portion 11a of the positive electrode plate 10 with the positive electrode current collector 40 (see FIG. 1A), as shown in FIG. In this case, the current distribution is made uniform, so that the voltage drop is reduced and the operating voltage during high-rate discharge is improved.

【0084】また、ニッケル正極板a3を用いるととも
に負極集電体50を用いた実施例3のニッケル・水素蓄
電池と、ニッケル正極板a3を用いるとともに負極集電
体50を用いないで負極タブ21aを用いた実施例9の
ニッケル・水素蓄電池とを比較すると、実施例3のニッ
ケル・水素蓄電池の作動電圧が向上することが分かる。
このことから、負極集電体50を用いた方が作動電圧が
向上することが分かる。
The nickel-hydrogen storage battery of Example 3 using the nickel positive electrode plate a3 and using the negative electrode current collector 50, and the negative electrode tab 21a using the nickel positive electrode plate a3 and using no negative electrode current collector 50 Comparing with the nickel-metal hydride storage battery of Example 9 used, it is found that the operating voltage of the nickel-metal hydride storage battery of Example 3 is improved.
This indicates that the use of the negative electrode current collector 50 improves the operating voltage.

【0085】また、ニッケル正極板a3を用いた実施例
3のニッケル・水素蓄電池の作動電圧は1.25Vで、
ニッケル正極板a3を用いた実施例8のニッケル・水素
蓄電池の作動電圧も1.25Vで等しい。このことか
ら、正極集電体40を電極体Aの未充填部11aに溶接
した後、集電タブ12を正極集電体40の集電部41上
に溶接(実施例3)しても、あるいは集電タブ12を正
極集電体40の集電部41に溶接した後、正極集電体4
0を電極体Aの未充填部11aに溶接(実施例8)して
も、どちの方法を採用しても良いことが分かる。
The operating voltage of the nickel-metal hydride storage battery of Example 3 using the nickel positive plate a3 was 1.25 V,
The operating voltage of the nickel-metal hydride storage battery of Example 8 using the nickel positive plate a3 is also equal to 1.25V. Therefore, after the positive electrode current collector 40 is welded to the unfilled portion 11a of the electrode body A, the current collecting tab 12 is welded onto the current collecting portion 41 of the positive electrode current collector 40 (Example 3). Alternatively, after the current collector tab 12 is welded to the current collector 41 of the positive electrode current collector 40, the positive electrode current collector 4
0 is welded to the unfilled portion 11a of the electrode body A (Example 8), and either method may be adopted.

【0086】さらに、渦巻状に巻回された際の巻終わり
端より33mm(x=33mm)の位置に集電タブ12
が溶接された実施例3および実施例8のニッケル・水素
蓄電池の作動電圧は最高(1.25V)となったが、集
電タブ12の位置がこれより両側にづれるに伴ってその
作動電圧が低下することが分かる。したがって、集電タ
ブ12を渦巻状に巻回された際の巻終わり端より0〜5
0mmの位置に設けると高作動電圧となるので、集電タ
ブ12の位置は渦巻状に巻回された際の巻終わり端より
1/2以内にするのが好ましい。
Further, the current collecting tab 12 is located at a position 33 mm (x = 33 mm) from the end of the spirally wound coil.
The working voltage of the nickel-metal hydride storage batteries of Examples 3 and 8 where welding was performed was the highest (1.25 V). However, as the position of the current collecting tab 12 was shifted to both sides, the operating voltage became higher. It can be seen that is reduced. Therefore, from the end of winding when the current collecting tab 12 is spirally wound, it is 0 to 5 times.
Since a high operating voltage is obtained when the current collecting tab 12 is provided at a position of 0 mm, it is preferable that the position of the current collecting tab 12 be within 以内 of the winding end when it is spirally wound.

【0087】同様に、上述のようにして作製した実施例
10〜18および比較例4〜6の12種類のニッケル・
水素蓄電池を200mA(0.1C)の充電々流で16
時間充電した後、1時間休止させる。その後、10A
(5C)の放電々流で終止電圧が0.5Vになるまで放
電させて高率放電を行い、放電容量が50%のときの電
圧(作動電圧)の測定を行うと、下記の表2に示すよう
な結果となった。
Similarly, 12 kinds of nickel alloys of Examples 10 to 18 and Comparative Examples 4 to 6 manufactured as described above were used.
The hydrogen storage battery is charged at a charging current of 200 mA (0.1 C) to 16
After charging for 1 hour, pause for 1 hour. Then 10A
A high-rate discharge is performed by discharging at a discharge current of (5C) until the final voltage becomes 0.5 V, and a voltage (operating voltage) at a discharge capacity of 50% is measured. The results were as shown.

【0088】[0088]

【表2】 [Table 2]

【0089】上記表2より明らかなように、負極集電体
50を用いた実施例10〜17のニッケル・水素蓄電池
と比較例4および6のニッケル・水素蓄電池とを比較す
ると、実施例10〜17のニッケル・水素蓄電池の作動
電圧が向上することが分かる。また、負極集電体50を
用いないで負極集電タブ21aを用いた実施例18のニ
ッケル・水素蓄電池と比較例5のニッケル・水素蓄電池
とを比較すると、実施例18のニッケル・水素蓄電池の
作動電圧が向上することが分かる。このように、正極板
10の正極集電体40の帯状金属薄板11b(図1
(a)参照)に集電タブ12を溶接すると、図1(b)
に示すように、正極板10内での電流分布が均一化する
ため、電圧降下が低減されて高率放電時の作動電圧が向
上する。
As is clear from Table 2, when the nickel-hydrogen storage batteries of Examples 10 to 17 using the negative electrode current collector 50 and the nickel-hydrogen storage batteries of Comparative Examples 4 and 6 were compared, It can be seen that the operating voltage of the No. 17 nickel-metal hydride storage battery is improved. In addition, comparing the nickel-metal hydride storage battery of Example 18 using the negative electrode current collecting tab 21a without using the negative electrode current collector 50 and the nickel-metal hydride storage battery of Comparative Example 5, the nickel-metal hydride storage battery of Example 18 It can be seen that the operating voltage is improved. Thus, the strip-shaped metal sheet 11b of the positive electrode current collector 40 of the positive electrode plate 10 (see FIG.
When the current collecting tab 12 is welded to FIG.
As shown in (1), since the current distribution in the positive electrode plate 10 is made uniform, the voltage drop is reduced, and the operating voltage during high-rate discharge is improved.

【0090】また、ニッケル正極板b3を用いるととも
に負極集電体50を用いた実施例12のニッケル・水素
蓄電池と、ニッケル正極板b3を用いるとともに負極集
電体50を用いないで負極タブ21aを用いた実施例1
8のニッケル・水素蓄電池とを比較すると、実施例12
のニッケル・水素蓄電池の作動電圧が向上することが分
かる。このことから、負極集電体50を用いた方が作動
電圧が向上することが分かる。
The nickel-hydrogen storage battery of Example 12 using the nickel positive electrode plate b3 and the negative electrode current collector 50, and the negative electrode tab 21a using the nickel positive electrode plate b3 and the negative electrode current collector 50 were not used. Example 1 used
In comparison with the nickel-metal hydride storage battery of Example 8, Example 12
It can be seen that the operating voltage of the nickel-metal hydride storage battery is improved. This indicates that the use of the negative electrode current collector 50 improves the operating voltage.

【0091】また、ニッケル正極板a3を用いた実施例
12のニッケル・水素蓄電池の作動電圧は1.25V
で、ニッケル正極板a3を用いた実施例17のニッケル
・水素蓄電池の作動電圧も1.26Vでほぼ等しい。こ
のことから、正極集電体40を電極体Aの帯状金属薄板
11aに溶接した後、集電タブ12を正極集電体40の
集電部41上に溶接(実施例3)しても、あるいは集電
タブ12を正極集電体40の集電部41に溶接した後、
正極集電体40を電極体Aの帯状金属薄板11aに溶接
(実施例8)しても、どちの方法を採用しても良いこと
が分かる。
The operating voltage of the nickel-metal hydride storage battery of Example 12 using the nickel positive plate a3 was 1.25 V
Thus, the operating voltage of the nickel-metal hydride storage battery of Example 17 using the nickel positive electrode plate a3 is also substantially equal to 1.26V. From this, even after the positive electrode current collector 40 is welded to the strip-shaped thin metal plate 11a of the electrode body A, the current collecting tab 12 is welded onto the current collector 41 of the positive electrode current collector 40 (Example 3). Alternatively, after welding the current collecting tab 12 to the current collecting portion 41 of the positive electrode current collector 40,
It can be seen that the positive electrode current collector 40 may be welded to the strip-shaped metal sheet 11a of the electrode body A (Example 8) or either method may be adopted.

【0092】また、渦巻状に巻回された際の巻終わり端
より33mm(x=33mm)の位置に集電タブ12が
溶接された実施例17のニッケル・水素蓄電池の作動電
圧は最高(1.26V)となったが、集電タブ12の位
置がこれより両側にづれるに伴ってその作動電圧は低下
することが分かる。したがって、集電タブ12を渦巻状
に巻回された際の巻終わり端より0〜50mmの位置に
設けると高作動電圧となるので、集電タブ12の位置は
渦巻状に巻回された際の巻終わり端より1/2以内にす
るのが好ましい。
The operating voltage of the nickel-metal hydride storage battery of Example 17 in which the current collecting tab 12 was welded to a position 33 mm (x = 33 mm) from the end of the spirally wound coil was the highest (1). .26 V), but it can be seen that the operating voltage decreases as the position of the current collecting tab 12 is shifted to both sides. Therefore, if the current collecting tab 12 is provided at a position of 0 to 50 mm from the end of winding when the current collecting tab 12 is spirally wound, a high operating voltage is obtained. It is preferable that the distance be within 1/2 of the winding end.

【0093】さらに、表1の実施例1〜9のニッケル・
水素蓄電池と表2の実施例10〜18のニッケル・水素
蓄電池とを比較しても、その作動電圧は格別に相違しな
いのに対し、表1の比較例1〜3のニッケル・水素蓄電
池と表2の比較例4〜6のニッケル・水素蓄電池とを比
較すると、比較例4〜6のニッケル・水素蓄電池の作動
電圧が低下していることが分かる。このことから、実施
例10〜18のニッケル・水素蓄電池、即ち、本発明を
非焼結式ニッケル正極板を用いたニッケル・水素蓄電池
に適用した方が効果が大きいことが分かる。
Further, the nickel alloys of Examples 1 to 9 in Table 1 were used.
When the hydrogen storage batteries were compared with the nickel-metal hydride storage batteries of Examples 10 to 18 in Table 2, their operating voltages were not particularly different. Comparing the nickel-metal hydride batteries of Comparative Examples 4 to 6 with Example 2, it can be seen that the operating voltages of the nickel-metal hydride batteries of Comparative Examples 4 to 6 are lowered. This indicates that the nickel-hydrogen storage batteries of Examples 10 to 18, that is, the present invention is more effective when applied to the nickel-hydrogen storage battery using the non-sintered nickel positive electrode plate.

【0094】なお、上述した実施形態においては、本発
明をニッケル・水素蓄電池に適用した例について説明し
たが、これに限らず、ニッケル・カドミウム蓄電池、ニ
ッケル・亜鉛蓄電池、リチウムイオン電池などの正・負
極板をセパレータを介して渦巻状に巻回した渦巻状電極
体を備えた円筒状電池であれば、どのような電池であっ
ても同様の効果が得られる。
In the above-described embodiment, an example in which the present invention is applied to a nickel-metal hydride storage battery has been described. However, the present invention is not limited to this. The same effect can be obtained with any battery as long as it is a cylindrical battery provided with a spiral electrode body in which a negative electrode plate is spirally wound via a separator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のニッケル正極板を示す図である。FIG. 1 is a view showing a nickel positive electrode plate of the present invention.

【図2】 本発明の電池の正・負極板を渦巻状に巻回し
た電極体に正極集電体と負極集電体を溶接した後、金属
製外装缶内に収納して正極集電タブと正極集電体とを溶
接した状態を示す図である。
FIG. 2 shows a positive current collector and a negative current collector welded to an electrode body obtained by spirally winding a positive / negative electrode plate of a battery of the present invention, and then housed in a metal outer can to store a positive current collector tab. FIG. 4 is a diagram showing a state where a positive electrode current collector and a positive electrode current collector are welded.

【図3】 本発明の電池の正・負極板を渦巻状に巻回し
た渦巻状電極体の正極集電タブと正極集電体とを溶接
し、電極体に正極集電体と負極集電体を溶接した後、金
属製外装缶内に収納した状態を示す図である。
FIG. 3 shows a positive electrode current collector and a negative electrode current collector welded to a positive electrode current collector tab and a positive electrode current collector of a spiral electrode body obtained by spirally winding positive and negative electrode plates of the battery of the present invention. It is a figure which shows the state which accommodated in the metal outer can after welding the body.

【図4】 本発明の電池の正・負極板を渦巻状に巻回し
た渦巻状電極体に正極集電体を溶接し、金属製円筒状外
装缶内に収納した後、正極集電タブと正極集電体とを溶
接した状態を示す図である。
FIG. 4 shows a positive electrode current collector welded to a spirally wound electrode body obtained by spirally winding positive and negative electrode plates of the battery of the present invention, and is housed in a metal cylindrical outer can. It is a figure which shows the state which welded with the positive electrode collector.

【図5】 従来の電池(比較例の電池)の正・負極板を
渦巻状に巻回した渦巻状電極体に正極集電体と負極集電
体を溶接した後、金属製円筒状外装缶内に収納した状態
を示す図である。
FIG. 5: A positive electrode current collector and a negative electrode current collector are welded to a spirally wound electrode body of a conventional battery (battery of a comparative example) in which positive and negative electrodes are spirally wound, and then a metal cylindrical outer can is formed. It is a figure showing the state stored in the inside.

【図6】 従来の電池(比較例の電池)の正・負極板を
渦巻状に巻回した渦巻状電極体に正極集電体を溶接し、
金属製円筒状外装缶内に収納した後、負極集電タブと金
属製円筒状外装缶とを溶接した状態を示す図である。
FIG. 6: A positive electrode current collector is welded to a spiral electrode body obtained by spirally winding positive and negative electrode plates of a conventional battery (battery of a comparative example).
It is a figure showing the state where a negative electrode current collection tab and a metal cylindrical exterior can were welded after being stored in a metal cylindrical exterior can.

【図7】 従来の電池(比較例の電池)の集電タブを備
えた正・負極板を渦巻状に巻回した渦巻状電極体を金属
製円筒状外装缶内に収納した状態を示す図である。
FIG. 7 is a diagram showing a state in which a spiral electrode body obtained by spirally winding positive and negative plates provided with current collecting tabs of a conventional battery (battery of a comparative example) is housed in a metal cylindrical outer can. It is.

【図8】 従来のニッケル正極板を示す図である。FIG. 8 is a view showing a conventional nickel positive electrode plate.

【符号の説明】[Explanation of symbols]

10…ニッケル正極板、11…活物質保持体(焼結基板
または発泡ニッケル)、11a…活物質未充填部または
帯状金属薄板、11b…正極集電タブ、12…集電タ
ブ、20…負極板、21a…負極集電タブ、30…セパ
レータ、40…正極集電体、41…集電部、42…導出
部、50…負極集電体、60…封口体、70…金属製円
筒状外装缶、71…開口部
DESCRIPTION OF SYMBOLS 10 ... Nickel positive electrode plate, 11 ... Active material holding body (sintered substrate or foamed nickel), 11a ... Active material non-filled part or strip metal thin plate, 11b ... Positive current collecting tab, 12 ... Current collecting tab, 20 ... Negative electrode plate , 21a: negative electrode current collector tab, 30: separator, 40: positive electrode current collector, 41: current collector, 42: lead-out part, 50: negative electrode current collector, 60: sealing body, 70: metal cylindrical outer can , 71 ... opening

フロントページの続き (72)発明者 春日 秀夫 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 赤澤 俊裕 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Continued on the front page (72) Inventor Hideo Kasuga 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiro Akazawa 2-5-2-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 正・負極板をセパレータを介して渦巻状
に巻回した渦巻状電極体を負極端子を兼ねる金属製円筒
状外装缶内に備えた円筒状電池であって、 前記渦巻状電極体の前記正極板上端部はその一部を除い
て正極端子を兼ねる封口体に接続される正極集電体に接
続され、かつこの正極集電体に接続されない正極板上端
部に集電タブを備え、 前記渦巻状電極体の前記負極板下端部は前記負極端子を
兼ねる金属製円筒状外装缶に電気的に接続され、 前記集電タブは前記正極集電体に接続されたことを特徴
とする渦巻状電極体を備えた円筒状電池。
1. A cylindrical battery comprising a spirally wound electrode body formed by spirally winding positive and negative electrode plates via a separator in a metal cylindrical outer can also serving as a negative electrode terminal, wherein the spirally wound electrode is provided. The upper end of the positive electrode plate of the body is connected to a positive electrode current collector connected to a sealing body also serving as a positive electrode terminal except for a part thereof, and a current collecting tab is provided at the upper end of the positive electrode plate not connected to the positive electrode current collector. The lower end of the negative electrode plate of the spiral electrode body is electrically connected to a metal cylindrical outer can also serving as the negative electrode terminal, and the current collecting tab is connected to the positive electrode current collector. Cylindrical battery provided with a spiral electrode body.
【請求項2】 前記渦巻状電極体の前記負極板下端部に
負極集電体を備え、この負極集電体は同負極板下端部に
接続されるとともに前記負極端子を兼ねる金属製円筒状
外装缶に接続されたことを特徴とする請求項1に記載の
渦巻状電極体を備えた円筒状電池。
2. A negative electrode current collector is provided at a lower end portion of the negative electrode plate of the spiral electrode body, and the negative electrode current collector is connected to the lower end portion of the negative electrode plate and serves as a negative electrode terminal. The cylindrical battery provided with the spiral electrode body according to claim 1, which is connected to a can.
【請求項3】 前記集電タブは前記正極集電体に接続さ
れない部分の前記渦巻状に巻回した巻終わり端部から1
/2以内の位置としたことを特徴とする請求項1または
請求項2に記載の渦巻状電極体を備えた円筒状電池。
3. The current-collecting tab is one end from the end of the spirally wound portion of the portion not connected to the positive electrode current collector.
The cylindrical battery provided with the spiral electrode body according to claim 1 or 2, wherein the cylindrical battery is provided at a position within / 2.
【請求項4】 前記円筒状電池はアルカリ蓄電池である
ことを特徴とする請求項1から請求項3のいずかに記載
の渦巻状電極体を備えた円筒状電池。
4. The cylindrical battery provided with a spiral electrode body according to claim 1, wherein the cylindrical battery is an alkaline storage battery.
【請求項5】 前記正極板は非焼結ニッケル正極板であ
ることを特徴とする請求項4に記載の渦巻状電極体を備
えた円筒状電池。
5. The cylindrical battery according to claim 4, wherein the positive electrode plate is a non-sintered nickel positive electrode plate.
【請求項6】 正・負極板をセパレータを介して渦巻状
に巻回した渦巻状電極体を負極端子を兼ねる金属製円筒
状外装缶内に挿入して製造する円筒状電池の製造方法で
あって、 前記正極板上端部の前記渦巻状電極体としたときに正極
端子を兼ねる封口体に接続される正極集電体に接続され
ない部位に集電タブを溶接する集電タブ溶接工程と、 前記渦巻状電極体の前記正極板上端部をその一部を除い
て前記正極集電体に溶接する正極集電体溶接工程と、 前記正極板上端部に溶接された集電タブを前記正極集電
体に溶接する集電タブ−正極集電体溶接工程と、 前記正極集電体が溶接された渦巻状電極体を前記負極端
子を兼ねる金属製円筒状外装缶内に挿入する電極体挿入
工程と、 前記渦巻状電極体の前記負極板下端部を前記金属製円筒
状外装缶の底部に電気的に接続する接続工程と、 前記正極集電体を正極端子を兼ねる封口体に溶接する封
口体溶接工程とを備えたことを特徴とする渦巻状電極体
を備えた円筒状電池の製造方法。
6. A method of manufacturing a cylindrical battery, wherein a spiral electrode body in which a positive / negative electrode plate is spirally wound via a separator is inserted into a metal cylindrical outer can also serving as a negative electrode terminal. A current collecting tab welding step of welding a current collecting tab to a portion not connected to a positive electrode current collector connected to a sealing body also serving as a positive electrode terminal when the spiral electrode body at the upper end of the positive electrode plate is used; A positive electrode current collector welding step of welding the upper end of the positive electrode plate of the spiral electrode body to the positive electrode current collector except for a part thereof, and connecting the current collector tab welded to the upper end of the positive electrode plate to the positive electrode current collector. Current collector tab-positive electrode current collector welding step of welding to the body, and an electrode body insertion step of inserting the spiral electrode body to which the positive electrode current collector is welded into a metal cylindrical outer can also serving as the negative electrode terminal. The lower end of the negative electrode plate of the spiral electrode body is provided with the metal cylindrical outer can. A connection step of electrically connecting to a bottom portion; and a sealing body welding step of welding the positive electrode current collector to a sealing body also serving as a positive electrode terminal. Production method.
【請求項7】 正・負極板をセパレータを介して渦巻状
に巻回した渦巻状電極体を負極端子を兼ねる金属製円筒
状外装缶内に挿入して製造する円筒状電池の製造方法で
あって、 前記正極板上端部の前記渦巻状電極体としたときに正極
端子を兼ねる封口体に接続される正極集電体に接続され
ない部位に集電タブを溶接する集電タブ溶接工程と、 前記正極板上端部に溶接された集電タブを前記正極集電
体に溶接する集電タブ−正極集電体溶接工程と前記渦巻
状電極体の前記正極板上端部を前記集電タブが溶接され
た正極集電体に溶接する正極集電体溶接工程と、 前記正極集電体をその上端部に溶接した渦巻状電極体を
前記負極端子を兼ねる金属製円筒状外装缶内に挿入する
電極体挿入工程と、 前記正極集電体の集電部を正極端子を兼ねる封口体に溶
接する封口体溶接工程とを備えたことを特徴とする渦巻
状電極体を備えた円筒状電池の製造方法。
7. A method of manufacturing a cylindrical battery, wherein a positive electrode and a negative electrode are spirally wound via a separator, and a spiral electrode body is inserted into a metal cylindrical outer can also serving as a negative electrode terminal. A current collecting tab welding step of welding a current collecting tab to a portion not connected to a positive electrode current collector connected to a sealing body also serving as a positive electrode terminal when the spiral electrode body at the upper end of the positive electrode plate is used; A current collecting tab for welding the current collecting tab welded to the upper end of the positive electrode plate to the positive electrode current collector; a positive electrode current collector welding step; and the current collecting tab is welded to the upper end of the positive electrode plate of the spiral electrode body. A positive electrode current collector welding step of welding to the positive electrode current collector, and an electrode body for inserting the spiral electrode body obtained by welding the positive electrode current collector to the upper end thereof into a metal cylindrical outer can also serving as the negative electrode terminal. An insertion step, and a sealing body which also serves as a positive electrode terminal for a current collector of the positive electrode current collector Cylindrical process to make a battery with a spiral electrode body, characterized in that a sealing body welding process for welding.
【請求項8】 前記電極体挿入工程前に、前記渦巻状電
極体の前記負極板下端部を負極集電体に溶接する負極集
電体溶接工程とを備えるとともに、 前記電極体挿入工程後に、前記負極集電体を前記金属製
円筒状外装缶の底部に溶接する外装缶溶接工程とを備え
たことを特徴とする請求項6または請求項7に記載の渦
巻状電極体を備えた円筒状電池の製造方法。
8. A negative electrode current collector welding step of welding a lower end of the negative electrode plate of the spiral electrode body to a negative electrode current collector before the electrode body inserting step, and after the electrode body inserting step, An outer can welding step of welding the negative electrode current collector to a bottom of the metal cylindrical outer can. A cylindrical shape provided with a spiral electrode body according to claim 6 or 7, wherein Battery manufacturing method.
【請求項9】 前記集電タブは前記正極集電体に接続さ
れない部分の前記渦巻状に巻回した巻終わり端から1/
2以内の位置としたことを特徴とする請求項6から請求
項8のいずれかに記載の渦巻状電極体を備えた円筒状電
池の製造方法。
9. The current collection tab is one-third of the spirally wound end of the portion not connected to the positive electrode current collector.
The method for manufacturing a cylindrical battery provided with a spiral electrode body according to any one of claims 6 to 8, wherein the position is within two.
【請求項10】 前記円筒状電池はアルカリ蓄電池であ
ることを特徴とする請求項6から請求項9のいずかに記
載の渦巻状電極体を備えた円筒状電池の製造方法。
10. The method for producing a cylindrical battery provided with a spiral electrode body according to claim 6, wherein the cylindrical battery is an alkaline storage battery.
【請求項11】 前記正極板は非焼結ニッケル正極板で
あることを特徴とする請求項10に記載の渦巻状電極体
を備えた円筒状電池の製造方法。
11. The method according to claim 10, wherein the positive electrode plate is a non-sintered nickel positive electrode plate.
JP32913597A 1997-11-28 1997-11-28 Cylindrical battery with spiral electrode body and method for manufacturing the same Expired - Fee Related JP3869540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32913597A JP3869540B2 (en) 1997-11-28 1997-11-28 Cylindrical battery with spiral electrode body and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32913597A JP3869540B2 (en) 1997-11-28 1997-11-28 Cylindrical battery with spiral electrode body and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11162447A true JPH11162447A (en) 1999-06-18
JP3869540B2 JP3869540B2 (en) 2007-01-17

Family

ID=18218029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32913597A Expired - Fee Related JP3869540B2 (en) 1997-11-28 1997-11-28 Cylindrical battery with spiral electrode body and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3869540B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229972A (en) * 2000-02-15 2001-08-24 Matsushita Electric Ind Co Ltd Secondary battery
JP2006032298A (en) * 2004-07-21 2006-02-02 Sanyo Electric Co Ltd Battery
JP2006286290A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Battery
JP2010055865A (en) * 2008-08-27 2010-03-11 Sanyo Electric Co Ltd Cylindrical secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229972A (en) * 2000-02-15 2001-08-24 Matsushita Electric Ind Co Ltd Secondary battery
JP4649698B2 (en) * 2000-02-15 2011-03-16 パナソニック株式会社 Secondary battery
JP2006032298A (en) * 2004-07-21 2006-02-02 Sanyo Electric Co Ltd Battery
JP4606079B2 (en) * 2004-07-21 2011-01-05 三洋電機株式会社 battery
JP2006286290A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Battery
JP4610395B2 (en) * 2005-03-31 2011-01-12 三洋電機株式会社 battery
JP2010055865A (en) * 2008-08-27 2010-03-11 Sanyo Electric Co Ltd Cylindrical secondary battery

Also Published As

Publication number Publication date
JP3869540B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
JP3819570B2 (en) Cylindrical alkaline storage battery using non-sintered electrodes
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JPH10125348A (en) Battery
US6649303B2 (en) Alkaline storage battery with group of spiral electrodes
JP2002298906A (en) Nickel-hydrogen secondary battery
JP3869540B2 (en) Cylindrical battery with spiral electrode body and method for manufacturing the same
JP2000323117A (en) Cylindrical storage battery
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JP3649909B2 (en) battery
JP2002025604A (en) Alkaline secondary battery
JP3738125B2 (en) Alkaline storage battery using non-sintered electrode and method for manufacturing the same
JP2000251871A (en) Alkaline secondary battery
JP2010061892A (en) Secondary battery with spirally-rolled electrode group
JP2002289170A (en) Alkali secondary battery
JP4413294B2 (en) Alkaline secondary battery
JP2002100396A (en) Cylindrical alkaline secondary cell
JP2009245771A (en) Alkaline storage battery and method of manufacturing the same
JP3952489B2 (en) Alkaline storage battery
JP2000113902A (en) Alkaline secondary battery
JP2000260416A (en) Manufacture of battery
JP2002260629A (en) Current-collecting lead, storage battery using the same and manufacturing method thereof
JP2001283863A (en) Non-sintering electrode for alkaline battery and manufacturing method
JP2002279979A (en) Electrode for battery, and method of manufacturing the electrode
JP2001006723A (en) Alkaline secondary battery and manufacture of alkaline secondary battery
JP2001176540A (en) Nickel hydrogen secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees