JP4610395B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP4610395B2
JP4610395B2 JP2005102253A JP2005102253A JP4610395B2 JP 4610395 B2 JP4610395 B2 JP 4610395B2 JP 2005102253 A JP2005102253 A JP 2005102253A JP 2005102253 A JP2005102253 A JP 2005102253A JP 4610395 B2 JP4610395 B2 JP 4610395B2
Authority
JP
Japan
Prior art keywords
current collector
positive electrode
electrode
welded
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005102253A
Other languages
Japanese (ja)
Other versions
JP2006286290A (en
Inventor
和樹 濱崎
陽一郎 柴田
拓也 岡本
賢治 大和
悦也 藤阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005102253A priority Critical patent/JP4610395B2/en
Publication of JP2006286290A publication Critical patent/JP2006286290A/en
Application granted granted Critical
Publication of JP4610395B2 publication Critical patent/JP4610395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明はニッケル−カドミウム蓄電池、ニッケル−水素蓄電池などのアルカリ蓄電池あるいはリチウムイオン電池などの電池に係り、特に、セパレータを介して相対向して配置された正極と負極を渦巻状に巻回して形成された電極群が電解液とともに外装缶内に収容されて、該外装缶の開口部が封口体で密封された電池に関する。   The present invention relates to an alkaline storage battery such as a nickel-cadmium storage battery or a nickel-hydrogen storage battery, or a battery such as a lithium ion battery, and in particular, a positive electrode and a negative electrode which are arranged to face each other with a separator interposed between them. The present invention relates to a battery in which an electrode group is housed in an outer can together with an electrolyte, and an opening of the outer can is sealed with a sealing body.

電気自動車、電動バイク、アシスト自転車あるいは電動工具等の大電流用途向けの電池として、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池などのアルカリ蓄電池が用いられるようになった。この種の用途に用いられるアルカリ蓄電池は、高出力特性、高エネルギー密度が要求される。高出力特性を達成するためには集電部品の低抵抗化等が必要であり、集電体と電極板端部の電極基板との接触を密にする必要がある。また、振動などにより集電体が外れる恐れがあるため、集電体と電極基板との溶接強度を強くする必要がある。   Alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries have come to be used as batteries for large current applications such as electric vehicles, electric motorcycles, assist bicycles, and electric tools. Alkaline storage batteries used for this type of application are required to have high output characteristics and high energy density. In order to achieve high output characteristics, it is necessary to reduce the resistance of the current collecting component, and it is necessary to close contact between the current collector and the electrode substrate at the end of the electrode plate. In addition, since the current collector may come off due to vibration or the like, it is necessary to increase the welding strength between the current collector and the electrode substrate.

この種のアルカリ蓄電池は、通常、正極板と負極板とをセパレータを介して渦巻状に巻回して電極群とした後、この電極群の負極板の電極基板を負極集電体に溶接するとともに、正極板の電極基板を正極集電体に溶接する。ついで、この電極群を負極端子を兼ねる金属製外装缶に挿入し、負極集電体を金属製外装缶の底部に溶接するとともに、正極集電体より延出する集電リード部を正極端子を兼ねる封口体の底部に溶接した後、電解液を注液し、外装缶の開口部に絶縁ガスケットを介して封口体を装着して密閉することにより作製されている。   In this type of alkaline storage battery, a positive electrode plate and a negative electrode plate are usually spirally wound through a separator to form an electrode group, and then the electrode substrate of the negative electrode plate of this electrode group is welded to the negative electrode current collector. The electrode substrate of the positive electrode plate is welded to the positive electrode current collector. Next, the electrode group is inserted into a metal outer can that also serves as a negative electrode terminal, the negative electrode current collector is welded to the bottom of the metal outer can, and the current collector lead portion extending from the positive electrode current collector is connected to the positive electrode terminal. After being welded to the bottom of the sealing body that also serves as the sealing member, an electrolytic solution is injected, and the sealing body is attached to the opening of the outer can through an insulating gasket and sealed.

近年、これらのアルカリ蓄電池のエネルギー密度をさらに向上させるために、正極の電極基板として発泡ニッケルが用いられるようになった。ところが、発泡ニッケルを電極基板として用いた正極を正極集電体に溶接する場合、発泡ニッケルは高多孔性で密度が小さいために、これを直接、正極集電体に溶接することが困難であった。このため、発泡ニッケルの端部にリボン状のタブを溶接し、このタブを正極集電体に溶接することが、特許文献1(特開平11−149914号公報)にて提案されるようになった。   In recent years, nickel nickel foam has been used as a positive electrode substrate in order to further improve the energy density of these alkaline storage batteries. However, when a positive electrode using nickel foam as an electrode substrate is welded to the positive electrode current collector, it is difficult to weld this directly to the positive electrode current collector because the nickel foam is highly porous and has a low density. It was. For this reason, it is proposed in Patent Document 1 (Japanese Patent Laid-Open No. 11-149914) to weld a ribbon-like tab to the end of the foamed nickel and weld this tab to the positive electrode current collector. It was.

しかしながら、発泡ニッケルの端部にリボン状のタブを溶接するには、発泡ニッケルとは別にリボン状タブが必要となるため部品点数が増え、さらに溶接工程を要することから、この種の正極が高価になるという問題を生じた。そこで、発泡ニッケルからなる電極基板に直接集電体を溶接するため、本発明者らは種々の検討を行った。その結果、例えば、特許文献2(特開昭60−72160号公報)にて提案されている略V字状の溝を設けた集電体を用いて、例えば、特許文献3(特開昭56−67166号公報)にて提案されている溶接方法を適用すれば、発泡ニッケルからなる電極基板に直接集電体を溶接することが可能であるというという知見を得た。
特開平11−149914号公報 特開昭60−72160号公報 特開昭56−67166号公報
However, welding a ribbon-shaped tab to the end of foamed nickel requires a ribbon-shaped tab separately from the foamed nickel, which increases the number of parts and further requires a welding process, so this type of positive electrode is expensive. The problem of becoming. Therefore, in order to weld the current collector directly to the electrode substrate made of nickel foam, the present inventors have made various studies. As a result, for example, using a current collector provided with a substantially V-shaped groove proposed in Patent Document 2 (JP-A-60-72160), for example, Patent Document 3 (JP-A 56-56). When the welding method proposed in JP-A-67166 is applied, it was found that the current collector can be directly welded to the electrode substrate made of foamed nickel.
Japanese Patent Laid-Open No. 11-149914 JP-A-60-72160 JP-A-56-67166

ところが、上述した各特許文献2,3にて提案された技術を組み合わせて、発泡ニッケルからなる電極基板に直接集電体を溶接するようにした場合、電極基板と集電体との溶接部に十分な強度が得られないという問題が生じた。ここで、電極基板と集電体との溶接部が十分な強度が得られないで溶接されていると、溶接部での電気抵抗が大きくなって、電池としての内部抵抗値が上昇し、高出力特性が得られないという問題を生じた。また、振動などにより集電体が外れる恐れがあって、良好な集電性を維持できないという問題も生じた。   However, when the current collector is directly welded to the electrode substrate made of foamed nickel by combining the techniques proposed in Patent Documents 2 and 3 described above, the welded portion between the electrode substrate and the current collector is used. There was a problem that sufficient strength could not be obtained. Here, if the welded portion between the electrode substrate and the current collector is welded without obtaining sufficient strength, the electrical resistance at the welded portion increases, increasing the internal resistance value as a battery, The problem was that the output characteristics could not be obtained. In addition, there is a possibility that the current collector may come off due to vibration or the like, and there is a problem that good current collection cannot be maintained.

そこで、本発明は上記問題点を解決するためになされたものであって、発泡ニッケルからなる電極基板に直接集電体を溶接しても、これらの溶接部が十分な強度が得られるようにして、溶接部での電気抵抗が小さくなるようにして、内部抵抗が小さくて高出力特性が得られる電池を提供できるようにすることを目的とするものである。   Accordingly, the present invention has been made to solve the above-described problems, and even when a current collector is directly welded to an electrode substrate made of foamed nickel, these welds can obtain sufficient strength. Thus, it is an object of the present invention to provide a battery in which the electrical resistance at the welded portion is reduced and the internal resistance is reduced and high output characteristics can be obtained.

本発明のアルカリ蓄電池は、セパレータを介して相対向して配置された正極と負極を渦巻状に巻回して形成された電極群がアルカリ電解液とともに外装缶内に収容されて、該外装缶の開口部が封口体で密封されている。そして、電極群の正極と負極の少なくとも一方の電極基板が発泡ニッケルであって、該電極基板の端部に板状の集電体が溶接されているとともに、電極群の正極と負極との間に配置されたセパレータの端部が前記集電体の位置まで延出していて該端部が当該集電体に溶着されていることを特徴とする。 In the alkaline storage battery of the present invention, an electrode group formed by spirally winding a positive electrode and a negative electrode arranged to face each other via a separator is accommodated in an outer can together with an alkaline electrolyte. The opening is sealed with a sealing body. And at least one electrode substrate of the positive electrode and the negative electrode of the electrode group is foamed nickel, and a plate-like current collector is welded to the end of the electrode substrate, and between the positive electrode and the negative electrode of the electrode group An end portion of the separator disposed in the portion extends to the position of the current collector, and the end portion is welded to the current collector.

このように、電極群の正極と負極との間に配置されたセパレータの端部が、電極群の一方の電極基板の端部に溶接された集電体の位置まで延出していて、このセパレータの端部が集電体に溶着されていると、電極基板の端部と集電体の溶接による接合力に加えて、セパレータと集電体の溶着による接合力が付加されるので、電極群と集電体との間の接合力が大きくなる。これにより、振動を受けても集電体の溶接部が外れにくくなって、良好な集電性が維持されることとなる。 Thus, the end of the separator disposed between the positive electrode and the negative electrode of the electrode group extends to the position of the current collector welded to the end of one electrode substrate of the electrode group. When the end of the electrode is welded to the current collector, in addition to the joining force by welding the end of the electrode substrate and the current collector, the joining force by welding the separator and the current collector is added. The bonding force between the electrode and the current collector increases. Thereby, even if it receives a vibration, the welding part of an electrical power collector becomes difficult to remove | deviate, and favorable electrical power collection property will be maintained.

以下に、本発明をニッケル−カドミウム蓄電池に適用した場合の一実施の形態を図1〜図3に基づいて説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1は実施例1のニッケル−カドミウム蓄電池を模式的に示す断面図である。図2は比較例1(従来例)のニッケル−カドミウム蓄電池を模式的に示す断面図である。図3は電極群の正極と正極集電体とを溶接する状態を模式的に示す平面図である。   Hereinafter, an embodiment in which the present invention is applied to a nickel-cadmium storage battery will be described with reference to FIGS. 1 to 3, but the present invention is not limited to this and the scope does not change the gist thereof. And can be implemented with appropriate changes. 1 is a cross-sectional view schematically showing a nickel-cadmium storage battery of Example 1. FIG. FIG. 2 is a cross-sectional view schematically showing a nickel-cadmium storage battery of Comparative Example 1 (conventional example). FIG. 3 is a plan view schematically showing a state in which the positive electrode and the positive electrode current collector of the electrode group are welded.

1.電極
(1)ニッケル正極板
まず、発砲ニッケルからなる正極基板(電極基板)11a(21a)に水酸化ニッケルを主体とする正極活物質と結着剤とからなる正極活物質スラリー11b(21b)を充填した。この際、後に、正極集電体15に溶接される部分には活物質が充填されない活物質未充填部11c(21c)が形成されるようにした。ついで、乾燥後、所定の厚み(例えば、0.5mm)になるまで圧延し、所定の寸法(例えば、長さが200mmで、幅が33mm)になるように切断して、図1(図2)に示すようなニッケル正極板11(21)とした。
1. Electrode (1) Nickel positive electrode plate First, a positive electrode active material slurry 11b (21b) comprising a positive electrode active material mainly composed of nickel hydroxide and a binder on a positive electrode substrate (electrode substrate) 11a (21a) made of foamed nickel. Filled. At this time, an active material unfilled portion 11c (21c) that is not filled with an active material is formed in a portion to be welded to the positive electrode current collector 15 later. Next, after drying, the sheet is rolled to a predetermined thickness (for example, 0.5 mm) and cut to have predetermined dimensions (for example, a length of 200 mm and a width of 33 mm). The nickel positive electrode plate 11 (21) as shown in FIG.

(2)カドミウム負極板
また、パンチングメタルからなる極板芯体12a(22a)の両面に酸化カドミウムを主体とする負極活物質と結着剤とからなる負極活物質スラリー12b(22b)を塗着した。この際、後に、負極集電体14に溶接される部分には活物質が塗着されない活物質未塗着部12c(22c)が形成されるようにした。ついで、乾燥後、所定の厚み(例えば、0.6mm)になるまで圧延し、所定の寸法(例えば、長さが240mmで、幅が33mm)になるように切断して、図1(図2)に示すようなカドミウム負極板12(22)とした。
(2) Cadmium negative electrode plate Also, negative electrode active material slurry 12b (22b) composed of a negative electrode active material mainly composed of cadmium oxide and a binder is applied to both surfaces of a plate core 12a (22a) composed of punching metal. did. At this time, an active material uncoated portion 12c (22c) to which the active material is not applied is formed in a portion to be welded to the negative electrode current collector 14 later. Next, after drying, the sheet is rolled to a predetermined thickness (for example, 0.6 mm) and cut to have predetermined dimensions (for example, a length of 240 mm and a width of 33 mm). The cadmium negative electrode plate 12 (22) as shown in FIG.

2.電池
(1)実施例1
ついで、得られたニッケル正極板11とカドミウム負極板12との間にナイロン製のセパレータ(例えば、長さが550mmで、幅が34mm)13を重ね合わせた。この場合、ニッケル正極板11の上端部とセパレータ13の上端部とが同位置になり、カドミウム負極板12の上端部がこれらより下方に位置するように重ね合わせた。ついで、これらを渦巻状に巻回して渦巻状電極群a1を作製した。なお、このようにして作製された渦巻状電極群a1においては、図1に示すように、ニッケル正極板11の上部には、活物質未充填部11cが露出しており、カドミウム負極板12の下部には活物質未塗着部12cが露出している。
2. Battery (1) Example 1
Next, a nylon separator (for example, a length of 550 mm and a width of 34 mm) 13 was overlapped between the obtained nickel positive electrode plate 11 and cadmium negative electrode plate 12. In this case, the upper end portion of the nickel positive electrode plate 11 and the upper end portion of the separator 13 were located at the same position, and the upper end portion of the cadmium negative electrode plate 12 was overlapped with each other. Subsequently, these were wound in a spiral shape to produce a spiral electrode group a1. In the spiral electrode group a1 thus manufactured, the active material unfilled portion 11c is exposed on the upper portion of the nickel positive electrode plate 11, as shown in FIG. The active material uncoated part 12c is exposed at the lower part.

ついで、得られた渦巻状電極群a1の上端面に露出するニッケル正極板11の活物質未充填部11cおよびセパレータ13の上端部の上に、正極集電体15を載置した。これにより、セパレータ13の上端部は正極集電体15に接触して配置されるようになる。なお、正極集電体15は、図3に示すように、平面形状が略円形状の本体部15aの中心部に中心開口15bと、本体部15aから延出する平面形状が略長方形状のリード部15cが形成されている。   Next, the positive electrode current collector 15 was placed on the active material unfilled portion 11c of the nickel positive electrode plate 11 and the upper end portion of the separator 13 exposed at the upper end surface of the spiral electrode group a1 obtained. As a result, the upper end portion of the separator 13 comes into contact with the positive electrode current collector 15. As shown in FIG. 3, the positive electrode current collector 15 has a central opening 15b in the center of the substantially circular main body 15a and a lead having a substantially rectangular planar shape extending from the main body 15a. A portion 15c is formed.

ついで、この正極集電体15の上に、図3に示すように、一対の溶接電極R1,R2をそれぞれ載置し、一対の溶接電極R1,R2間に電源Vから1回目の溶接電流を流した。これにより、正極集電体15とニッケル正極11の活物質未充填部11cとが抵抗溶接されることとなる。このとき、溶接熱で正極集電体15が加熱されることにより、この正極集電体15に接触するように配置されたセパレータ13の上端部も加熱されることとなる。この後、この溶接位置から90°、180°、270°の位置で同様に溶接を行った。   Next, as shown in FIG. 3, a pair of welding electrodes R1, R2 are mounted on the positive electrode current collector 15, respectively, and a first welding current is applied from the power source V between the pair of welding electrodes R1, R2. Washed away. Thereby, the positive electrode current collector 15 and the active material unfilled portion 11c of the nickel positive electrode 11 are resistance-welded. At this time, the positive electrode current collector 15 is heated by welding heat, so that the upper end portion of the separator 13 disposed so as to be in contact with the positive electrode current collector 15 is also heated. Thereafter, welding was similarly performed at 90 °, 180 °, and 270 ° from this welding position.

これにより、渦巻状電極群a1の上端面に正極集電体15が溶接されることとなる。これと同時に、正極集電体15に接触するように配置されたセパレータ13の上端部は正極集電体15に溶着されることとなる。一方、渦巻状電極群a1の下部に円板状の負極集電体14を載置して、同様に一対の溶接電極を当接させてカドミウム負極板12の活物質未塗着12cと負極集電体14との接触部を抵抗溶接して渦巻状電極体aを作製した。   As a result, the positive electrode current collector 15 is welded to the upper end surface of the spiral electrode group a1. At the same time, the upper end portion of the separator 13 disposed so as to be in contact with the positive electrode current collector 15 is welded to the positive electrode current collector 15. On the other hand, a disc-shaped negative electrode current collector 14 is placed under the spiral electrode group a1, and a pair of welding electrodes are similarly brought into contact with each other to apply the active material uncoated 12c of the cadmium negative electrode plate 12 and the negative electrode collector. The contact portion with the electric body 14 was resistance-welded to produce a spiral electrode body a.

ついで、上述のようにして作製された電極体aを外装缶16内に挿入した後、負極集電体14と外装缶16の底部とを溶接した。また、正極蓋17aと正極キャップ17bとからなる封口体17を用意し、正極集電体15から延出するリード部15cを封口体17に設けられた正極蓋17aの底部に溶接した。この後、外装缶16の上部外周面に溝入れ加工を施して環状溝部16aを形成した。この後、金属製外装缶16内に電解液(例えば、30質量%の水酸化カリウム(KOH)水溶液)を注液し、封口体17の外周部に装着された封口ガスケット18を外装缶16の環状溝部16aの上に載置するとともに、外装缶16の先端部16bを封口体17側にカシメて封口して、実施例1のニッケル−カドミウム蓄電池10(A)を組み立てた。   Next, after the electrode body a produced as described above was inserted into the outer can 16, the negative electrode current collector 14 and the bottom of the outer can 16 were welded. Further, a sealing body 17 composed of a positive electrode lid 17 a and a positive electrode cap 17 b was prepared, and a lead portion 15 c extending from the positive electrode current collector 15 was welded to the bottom of the positive electrode lid 17 a provided on the sealing body 17. Thereafter, the upper outer peripheral surface of the outer can 16 was grooved to form the annular groove 16a. Thereafter, an electrolytic solution (for example, 30 mass% potassium hydroxide (KOH) aqueous solution) is injected into the metal outer can 16, and the sealing gasket 18 attached to the outer peripheral portion of the sealing body 17 is attached to the outer can 16. The nickel-cadmium storage battery 10 (A) of Example 1 was assembled by placing it on the annular groove 16 a and caulking and sealing the tip 16 b of the outer can 16 toward the sealing body 17.

(2)比較例1
上述の同様に、ニッケル正極板21とカドミウム負極板22との間にナイロン製のセパレータ(例えば、長さが550mmで、幅が33mm)23を重ね合わせた。この場合、セパレータ23の上端部がニッケル正極板21の上端部より下方に位置し、かつカドミウム負極板22の上端部がセパレータ23の上端部より下方に位置するように重ね合わせた。ついで、これらを渦巻状に巻回して渦巻状電極群x1を作製した。なお、このようにして作製された渦巻状電極群x1においては、図2に示すように、ニッケル正極板21の上部には、活物質未充填部21cが露出しており、カドミウム負極板22の下部には活物質未塗着部22cが露出している。
(2) Comparative Example 1
In the same manner as described above, a nylon separator (for example, a length of 550 mm and a width of 33 mm) 23 was overlapped between the nickel positive electrode plate 21 and the cadmium negative electrode plate 22. In this case, the separator 23 was overlaid so that the upper end portion of the separator 23 was located below the upper end portion of the nickel positive electrode plate 21 and the upper end portion of the cadmium negative electrode plate 22 was located below the upper end portion of the separator 23. Subsequently, these were wound in a spiral shape to produce a spiral electrode group x1. In the spiral electrode group x1 produced in this way, as shown in FIG. 2, the active material unfilled portion 21c is exposed on the upper portion of the nickel positive electrode plate 21, and the cadmium negative electrode plate 22 The active material uncoated part 22c is exposed at the lower part.

ついで、得られた渦巻状電極群x1の上端面に露出するニッケル正極板21の活物質未充填部21cの上端部の上に、上述した正極集電体15を載置した。ついで、この正極集電体15の上に、図3に示すように、一対の溶接電極R1,R2をそれぞれ載置し、溶接電流を流した。これにより、正極集電体15とニッケル正極21の活物質未充填部21cとが抵抗溶接されることとなる。この後、この溶接位置から90°、180°、270°の位置で同様に溶接を行った。これにより、渦巻状電極群x1の上端面に正極集電体15が溶接されることとなる。一方、渦巻状電極群の下部に円板状の負極集電体14を載置して、同様に一対の溶接電極を当接させてカドミウム負極板22の活物質未塗着部22cと負極集電体14との接触部を抵抗溶接して渦巻状電極体xを作製した。   Subsequently, the positive electrode current collector 15 described above was placed on the upper end portion of the active material unfilled portion 21c of the nickel positive electrode plate 21 exposed at the upper end surface of the spiral electrode group x1 obtained. Next, as shown in FIG. 3, a pair of welding electrodes R1 and R2 were placed on the positive electrode current collector 15, and a welding current was passed. Thereby, the positive electrode current collector 15 and the active material unfilled portion 21c of the nickel positive electrode 21 are resistance-welded. Thereafter, welding was similarly performed at 90 °, 180 °, and 270 ° from this welding position. As a result, the positive electrode current collector 15 is welded to the upper end surface of the spiral electrode group x1. On the other hand, a disc-shaped negative electrode current collector 14 is placed below the spiral electrode group, and a pair of welding electrodes are similarly brought into contact with each other to prevent the active material uncoated portion 22c of the cadmium negative electrode plate 22 and the negative electrode current collector. The contact portion with the electric body 14 was resistance-welded to produce a spiral electrode body x.

ついで、上述のようにして作製された電極体xを外装缶26内に挿入した後、負極集電体24と外装缶26の底部とを溶接した。また、正極蓋27aと正極キャップ27bとからなる封口体27を用意し、正極集電体15から延出するリード部15cを封口体27に設けられた正極蓋27aの底部に溶接した。この後、外装缶26の上部外周面に溝入れ加工を施して環状溝部26aを形成した。この後、金属製外装缶26内に電解液(例えば、30質量%の水酸化カリウム(KOH)水溶液)を注液し、封口体27の外周部に装着された封口ガスケット28を外装缶26の環状溝部26aの上に載置するとともに、外装缶26の先端部26bを封口体27側にカシメて封口して、比較例1のニッケル−カドミウム蓄電池20(X)を組み立てた。   Next, after the electrode body x produced as described above was inserted into the outer can 26, the negative electrode current collector 24 and the bottom of the outer can 26 were welded. Further, a sealing body 27 composed of a positive electrode lid 27 a and a positive electrode cap 27 b was prepared, and a lead portion 15 c extending from the positive electrode current collector 15 was welded to the bottom of the positive electrode lid 27 a provided on the sealing body 27. Thereafter, the upper outer peripheral surface of the outer can 26 was grooved to form an annular groove 26a. Thereafter, an electrolytic solution (for example, 30 mass% potassium hydroxide (KOH) aqueous solution) is injected into the metal outer can 26, and the sealing gasket 28 attached to the outer periphery of the sealing body 27 is attached to the outer can 26. The nickel-cadmium storage battery 20 (X) of Comparative Example 1 was assembled by placing on the annular groove 26 a and caulking and sealing the tip 26 b of the outer can 26 to the sealing body 27 side.

3.試験
(1)強度試験
ついで、上述のようにして各電池A,Xを作製する際に、電極体a,xをそれぞれ10個ずつ作製し、溶接後の正極集電体15の溶接強度を測定し、電極体xの値を100とした場合の相対強度を測定した。この結果、電極体xの相対強度が100であるのに対して、電極体aの相対強度は250で、電極体xの強度よりも2.5倍も溶接強度が向上していることが分かった。これは、電極体aにおいては、正極集電体15に接触するように配置されたセパレータ13の上端部が正極集電体15に溶着されることにより、接合強度が向上したためである。
3. Test (1) Strength Test Next, when each battery A, X is manufactured as described above, 10 electrode bodies a, x are respectively manufactured, and the welding strength of the positive electrode current collector 15 after welding is measured. The relative strength was measured when the value of the electrode body x was 100. As a result, the relative strength of the electrode body x is 100, whereas the relative strength of the electrode body a is 250, indicating that the welding strength is improved by 2.5 times the strength of the electrode body x. It was. This is because in the electrode body a, the upper end portion of the separator 13 disposed so as to be in contact with the positive electrode current collector 15 is welded to the positive electrode current collector 15, thereby improving the bonding strength.

(2)振動試験
ついで、上述のようにして作製された各電池A,Xをそれぞれ10個ずつ用いて、振動試験を行い、振動試験前後の内部抵抗の変化を求めた。この場合、振動試験機(エミック株式会社製VC−081DAFX32PSR)を用意し、この振動試験機にそれぞれ5個ずつの各電池A,Xを配置して振動試験を行った。具体的には、最大加速度が30Gで、周波数が17Hzで、振幅が5mmで、振動時間が10時間になるように設定して行った。そして、この振動試験の前後での内部抵抗を測定すると、下記の表1に示すような結果となった。

Figure 0004610395
(2) Vibration Test Next, a vibration test was performed using 10 batteries A and X produced as described above, and the change in internal resistance before and after the vibration test was determined. In this case, a vibration test machine (VC-081DAFX32PSR manufactured by Emic Co., Ltd.) was prepared, and five batteries A and X were arranged in this vibration test machine, respectively, and a vibration test was performed. Specifically, the maximum acceleration was 30 G, the frequency was 17 Hz, the amplitude was 5 mm, and the vibration time was set to 10 hours. When the internal resistance before and after the vibration test was measured, the results shown in Table 1 below were obtained.
Figure 0004610395

上記表1の結果から明らかなように、電池Aにおいては、振動試験の前後での内部抵抗の変化は0.1mΩであるのに対して、電池Xにおいては、振動試験の前後での内部抵抗の変化は7.6mΩで、振動試験前よりも倍以上も内部抵抗が上昇していることが分かる。これは、電池Xにおいては、正極集電体15とニッケル正極21の活物質未充填部21cとの溶接部の一部が、振動試験により外れて内部抵抗が上昇したと考えられる。  As is clear from the results of Table 1 above, in battery A, the change in internal resistance before and after the vibration test is 0.1 mΩ, whereas in battery X, the internal resistance before and after the vibration test. The change of is 7.6 mΩ, and it can be seen that the internal resistance is increased more than double that before the vibration test. In the battery X, it is considered that a part of the welded portion between the positive electrode current collector 15 and the active material unfilled portion 21c of the nickel positive electrode 21 is removed by the vibration test and the internal resistance is increased.

一方、電池Aにおいては、正極集電体15に接触するように配置されたセパレータ13の上端部が正極集電体15に溶着されている。このため、正極集電体15とニッケル正極11の活物質未充填部11cとの溶接部での結合強度が大きいため、振動試験により外れることがない。この結果、振動試験に関わらず内部抵抗が上昇することがなかったと考えられる。   On the other hand, in the battery A, the upper end portion of the separator 13 disposed so as to be in contact with the positive electrode current collector 15 is welded to the positive electrode current collector 15. For this reason, since the joint strength at the welded portion between the positive electrode current collector 15 and the active material unfilled portion 11c of the nickel positive electrode 11 is large, it does not come off by the vibration test. As a result, it is considered that the internal resistance did not increase regardless of the vibration test.

以上に詳述したように、本発明においては、電極群a1の正極11と負極12との間に配置されたセパレータ13の端部が、電極群a1の上端部に溶接された集電体15の位置まで延出していて、このセパレータ15の端部が集電体15に溶着されているので、電極群a1と集電体15との間の結合力が大きくなる。これにより、振動を与えても集電体15が電極群a1から外れることなく、良好な集電性が維持されることとなる。   As described in detail above, in the present invention, the current collector 15 in which the end portion of the separator 13 disposed between the positive electrode 11 and the negative electrode 12 of the electrode group a1 is welded to the upper end portion of the electrode group a1. Since the end of the separator 15 is welded to the current collector 15, the coupling force between the electrode group a1 and the current collector 15 is increased. Thereby, even if it gives a vibration, the electrical power collector 15 will not remove | deviate from the electrode group a1, but favorable electrical power collection property will be maintained.

なお、上述した実施の形態においては、本発明をニッケル−カドミウム蓄電池に適用する例について説明したが、本発明はニッケル−カドミウム蓄電池以外にも、ニッケル−水素蓄電池などのアルカリ蓄電池あるいはリチウムイオン電池などの電池に適用しても同様の効果が得られることは明らかである。   In the above-described embodiment, the example in which the present invention is applied to a nickel-cadmium storage battery has been described. However, the present invention is not limited to a nickel-cadmium storage battery, but an alkaline storage battery such as a nickel-hydrogen storage battery, a lithium ion battery, or the like. It is clear that the same effect can be obtained even when applied to the above battery.

本発明の実施例のニッケル−カドミウム蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the nickel-cadmium storage battery of the Example of this invention. 比較例のニッケル−カドミウム蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the nickel-cadmium storage battery of a comparative example. 電極群の正極と正極集電体とを溶接する状態を模式的に示す平面図である。It is a top view which shows typically the state which welds the positive electrode and positive electrode electrical power collector of an electrode group.

符号の説明Explanation of symbols

10…ニッケル−カドミウム蓄電池、11…ニッケル正極板、11a…正極芯体、11b…正極活物質、11c…活物質未充填部、12…カドミウム負極板、12a…極板芯体、12b…負極活物質、12c…活物質未塗着部、13…セパレータ、14…負極集電体、15…正極集電体、15a…本体部、15b…中心開口、15c…リード部、16…外装缶、16a…環状溝部、16b…先端部、17…封口体、17a…正極蓋、17b…正極キャップ、18…封口ガスケット
DESCRIPTION OF SYMBOLS 10 ... Nickel-cadmium storage battery, 11 ... Nickel positive electrode plate, 11a ... Positive electrode core, 11b ... Positive electrode active material, 11c ... Active material unfilled part, 12 ... Cadmium negative electrode plate, 12a ... Electrode plate core, 12b ... Negative electrode active Substance, 12c ... Active material uncoated part, 13 ... Separator, 14 ... Negative electrode current collector, 15 ... Positive electrode current collector, 15a ... Main body part, 15b ... Center opening, 15c ... Lead part, 16 ... Exterior can, 16a ... annular groove part, 16b ... tip part, 17 ... sealing body, 17a ... positive electrode lid, 17b ... positive electrode cap, 18 ... sealing gasket

Claims (2)

セパレータを介して相対向して配置された正極と負極を渦巻状に巻回して形成された電極群が電解液とともに外装缶内に収容されて、該外装缶の開口部が封口体で密封された電池であって、
前記電極群の正極と負極の少なくとも一方の電極基板が発泡ニッケルであって、該電極基板の端部に板状の集電体が溶接されているとともに、
前記電極群の正極と負極との間に配置されたセパレータの端部が前記集電体の位置まで延出していて該端部が当該集電体に溶着されていることを特徴とする電池。
A group of electrodes formed by spirally winding a positive electrode and a negative electrode, which are arranged to face each other via a separator, are accommodated in an outer can together with an electrolyte, and the opening of the outer can is sealed with a sealing body. Batteries,
At least one electrode substrate of the positive electrode and the negative electrode of the electrode group is foamed nickel, and a plate-like current collector is welded to an end of the electrode substrate ,
A battery, wherein an end of a separator disposed between a positive electrode and a negative electrode of the electrode group extends to a position of the current collector, and the end is welded to the current collector.
前記集電体は正極集電体であって該正極集電体は前記電極群の上端部に溶接されていることを特徴とする請求項1に記載の電池。   The battery according to claim 1, wherein the current collector is a positive electrode current collector, and the positive electrode current collector is welded to an upper end portion of the electrode group.
JP2005102253A 2005-03-31 2005-03-31 battery Expired - Fee Related JP4610395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102253A JP4610395B2 (en) 2005-03-31 2005-03-31 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102253A JP4610395B2 (en) 2005-03-31 2005-03-31 battery

Publications (2)

Publication Number Publication Date
JP2006286290A JP2006286290A (en) 2006-10-19
JP4610395B2 true JP4610395B2 (en) 2011-01-12

Family

ID=37407998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102253A Expired - Fee Related JP4610395B2 (en) 2005-03-31 2005-03-31 battery

Country Status (1)

Country Link
JP (1) JP4610395B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824968U (en) * 1981-08-11 1983-02-17 株式会社ユアサコーポレーション Pocket alkaline storage battery
JPH11162447A (en) * 1997-11-28 1999-06-18 Sanyo Electric Co Ltd Cylindrical battery with spiral electrode body and its manufacture
JPH11233107A (en) * 1998-02-13 1999-08-27 Sanyo Electric Co Ltd Alkaline storage battery using nonsintred type electrode, and its manufacture
JP2000021435A (en) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd Battery
JP2000021384A (en) * 1998-07-02 2000-01-21 Sanyo Electric Co Ltd Battery
JP2002260629A (en) * 2001-03-06 2002-09-13 Sanyo Electric Co Ltd Current-collecting lead, storage battery using the same and manufacturing method thereof
JP2003168415A (en) * 2001-12-03 2003-06-13 Matsushita Electric Ind Co Ltd Secondary battery
JP2003288881A (en) * 2002-03-28 2003-10-10 Yuasa Corp Alkali storage battery
JP2004095487A (en) * 2002-09-04 2004-03-25 Matsushita Electric Ind Co Ltd Storage battery and manufacturing method of the same
JP2004103386A (en) * 2002-09-10 2004-04-02 Matsushita Electric Ind Co Ltd Storage battery and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824968U (en) * 1981-08-11 1983-02-17 株式会社ユアサコーポレーション Pocket alkaline storage battery
JPH11162447A (en) * 1997-11-28 1999-06-18 Sanyo Electric Co Ltd Cylindrical battery with spiral electrode body and its manufacture
JPH11233107A (en) * 1998-02-13 1999-08-27 Sanyo Electric Co Ltd Alkaline storage battery using nonsintred type electrode, and its manufacture
JP2000021435A (en) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd Battery
JP2000021384A (en) * 1998-07-02 2000-01-21 Sanyo Electric Co Ltd Battery
JP2002260629A (en) * 2001-03-06 2002-09-13 Sanyo Electric Co Ltd Current-collecting lead, storage battery using the same and manufacturing method thereof
JP2003168415A (en) * 2001-12-03 2003-06-13 Matsushita Electric Ind Co Ltd Secondary battery
JP2003288881A (en) * 2002-03-28 2003-10-10 Yuasa Corp Alkali storage battery
JP2004095487A (en) * 2002-09-04 2004-03-25 Matsushita Electric Ind Co Ltd Storage battery and manufacturing method of the same
JP2004103386A (en) * 2002-09-10 2004-04-02 Matsushita Electric Ind Co Ltd Storage battery and its manufacturing method

Also Published As

Publication number Publication date
JP2006286290A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP5917407B2 (en) Prismatic secondary battery
JP5449959B2 (en) Cylindrical secondary battery
JP2011092995A (en) Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block
JPWO2014097586A1 (en) Cylindrical secondary battery and manufacturing method thereof
JP2016189246A (en) Square secondary battery
WO2012090599A1 (en) Cylindrical battery and method of manufacturing thereof
KR20120007467A (en) Square-sealed type secondary battery and manufacturing method thereof
JP6729137B2 (en) Secondary battery, manufacturing method thereof, and assembled battery using the same
JP2003272597A (en) Sealed battery
JP3627645B2 (en) Lithium secondary battery
JP2007115584A (en) Secondary battery, its manufacturing method, and current collector for secondary battery
JP5198134B2 (en) Method for manufacturing cylindrical battery
JP5364512B2 (en) Cylindrical battery
JP2008159357A (en) Cylindrical secondary battery
JP2005011675A (en) Sealed battery
JP3926147B2 (en) battery
JP2018055812A (en) Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method
JP4836428B2 (en) Storage battery
JP4610395B2 (en) battery
JP2004063272A (en) Battery and its manufacturing method
JP2006100214A (en) Battery and its manufacturing method
JP5064713B2 (en) Storage battery
JP3913384B2 (en) Alkaline storage battery
JP2020068172A (en) Secondary battery
JP2012134108A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees