JP2004296388A - Storage battery - Google Patents

Storage battery Download PDF

Info

Publication number
JP2004296388A
JP2004296388A JP2003090504A JP2003090504A JP2004296388A JP 2004296388 A JP2004296388 A JP 2004296388A JP 2003090504 A JP2003090504 A JP 2003090504A JP 2003090504 A JP2003090504 A JP 2003090504A JP 2004296388 A JP2004296388 A JP 2004296388A
Authority
JP
Japan
Prior art keywords
electrode
current collecting
current collector
collecting lead
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003090504A
Other languages
Japanese (ja)
Inventor
Hitoshi Maeda
仁史 前田
Takaaki Ikemachi
隆明 池町
Toshiyuki Noma
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003090504A priority Critical patent/JP2004296388A/en
Publication of JP2004296388A publication Critical patent/JP2004296388A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To enhance productivity and high rate discharge performance of a storage battery comprising: an electrode body 4 formed by stacking and winding a positive electrode and a negative electrode with a separator therebetween into a scroll shape; a battery case that accommodates the electrode body 4 and serves as an external terminal of one of the electrodes; a sealing body that seals the opening of the battery case through an insulator and serves as an external terminal of the other one of the electrodes; and a current collector 5 connected to an end of the electrode that is the above-mentioned other one of the positive and negative electrodes of the electrode body 4. <P>SOLUTION: A plurality of cylindrical current collecting lead parts 6 are formed by inwardly curling a plurality of end portions of the collector 5 into cylindrical shape. Each of the lead parts 6 is welded to the sealing body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池、リチウムイオン蓄電池などの蓄電池に関するものであり、特に、正極及び負極をセパレータを介して渦巻状に巻回した電極体を用いた蓄電池に関するものである。
【0002】
【従来の技術】
一般に、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池などのアルカリ蓄電池においては、正極及び負極の間にセパレータを介在させ、これを渦巻状に巻回した電極体を、金属製電池ケース内に収納している。電極体においては、正極または負極の端部に、集電体を接続し、この集電体から延伸したリード部を封口体に溶接した後、封口体を電池ケースの開口部に絶縁ガスケットを介在させて装着することにより、電池ケースが密閉されている。
【0003】
このようなアルカリ蓄電池が電動工具や電気自動車などの高率で充放電を行う用途に使用される場合、電池構成の中でも特に、集電体と封口体の間を接続するリード部での電気抵抗が電池特性に大きな影響を与える。
【0004】
特許文献1においては、封口体と集電体とを接続するリード部を筒状に形成することにより、電気抵抗を低減することが提案されている。
【0005】
【特許文献1】
特開2001−143684号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記のような筒状のリード部は、集電体と溶接して取り付ける必要があり、生産性に劣るという問題がある。また、集電体とリード部との間の溶接部により、電気抵抗が上昇するという問題も生じる。
【0007】
本発明の目的は、上記の問題点を解消することにあり、生産性に優れ、かつ高率放電性能に優れた蓄電池を提供することにある。
【0008】
【課題を解決するための手段】
本発明の蓄電池は、正極及び負極をセパレータを介して渦巻状に巻回した電極体と、電極体を収容し、一方極の外部端子となる電池ケースと、電池ケースの開口部を絶縁体を介して封口し、他方極の外部端子となる封口体と、電極体の正極及び負極のうちの上記他方極となる電極の端部に接続された集電体とを備え、集電体の複数箇所の端部を内側に筒状に丸めることにより複数の筒状の集電リード部が形成されており、該集電リード部がそれぞれ封口体に溶接されていることを特徴としている。
【0009】
本発明においては、筒状の集電リード部が、集電体の複数箇所の端部を内側に筒状に丸めることにより形成されている。このため、集電体と集電リード部が一体化されているので、集電体と集電リード部とを溶接する必要がなく、製造工程を簡略化することができる。また、集電体と集電リード部との間の溶接部が存在しないため、通電時の電気抵抗を低減させることができる。さらに本発明においては、複数箇所の端部を内側に丸めることにより、複数の筒状の集電リード部を形成している。集電リード部が複数存在しているので、さらに通電時の電気抵抗を低減させることができる。また、部品数を増やすことなく複数の集電リード部を設けることができるので、製造工程が煩雑になることがない。
【0010】
従って、本発明によれば、集電体と集電リード部の間での電気抵抗を減少して、高率放電特性及び作動電圧が向上した蓄電池とすることができる。
また、本発明における集電リード部は、筒状であり、中空構造を有するものであるので、電池作製の際、封口体に押しつけ、集電リード部の筒状体が押し潰された状態で溶接することができる。従って、封口体と集電リード部との接触を確実に行うことができ、良好な状態で溶接することができる。
【0011】
また、封口体に押しつけられたとき、筒状の集電リード部は電極体の高さ等に応じて適宜変形し得るので、電極体の高さ寸法等にばらつきがあっても、常に良好な状態で封口体と集電リード部を接触させることができ、溶接強度に優れた溶接部を形成することができる。
【0012】
【発明の実施の形態】
以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
【0013】
図1は、本発明に従う一実施例における電極体、集電体及び集電リード部を示す斜視図である。電極体4の上部には、正極集電体5が載置されている。電極体4は、正極及び負極をセパレータを介して渦巻状に巻回することにより形成されている。正極集電体5は、図示されない正極の端部と溶接により接続されている。電極体4の下部には、負極集電体8が設けられており、負極集電体8は、図示されない電極体4の負極の端部と溶接により接続されている。
【0014】
ニッケル−水素蓄電池の場合、正極は、例えばニッケル発泡体(芯体)に水酸化ニッケルを主成分とするペースト状正極活物質を充填し、乾燥させた後、所定の厚みになるまで圧延して作製される。また、負極は、例えばパンチングメタル(芯体)に水素吸蔵合金からなるペースト状負極活物質を充填し、乾燥させた後、所定の厚みになるまで圧延して作製される。このようにして作製されたニッケル正極と、水素吸蔵合金負極とを、例えばポリプロピレン製不織布からなるセパレータを介して最外周が負極となるようにして重ね合わせ、これを渦巻状に巻回して電極体4が作製される。
【0015】
正極集電体5の中心には、溶接電極を挿入するための孔5bが形成されている。また、正極集電体5と電極体4内の正極の端部を溶接するときの溶接漏洩電流を減して溶接強度を確保するための切込孔5cが形成されている。正極集電体5の三方には、筒状の集電リード部6が設けられている。集電リード部6は、筒状の中空構造を有しており、集電体5の三方の端部を内側に筒状に丸める曲げ加工により形成されている。
【0016】
図2は、曲げ加工を行う前の正極集電体5を示す平面図である。図2に示すように、曲げ加工を行う前の正極集電体5は、正三角形の形状を有している。本実施例では、厚み0.3mmのニッケル金属板を用いて正極集電体を形成している。図2に示す正極集電体の三方の端部(三角形の各頂点の領域)5aを、内側に筒状に丸めることにより、図1に示す集電リード部6が形成されている。
【0017】
図3は、曲げ加工を施して集電リード部6を形成した後の正極集電体5を示す平面図である。図4は、同じく曲げ加工を施して集電リード部6を形成した後の正極集電体5を示す正面図である。
【0018】
正極集電体5は、上述のように、電極体4内の正極の端部と溶接により接続されている。溶接は、正極と正極集電体の間に溶接電流を流し、抵抗溶接によりなされている。
【0019】
図5は、本発明に従う実施例の蓄電池の製造工程を示す断面図である。以上のようにして、正極集電体5及び負極集電体8を取り付けた電極体4を、電池ケース10内に収容する。図5に示すように、電極体4内では、正極1と負極2がセパレータ3を介して重ね合わされ渦巻状に巻回されている。
【0020】
電極体4を電池ケース10内に収納した後、集電体5の中心の孔5b及び電極体4の中心の空間部4aに、図示しない溶接電極を挿入して負極集電体8を電池ケース10の内側の底面にスポット溶接している。
【0021】
電池ケース10の上部の電極体4の上に、防振リング9を挿入し、その後電池ケース10の上方の外周部に、溝入れ加工を施して、環状溝10aを形成する。次に、電池ケース10内に30重量%の水酸化カリウム(KOH)水溶液からなる電解液を注入する。次に、電池ケース10の開口部の上方に、周縁に絶縁ガスケット11を嵌めた封口体7を配置する。
【0022】
封口体7を配置した後、封口体の上方に、一方の溶接電極W1を配置すると共に、電池ケース10の底面の下に他方の溶接電極W2を配置する。次に、これら一対の溶接電極W1とW2の間に2×10N/mの圧力を加えながら、溶接電極W1とW2の間に電圧を印加して通電処理を施す。この通電処理により、封口体7の底面と、集電リード部6とが溶接され、溶接部が形成される。
【0023】
封口体7に集電リード部6を押しつけた状態で通電処理し、溶接しているので、電極体4の高さ寸法または集電リード部6の溶接位置にばらつきがあっても、集電リード部6と封口体7との間で良好な接触状態を保つことができ、良好な接触状態で溶接することができる。
【0024】
次に、溶接電極W1及びW2を取り外した後、電池ケース10の上方端10bを内側にカシメて電池を封口することにより、図6に示す状態の電池が得られる。封口体7の上にプレス機に連結されたパンチを配置し、パンチを加工することにより、封口体7を下方に押し込み、環状溝10aを押し潰し、絶縁ガスケット11の下方端を防振リング18の上端部付近まで押し下げる。これにより、図7に示す本実施例のニッケル−水素蓄電池が作製される。
【0025】
本実施例において、集電リード部6は、正極集電体5と一体的に形成されているので、従来のように集電リード部と集電体と溶接する必要がない。従って、製造工程を簡略化することができると共に、溶接部が存在しないため、充放電の際の電気抵抗を低減させることができる。
【0026】
また、複数の集電リード部6を容易に形成することができるので、導通路を増やすことができ、電気抵抗をさらに低減させることができる。
集電リード部6は、封口体7に押しつけた状態で溶接されるので、電極体の高さなど各部品の寸法にばらつきがあっても、良好な接触状態を実現することができ、良好な接触状態で溶接することができる。
【0027】
上記の実施例においては、蓄電池としてニッケル−水素蓄電池を例にして説明したが、本発明はこれに限定されるものではなく、ニッケル−カドミウム蓄電池及びリチウムイオン二次電池など他の種類の蓄電池に対しても幅広く適用することができるものである。
【0028】
また、上記の実施例では、三角形の形状を有する金属板を用い、3ヶ所に集電リード部を形成した集電体を例示したが、本発明において集電リード部の数は上記の数に限定されるものではなく、さらに多くの集電リード部を形成してもよいし、2個の集電リード部であってもよい。また、集電体及び集電リード部を形成するための金属板の形状は、三角形に限定されるものではなく、その他の形状の金属板であってもよい。
【0029】
【発明の効果】
本発明に従い、集電体の複数箇所の端部を内側に筒状に丸めることにより、複数の筒状の集電リード部を形成し、この集電リード部を封口体に溶接することにより、集電体と集電リード部の間及び集電リード部と封口体の間のそれぞれの電気抵抗を低減させることができる。また、複数の集電リード部が設けられているので、導通路を増やすことができ、電気抵抗を低減させることができる。従って、本発明によれば、内部抵抗を小さくすることができ、出力特性を向上させることができるので、高率放電性能に優れた蓄電池とすることができる。また、集電リード部と集電体の間の溶接が不要になるので、生産性に優れた蓄電池とすることができる。
【図面の簡単な説明】
【図1】本発明の実施例における電極体及び正極集電体を示す斜視図。
【図2】曲げ加工を施す前の集電体金属板を示す平面図。
【図3】曲げ加工を施した後の集電体及び曲げ加工により形成された集電リード部を示す平面図。
【図4】曲げ加工を施した後の集電体及び曲げ加工により形成された集電リード部を示す正面図。
【図5】本発明の実施例の蓄電池を製造する工程を示す断面図。
【図6】本発明の実施例の蓄電池を製造する工程を示す断面図。
【図7】本発明の実施例の蓄電池を示す断面図。
【符号の説明】
1…正極
2…負極
3…セパレータ
4…電極体
5…正極集電体
6…集電リード部
7…封口体
8…負極集電体
9…防振リング
10…電池ケース
11…絶縁ガスケット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a storage battery such as a nickel-hydrogen storage battery, a nickel-cadmium storage battery, and a lithium-ion storage battery, and more particularly to a storage battery using an electrode body in which a positive electrode and a negative electrode are spirally wound via a separator. is there.
[0002]
[Prior art]
Generally, in an alkaline storage battery such as a nickel-hydrogen storage battery and a nickel-cadmium storage battery, a separator is interposed between a positive electrode and a negative electrode, and the spirally wound electrode body is housed in a metal battery case. I have. In the electrode body, a current collector is connected to the end of the positive electrode or the negative electrode, and a lead extending from the current collector is welded to the sealing body, and then the sealing body is interposed with an insulating gasket at the opening of the battery case. By mounting the battery case, the battery case is sealed.
[0003]
When such an alkaline storage battery is used for charging and discharging at a high rate, such as in a power tool or an electric vehicle, the electric resistance of a lead portion connecting between a current collector and a sealing body is particularly important in a battery configuration. Greatly affects battery characteristics.
[0004]
Patent Literature 1 proposes reducing the electrical resistance by forming a lead portion connecting a sealing body and a current collector into a cylindrical shape.
[0005]
[Patent Document 1]
JP 2001-143684 A
[Problems to be solved by the invention]
However, such a cylindrical lead portion needs to be attached by welding to a current collector, and there is a problem that productivity is poor. In addition, there is also a problem that the electric resistance increases due to the welded portion between the current collector and the lead portion.
[0007]
An object of the present invention is to solve the above-mentioned problems, and to provide a storage battery having excellent productivity and excellent high-rate discharge performance.
[0008]
[Means for Solving the Problems]
The storage battery of the present invention has an electrode body in which a positive electrode and a negative electrode are spirally wound via a separator, a battery case that houses the electrode body, and serves as an external terminal of one electrode, and an insulator formed by opening an opening of the battery case. A current collector connected to an end of the electrode serving as the other electrode of the positive electrode and the negative electrode of the electrode body, and a plurality of current collectors. A plurality of tubular current collecting lead portions are formed by rounding the ends of the portions inward into a tube shape, and the current collecting lead portions are each welded to the sealing body.
[0009]
In the present invention, the tubular current collecting lead portion is formed by rounding the ends of a plurality of portions of the current collector into a cylindrical shape inward. For this reason, since the current collector and the current collecting lead are integrated, there is no need to weld the current collector and the current collecting lead, and the manufacturing process can be simplified. Further, since there is no welded portion between the current collector and the current collecting lead portion, the electric resistance at the time of energization can be reduced. Further, in the present invention, a plurality of cylindrical current collecting lead portions are formed by rounding the plurality of end portions inward. Since there are a plurality of current collecting leads, the electric resistance during energization can be further reduced. In addition, since a plurality of current collecting leads can be provided without increasing the number of components, the manufacturing process does not become complicated.
[0010]
Therefore, according to the present invention, it is possible to reduce the electric resistance between the current collector and the current collecting lead portion, and to obtain a storage battery with improved high-rate discharge characteristics and operating voltage.
Further, the current collecting lead portion in the present invention is cylindrical and has a hollow structure, and therefore, when the battery is manufactured, the current collecting lead portion is pressed against the sealing body, and the cylindrical portion of the current collecting lead portion is crushed. Can be welded. Therefore, the contact between the sealing body and the current collecting lead portion can be reliably performed, and welding can be performed in a good state.
[0011]
Further, when pressed against the sealing body, the cylindrical current collecting lead portion can be appropriately deformed according to the height of the electrode body, etc. In this state, the sealing body and the current collecting lead can be brought into contact with each other, and a welded part having excellent welding strength can be formed.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited to the following examples, and can be implemented by appropriately changing the scope of the invention without changing the gist thereof. .
[0013]
FIG. 1 is a perspective view showing an electrode body, a current collector, and a current collecting lead in one embodiment according to the present invention. A positive electrode current collector 5 is mounted on the upper part of the electrode body 4. The electrode body 4 is formed by spirally winding a positive electrode and a negative electrode via a separator. The positive electrode current collector 5 is connected to an end of a positive electrode (not shown) by welding. A negative electrode current collector 8 is provided below the electrode body 4, and the negative electrode current collector 8 is connected to an end of the negative electrode of the electrode body 4 (not shown) by welding.
[0014]
In the case of a nickel-hydrogen storage battery, the positive electrode is, for example, filled in a nickel foam (core) with a paste-like positive electrode active material containing nickel hydroxide as a main component, dried, and then rolled to a predetermined thickness. It is made. Further, the negative electrode is manufactured by filling a punched metal (core) with a paste-like negative electrode active material made of a hydrogen storage alloy, drying the material, and rolling it to a predetermined thickness. The nickel positive electrode and the hydrogen-absorbing alloy negative electrode produced in this manner are overlapped with each other so that the outermost periphery becomes a negative electrode via a separator made of, for example, a nonwoven fabric made of polypropylene. 4 is produced.
[0015]
At the center of the positive electrode current collector 5, a hole 5b for inserting a welding electrode is formed. In addition, a cutout hole 5c is formed to reduce welding leakage current when welding the positive electrode current collector 5 and the end of the positive electrode in the electrode assembly 4 to secure welding strength. On three sides of the positive electrode current collector 5, a cylindrical current collecting lead portion 6 is provided. The current collecting lead portion 6 has a cylindrical hollow structure, and is formed by bending three ends of the current collector 5 inward into a cylindrical shape.
[0016]
FIG. 2 is a plan view showing the positive electrode current collector 5 before bending. As shown in FIG. 2, the positive electrode current collector 5 before the bending process has a regular triangular shape. In this embodiment, a positive electrode current collector is formed using a nickel metal plate having a thickness of 0.3 mm. The current collecting lead portion 6 shown in FIG. 1 is formed by rounding the three end portions (regions at each vertex of the triangle) 5a of the positive electrode current collector shown in FIG.
[0017]
FIG. 3 is a plan view showing the positive electrode current collector 5 after forming the current collecting lead portion 6 by performing bending. FIG. 4 is a front view showing the positive electrode current collector 5 after similarly forming a current collecting lead portion 6 by performing a bending process.
[0018]
As described above, the positive electrode current collector 5 is connected to the end of the positive electrode in the electrode body 4 by welding. Welding is performed by resistance welding by applying a welding current between the positive electrode and the positive electrode current collector.
[0019]
FIG. 5 is a sectional view showing a manufacturing process of the storage battery of the embodiment according to the present invention. As described above, the electrode body 4 to which the positive electrode current collector 5 and the negative electrode current collector 8 are attached is housed in the battery case 10. As shown in FIG. 5, in the electrode body 4, the positive electrode 1 and the negative electrode 2 are overlapped via a separator 3 and spirally wound.
[0020]
After the electrode body 4 is housed in the battery case 10, a welding electrode (not shown) is inserted into the hole 5 b at the center of the current collector 5 and the space 4 a at the center of the electrode body 4, and the negative electrode current collector 8 is placed in the battery case 10. 10 is spot-welded to the inner bottom surface.
[0021]
An anti-vibration ring 9 is inserted on the electrode body 4 on the upper part of the battery case 10, and then a groove is formed on an outer peripheral portion of the upper part of the battery case 10 to form an annular groove 10 a. Next, an electrolyte composed of a 30% by weight aqueous solution of potassium hydroxide (KOH) is injected into the battery case 10. Next, above the opening of the battery case 10, the sealing body 7 with the insulating gasket 11 fitted around the periphery is arranged.
[0022]
After disposing the sealing member 7, one welding electrode W1 is disposed above the sealing member, and the other welding electrode W2 is disposed below the bottom surface of the battery case 10. Next, while applying a pressure of 2 × 10 6 N / m 2 between the pair of welding electrodes W1 and W2, a voltage is applied between the welding electrodes W1 and W2 to perform an energization process. By this energization process, the bottom surface of the sealing body 7 and the current collecting lead portion 6 are welded to form a welded portion.
[0023]
Since current is applied and welded while the current collecting lead 6 is pressed against the sealing body 7, even if the height of the electrode body 4 or the welding position of the current collecting lead 6 varies, the current collecting lead 6 may be used. A good contact state can be maintained between the portion 6 and the sealing body 7, and welding can be performed in a good contact state.
[0024]
Next, after removing the welding electrodes W1 and W2, the upper end 10b of the battery case 10 is caulked inward to seal the battery, thereby obtaining the battery in the state shown in FIG. A punch connected to a press is arranged on the sealing body 7, and the punch is machined to push the sealing body 7 downward, crush the annular groove 10 a, and attach the lower end of the insulating gasket 11 to the vibration isolating ring 18. Press down to near the upper end of the. Thus, the nickel-hydrogen storage battery of the present embodiment shown in FIG. 7 is manufactured.
[0025]
In the present embodiment, since the current collecting lead 6 is formed integrally with the positive electrode current collector 5, it is not necessary to weld the current collecting lead and the current collector as in the related art. Therefore, the manufacturing process can be simplified, and the electric resistance at the time of charge and discharge can be reduced because there is no welded portion.
[0026]
Further, since a plurality of current collecting leads 6 can be easily formed, the number of conductive paths can be increased, and the electric resistance can be further reduced.
Since the current collecting lead portion 6 is welded while being pressed against the sealing body 7, a good contact state can be realized even if the dimensions of each component such as the height of the electrode body vary. Can be welded in contact.
[0027]
In the above embodiment, a nickel-hydrogen storage battery has been described as an example of a storage battery.However, the present invention is not limited to this, and may be applied to other types of storage batteries such as nickel-cadmium storage batteries and lithium ion secondary batteries. However, it can be widely applied.
[0028]
Further, in the above-described embodiment, the current collector in which the current collecting lead portions are formed at three places using the metal plate having a triangular shape is illustrated. However, in the present invention, the number of the current collecting lead portions is equal to the above number. The present invention is not limited thereto, and more current collecting lead portions may be formed, or two current collecting lead portions may be formed. Further, the shape of the metal plate for forming the current collector and the current collecting lead is not limited to a triangle, but may be a metal plate of another shape.
[0029]
【The invention's effect】
According to the present invention, by forming a plurality of end portions of the current collector into a cylindrical shape inside to form a plurality of cylindrical current collecting lead portions, by welding this current collecting lead portion to the sealing body, The electrical resistance between the current collector and the current collecting lead and between the current collecting lead and the sealing body can be reduced. Further, since a plurality of current collecting leads are provided, the number of conductive paths can be increased, and the electric resistance can be reduced. Therefore, according to the present invention, since the internal resistance can be reduced and the output characteristics can be improved, a storage battery having excellent high rate discharge performance can be obtained. Further, since welding between the current collecting lead portion and the current collector becomes unnecessary, a storage battery having excellent productivity can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an electrode body and a positive electrode current collector according to an embodiment of the present invention.
FIG. 2 is a plan view showing a current collector metal plate before bending.
FIG. 3 is a plan view showing a current collector after bending and a current collecting lead formed by bending.
FIG. 4 is a front view showing a current collector after bending and a current collecting lead formed by bending.
FIG. 5 is a sectional view showing a step of manufacturing the storage battery according to the embodiment of the present invention.
FIG. 6 is a sectional view showing a step of manufacturing the storage battery according to the embodiment of the present invention.
FIG. 7 is a sectional view showing a storage battery according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Positive electrode 2 ... Negative electrode 3 ... Separator 4 ... Electrode body 5 ... Positive current collector 6 ... Current collecting lead part 7 ... Sealing body 8 ... Negative current collector 9 ... Anti-vibration ring 10 ... Battery case 11 ... Insulating gasket

Claims (2)

正極及び負極をセパレータを介して重ね合わせ、これを渦巻状に巻回した電極体と、
前記電極体を収容し、一方極の外部端子となる電池ケースと、
前記電池ケースの開口部を絶縁体を介して封口し、他方極の外部端子となる封口体と、
前記電極体の正極及び負極のうちの前記他方極となる電極の端部に接続された集電体とを備え、
前記集電体の複数箇所の端部を内側に筒状に丸めることにより複数の筒状の集電リード部が形成されており、該集電リード部が、それぞれ前記封口体に溶接されていることを特徴とする蓄電池。
An electrode body in which a positive electrode and a negative electrode are overlapped via a separator, and this is spirally wound,
A battery case that houses the electrode body and serves as an external terminal of one electrode,
Sealing the opening of the battery case via an insulator, and a sealing body serving as an external terminal of the other electrode,
A current collector connected to an end of the other electrode of the positive electrode and the negative electrode of the electrode body,
A plurality of cylindrical current collecting leads are formed by rounding the ends of the plurality of current collectors inward into a cylindrical shape, and the current collecting leads are respectively welded to the sealing body. A storage battery characterized in that:
前記集電リード部が、電池作製の際前記封口体に押しつけられた状態で溶接されていることを特徴とする請求項1に記載の蓄電池。2. The storage battery according to claim 1, wherein the current collecting lead portion is welded in a state where the current collecting lead portion is pressed against the sealing body when the battery is manufactured. 3.
JP2003090504A 2003-03-28 2003-03-28 Storage battery Pending JP2004296388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090504A JP2004296388A (en) 2003-03-28 2003-03-28 Storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090504A JP2004296388A (en) 2003-03-28 2003-03-28 Storage battery

Publications (1)

Publication Number Publication Date
JP2004296388A true JP2004296388A (en) 2004-10-21

Family

ID=33404116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090504A Pending JP2004296388A (en) 2003-03-28 2003-03-28 Storage battery

Country Status (1)

Country Link
JP (1) JP2004296388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276840A (en) * 2004-03-24 2005-10-06 Samsung Sdi Co Ltd Secondary battery and manufacturing method of current collector for secondary battery
WO2006035980A1 (en) * 2004-09-29 2006-04-06 Gs Yuasa Corporation Enclosed battery, enclosed battery-use lead, and assembled battery formed by a plurality of enclosed batteries

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276840A (en) * 2004-03-24 2005-10-06 Samsung Sdi Co Ltd Secondary battery and manufacturing method of current collector for secondary battery
WO2006035980A1 (en) * 2004-09-29 2006-04-06 Gs Yuasa Corporation Enclosed battery, enclosed battery-use lead, and assembled battery formed by a plurality of enclosed batteries
JPWO2006035980A1 (en) * 2004-09-29 2008-05-15 株式会社ジーエス・ユアサコーポレーション An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
JP5018087B2 (en) * 2004-09-29 2012-09-05 株式会社Gsユアサ An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
US8815430B2 (en) 2004-09-29 2014-08-26 Gs Yuasa International Ltd. Sealed battery and battery stack comprising a plurality of sealed batteries

Similar Documents

Publication Publication Date Title
JP5606947B2 (en) Cylindrical secondary battery and manufacturing method thereof
JP3972804B2 (en) Alkaline storage battery and manufacturing method thereof
JP2004095487A (en) Storage battery and manufacturing method of the same
JP5159076B2 (en) Cylindrical storage battery and manufacturing method thereof
JP2018045994A (en) Cylindrical alkaline secondary battery
JP2007066604A (en) Secondary battery and battery module
JP2018055812A (en) Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method
JP2008243811A (en) Battery
JP5055809B2 (en) Cylindrical storage battery
US10374260B2 (en) Cylindrical alkaline secondary battery
JP5383154B2 (en) Cylindrical secondary battery
CN116387638A (en) Cylindrical battery and manufacturing method thereof
JP6853052B2 (en) A current collector reed and a method for manufacturing a secondary battery including the current collector reed.
JP4079563B2 (en) Storage battery and manufacturing method thereof
JP2000323117A (en) Cylindrical storage battery
US8557410B2 (en) Secondary battery with a spirally-rolled electrode group
JP2000251871A (en) Alkaline secondary battery
JP5183251B2 (en) Assembled battery
JP2004296388A (en) Storage battery
JP6835451B2 (en) Current collector reed, manufacturing method of secondary battery including this current collector reed, and secondary battery
JP3619706B2 (en) Storage battery
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
CN219591473U (en) Cylindrical battery
CN110931698B (en) Secondary battery and method for manufacturing the same
JP2009245771A (en) Alkaline storage battery and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027