JP2018055812A - Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method - Google Patents

Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method Download PDF

Info

Publication number
JP2018055812A
JP2018055812A JP2016187371A JP2016187371A JP2018055812A JP 2018055812 A JP2018055812 A JP 2018055812A JP 2016187371 A JP2016187371 A JP 2016187371A JP 2016187371 A JP2016187371 A JP 2016187371A JP 2018055812 A JP2018055812 A JP 2018055812A
Authority
JP
Japan
Prior art keywords
positive electrode
top wall
wall portion
current collector
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016187371A
Other languages
Japanese (ja)
Inventor
中村 友美
Tomomi Nakamura
友美 中村
浩行 柴岡
Hiroyuki Shibaoka
浩行 柴岡
哲 山中
Satoru Yamanaka
哲 山中
勲 麦間
Isao Mugima
勲 麦間
伊佐治 秀文
Hidefumi Isaji
秀文 伊佐治
浅沼 英之
Hideyuki Asanuma
英之 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2016187371A priority Critical patent/JP2018055812A/en
Publication of JP2018055812A publication Critical patent/JP2018055812A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a collector load contributed to improvement of an efficient discharge property by suppressing occurrence of a welding defect, an alkaline secondary battery with the collector lead, and a manufacturing method of the alkaline secondary battery.SOLUTION: A collector lead 34 integrated in a nickel hydrogen secondary battery 1 includes: a rectangular top wall part 36; a pair of sidewall parts 42 and 44 extending from both side edges 38 and 40 of the tol wall part 36; and leg parts 50 and 52 connected to the sidewall parts 42 and 44 and located at positions facing the top wall part 36. The top wall part 36 has a curved shape protruding outsides and includes multiple top wall side projections 56. Each of the leg parts 50 and 52 has a curved shape protruding outsides and includes multiple leg part side projections 58. The top wall side projection 56 protrudes from an apex portion 36a of the curved shape in the top wall part 36, and the leg part side projection 58 protrudes from an apex portion 53 of the curved shape in the leg parts 50 and 52.SELECTED DRAWING: Figure 4

Description

本発明は、集電リード、この集電リードを含むアルカリ二次電池の製造方法及びこの製造方法により製造したアルカリ二次電池に関する。   The present invention relates to a current collecting lead, a method for producing an alkaline secondary battery including the current collecting lead, and an alkaline secondary battery produced by the production method.

アルカリ二次電池においては、用途が拡大し、高率で充放電が行えるタイプの電池が開発されている。このような電池としては、例えば、以下に示すような円筒形アルカリ二次電池が知られている。   In alkaline secondary batteries, applications are expanding and batteries of a type that can be charged and discharged at a high rate have been developed. As such a battery, for example, a cylindrical alkaline secondary battery as shown below is known.

当該円筒形アルカリ二次電池は、電極群が有底円筒形状の外装缶にアルカリ電解液とともに収容され、外装缶の開口部が正極端子を含む封口体により密閉されることにより形成される。   The cylindrical alkaline secondary battery is formed by accommodating an electrode group together with an alkaline electrolyte in a bottomed cylindrical outer can and sealing the opening of the outer can with a sealing body including a positive electrode terminal.

上記した電極群は、セパレータを間に挟んだ状態で重ね合わされた正極及び負極が渦巻き状に巻回されて形成され、全体としてほぼ円柱形状をなしている。ここで、正極及び負極は、巻回作業に際し、互いに、電極群の軸線に沿う方向に僅かにずれた状態となるように配置されるとともに、これら正極及び負極の間には、所定サイズのセパレータが所定位置に配置される。そして、この状態で、正極、セパレータ及び負極は巻回される。その結果、電極群の一端面側から正極の端縁部が渦巻き状に突出し、電極群の他端面側から負極の端縁部が渦巻き状に突出する。   The electrode group described above is formed by spirally winding a positive electrode and a negative electrode that are overlapped with a separator interposed therebetween, and has a substantially cylindrical shape as a whole. Here, the positive electrode and the negative electrode are arranged so as to be slightly shifted from each other in the direction along the axis of the electrode group during the winding operation, and a separator of a predetermined size is provided between the positive electrode and the negative electrode. Is arranged at a predetermined position. In this state, the positive electrode, the separator, and the negative electrode are wound. As a result, the edge of the positive electrode protrudes spirally from one end surface side of the electrode group, and the edge of the negative electrode protrudes spirally from the other end surface side of the electrode group.

突出した正極端縁部には正極集電体が溶接され、突出した負極端縁部には負極集電体が溶接される。これにより、正極集電体は正極と広い範囲で電気的に接続され、負極集電体は負極と広い範囲で電気的に接続されるので、集電効率が高められる。その結果、当該電池においては高率充放電が可能となる。   A positive electrode current collector is welded to the protruding positive electrode edge, and a negative electrode current collector is welded to the protruding negative electrode edge. Thereby, the positive electrode current collector is electrically connected to the positive electrode in a wide range, and the negative electrode current collector is electrically connected to the negative electrode in a wide range, so that the current collection efficiency is improved. As a result, the battery can be charged / discharged at a high rate.

この円筒形アルカリ二次電池の組み立ての手順としては、例えば、まず、外装缶内に電極群を挿入し、外装缶の底壁内面と負極集電体とが溶接される。これにより、負極端子を兼ねる外装缶と負極とが電気的に接続された状態となる。次いで、正極集電体の所定位置に、金属製の薄板からなる正極タブの一端が溶接される。更に、正極タブの他端が封口体の所定位置に溶接される。これにより、正極端子と正極とが電気的に接続された状態となる。その後、封口体が外装缶の上端開口部に絶縁ガスケットを介在させた状態で装着され、外装缶の上端開口部がかしめ加工されることにより、当該外装缶が密閉される。これにより円筒形アルカリ二次電池が形成される。   As a procedure for assembling the cylindrical alkaline secondary battery, for example, an electrode group is first inserted into the outer can, and the inner surface of the bottom wall of the outer can and the negative electrode current collector are welded. Thereby, the outer can which also serves as the negative electrode terminal and the negative electrode are electrically connected. Next, one end of a positive electrode tab made of a thin metal plate is welded to a predetermined position of the positive electrode current collector. Furthermore, the other end of the positive electrode tab is welded to a predetermined position of the sealing body. As a result, the positive electrode terminal and the positive electrode are electrically connected. Thereafter, the sealing body is attached in a state where an insulating gasket is interposed in the upper end opening of the outer can, and the upper end opening of the outer can is caulked to seal the outer can. Thereby, a cylindrical alkaline secondary battery is formed.

上記したような正極タブは、封口体への溶接をし易くするために、比較的長めのものが用いられる。また、封口体が外装缶の上端開口部に装着されたとき、正極タブは、外装缶内で封口体と電極群との間に屈曲するようにして収容される。このため、正極タブは、屈曲し易いように比較的薄いものが用いられる。   For the positive electrode tab as described above, a relatively long one is used in order to facilitate welding to the sealing body. Further, when the sealing body is attached to the upper end opening of the outer can, the positive electrode tab is accommodated in the outer can so as to bend between the sealing body and the electrode group. For this reason, the positive electrode tab is relatively thin so as to be easily bent.

ところで、近年、アルカリ二次電池には、より高性能化が望まれており、特に、大電流を効率良く出力できるように高率放電特性をより向上させることが望まれている。   Incidentally, in recent years, higher performance is desired for alkaline secondary batteries, and in particular, it is desired to further improve the high-rate discharge characteristics so that a large current can be efficiently output.

高率放電特性を向上させるためには、電池の内部抵抗をなるべく低くする必要がある。しかしながら、上記したような薄くて長い帯状の正極タブを用いた場合、この正極タブの比抵抗が高く、正極タブが電池の内部抵抗を高める原因となっている。   In order to improve the high rate discharge characteristics, it is necessary to make the internal resistance of the battery as low as possible. However, when a thin and long strip-like positive electrode tab as described above is used, the specific resistance of the positive electrode tab is high, and the positive electrode tab increases the internal resistance of the battery.

そこで、電池の内部抵抗をより低くし、高率放電特性に優れる電池を得るために、従来よりも通電経路を短縮する検討が種々試みられている。このような通電経路を短縮するための対策がとられた電池としては、例えば、特許文献1に示されるような電池が知られている。   Therefore, various attempts have been made to shorten the energization path as compared with the prior art in order to lower the internal resistance of the battery and to obtain a battery excellent in high rate discharge characteristics. For example, a battery as disclosed in Patent Document 1 is known as a battery in which measures for shortening the energization path are taken.

特許文献1に代表される電池においては、正極タブに代えて集電リードが用いられる。この集電リードは、従来の正極タブに比べて厚さが厚い金属製の板材を、正極集電体と封口体との間を最短でつなぐような形状に加工することにより形成される。このような集電リードを正極集電体と封口体との間に介在させ、正極集電体、集電リード及び封口体を抵抗スポット溶接することで接続する。これにより、通電経路を短縮できるとともに通電経路を太くできるので、電池の内部抵抗は低減する。   In the battery represented by Patent Document 1, a current collecting lead is used instead of the positive electrode tab. The current collecting lead is formed by processing a metal plate material that is thicker than a conventional positive electrode tab into a shape that connects the positive electrode current collector and the sealing body as short as possible. Such a current collecting lead is interposed between the positive electrode current collector and the sealing body, and the positive electrode current collector, the current collecting lead and the sealing body are connected by resistance spot welding. Thereby, since an energization path can be shortened and an energization path can be made thick, the internal resistance of a battery reduces.

ここで、集電リードについては、色々な形状のものがあり、例えば、図7に示すような、断面形状が扁平な筒状の集電リード100が挙げられる。この集電リード100は、封口体102と、正極集電体104との間に配設される。集電リード100は、封口体102側に位置付けられる平坦状の頂壁部106と、頂壁部106の所定の側縁108、110から延びる側壁部112、114と、側壁部112、114における頂壁部106とは反対側の端縁116、118から延び、正極集電体104側に位置付けられる平坦状の底壁部120とを有している。また、頂壁部106の外面の所定位置には、複数の頂壁側突起部124が設けられており、底壁部120の外面の所定位置には、複数の底壁側突起部126が設けられている。   Here, there are various shapes of current collecting leads, and examples thereof include a cylindrical current collecting lead 100 having a flat cross-sectional shape as shown in FIG. The current collecting lead 100 is disposed between the sealing body 102 and the positive electrode current collector 104. The current collecting lead 100 includes a flat top wall portion 106 positioned on the sealing body 102 side, side wall portions 112 and 114 extending from predetermined side edges 108 and 110 of the top wall portion 106, and top portions of the side wall portions 112 and 114. It has a flat bottom wall 120 that extends from the edges 116 and 118 opposite to the wall 106 and is positioned on the positive electrode current collector 104 side. A plurality of top wall side protrusions 124 are provided at predetermined positions on the outer surface of the top wall portion 106, and a plurality of bottom wall side protrusion portions 126 are provided at predetermined positions on the outer surface of the bottom wall portion 120. It has been.

ここで、集電リード100は、抵抗スポット溶接や封口体のかしめ加工の際、正極集電体やその下の電極群に過剰な応力がかからないようにするため、優先的に潰れるように予め設計されている。例えば、側縁108、110や端縁116、118の角を排除し、ラウンド形状としている。これにより、集電リード100の可撓性が向上し、集電リード100は、封口体102や正極集電体104よりも変形し易くなっている。   Here, the current collecting lead 100 is designed in advance so as to be preferentially crushed in order to prevent excessive stress from being applied to the positive electrode current collector and the electrode group under the resistance spot welding and the caulking process of the sealing body. Has been. For example, the corners of the side edges 108 and 110 and the end edges 116 and 118 are eliminated to form a round shape. Thereby, the flexibility of the current collecting lead 100 is improved, and the current collecting lead 100 is more easily deformed than the sealing body 102 and the positive electrode current collector 104.

電池の製造過程において、正極集電体104が溶接された電極群が外装缶内に挿入され、この電極群の正極集電体104の上に、集電リード100が載置され、この集電リード100の上に封口体102が載置される。このとき、集電リード100は、頂壁部106の頂壁側突起部124が封口体102に接触し、底壁部120の底壁側突起部126が正極集電体104に接触する。そして、封口体102、集電リード100及び正極集電体104が抵抗スポット溶接される際、頂壁側突起部124及び底壁側突起部126に溶接電流が集中し、これら頂壁側突起部124及び底壁側突起部126を含む周囲が溶融し、溶接部が形成される。これにより、封口体102、集電リード100及び正極集電体104が接続される。その後、封口体102は、外装缶の開口縁をかしめ加工することにより、外装缶の開口に取り付けられる。   In the battery manufacturing process, an electrode group to which the positive electrode current collector 104 is welded is inserted into an outer can, and a current collecting lead 100 is placed on the positive electrode current collector 104 of the electrode group. A sealing body 102 is placed on the lead 100. At this time, in the current collecting lead 100, the top wall side protruding portion 124 of the top wall portion 106 contacts the sealing body 102, and the bottom wall side protruding portion 126 of the bottom wall portion 120 contacts the positive electrode current collector 104. When the sealing body 102, the current collector lead 100, and the positive electrode current collector 104 are resistance spot welded, the welding current is concentrated on the top wall side protrusion 124 and the bottom wall side protrusion 126, and these top wall side protrusions. The periphery including 124 and the bottom wall side protrusion 126 is melted to form a weld. Thereby, the sealing body 102, the current collection lead 100, and the positive electrode current collector 104 are connected. Thereafter, the sealing body 102 is attached to the opening of the outer can by caulking the opening edge of the outer can.

抵抗スポット溶接の際、あるいは、封口体のかしめ加工の際、電池の軸線方向に沿う方向に応力が加えられ、封口体102、集電リード100、正極集電体104及び電極群は圧迫される。このとき、上記したように、集電リード100が優先的に潰れて応力を緩和するように可撓性を高められているので、正極集電体が必要以上に電極群を圧迫せず、内部短絡の発生を抑制することができる。   During resistance spot welding or during caulking of the sealing body, stress is applied in a direction along the axial direction of the battery, and the sealing body 102, the current collector lead 100, the positive electrode current collector 104, and the electrode group are pressed. . At this time, as described above, since the current collecting lead 100 is preferentially crushed and the flexibility is enhanced so as to relieve stress, the positive electrode current collector does not press the electrode group more than necessary, and the internal Generation | occurrence | production of a short circuit can be suppressed.

特許第3547931号公報Japanese Patent No. 3547931

ところで、抵抗スポット溶接の際の加圧工程、あるいは、封口体のかしめ加工の際に、集電リード100に過剰な圧縮応力が加わり、集電リード100の潰れの度合いが大きくなることがある。具体的には、図7(b)に示すように、集電リード100の側縁108、110や端縁116、118といったエッジ部の付近に矢印G及び矢印H方向に働く過剰な圧縮応力が加わると、集電リード100には、矢印I、J、M、Nに示すような方向に力が加わり、頂壁部106及び底壁部120の中央部が内側に弓なりに曲がるような変形が起こることが確認される。矢印I、J、M、Nに示すような方向の力は、溶接部に対し剪断応力として働くので、この変形にともない溶接部に亀裂が生じ、溶接が外れて溶接不良が発生するおそれがある。   By the way, in the pressurizing process at the time of resistance spot welding or in the caulking process of the sealing body, excessive compressive stress may be applied to the current collecting lead 100, and the degree of crushing of the current collecting lead 100 may increase. Specifically, as shown in FIG. 7B, excessive compressive stress acting in the directions of the arrows G and H near the edge portions such as the side edges 108 and 110 and the end edges 116 and 118 of the current collecting lead 100 is present. When applied, a force is applied to the current collecting lead 100 in the directions shown by the arrows I, J, M, and N, and the central portions of the top wall portion 106 and the bottom wall portion 120 are bent inwardly in a bow shape. Confirmed to happen. Since the forces in the directions shown by arrows I, J, M, and N act as shear stress on the welded portion, there is a possibility that the welded portion is cracked due to this deformation, and the weld is detached to cause poor welding. .

このように溶接不良が起こると、通電経路が細くなり、電池の内部抵抗が増加する。その結果、電池の高率放電特性が阻害される。   When welding failure occurs in this way, the energization path becomes narrow and the internal resistance of the battery increases. As a result, the high rate discharge characteristics of the battery are hindered.

本発明は、上記の事情に基づいてなされたものであり、その目的とするところは、溶接不良の発生を抑制し、高率放電特性の向上に貢献する集電リード、この集電リードを含むアルカリ二次電池及びこのアルカリ二次電池の製造方法を提供することにある。   The present invention has been made based on the above circumstances, and its object is to include a current collecting lead that suppresses the occurrence of poor welding and contributes to an improvement in high-rate discharge characteristics, and this current collecting lead. An object of the present invention is to provide an alkaline secondary battery and a method for producing the alkaline secondary battery.

上記目的を達成するために、本発明によれば、矩形状の頂壁部と、前記頂壁部の両側縁から延びる一対の側壁部と、前記側壁部につながり、前記頂壁部と相対する位置に位置付けられる底壁部と、を含み、前記頂壁部は、外側に突出する湾曲形状をなしているとともに、複数の頂壁側突起部を有しており、前記底壁部は、外側に突出する湾曲形状をなしているとともに、複数の底壁側突起部を有しており、前記頂壁側突起部は、前記頂壁部における湾曲形状の頂点部分よりも突出しており、前記底壁側突起部は、前記底壁部における湾曲形状の頂点部分よりも突出している、集電リードが提供される。   In order to achieve the above object, according to the present invention, a rectangular top wall portion, a pair of side wall portions extending from both side edges of the top wall portion, and the side wall portions are connected to and opposed to the top wall portion. A bottom wall portion positioned at a position, wherein the top wall portion has a curved shape protruding outward and has a plurality of top wall side protrusions, and the bottom wall portion And has a plurality of bottom wall-side protrusions, and the top wall-side protrusions protrude from the apex portion of the curved shape of the top wall, and The wall-side protruding portion is provided with a current collecting lead that protrudes from a curved top portion of the bottom wall portion.

また、本発明によれば、上記した集電リードを準備する集電リード準備工程と、正極及び負極がセパレータを介して重ね合わされ渦巻き状に巻回されてなる電極群を準備する電極群準備工程と、前記電極群を外装缶に収容し、前記電極群の正極集電体の上に前記集電リードを載置し、前記集電リードの上に正極端子を含む封口体を載置するセッティング工程と、前記正極集電体、前記集電リード及び前記封口体を抵抗スポット溶接する溶接工程と、前記封口体を前記外装缶にかしめ加工して取り付け、前記外装缶を封口する封口工程と、を備えており、前記溶接工程及び前記封口工程により、前記集電リードを圧縮し、前記頂壁部及び前記底壁部を平坦状にする、アルカリ二次電池の製造方法が提供される。   Moreover, according to the present invention, the current collecting lead preparing step for preparing the current collecting lead described above, and the electrode group preparing step for preparing the electrode group in which the positive electrode and the negative electrode are overlapped and wound in a spiral shape through the separator. The electrode group is housed in an outer can, the current collector lead is placed on the positive electrode current collector of the electrode group, and the sealing body including the positive electrode terminal is placed on the current collector lead A process, a welding step of resistance spot welding the positive electrode current collector, the current collector lead and the sealing body, and a sealing step of caulking and attaching the sealing body to the outer can, and sealing the outer can; There is provided a method of manufacturing an alkaline secondary battery in which the current collecting lead is compressed and the top wall portion and the bottom wall portion are flattened by the welding step and the sealing step.

更に、本発明によれば、上記したアルカリ二次電池の製造方法により製造されたアルカリ二次電池であって、負極端子を含む有底円筒状の外装缶と、正極端子を含み、前記外装缶の上端開口を封止している封口体と、正極及び負極がセパレータを介して重ね合わされ渦巻き状に巻回されてなり、前記外装缶内にアルカリ電解液とともに収容されている円柱状の電極群と、前記電極群の一端面から突出した前記正極の端縁部に接続されている正極集電体と、前記正極集電体と前記封口体とを接続する集電リードと、を備え、前記集電リードは、平面視形状が矩形状の頂壁部と、前記頂壁部の両側縁から延びる一対の側壁部と、前記側壁部につながり、前記頂壁部と相対する位置に位置付けられる底壁部と、を含み、前記頂壁部は、平坦状をなし、複数の溶接部により前記封口体に接続されており、前記底壁部は、平坦状をなし、複数の溶接部により前記正極集電体に接続されている、アルカリ二次電池が提供される。   Furthermore, according to the present invention, an alkaline secondary battery produced by the above-described method for producing an alkaline secondary battery, comprising a bottomed cylindrical outer can including a negative terminal, a positive terminal, and the outer can A cylindrical electrode group that is wound together with an alkaline electrolyte in the outer can, in which a sealing body that seals the upper end opening of the electrode, a positive electrode and a negative electrode are overlapped via a separator and wound in a spiral shape And a positive electrode current collector connected to an edge portion of the positive electrode protruding from one end surface of the electrode group, and a current collector lead connecting the positive electrode current collector and the sealing body, The current collecting lead includes a top wall portion having a rectangular shape in plan view, a pair of side wall portions extending from both side edges of the top wall portion, a bottom connected to the side wall portion and positioned at a position facing the top wall portion. And the top wall portion is flat. A plurality of welds being connected to said sealing body, said bottom wall forms a flat, a plurality of welds are connected to the positive electrode current collector, the alkaline secondary battery is provided.

本発明によれば、溶接不良の発生を抑制し、高率放電特性の向上に貢献する集電リードを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of a welding defect can be suppressed and the current collection lead which contributes to the improvement of a high rate discharge characteristic can be provided.

本発明に係る円筒形のニッケル水素二次電池を示した部分断面図である。1 is a partial cross-sectional view showing a cylindrical nickel-metal hydride secondary battery according to the present invention. 正極集電体を示した平面図である。It is the top view which showed the positive electrode electrical power collector. 集電リードを示した斜視図である。It is the perspective view which showed the current collection lead. 図3におけるIV−IV線に沿った断面図である。It is sectional drawing along the IV-IV line in FIG. 集電リードの中間製品を示した平面図である。It is the top view which showed the intermediate product of the current collection lead. 本発明に係る集電リードの変形の過程を示した概略図である。It is the schematic which showed the process of the deformation | transformation of the current collection lead concerning this invention. 従来の集電リードの変形の過程を示した概略図である。It is the schematic which showed the process of the deformation | transformation of the conventional current collection lead | read | reed.

以下、本発明に係る集電リードを含むアルカリ二次電池について、図面を参照して説明する。   Hereinafter, an alkaline secondary battery including a current collecting lead according to the present invention will be described with reference to the drawings.

本発明が適用される一実施形態のアルカリ二次電池として、図1に示すAAサイズの円筒形のニッケル水素二次電池(以下、電池という)1を例に説明する。   As an alkaline secondary battery according to an embodiment to which the present invention is applied, an AA-sized cylindrical nickel-hydrogen secondary battery (hereinafter referred to as a battery) 1 shown in FIG. 1 will be described as an example.

電池1は、上端が開口した有底円筒形状をなす外装缶2を備え、外装缶2は導電性を有し、その底壁は負極端子として機能する。外装缶2の中には、所定量のアルカリ電解液(図示せず)とともに電極群4が収容されている。   The battery 1 includes an outer can 2 having a bottomed cylindrical shape with an open upper end. The outer can 2 has conductivity, and its bottom wall functions as a negative electrode terminal. In the outer can 2, an electrode group 4 is accommodated together with a predetermined amount of an alkaline electrolyte (not shown).

図1に示すように、外装缶2の開口3は封口体14によって閉塞されている。封口体14は、導電性を有する円板形状の蓋板16、この蓋板16の上に配設された弁体20及び正極端子22を含んでいる。蓋板16の外周部には、この蓋板16を囲むようにリング形状の絶縁ガスケット18が配置され、絶縁ガスケット18及び蓋板16は外装缶2の開口縁17をかしめ加工することにより外装缶2の開口縁17に固定されている。即ち、蓋板16及び絶縁ガスケット18は互いに協働して外装缶2の開口3を封止している。ここで、蓋板16は、中央に中央貫通孔19を有し、そして、蓋板16の外面上には、中央貫通孔19を閉塞するようにゴム製の弁体20が配置されている。更に、蓋板16の外面上には弁体20を覆うようにフランジ付きの円筒形状の正極端子22が電気的に接続されている。この正極端子20は弁体18を蓋板16に向けて押圧している。また、この正極端子22は、側面にガス抜き孔23を有している。   As shown in FIG. 1, the opening 3 of the outer can 2 is closed by a sealing body 14. The sealing body 14 includes a disc-shaped lid plate 16 having conductivity, a valve body 20 disposed on the lid plate 16, and a positive electrode terminal 22. A ring-shaped insulating gasket 18 is disposed on the outer periphery of the cover plate 16 so as to surround the cover plate 16, and the insulating gasket 18 and the cover plate 16 are formed by caulking the opening edge 17 of the outer can 2. 2 is fixed to the opening edge 17. That is, the cover plate 16 and the insulating gasket 18 cooperate with each other to seal the opening 3 of the outer can 2. Here, the lid plate 16 has a central through hole 19 in the center, and a rubber valve body 20 is disposed on the outer surface of the lid plate 16 so as to close the central through hole 19. Furthermore, a flanged cylindrical positive terminal 22 is electrically connected to the outer surface of the cover plate 16 so as to cover the valve body 20. The positive terminal 20 presses the valve body 18 toward the cover plate 16. Further, the positive electrode terminal 22 has a gas vent hole 23 on a side surface.

通常時、中央貫通孔19は弁体20によって気密に閉じられている。一方、外装缶2内にガスが発生し、その内圧が高まれば、弁体20は内圧によって圧縮され、中央貫通孔19が開かれる。その結果、外装缶2内から中央貫通孔19及び正極端子22のガス抜き孔23を介して外部にガスが放出される。つまり、中央貫通孔19、弁体20及び正極端子22のガス抜き孔23は電池1のための安全弁を形成している。   Normally, the central through hole 19 is airtightly closed by the valve body 20. On the other hand, if gas is generated in the outer can 2 and its internal pressure increases, the valve body 20 is compressed by the internal pressure, and the central through hole 19 is opened. As a result, gas is released from the outer can 2 to the outside through the central through hole 19 and the gas vent hole 23 of the positive terminal 22. That is, the central through hole 19, the valve body 20, and the gas vent hole 23 of the positive electrode terminal 22 form a safety valve for the battery 1.

電極群4は、それぞれ帯状の正極6、負極8及びセパレータ10からなり、これらは正極6と負極8との間にセパレータ10が挟み込まれた状態で渦巻状に巻回されている。即ち、セパレータ10を介して正極6及び負極8が互いに重ね合わされている。このような電極群4は、全体としては円柱状をなしている。   The electrode group 4 includes a strip-like positive electrode 6, a negative electrode 8, and a separator 10, which are wound in a spiral shape with the separator 10 sandwiched between the positive electrode 6 and the negative electrode 8. That is, the positive electrode 6 and the negative electrode 8 are overlapped with each other via the separator 10. Such an electrode group 4 has a cylindrical shape as a whole.

この電極群4においては、一方の端面から正極6の端縁部が渦巻状に露出しており、他方の端面から負極8の端縁部が渦巻状に露出している。ここで、露出している正極6の端縁部を正極接続端縁部32とし、露出している負極8の端縁部を負極接続端縁部(図示せず)とする。これら露出している正極接続端縁部32及び負極接続端縁部には、後述する正極集電体28及び負極集電体(図示せず)がそれぞれ溶接される。   In this electrode group 4, the edge of the positive electrode 6 is exposed in a spiral shape from one end surface, and the edge of the negative electrode 8 is exposed in a spiral shape from the other end surface. Here, the exposed edge of the positive electrode 6 is defined as a positive electrode connection edge 32, and the exposed edge of the negative electrode 8 is defined as a negative electrode connection edge (not shown). A positive electrode current collector 28 and a negative electrode current collector (not shown), which will be described later, are welded to the exposed positive electrode connection edge 32 and negative electrode connection edge.

負極8は、帯状をなす導電性の負極芯体を有し、この負極芯体に負極合剤が保持されている。   The negative electrode 8 has a conductive negative electrode core having a strip shape, and a negative electrode mixture is held in the negative electrode core.

負極芯体は、その厚さ方向に貫通する貫通孔(図示せず)が多数分布されている帯状の金属材からなる。このような負極芯体としては、例えば、パンチングメタルシートを用いることができる。   The negative electrode core is made of a band-shaped metal material in which a large number of through holes (not shown) penetrating in the thickness direction are distributed. For example, a punching metal sheet can be used as such a negative electrode core.

負極合剤は、負極芯体の貫通孔内に充填されるばかりでなく、負極芯体の両面上にも層状にして保持されている。   The negative electrode mixture is not only filled in the through hole of the negative electrode core, but also held in layers on both surfaces of the negative electrode core.

負極合剤は、水素吸蔵合金の粒子、導電材、結着剤等を含む。ここで、水素吸蔵合金は、負極活物質である水素を吸蔵及び放出可能な合金であり、ニッケル水素二次電池に一般的に用いられている水素吸蔵合金が好適に用いられる。上記した結着剤は水素吸蔵合金の粒子及び導電材を互いに結着させると同時に負極合剤を負極芯体に結着させる働きをなす。ここで、導電材及び結着剤としては、ニッケル水素二次電池に一般的に用いられているものが好適に用いられる。   The negative electrode mixture includes particles of a hydrogen storage alloy, a conductive material, a binder, and the like. Here, the hydrogen storage alloy is an alloy capable of storing and releasing hydrogen, which is a negative electrode active material, and a hydrogen storage alloy generally used in nickel-hydrogen secondary batteries is preferably used. The above-described binder serves to bind the particles of the hydrogen storage alloy and the conductive material to each other and at the same time bind the negative electrode mixture to the negative electrode core. Here, as the conductive material and the binder, those generally used in nickel-hydrogen secondary batteries are preferably used.

負極8は、例えば、以下のようにして製造することができる。   The negative electrode 8 can be manufactured as follows, for example.

まず、水素吸蔵合金粒子からなる水素吸蔵合金粉末、導電材、結着剤及び水を混練して負極合剤のペーストを調製する。得られた負極合剤のペーストは負極芯体に塗着され、乾燥させられる。乾燥後、水素吸蔵合金粒子等を含む負極合剤が付着した負極芯体はロール圧延及び裁断が施され、負極の中間製品が得られる。この負極の中間製品は、全体として長方形状をなしている。そして、この負極の中間製品における負極接続端縁部となるべき所定の端縁部については、負極合剤の除去が行われる。これにより、所定の端縁部は、負極芯体がむき出しの状態とされた負極接続端縁部となる。このようにして、負極接続端縁部を有する負極8が得られる。ここで、負極合剤の除去方法としては、特に限定はされないが、例えば、超音波振動を与えることにより除去することが好適に行われる。なお、負極接続端縁部以外の領域には、負極合剤が保持されたままの状態である。   First, a hydrogen storage alloy powder composed of hydrogen storage alloy particles, a conductive material, a binder, and water are kneaded to prepare a paste of a negative electrode mixture. The obtained paste of the negative electrode mixture is applied to the negative electrode core and dried. After drying, the negative electrode core body to which the negative electrode mixture containing hydrogen storage alloy particles and the like is attached is subjected to roll rolling and cutting to obtain an intermediate product of the negative electrode. The intermediate product of this negative electrode has a rectangular shape as a whole. And about the predetermined | prescribed edge part which should become a negative electrode connection edge part in this intermediate product of a negative electrode, removal of a negative mix is performed. As a result, the predetermined edge portion becomes the negative electrode connection edge portion in which the negative electrode core is exposed. In this way, the negative electrode 8 having the negative electrode connection edge is obtained. Here, the method for removing the negative electrode mixture is not particularly limited, but for example, the removal is preferably performed by applying ultrasonic vibration. Note that the negative electrode mixture is still held in the region other than the negative electrode connection edge.

次に、正極6について説明する。   Next, the positive electrode 6 will be described.

正極6は、多孔質構造をなし多数の空孔を有する導電性の正極基材と、前記した空孔内及び正極基材の表面に保持された正極合剤とを含む。   The positive electrode 6 includes a conductive positive electrode base material having a porous structure and having a large number of pores, and a positive electrode mixture held in the pores and on the surface of the positive electrode base material.

正極基材としては、例えば、発泡ニッケル(ニッケルフォーム)を用いることができる。   As the positive electrode base material, for example, foamed nickel (nickel foam) can be used.

正極合剤は、正極活物質粒子としての水酸化ニッケル粒子、導電材としてのコバルト化合物、結着剤等を含んでいる。上記した結着剤は、水酸化ニッケル粒子及び導電材を互いに結着させると同時に正極合剤を正極基材に結着させる働きをなす。ここで、結着剤としては、ニッケル水素二次電池に一般的に用いられているものが好適に用いられる。   The positive electrode mixture includes nickel hydroxide particles as positive electrode active material particles, a cobalt compound as a conductive material, a binder, and the like. The above-described binder serves to bind the nickel hydroxide particles and the conductive material to each other and simultaneously bind the positive electrode mixture to the positive electrode base material. Here, what is generally used for the nickel-hydrogen secondary battery is suitably used as the binder.

正極6は、例えば、以下のようにして製造することができる。   The positive electrode 6 can be manufactured as follows, for example.

まず、正極活物質粒子からなる正極活物質粉末、導電材、水及び結着剤を含む正極合剤スラリーを調製する。得られた正極合剤スラリーは、例えばニッケルフォームに充填され、乾燥させられる。乾燥後、水酸化ニッケル粒子等が充填されたニッケルフォームは、ロール圧延されてから所定形状に裁断され、正極の中間製品が得られる。この正極の中間製品は、全体として長方形状をなしている。そして、この正極の中間製品における正極接続端縁部32となるべき所定の端縁部については、正極合剤の除去が行われ、正極基材がむき出しの状態とされる。次いで、正極合剤が除去された端縁部は、正極の中間製品の厚さ方向に圧縮加工され正極接続端縁部32となる。このように圧縮加工されることにより、正極基材は、稠密な状態となるので、この正極接続端縁部32は溶接がし易い状態となる。このようにして、正極接続端縁部32を有する正極6が得られる。ここで、正極合剤の除去方法としては、特に限定はされないが、例えば、超音波振動を与えることにより除去することが好適に行われる。なお、正極接続端縁部32以外の領域には、正極合剤が充填されたままの状態である。   First, a positive electrode mixture slurry containing a positive electrode active material powder composed of positive electrode active material particles, a conductive material, water, and a binder is prepared. The obtained positive electrode mixture slurry is filled in, for example, nickel foam and dried. After drying, the nickel foam filled with nickel hydroxide particles and the like is roll-rolled and then cut into a predetermined shape to obtain an intermediate product of the positive electrode. The intermediate product of this positive electrode has a rectangular shape as a whole. And about the predetermined | prescribed edge part which should become the positive electrode connection edge part 32 in this intermediate product of a positive electrode, the positive mix is removed and the positive electrode base material is exposed. Next, the edge part from which the positive electrode mixture has been removed is compressed in the thickness direction of the intermediate product of the positive electrode to become the positive electrode connection edge part 32. Since the positive electrode base material is in a dense state by being compressed in this manner, the positive electrode connection end edge portion 32 is easily welded. In this way, the positive electrode 6 having the positive electrode connection edge portion 32 is obtained. Here, the method for removing the positive electrode mixture is not particularly limited, but for example, it is suitably performed by applying ultrasonic vibration. It should be noted that the region other than the positive electrode connection edge portion 32 is still filled with the positive electrode mixture.

次に、セパレータ10としては、例えば、ポリアミド繊維製不織布に親水性官能基を付与したもの、あるいは、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものを用いることができる。   Next, as the separator 10, for example, a polyamide fiber nonwoven fabric provided with a hydrophilic functional group, or a polyolefin fiber nonwoven fabric such as polyethylene or polypropylene provided with a hydrophilic functional group can be used.

以上のようにして製造された正極6及び負極8は、上記したセパレータ10を介在させた状態で、渦巻き状に巻回され、これにより電極群4が形成される。詳しくは、巻回の際、正極6及び負極8は、互いに、電極群4の軸線方向に沿う方向に僅かにずれた状態となるように配置されるとともに、これら正極6及び負極8の間には、所定サイズのセパレータ10が所定位置に配置され、この状態で巻回作業が行われる。その結果、円柱状の電極群4が得られる。得られた電極群4の態様としては、電極群4の一端側においては、正極6の正極接続端縁部32が、セパレータ10を介して隣り合っている負極8よりも突出した状態となっており、電極群4の他端側においては、負極8の負極接続端縁部が、セパレータ10を介して隣り合っている正極6よりも突出した状態となっている。   The positive electrode 6 and the negative electrode 8 produced as described above are spirally wound with the separator 10 interposed therebetween, whereby the electrode group 4 is formed. Specifically, during winding, the positive electrode 6 and the negative electrode 8 are arranged so as to be slightly shifted from each other in the direction along the axial direction of the electrode group 4, and between the positive electrode 6 and the negative electrode 8. The separator 10 having a predetermined size is disposed at a predetermined position, and the winding operation is performed in this state. As a result, a cylindrical electrode group 4 is obtained. As an aspect of the obtained electrode group 4, in one end side of the electrode group 4, the positive electrode connection edge 32 of the positive electrode 6 protrudes from the adjacent negative electrode 8 through the separator 10. On the other end side of the electrode group 4, the negative electrode connection edge portion of the negative electrode 8 is in a state of protruding from the adjacent positive electrode 6 with the separator 10 interposed therebetween.

なお、電極群4は、上記した正極6、負極8及びセパレータ10が、所定の外径寸法を有する巻芯により巻回されて形成され、巻回作業後は、この巻芯が抜き取られるので、電極群4の中央には貫通孔9が形成されている。   The electrode group 4 is formed by winding the positive electrode 6, the negative electrode 8, and the separator 10 with a core having a predetermined outer diameter, and the core is extracted after the winding operation. A through hole 9 is formed in the center of the electrode group 4.

以上のような電極群4においては、一端側に正極集電体28が接続され、他端側に負極集電体が接続される。   In the electrode group 4 as described above, the positive electrode current collector 28 is connected to one end side, and the negative electrode current collector is connected to the other end side.

まず、負極集電体については、特に限定されるものではなく、例えば、従来から用いられている円板形状の金属板を用いることが好ましい。準備した負極集電体は、電極群4の他端側の負極接続端縁部に溶接される。   First, the negative electrode current collector is not particularly limited, and for example, a conventionally used disk-shaped metal plate is preferably used. The prepared negative electrode current collector is welded to the negative electrode connection edge on the other end side of the electrode group 4.

次に、正極集電体28について説明する。   Next, the positive electrode current collector 28 will be described.

正極集電体28は、導電性材料からなる板状体であり、平面視形状は特に限定されるものではなく、円板形状、多角形状等任意の形状のものを採用することができる。また、正極集電体28の大きさは、電極群4の外径寸法よりも小さく、且つ、電極群4の一端側から突出している正極6の正極接続端縁部32の全体をカバーできる大きさに設定される。   The positive electrode current collector 28 is a plate-like body made of a conductive material, and the shape in plan view is not particularly limited, and any shape such as a disk shape or a polygonal shape can be adopted. The size of the positive electrode current collector 28 is smaller than the outer diameter size of the electrode group 4 and can cover the entire positive electrode connection edge 32 of the positive electrode 6 protruding from one end side of the electrode group 4. Is set.

本実施形態においては、図2に示すように、平面視形状が十角形状の板材が用いられる。詳しくは、正極集電体28は、全体として十角形状のNiめっき鋼製の薄板であり、中央に円形の中央貫通孔29と、この中央貫通孔29を囲むように放射状に延びる6個のスリット30とを含んでいる。スリット30は、打ち抜き加工で形成し、スリット30のエッジの部分に下方(電極群4側)へ延びる突起(バリ)を生じさせることが好ましい。   In the present embodiment, as shown in FIG. 2, a plate material having a decagonal shape in plan view is used. Specifically, the positive electrode current collector 28 is a thin plate made of Ni-plated steel having a decagonal shape as a whole, and has a circular central through hole 29 at the center and six radially extending so as to surround the central through hole 29. The slit 30 is included. The slit 30 is preferably formed by punching, and a protrusion (burr) extending downward (on the electrode group 4 side) is generated at an edge portion of the slit 30.

電池1においては、図1に示すように、正極集電体28と封口体14との間に集電リード34が介在し、この集電リード34が、電極群4の正極6に接続されている正極集電体28と、正極端子22を有する封口体14とを電気的に接続する。   In the battery 1, as shown in FIG. 1, a current collecting lead 34 is interposed between the positive electrode current collector 28 and the sealing body 14, and this current collecting lead 34 is connected to the positive electrode 6 of the electrode group 4. The positive electrode current collector 28 and the sealing body 14 having the positive electrode terminal 22 are electrically connected.

集電リード34は、例えば、図3に示すように、封口体14と接続される頂壁部36と、頂壁部36の所定の側縁38、40から延びる一対の側壁部42、44と、側壁部42、44における頂壁部36とは反対側の端縁46、48から延び、正極集電体28と接続される底壁部としての脚部50、52とを有している。   For example, as shown in FIG. 3, the current collecting lead 34 includes a top wall portion 36 connected to the sealing body 14, and a pair of side wall portions 42 and 44 extending from predetermined side edges 38 and 40 of the top wall portion 36. The side wall portions 42 and 44 have leg portions 50 and 52 as bottom wall portions extending from end edges 46 and 48 opposite to the top wall portion 36 and connected to the positive electrode current collector 28.

頂壁部36は、平面視形状がほぼ矩形状をなし、その中央に円形の貫通孔54が設けられている。この貫通孔54は、集電リード34が封口体14に接続された際に、蓋板16の中央貫通孔19と相対する位置に位置付けられる。この頂壁部36の断面形状は、図4に示すように、全体として外側に突出するような湾曲形状をなしている。この湾曲形状の頂点部分36aは、頂壁部36のほぼ中央に位置付けられている。   The top wall portion 36 has a substantially rectangular shape in plan view, and a circular through hole 54 is provided at the center thereof. The through hole 54 is positioned at a position facing the central through hole 19 of the cover plate 16 when the current collecting lead 34 is connected to the sealing body 14. As shown in FIG. 4, the cross-sectional shape of the top wall portion 36 is a curved shape that protrudes outward as a whole. The curved apex portion 36 a is positioned substantially at the center of the top wall portion 36.

また、頂壁部36の外周面には、図3から明らかなように、貫通孔54の周囲に溶接点となる頂壁側突起部56が4個設けられている。そして、これら頂壁側突起部56は、湾曲形状の頂点部分36aよりも突出している。つまり、図4に示すように、右側の頂壁側突起部56の先端56aと、左側の頂壁側突起部56の先端56aと結んだ仮想線L1が、頂壁部36の頂点部分36aよりも外側に位置付けられている。   Further, as is apparent from FIG. 3, four top wall side protrusions 56 serving as welding points are provided on the outer peripheral surface of the top wall portion 36 around the through hole 54. And these top wall side protrusion parts 56 protrude rather than the curved vertex part 36a. That is, as shown in FIG. 4, the imaginary line L1 connecting the tip 56a of the right top wall side projection 56 and the tip 56a of the left top wall projection 56 is from the apex portion 36a of the top wall 36. Is also located on the outside.

側壁部42、44は、上記したように、頂壁部36の両側縁38、40から延びており、側壁部42、44の端縁46、48には、脚部50、52がそれぞれ延びている。これら両側縁38、40及び端縁46、48は、図4に示すように、角が排除され、ラウンド形状となっている。このため、側壁部42、44は、全体的に断面形状が外側に膨らむ湾曲形状をなしている。   As described above, the side wall portions 42 and 44 extend from both side edges 38 and 40 of the top wall portion 36, and leg portions 50 and 52 extend from the end edges 46 and 48 of the side wall portions 42 and 44, respectively. Yes. As shown in FIG. 4, the side edges 38 and 40 and the end edges 46 and 48 are rounded with corners eliminated. For this reason, the side wall parts 42 and 44 have comprised the curved shape which cross-sectional shape swells outside as a whole.

脚部50、52は、頂壁部36と対向する位置に位置付けられている。また、脚部50、52は、図3に示すように、側壁部42、44の長手方向に沿う方向に延びる延出部50a、50b、52a、52bを有している。これら延出部50a、50b、52a、52bが頂壁部36と対向する位置から外側に延びていることにより、集電リード34が正極集電体28に接続された際に集電リード34の安定性を高める働きをする。これら延出部50a、50b、52a、52bを含め脚部50、52の全体としての断面形状は、図4に示すように、外側に突出するような湾曲形状をなしている。ここで、脚部50の先端と、脚部52の先端とを延長してつないだ形状を仮想線51で示す。この仮想線51により仮想される、脚部50、52の湾曲形状の頂点部分53は、脚部50、52のほぼ中央に位置付けられている。   The leg portions 50 and 52 are positioned at positions facing the top wall portion 36. Moreover, the leg parts 50 and 52 have the extension parts 50a, 50b, 52a, and 52b extended in the direction along the longitudinal direction of the side wall parts 42 and 44, as shown in FIG. These extending portions 50 a, 50 b, 52 a, 52 b extend outward from the position facing the top wall portion 36, so that when the current collecting lead 34 is connected to the positive electrode current collector 28, It works to increase stability. The overall cross-sectional shape of the legs 50, 52 including these extending portions 50a, 50b, 52a, 52b is a curved shape that protrudes outward as shown in FIG. Here, a shape obtained by extending the tip of the leg 50 and the tip of the leg 52 is indicated by a virtual line 51. The curved vertex portion 53 of the leg portions 50 and 52 imaginary by the virtual line 51 is positioned substantially at the center of the leg portions 50 and 52.

また、これら延出部50a、50b、52a、52bの外周面には、溶接点となる脚部側突起部58が設けられている(図4参照)。そして、これら脚部側突起部58は、湾曲形状の頂点部分53よりも突出している。つまり、図4に示すように、右側の脚部側突起部58の先端58aと、左側の脚部側突起部58の先端58aと結んだ仮想線L2が、脚部50、52の頂点部分53よりも外側に位置付けられている。   Moreover, the leg side protrusion part 58 used as a welding point is provided in the outer peripheral surface of these extension part 50a, 50b, 52a, 52b (refer FIG. 4). These leg-side protrusions 58 protrude from the curved vertex portion 53. That is, as shown in FIG. 4, an imaginary line L2 connected to the tip 58a of the right leg-side projection 58 and the tip 58a of the left leg-side projection 58 is the apex portion 53 of the legs 50, 52. It is positioned outside.

ここで、頂壁側突起部56及び脚部側突起部58は、例えば、プレス加工により形成される。なお、図3における参照符号60は、脚部50、52に脚部側突起部58を設ける際に突起部58の裏側に生じた凹部を示す。   Here, the top-wall-side protrusion 56 and the leg-side protrusion 58 are formed by, for example, pressing. Note that reference numeral 60 in FIG. 3 indicates a recess formed on the back side of the protrusion 58 when the leg 50 is provided on the leg 50, 52.

また、頂壁側突起部56は、頂点部分36aに近い部分に形成することが好ましく、脚部側突起部58は、頂点部分53に近い部分に形成することが好ましい。このようにすることにより、頂壁側突起部56及び脚部側突起部58が、頂点部分36a及び頂点部分53よりもそれぞれ突出した状態を作りやすい。   Further, the top wall side protrusion 56 is preferably formed in a portion close to the apex portion 36 a, and the leg side protrusion 58 is preferably formed in a portion close to the apex portion 53. By doing in this way, it is easy to make the state which the top wall side projection part 56 and the leg part side projection part 58 protruded rather than the vertex part 36a and the vertex part 53, respectively.

この集電リード34は、例えば、以下のようにして製造することができる。   The current collecting lead 34 can be manufactured as follows, for example.

まず、金属製の薄板を加工することにより、図5に示すような、平面視形状がほぼH形の薄板からなる集電リードの中間製品62を準備する。なお、この薄板は、従来の正極タブに比べて十分厚い。この中間製品62において、両側部に位置付けられた長尺部分が、脚部50、52となる脚部予定領域70、72である。脚部予定領域70、72の内側に連なる領域は、側壁部42、44となる側壁部予定領域74、76である。そして、側壁部予定領域74と側壁部予定領域76との間に挟まれた領域が、頂壁部36となる頂壁部予定領域78である。   First, by processing a metal thin plate, a current collector lead intermediate product 62 made of a thin plate having a substantially H-shaped plan view as shown in FIG. 5 is prepared. In addition, this thin plate is sufficiently thick compared with the conventional positive electrode tab. In the intermediate product 62, the long portions positioned on both sides are leg portion planned regions 70 and 72 that become the leg portions 50 and 52. The regions that continue to the inside of the planned leg portions 70 and 72 are the side wall portions 74 and 76 that become the side walls 42 and 44. A region sandwiched between the side wall portion planned region 74 and the side wall portion planned region 76 is a top wall portion planned region 78 that becomes the top wall portion 36.

更にこの中間製品62には、打ち抜き加工により、頂壁予定領域78の中央に貫通孔54が穿設される。   Further, the intermediate product 62 is provided with a through hole 54 at the center of the planned top wall region 78 by punching.

次いで、貫通孔54の周囲の所定位置及び脚部予定領域70、72の両端部の所定位置に、プレス加工により、頂壁側突起部56及び脚部側突起部58を設ける。   Next, the top wall side protrusion 56 and the leg side protrusion 58 are provided by pressing at a predetermined position around the through-hole 54 and at both ends of the planned leg portions 70 and 72.

その後、仮想線80、82、84、86の部分を折り曲げて、両側縁38、40及び端縁46、48となる部分をラウンド形状にするとともに、頂壁部予定領域78及び脚部予定領域70、72を湾曲形状となるように曲げ加工することにより、図3に示すような集電リード34を形成する。   Thereafter, the virtual lines 80, 82, 84, 86 are bent so that the side edges 38, 40 and the edges 46, 48 are rounded, and the top wall planned area 78 and the planned leg 70 are formed. , 72 are bent so as to have a curved shape, thereby forming a current collecting lead 34 as shown in FIG.

なお、本実施形態では、脚部50と、脚部52との間に間隙を設け、底壁部を二つに分けているが、本発明は、この態様に限定されるものではなく、脚部50と、脚部52とを連結し、これら脚部50及び脚部52が一体化された一つの底壁部としても構わない。   In this embodiment, a gap is provided between the leg portion 50 and the leg portion 52, and the bottom wall portion is divided into two. However, the present invention is not limited to this aspect, and The part 50 and the leg part 52 may be connected to each other, and the leg part 50 and the leg part 52 may be integrated into one bottom wall part.

次に、電池1の製造方法について説明する。   Next, a method for manufacturing the battery 1 will be described.

まず、上記のようにして製造した集電リード34を準備するとともに、上記したような電極群4を準備する。   First, the current collector lead 34 manufactured as described above is prepared, and the electrode group 4 as described above is prepared.

そして、電極群4の他端側に負極集電体を接続した後、当該電極群4を外装缶の中に収容する。そして、外装缶の底壁に負極集電体を抵抗スポット溶接する。   And after connecting a negative electrode collector to the other end side of the electrode group 4, the said electrode group 4 is accommodated in an exterior can. Then, the negative electrode current collector is resistance spot welded to the bottom wall of the outer can.

次いで、外装缶2内にアルカリ電解液を所定量注入する。外装缶2内に注入されたアルカリ電解液は、電極群4に保持され、その大部分はセパレータ10に保持される。このアルカリ電解液は、正極6と負極8との間での充放電の際の電気化学反応(充放電反応)を進行させる。このアルカリ電解液としては、KOH、NaOH及びLiOHのうちの少なくとも一種を溶質として含むアルカリ電解液を用いることが好ましい。   Next, a predetermined amount of alkaline electrolyte is injected into the outer can 2. The alkaline electrolyte injected into the outer can 2 is held in the electrode group 4, and most of the alkaline electrolyte is held in the separator 10. This alkaline electrolyte advances an electrochemical reaction (charge / discharge reaction) during charge / discharge between the positive electrode 6 and the negative electrode 8. As the alkaline electrolyte, an alkaline electrolyte containing at least one of KOH, NaOH, and LiOH as a solute is preferably used.

次いで、電極群4の一端側に正極集電体28を載置し、更に、正極集電体28の上に集電リード34を載置する。この状態で、外装缶4の上端開口部に絶縁ガスケット18を介して封口体14を配置する。   Next, the positive electrode current collector 28 is placed on one end side of the electrode group 4, and the current collector lead 34 is further placed on the positive electrode current collector 28. In this state, the sealing body 14 is disposed through the insulating gasket 18 in the upper end opening of the outer can 4.

ここで、集電リード34においては、頂壁側突起部56が、頂壁部36の湾曲形状の頂点部分36aよりも突出しており、脚部側突起部58が、脚部50、52の間に仮想される湾曲形状の頂点部分53よりも突出している。このため、変形前の集電リード34を概略的に示した図6(a)から明らかなように、頂壁側突起部56と封口体14とが接触し、脚部側突起部58と正極集電体28とが接触している。   Here, in the current collecting lead 34, the top wall side protruding portion 56 protrudes from the curved apex portion 36 a of the top wall portion 36, and the leg side protruding portion 58 is between the leg portions 50 and 52. It protrudes from the apex portion 53 of the curved shape virtually imagined. Therefore, as apparent from FIG. 6A schematically showing the current collecting lead 34 before deformation, the top wall side protrusion 56 and the sealing body 14 are in contact with each other, and the leg side protrusion 58 and the positive electrode are in contact with each other. The current collector 28 is in contact.

その後、電池1の正極端子22と負極端子との間に加圧しながら電流を流し、抵抗スポット溶接を行う。これにより、正極6の正極接続端縁部32と正極集電体28とが溶接され、正極集電体28と集電リード34の脚部50、52とが溶接され、集電リード34の頂壁部36と封口体14の蓋板16とが溶接される。   Thereafter, a current is applied while pressing between the positive electrode terminal 22 and the negative electrode terminal of the battery 1 to perform resistance spot welding. As a result, the positive electrode connecting edge 32 of the positive electrode 6 and the positive electrode current collector 28 are welded, and the positive electrode current collector 28 and the legs 50 and 52 of the current collector lead 34 are welded. The wall portion 36 and the lid plate 16 of the sealing body 14 are welded.

その後、外装缶2の開口縁17をかしめ加工することにより、外装缶2の開口3を封止する。   Then, the opening 3 of the outer can 2 is sealed by caulking the opening edge 17 of the outer can 2.

ここで、上記したような正極集電体28においては、スリット30のエッジの部分の突起(バリ)が正極6の正極接続端縁部32に当接するように配置される。そして、抵抗スポット溶接が行われるとき、当該突起(バリ)の部分に溶接電流が集中し、突起(バリ)の部分の一部が溶融して溶接点となり、正極集電体28と正極6の正極接続端縁部32とが接続される。また、集電リード34の脚部50、52においては、脚部側突起部58が正極集電体28と接触している。そして、抵抗スポット溶接が行われるとき、脚部側突起部58の部分に溶接電流が集中し、脚部側突起部58の一部が溶融して集電リード34の脚部50、52と正極集電体28とが接続される。更に、集電リード34の頂壁部36においては、頂壁側突起部56が封口体14と接触している。そして、抵抗スポット溶接が行われるとき、頂壁側突起部56の部分に溶接電流が集中し、頂壁側突起部56の一部が溶融して集電リード34の頂壁部36と封口体14とが接続される。   Here, in the positive electrode current collector 28 as described above, the protrusions (burrs) at the edge portions of the slits 30 are arranged so as to abut on the positive electrode connection end edge portion 32 of the positive electrode 6. When resistance spot welding is performed, the welding current concentrates on the protrusion (burr) part, and a part of the protrusion (burr) part melts to become a welding point, and the positive electrode current collector 28 and the positive electrode 6 The positive connection end edge 32 is connected. In addition, in the leg portions 50 and 52 of the current collecting lead 34, the leg side protrusion 58 is in contact with the positive electrode current collector 28. When resistance spot welding is performed, the welding current concentrates on the leg-side projection 58, and a part of the leg-side projection 58 melts, and the legs 50, 52 of the current collecting lead 34 and the positive electrode A current collector 28 is connected. Further, in the top wall portion 36 of the current collecting lead 34, the top wall side protrusion 56 is in contact with the sealing body 14. When resistance spot welding is performed, the welding current concentrates on the top wall projection 56 and a part of the top wall projection 56 melts to form the top wall 36 of the current collecting lead 34 and the sealing body. 14 is connected.

ここで、頂壁側突起部56が湾曲形状の頂点部分36aよりも突出していないと、頂壁側突起部56が封口体14と接触せず、脚部側突起部58が湾曲形状の頂点部分53よりも突出していないと、脚部側突起部58が正極集電体28と接触せず、溶接電流の集中が起こり難くなり、良好な溶接部が得られない。よって、頂壁側突起部56を頂壁部36の頂点部分36aよりも突出させ、脚部側突起部58を脚部50と脚部52との間に仮想される頂点部分53よりも突出させた状態とすることが重要である。   Here, if the top wall side protrusion 56 does not protrude beyond the curved apex portion 36a, the top wall side protrusion 56 does not contact the sealing body 14, and the leg side protuberance 58 has a curved apex portion. If it does not protrude from 53, the leg-side protrusion 58 does not contact the positive electrode current collector 28, and it becomes difficult to concentrate the welding current, and a good weld cannot be obtained. Therefore, the top wall side protruding portion 56 is protruded from the apex portion 36 a of the top wall portion 36, and the leg portion side protruding portion 58 is protruded from the apex portion 53 imaginary between the leg portion 50 and the leg portion 52. It is important to keep it in a stable state.

以上のようにして、正極6と正極端子22とが、正極集電体28、集電リード34及び蓋板16を介して電気的に接続され、電池1が形成される。   As described above, the positive electrode 6 and the positive electrode terminal 22 are electrically connected via the positive electrode current collector 28, the current collector lead 34, and the lid plate 16, and the battery 1 is formed.

上記したような抵抗スポット溶接の際及びかしめ加工の際、電池1には、その軸線に沿う方向に圧縮応力が加えられる。それにともない、電極群4、正極集電体28、集電リード34等の電池1を構成する部品にも圧縮応力が加えられる。ここで、集電リード34は、頂壁部36と脚部50、52とが近づく方向(図4の矢印A方向及ぶ矢印B方向)に圧縮応力を受けると、集電リード34は、頂壁部36と脚部50、52とが近づく方向に変形し潰れる。本発明に係る集電リード34は、図6(a)に示すように、頂壁部36及び脚部50、52の部分が予め湾曲形状をなしているので、潰される過程で、図6(b)に示すように、頂壁部36及び脚部50、52は変形し、平坦化する。つまり、頂壁部36及び脚部50、52の中央の部分が従来のように弓なりに曲がるような変形の発生は抑制される。その結果、溶接部への剪断応力は小さくさり、溶接外れが起こり難くなり、溶接不良の発生を抑制することができる。このため、本発明によれば、通電経路を太く維持できるので、電池の内部抵抗を低くでき、電池の高率放電特性の向上を図ることができる。また、集電リードの部分での亀裂の発生が抑えられるので、電池毎に抵抗値がばらつくことは抑制される。その結果、得られる電池の品質の安定性が向上する。   In the resistance spot welding and the caulking process as described above, a compressive stress is applied to the battery 1 in a direction along the axis. Accordingly, compressive stress is also applied to the components constituting the battery 1 such as the electrode group 4, the positive electrode current collector 28, and the current collector lead 34. Here, when the current collecting lead 34 receives compressive stress in a direction in which the top wall portion 36 and the leg portions 50 and 52 approach each other (the arrow B direction extending in the direction of arrow A in FIG. 4), the current collecting lead 34 The portion 36 and the legs 50 and 52 are deformed and crushed in a direction approaching. As shown in FIG. 6A, the current collecting lead 34 according to the present invention has a curved shape in advance because the top wall portion 36 and the leg portions 50 and 52 are in the process of being crushed. As shown in b), the top wall 36 and the legs 50 and 52 are deformed and flattened. That is, the occurrence of deformation such that the central portion of the top wall portion 36 and the leg portions 50 and 52 bends like a conventional bow is suppressed. As a result, the shear stress on the welded portion is reduced, and it is difficult for the weld to come off, and the occurrence of poor welding can be suppressed. Therefore, according to the present invention, since the energization path can be maintained thick, the internal resistance of the battery can be reduced, and the high rate discharge characteristics of the battery can be improved. In addition, since the generation of cracks in the current collecting lead portion is suppressed, variation in resistance value among the batteries is suppressed. As a result, the stability of the quality of the obtained battery is improved.

本発明の集電リード34は、潰される前は、図6(a)に示すように、頂壁部36及び脚部50、52が湾曲した状態である。そして、潰された後の本発明の集電リード34は、図6(b)に示すように、頂壁部36及び脚部50、52は平坦化し、頂壁部36における脚部50、52に面する内面と、脚部50、52における頂壁部36に面する内面とが互いにほぼ平行に延びている状態となる。つまり、完成した電池内における本発明の集電リード34は、中央部が弓なりに曲がるように変形しているのではなく、図6(b)に示すように、頂壁部36及び脚部50、52は平坦化していることを特徴としている。   Before the current collecting lead 34 of the present invention is crushed, the top wall portion 36 and the leg portions 50 and 52 are curved as shown in FIG. Then, in the current collecting lead 34 of the present invention after being crushed, as shown in FIG. 6B, the top wall portion 36 and the leg portions 50 and 52 are flattened, and the leg portions 50 and 52 in the top wall portion 36 are flattened. And the inner surfaces of the leg portions 50 and 52 facing the top wall 36 extend substantially in parallel with each other. That is, the current collecting lead 34 of the present invention in the completed battery is not deformed so that the central portion bends like a bow, but as shown in FIG. 6B, the top wall portion 36 and the leg portion 50 are formed. , 52 are flattened.

ここで、近年、各種機器の小型化が進んでおり、小型の機器についても高率での放電が要求されている。このような状況にともない、小型の機器に使用される、AA形(R6形、単3形に相当)やAAA形(R03形、単4形に相当)といった小形の電池についてもより高率での放電が要求されている。   Here, in recent years, various devices have been miniaturized, and discharge at a high rate is required even for small devices. Under these circumstances, small batteries such as AA type (corresponding to R6 type, AA type) and AAA type (corresponding to R03 type, AA type) used for small devices are also at a higher rate. Discharge is required.

しかしながら、これら小形の電池においては、D形(R20形、単1形に相当)やC形(R14形、単2形に相当)の大型の電池の場合に比べ、集電リードを小形化しなければならない。集電リードの小形化にともない、集電リードの可撓性が低下することから、電池の軸線方向に圧縮応力が加えられる際に、集電リードが十分に変形せず、集電体にダイレクトに応力が伝わる。そうすると、正極集電体が変形し、電極群を圧迫して短絡がより発生し易くなっている。また、小形の電池では、電極群の巻回数が少ないため、電極群自体の軸線方向の強度も低くなっている。このため、優れた高率放電特性を得るために単純に小形化した集電リードを用いた小形の電池では、大形の電池に比べ、正極集電体の変形にともなう短絡が発生し易くなっている。   However, in these small batteries, the current collector leads must be downsized compared to large batteries of D type (equivalent to R20 type, single type 1) or C type (equivalent to R14 type, single type 2). I must. As the current collector lead becomes smaller, the flexibility of the current collector lead decreases, so that when the compressive stress is applied in the axial direction of the battery, the current collector lead does not deform sufficiently and directly on the current collector. Stress is transmitted to. If it does so, a positive electrode electrical power collector will deform | transform and it will become easy to generate | occur | produce a short circuit by pressing an electrode group. Further, in a small battery, since the number of turns of the electrode group is small, the strength of the electrode group itself in the axial direction is also low. For this reason, in a small battery using a current collector lead that is simply miniaturized in order to obtain excellent high rate discharge characteristics, a short circuit due to deformation of the positive electrode current collector is more likely to occur than in a large battery. ing.

このような状況に対し、集電リードの材料の厚さの検討や側壁のエッジ部の角を排除する対応をとることにより、集電リードの可撓性を向上させることが可能であることを確認した。しかしながら、このような対応では、集電リードの潰し量が大きくなった際に、集電リードのエッジ部が正極集電板や封口板に接触した状態で、封口体の降下で上下方向に負荷荷重がかかるため、中央部が弓なりに曲がるような変形が発生してしまい、その結果、溶接部への剪断応力が大きくなるため、溶接外れの不良が高い確率で発生する問題が発生していた。   For this situation, it is possible to improve the flexibility of the current collector lead by examining the thickness of the current collector lead and eliminating the corners of the side walls. confirmed. However, in such a countermeasure, when the amount of crushing of the current collecting lead is increased, the load is moved in the vertical direction by lowering the sealing body while the edge portion of the current collecting lead is in contact with the positive current collecting plate or the sealing plate. Since a load is applied, a deformation occurs such that the central part bends like a bow. As a result, the shear stress to the welded part increases, so that there is a problem that a defect in welding failure occurs with a high probability. .

本発明は、集電リードの形状を、正極集電体に相対する部分及び封口体に相対する部分が外側へ突出する湾曲形状としているので、集電リードに圧縮応力がかかっても、中央部が弓なりに変形することを抑えることができる。よって、高率放電特性に優れる小形の電池、具体的には、直径18mm以下の電池の溶接不良の発生を抑えることに特に有効である。   In the present invention, since the shape of the current collecting lead is a curved shape in which the portion facing the positive electrode current collector and the portion facing the sealing body protrude outward, even if compressive stress is applied to the current collecting lead, Can be prevented from deforming like a bow. Therefore, it is particularly effective for suppressing the occurrence of poor welding of a small battery excellent in high rate discharge characteristics, specifically, a battery having a diameter of 18 mm or less.

また、上記した電池1の製造方法の手順において、電極郡4を外装缶2に収容してから電極郡4と正極集電体28とを溶接したが、この態様に限定されるものではなく、あらかじめ電極郡4に正極集電体28を溶接しておいても構わない。   Moreover, in the procedure of the manufacturing method of the battery 1 described above, the electrode group 4 and the positive electrode current collector 28 were welded after the electrode group 4 was accommodated in the outer can 2, but is not limited to this mode. The positive electrode current collector 28 may be welded to the electrode group 4 in advance.

[実施例]
(1)電池の製造
[Example]
(1) Battery manufacturing

実施例1   Example 1

一般的なニッケル水素二次電池に用いられる正極6、負極8及びセパレータ10を準備した。これら正極6、負極8及びセパレータ10はそれぞれ帯状をなしている。準備した正極6及び負極8の間にセパレータ10を介在させた状態で、渦巻き状に巻回し、AAサイズ用の電極群4を形成した。巻回の際、正極6及び負極8を、互いに、電極群4の軸線方向に沿う方向に僅かにずれた状態となるように配置するとともに、これら正極6及び負極8の間の所定位置にセパレータ10を配置し、この状態で巻回作業を行い、円柱状の電極群4を得た。得られた電極群4は、電極群4の一端側において正極6の正極接続端縁部32が、セパレータ10を介して隣り合っている負極8よりも突出した状態となっており、電極群4の他端側において負極8の負極接続端縁部が、セパレータ10を介して隣り合っている正極6よりも突出した状態となっている。   A positive electrode 6, a negative electrode 8, and a separator 10 used for a general nickel metal hydride secondary battery were prepared. Each of the positive electrode 6, the negative electrode 8, and the separator 10 has a strip shape. With the separator 10 interposed between the prepared positive electrode 6 and negative electrode 8, it was wound in a spiral shape to form an AA size electrode group 4. At the time of winding, the positive electrode 6 and the negative electrode 8 are arranged so as to be slightly shifted from each other in the direction along the axial direction of the electrode group 4, and a separator is provided at a predetermined position between the positive electrode 6 and the negative electrode 8. 10 was placed and the winding operation was performed in this state to obtain a cylindrical electrode group 4. The obtained electrode group 4 is in a state in which the positive electrode connection edge 32 of the positive electrode 6 protrudes from the adjacent negative electrode 8 through the separator 10 on one end side of the electrode group 4. On the other end side, the negative electrode connecting edge of the negative electrode 8 is in a state of protruding from the adjacent positive electrode 6 with the separator 10 interposed therebetween.

次に、円板形状をなし、Niめっき鋼の薄板からなるAAサイズ用の負極集電体を準備した。この負極集電体は、電極群4の負極接続端縁部に溶接した。   Next, a negative electrode current collector for AA size having a disk shape and comprising a thin plate of Ni-plated steel was prepared. This negative electrode current collector was welded to the negative electrode connection edge of the electrode group 4.

次に、図2に示すような、全体として十角形状をなし、中央に円形の中央貫通孔29と、この中央貫通孔29を囲むように放射状に延びる6個のスリット30とを含んでいるAAサイズ用の正極集電体28を準備した。この正極集電体28は、鋼の薄板にNiめっきが施されたNiめっき鋼板からなる。この正極集電体28の厚さは0.30mmである。   Next, as shown in FIG. 2, the whole has a decagonal shape, and includes a circular central through hole 29 in the center and six slits 30 extending radially so as to surround the central through hole 29. A positive electrode current collector 28 for AA size was prepared. The positive electrode current collector 28 is made of a Ni-plated steel plate in which a thin steel plate is plated with Ni. The thickness of the positive electrode current collector 28 is 0.30 mm.

次に、鋼の薄板にNiめっきが施されたNiめっき鋼板を準備した。このNiめっき鋼板の厚さは0.25mmである。そして、このNiめっき鋼板を打ち抜き加工することにより、図5に示すような、ほぼH形の集電リードの中間製品62を製造した。この中間製品62の中央に貫通孔54を穿設するとともに、所定位置に、プレス加工により頂壁側突起部56及び脚部側突起部58を形成した。そして、仮想線80、82、84、86の部分を折り曲げることにより、図3に示すような集電リード34を形成した。ここで、頂壁部予定領域78及び脚部予定領域70、72は、それぞれ外側に向かって0.4mm突出するような湾曲形状に曲げ加工を施し、頂壁部36及び脚部50、52を湾曲形状とした。   Next, a Ni-plated steel sheet in which Ni plating was applied to a thin steel plate was prepared. The thickness of this Ni-plated steel sheet is 0.25 mm. Then, by punching the Ni-plated steel sheet, an approximately H-shaped current collecting lead intermediate product 62 as shown in FIG. 5 was manufactured. A through hole 54 was formed in the center of the intermediate product 62, and a top wall side protrusion 56 and a leg side protrusion 58 were formed at predetermined positions by pressing. And the current collection lead 34 as shown in FIG. 3 was formed by bending the part of the virtual lines 80, 82, 84, 86. Here, the top wall portion planned region 78 and the leg portion planned regions 70 and 72 are bent into curved shapes that protrude 0.4 mm toward the outside, respectively, and the top wall portion 36 and the legs 50 and 52 are formed. A curved shape was adopted.

次に、負極集電体が溶接された電極群4を有底円筒形状の外装缶4の中に収容した。そして、外装缶4の底壁の内面と負極集電体とを溶接した。   Next, the electrode group 4 to which the negative electrode current collector was welded was accommodated in a bottomed cylindrical outer can 4. And the inner surface of the bottom wall of the armored can 4 and the negative electrode collector were welded.

次に、電極群4の上に正極集電体28を載置し、更に、正極集電体28の上に集電リード34を載置した。この状態で、外装缶4の上端開口部に絶縁ガスケット18を介して封口体14を配置し、電池の中間製品を製造した。そして、この電池の中間製品を抵抗スポット溶接機にセットし、電池の軸線方向に圧縮応力を加え、抵抗スポット溶接を行った。その後、外装缶2の開口縁17をかしめ加工して外装缶2の開口3を封止し電池1を製造した。なお、かしめ加工の際にも電池の軸線方向に圧縮応力が加えられる。   Next, the positive electrode current collector 28 was placed on the electrode group 4, and the current collector lead 34 was further placed on the positive electrode current collector 28. In this state, the sealing body 14 was disposed at the upper end opening of the outer can 4 via the insulating gasket 18 to manufacture an intermediate product of the battery. And the intermediate product of this battery was set to the resistance spot welding machine, the compressive stress was applied to the axial direction of the battery, and resistance spot welding was performed. Thereafter, the opening edge 17 of the outer can 2 was caulked to seal the opening 3 of the outer can 2 to manufacture the battery 1. Note that compressive stress is also applied in the axial direction of the battery during caulking.

ここで、集電リード34の配設空間の高さ寸法は、設計値が1.5mmであり、公差を±0.4mmに設定した。また、集電リードの全高は1.9mmとした。そして、抵抗スポット溶接及びかしめ加工により、集電リードの全高が1.1mmになるまで加圧した。   Here, the height dimension of the space where the current collecting leads 34 are arranged has a design value of 1.5 mm and a tolerance of ± 0.4 mm. The total height of the current collecting lead was 1.9 mm. And it pressurized until the total height of a current collection lead became 1.1 mm by resistance spot welding and caulking.

比較例1   Comparative Example 1

集電リードを形成する際に、頂壁部予定領域及び脚部予定領域を湾曲形状に加工せず、頂壁部及び脚部が平坦状である集電リードとしたこと以外は、実施例1と同様にして電池を製造した。   Example 1 except that when the current collecting lead is formed, the planned top wall region and the planned leg region are not processed into a curved shape, and the current collecting lead is a flat top wall and leg. A battery was manufactured in the same manner as described above.

(2)電池の評価
実施例1及び比較例1の電池について、縦断面が観察できるように切断し、断面観察用の試料を作製した。
(2) Evaluation of Battery The batteries of Example 1 and Comparative Example 1 were cut so that a longitudinal section could be observed, and a sample for observing the section was prepared.

得られた試料について、集電リードの形状の観察を行った。   With respect to the obtained sample, the shape of the current collecting lead was observed.

頂壁部及び脚部の形状が平坦状である場合、良と判定した。この良の判定の電池については、表1の形状判定の欄に○印を記載した。   When the shape of the top wall part and the leg part was flat, it was determined to be good. For the battery of this good determination, a circle is indicated in the column of the shape determination in Table 1.

一方、頂壁部及び脚部の形状が弓なりに曲がっている場合、不良と判定した。この不良の判定の電池については、表1の形状判定の欄に×印を記載した。   On the other hand, when the shape of the top wall part and the leg part was bent like a bow, it was determined to be defective. About the battery of this defective determination, x mark was described in the column of the shape determination of Table 1.

また、得られた試料について、溶接部の亀裂等の有無を確認した。   Moreover, about the obtained sample, the presence or absence of the crack of a weld part, etc. was confirmed.

溶接部に亀裂が存在していない場合は、溶接部は良好であると判断し、良の判定をした。この良の判定の電池については、表1の溶接部判定の欄に○印を記載した。   When there was no crack in the welded part, the welded part was judged to be good and a good judgment was made. For the battery of this good determination, a circle is indicated in the column of welded portion determination in Table 1.

一方、溶接部に亀裂が存在していた場合は、溶接部は不良であると判断し、不良の判定をした。この不良の判定の電池については、表1の溶接部判定の欄に×印を記載した。   On the other hand, when the crack existed in the welded part, it was judged that the welded part was defective, and the defect was determined. About the battery of this defect determination, x mark was described in the column of the welding part determination of Table 1.

Figure 2018055812
Figure 2018055812

(3)考察
(i)比較例1の集電リードは、電池に組み込まれた後、つまり、加圧された後、頂壁部及び脚部が弓なりに曲がっており、形状判定は不良となっている。また、溶接部には亀裂が生じており、溶接部判定も不良となっている。比較例1のように、電池に組み込む前の集電リードの頂壁部及び脚部の形状が平坦である場合、抵抗スポット溶接やかしめ加工の際に圧縮応力を受けると、これら頂壁部及び脚部が弓なりに曲がってしまい易い。その結果、溶接部には大きな剪断応力が働き、溶接部に亀裂が発生してしまう。このように、溶接部に亀裂が生じると、電池の内部抵抗が増え、高率放電特性が低下するとともに、電池の品質の安定性が阻害されてしまう。
(3) Consideration (i) After the current collecting lead of Comparative Example 1 is assembled in the battery, that is, after being pressurized, the top wall and the leg are bent like a bow, and the shape determination becomes poor. ing. Moreover, the welded part is cracked and the welded part judgment is also poor. When the shape of the top wall portion and the leg portion of the current collecting lead before being incorporated into the battery is flat as in Comparative Example 1, when the compressive stress is applied during resistance spot welding or caulking, these top wall portion and Legs tend to bend like bows. As a result, a large shear stress acts on the weld and cracks occur in the weld. As described above, when a crack occurs in the welded portion, the internal resistance of the battery is increased, the high rate discharge characteristic is deteriorated, and the stability of the battery quality is hindered.

(ii)実施例1の集電リードは、電池に組み込まれた後、つまり、加圧された後、頂壁部及び脚部が平坦形状となっており、形状判定は良となっている。また、溶接部に亀裂は生じておらず、溶接部判定も良となっている。実施例1のように、電池に組み込む前の集電リードの頂壁部及び脚部の形状が外側に突出する湾曲形状である場合、抵抗スポット溶接やかしめ加工の際に圧縮応力を受けると、これら頂壁部及び脚部は平坦状となる。このため、溶接部には、引きはがし方向や剪断方向に応力が生じ難い。その結果、溶接部に亀裂は生じず、電池の内部抵抗が増加することは抑えられ、電池の高率放電特性の向上が図れる。また、電池の品質も安定する。 (Ii) After the current collecting lead of Example 1 is assembled into the battery, that is, after being pressurized, the top wall portion and the leg portion have a flat shape, and the shape determination is good. In addition, no crack is generated in the welded portion, and the welded portion is also judged as good. As in Example 1, when the shape of the top wall portion and the leg portion of the current collecting lead before being incorporated into the battery is a curved shape protruding outward, when subjected to compressive stress during resistance spot welding or caulking, These top walls and legs are flat. For this reason, it is hard to produce stress in the peeling direction or the shearing direction in the welded portion. As a result, no crack is generated in the welded portion, and the increase in the internal resistance of the battery is suppressed, and the high-rate discharge characteristics of the battery can be improved. In addition, the quality of the battery is stabilized.

(iii)以上より、本発明のように、集電リードを予め湾曲させておくことは、溶接不良の発生を抑制し、電池の高率放電特性の向上に有効であるといえる。 (Iii) From the above, it can be said that bending the current collecting lead in advance as in the present invention is effective in suppressing the occurrence of poor welding and improving the high rate discharge characteristics of the battery.

なお、本発明は上記した一実施形態及び実施例に限定されることはなく、種々の変形が可能であって、例えば、電池の種類は、ニッケル水素二次電池に限定されず、ニッケル−カドミウム二次電池、リチウムイオン二次電池等であってもよい。   The present invention is not limited to the above-described embodiment and examples, and various modifications are possible. For example, the type of battery is not limited to a nickel-metal hydride secondary battery, but nickel-cadmium. A secondary battery, a lithium ion secondary battery, etc. may be sufficient.

1 ニッケル水素二次電池
2 外装缶
4 電極群
6 正極
8 負極
10 セパレータ
14 封口体
18 絶縁ガスケット
22 正極端子
28 正極集電体
32 正極接続端縁部
34 集電リード
DESCRIPTION OF SYMBOLS 1 Nickel metal hydride secondary battery 2 Exterior can 4 Electrode group 6 Positive electrode 8 Negative electrode 10 Separator 14 Sealing body 18 Insulating gasket 22 Positive electrode terminal 28 Positive electrode current collector 32 Positive electrode connection edge 34 Current collecting lead

Claims (3)

矩形状の頂壁部と、前記頂壁部の両側縁から延びる一対の側壁部と、前記側壁部につながり、前記頂壁部と相対する位置に位置付けられる底壁部と、を含み、
前記頂壁部は、外側に突出する湾曲形状をなしているとともに、複数の頂壁側突起部を有しており、
前記底壁部は、外側に突出する湾曲形状をなしているとともに、複数の底壁側突起部を有しており、
前記頂壁側突起部は、前記頂壁部における湾曲形状の頂点部分よりも突出しており、
前記底壁側突起部は、前記底壁部における湾曲形状の頂点部分よりも突出している、
集電リード。
A rectangular top wall portion, a pair of side wall portions extending from both side edges of the top wall portion, and a bottom wall portion connected to the side wall portion and positioned at a position facing the top wall portion,
The top wall has a curved shape protruding outward and has a plurality of top wall side protrusions,
The bottom wall portion has a curved shape protruding outward, and has a plurality of bottom wall side protrusion portions,
The top wall side protruding portion protrudes from the apex portion of the curved shape in the top wall portion,
The bottom wall-side protruding part protrudes from the apex part of the curved shape in the bottom wall part,
Current collector lead.
請求項1に記載の集電リードを準備する集電リード準備工程と、
正極及び負極がセパレータを介して重ね合わされ渦巻き状に巻回されてなる電極群を準備する電極群準備工程と、
前記電極群を外装缶に収容し、前記電極群の正極集電体の上に前記集電リードを載置し、前記集電リードの上に正極端子を含む封口体を載置するセッティング工程と、
前記正極集電体、前記集電リード及び前記封口体を抵抗スポット溶接する溶接工程と、
前記封口体を前記外装缶にかしめ加工して取り付け、前記外装缶を封口する封口工程と、
を備えており、
前記溶接工程及び前記封口工程により、前記集電リードを圧縮し、前記頂壁部及び前記底壁部を平坦状にする、アルカリ二次電池の製造方法。
A current collecting lead preparing step for preparing the current collecting lead according to claim 1;
An electrode group preparation step of preparing an electrode group in which a positive electrode and a negative electrode are overlapped via a separator and wound in a spiral shape;
A setting step in which the electrode group is housed in an outer can, the current collecting lead is placed on the positive electrode current collector of the electrode group, and a sealing body including a positive electrode terminal is placed on the current collecting lead; ,
A welding step of resistance spot welding the positive electrode current collector, the current collector lead and the sealing body;
Caulking and attaching the sealing body to the outer can, and a sealing step of sealing the outer can;
With
The method of manufacturing an alkaline secondary battery, wherein the current collecting lead is compressed and the top wall portion and the bottom wall portion are flattened by the welding step and the sealing step.
請求項2に記載のアルカリ二次電池の製造方法により製造されたアルカリ二次電池であって、
負極端子を含む有底円筒状の外装缶と、
正極端子を含み、前記外装缶の上端開口を封止している封口体と、
正極及び負極がセパレータを介して重ね合わされ渦巻き状に巻回されてなり、前記外装缶内にアルカリ電解液とともに収容されている円柱状の電極群と、
前記電極群の一端面から突出した前記正極の端縁部に接続されている正極集電体と、
前記正極集電体と前記封口体とを接続する集電リードと、を備え、
前記集電リードは、平面視形状が矩形状の頂壁部と、前記頂壁部の両側縁から延びる一対の側壁部と、前記側壁部につながり、前記頂壁部と相対する位置に位置付けられる底壁部と、を含み、
前記頂壁部は、平坦状をなし、複数の溶接部により前記封口体に接続されており、
前記底壁部は、平坦状をなし、複数の溶接部により前記正極集電体に接続されている、
アルカリ二次電池。
An alkaline secondary battery manufactured by the method for manufacturing an alkaline secondary battery according to claim 2,
A cylindrical outer can with a bottom including a negative electrode terminal;
A sealing body including a positive electrode terminal and sealing an upper end opening of the outer can;
A positive electrode and a negative electrode are overlapped via a separator and wound in a spiral shape, and a cylindrical electrode group housed together with an alkaline electrolyte in the outer can,
A positive electrode current collector connected to an edge portion of the positive electrode protruding from one end surface of the electrode group;
A current collecting lead for connecting the positive electrode current collector and the sealing body,
The current collecting lead is positioned at a position facing the top wall portion, connected to the side wall portion, a pair of side wall portions extending from both side edges of the top wall portion, and a top wall portion having a rectangular shape in plan view. Including a bottom wall,
The top wall portion is flat and connected to the sealing body by a plurality of welds,
The bottom wall portion is flat and connected to the positive electrode current collector by a plurality of welds.
Alkaline secondary battery.
JP2016187371A 2016-09-26 2016-09-26 Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method Pending JP2018055812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016187371A JP2018055812A (en) 2016-09-26 2016-09-26 Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016187371A JP2018055812A (en) 2016-09-26 2016-09-26 Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method

Publications (1)

Publication Number Publication Date
JP2018055812A true JP2018055812A (en) 2018-04-05

Family

ID=61836908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016187371A Pending JP2018055812A (en) 2016-09-26 2016-09-26 Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method

Country Status (1)

Country Link
JP (1) JP2018055812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581235A (en) * 2018-06-11 2019-12-17 Fdk株式会社 Secondary battery
JP2020047528A (en) * 2018-09-20 2020-03-26 Fdk株式会社 Secondary battery and method of manufacturing the secondary battery
JP2020068172A (en) * 2018-10-26 2020-04-30 Fdk株式会社 Secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581235A (en) * 2018-06-11 2019-12-17 Fdk株式会社 Secondary battery
EP3582285A1 (en) * 2018-06-11 2019-12-18 FDK Corporation Secondary battery
JP2019215965A (en) * 2018-06-11 2019-12-19 Fdk株式会社 Secondary battery
US11296388B2 (en) 2018-06-11 2022-04-05 Fdk Corporation Secondary battery
JP7128666B2 (en) 2018-06-11 2022-08-31 Fdk株式会社 secondary battery
JP2020047528A (en) * 2018-09-20 2020-03-26 Fdk株式会社 Secondary battery and method of manufacturing the secondary battery
CN110931698A (en) * 2018-09-20 2020-03-27 Fdk株式会社 Secondary battery and method for manufacturing the same
JP7084267B2 (en) 2018-09-20 2022-06-14 Fdk株式会社 Secondary battery and manufacturing method of this secondary battery
CN110931698B (en) * 2018-09-20 2023-03-21 Fdk株式会社 Secondary battery and method for manufacturing the same
JP2020068172A (en) * 2018-10-26 2020-04-30 Fdk株式会社 Secondary battery
JP7161373B2 (en) 2018-10-26 2022-10-26 Fdk株式会社 secondary battery

Similar Documents

Publication Publication Date Title
JP5018087B2 (en) An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
JP7128666B2 (en) secondary battery
US20100112434A1 (en) Cylindrical secondary battery having structure in which electrode assembly is connected with sealing cover via combination of current collector plate and current collector lead
CN108376758B (en) Current collecting lead and method for manufacturing secondary battery including the same
JP6947534B2 (en) Cylindrical alkaline secondary battery
JP2018055812A (en) Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method
JP2010009841A (en) Cylindrical sealed battery
US10374260B2 (en) Cylindrical alkaline secondary battery
JP6853052B2 (en) A current collector reed and a method for manufacturing a secondary battery including the current collector reed.
JP2003187779A (en) Battery
JP2000251871A (en) Alkaline secondary battery
JP2019114472A (en) Collector lead and secondary battery including collector lead
JP4836428B2 (en) Storage battery
JP6835451B2 (en) Current collector reed, manufacturing method of secondary battery including this current collector reed, and secondary battery
JP7161373B2 (en) secondary battery
CN110931698B (en) Secondary battery and method for manufacturing the same
JP2010061892A (en) Secondary battery with spirally-rolled electrode group
JP2010108847A (en) Cylindrical-type secondary battery
JP2015220118A (en) Alkali secondary battery
JP2019117690A (en) Collector and secondary battery with the collector
JP4698134B2 (en) Battery and manufacturing method thereof
JP2007172976A (en) Alkaline storage battery and manufacturing method therefor
JP4610395B2 (en) battery
JP2004296388A (en) Storage battery
JP2001126710A (en) Alkaline storage battery and method of manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170511