JP5159076B2 - Cylindrical storage battery and manufacturing method thereof - Google Patents

Cylindrical storage battery and manufacturing method thereof Download PDF

Info

Publication number
JP5159076B2
JP5159076B2 JP2006262216A JP2006262216A JP5159076B2 JP 5159076 B2 JP5159076 B2 JP 5159076B2 JP 2006262216 A JP2006262216 A JP 2006262216A JP 2006262216 A JP2006262216 A JP 2006262216A JP 5159076 B2 JP5159076 B2 JP 5159076B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
current collector
cylindrical portion
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006262216A
Other languages
Japanese (ja)
Other versions
JP2008084650A (en
Inventor
竜 山下
祐二 篠原
誠 越智
和洋 北岡
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006262216A priority Critical patent/JP5159076B2/en
Publication of JP2008084650A publication Critical patent/JP2008084650A/en
Application granted granted Critical
Publication of JP5159076B2 publication Critical patent/JP5159076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明はニッケル−水素蓄電池、ニッケル−カドミウム蓄電池、リチウム二次電池などの円筒型蓄電池に係り、特に、正極板と負極板がセパレータを介して積層され、渦巻状に巻回された電極群の一方の端部に正極集電体が溶接され、他方の端部に負極集電体が溶接された電極体が正極端子を兼ねる金属製第1外装缶と負極端子を兼ねる第2外装缶との間に収容され、これらの第1外装缶と第2外装缶との開口部が絶縁体を介して封止されて、電極体がこれらの缶内に密封された円筒型蓄電池に関する。   The present invention relates to a cylindrical storage battery such as a nickel-hydrogen storage battery, a nickel-cadmium storage battery, or a lithium secondary battery. In particular, the positive electrode plate and the negative electrode plate are stacked via a separator, and the electrode group is wound in a spiral shape. An electrode body in which a positive electrode current collector is welded to one end and a negative electrode current collector is welded to the other end is a metal first outer can that also serves as a positive electrode terminal and a second outer can that also serves as a negative electrode terminal The present invention relates to a cylindrical storage battery that is housed in between, the openings of the first outer can and the second outer can are sealed through an insulator, and the electrode body is sealed in these cans.

近年、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池、リチウム二次電池などの円筒型蓄電池の用途は、パーソナルコンピュータ(PC)、携帯情報端末(PDA)、携帯電話、電気自動車(EV)、ハイブリッド車(HEV)、電動バイク、アシスト自転車あるいは電動工具など広範囲にわたるようになった。これらの内、特に、電気自動車(EV)、ハイブリッド車(HEV)、電動バイク、アシスト自転車あるいは電動工具などの高出力用途においては、電池性能,長期耐久性などの高い信頼性と、より一層の高品質化が要求され、種々の開発が行われている。   In recent years, cylindrical storage batteries such as nickel-hydrogen storage batteries, nickel-cadmium storage batteries, and lithium secondary batteries have been used for personal computers (PCs), personal digital assistants (PDAs), mobile phones, electric vehicles (EV), hybrid vehicles ( HEV), electric bikes, assist bicycles, electric tools, etc. have become widespread. Among these, especially in high output applications such as electric vehicles (EV), hybrid vehicles (HEV), electric motorcycles, assist bicycles or electric tools, high reliability such as battery performance and long-term durability, and more High quality is required and various developments are being made.

この種の円筒型蓄電池は、通常、正極板と負極板とをセパレータを介して積層されて渦巻状に巻回して電極群とした後、この電極群の負極板の導電端縁(負極芯体)を負極集電体に溶接するとともに、正極板の導電端縁(正極芯体)を正極集電体に溶接して電極体とする。ついで、得られた電極体を負極端子を兼ねる金属製外装缶に挿入し、負極集電体を金属製外装缶の底部に溶接するとともに、正極集電体より延出する集電リード部を正極端子を兼ねる封口体の底部に溶接した後、電解液を注液し、外装缶の開口部に絶縁ガスケットを介して封口体を装着して密閉することにより作製されるのが一般的である。   In this type of cylindrical storage battery, a positive electrode plate and a negative electrode plate are usually laminated via a separator and wound into a spiral shape to form an electrode group, and then a conductive edge (negative electrode core body) of the negative electrode plate of this electrode group. ) To the negative electrode current collector, and the conductive edge (positive electrode core) of the positive electrode plate is welded to the positive electrode current collector to form an electrode body. Next, the obtained electrode body is inserted into a metal outer can that also serves as a negative electrode terminal, the negative electrode current collector is welded to the bottom of the metal outer can, and the current collecting lead portion extending from the positive electrode current collector is connected to the positive electrode. Generally, after welding to the bottom of the sealing body that also serves as a terminal, an electrolytic solution is injected, and the sealing body is attached to the opening of the outer can via an insulating gasket and sealed.

ところで、上述したような高出力用途に用いられる円筒型蓄電池にあっては、数十アンペア〜数百アンペアの大電流で充放電が行われるため、集電リード部や溶接部での抵抗に起因する電圧降下により作動電圧が低下し、高電圧および高エネルギー密度が得られないという問題を生じた。このため、高出力特性、高エネルギー密度を達成するためには集電リード部での抵抗を低減することが望まれる。そこで、集電リード部を省略できる接続構造を採用して、高出力特性、高エネルギー密度を達成できる円筒型蓄電池が特許文献1(特開2001−160388号公報)にて提案されるようになった。   By the way, in the cylindrical storage battery used for the high output application as described above, charging and discharging are performed with a large current of several tens of amperes to several hundreds of amperes. As a result of the voltage drop, the operating voltage is lowered, resulting in a problem that high voltage and high energy density cannot be obtained. For this reason, in order to achieve high output characteristics and high energy density, it is desired to reduce the resistance at the current collecting lead portion. Therefore, a cylindrical storage battery that can achieve a high output characteristic and a high energy density by adopting a connection structure that can omit the current collecting lead portion is proposed in Patent Document 1 (Japanese Patent Laid-Open No. 2001-160388). It was.

上述したような特許文献1にて提案された円筒型蓄電池40においては、図8に示すように、正極板41と負極板42とをセパレータ43を介して積層されて渦巻状に巻回して電極群とした後、この電極群の正極板41の導電端縁(正極芯体)41aを正極集電体44に溶接するとともに、負極板42の導電端縁(負極芯体)42aを負極集電体45に溶接して電極体とする。ついで、得られた電極体を負極端子を兼ねる金属製外装缶46に挿入し、負極集電体45を金属製外装缶46の底部に溶接する。一方、金属製外装缶46の開口部を封止するとともに正極端子を兼ねる封口体47の下面に突起部47aを備え、この突起部47aと正極集電体44とが溶接され、固着接続されている。   In the cylindrical storage battery 40 proposed in Patent Document 1 as described above, as shown in FIG. 8, a positive electrode plate 41 and a negative electrode plate 42 are stacked via a separator 43 and wound in a spiral shape to form an electrode. Then, the conductive edge (positive electrode core) 41a of the positive electrode plate 41 of this electrode group is welded to the positive electrode current collector 44, and the conductive edge (negative electrode core) 42a of the negative electrode plate 42 is welded to the negative electrode current collector. An electrode body is formed by welding to the body 45. Next, the obtained electrode body is inserted into a metal outer can 46 also serving as a negative electrode terminal, and the negative electrode current collector 45 is welded to the bottom of the metal outer can 46. On the other hand, a protrusion 47a is provided on the lower surface of the sealing body 47 that seals the opening of the metal outer can 46 and also serves as a positive electrode terminal, and the protrusion 47a and the positive electrode current collector 44 are welded and fixedly connected. Yes.

この後、電解液を注液し、外装缶の開口部に絶縁ガスケット48を介して封口体47を装着して密閉するようにしている。なお、封口体47の中央部にはガス抜き孔47bが設けられていて、このガス抜き孔47bを覆うように正極キャップ49が配設され、この正極キャップ49内に弁板49aとスプリング49bとからなる弁体が設けられている。このように、封口体47の下面に突起部47aを備えていると、集電リード部を省略しても確実に封口体47と正極集電体44とが溶接でき、集電リード部の電気抵抗をゼロにすることができるため、電池の出力特性を向上させて、高率放電時の電池電圧の低下を防止できるようになる。   Thereafter, an electrolytic solution is injected, and a sealing body 47 is attached to the opening of the outer can via an insulating gasket 48 so as to be sealed. A gas vent hole 47b is provided at the center of the sealing body 47, and a positive electrode cap 49 is disposed so as to cover the gas vent hole 47b. A valve plate 49a, a spring 49b, The valve body which consists of is provided. As described above, when the projecting portion 47a is provided on the lower surface of the sealing body 47, the sealing body 47 and the positive electrode current collector 44 can be reliably welded even if the current collecting lead portion is omitted. Since the resistance can be reduced to zero, the output characteristics of the battery can be improved and the battery voltage can be prevented from decreasing during high rate discharge.

ところが、上述したような特許文献1にて提案された円筒型蓄電池40においては、外装缶46の上部外周部に溝入れ加工を施して環状溝部46aを形成し、封口体47の外周部に絶縁ガスケット48を嵌着させる。この後、環状溝部46aに絶縁ガスケット48を配置し、プレス機を用いて封口体47に加圧力を加えて、絶縁ガスケット48の下端が環状溝部46aの位置になるまで封口体47を外装缶46内に押し込ん後、外装缶46の開口端縁を内方にかしめて封口するようにしている。このため、正極集電体44と封口体47との間に空間部が形成され、その空間部の距離分だけ封口体47の下方突出部47a(なお、この下方突出部47aが集電リードに相当するということができる)の高さを高く(集電リードの長さを長く)する必要があることから、電池抵抗が増大するという問題を生じた。   However, in the cylindrical storage battery 40 proposed in Patent Document 1 as described above, a groove is formed on the outer periphery of the outer can 46 to form an annular groove 46a, and the outer periphery of the sealing body 47 is insulated. The gasket 48 is fitted. Thereafter, the insulating gasket 48 is disposed in the annular groove 46a, and a pressure is applied to the sealing body 47 using a press machine. The sealing body 47 is moved to the outer can 46 until the lower end of the insulating gasket 48 is positioned at the annular groove 46a. After being pushed in, the opening edge of the outer can 46 is caulked inward to seal it. Therefore, a space portion is formed between the positive electrode current collector 44 and the sealing body 47, and a downward projecting portion 47a of the sealing body 47 corresponding to the distance of the space portion (this lower projecting portion 47a serves as a current collecting lead). (Which can be said to be equivalent) is required to be high (the length of the current collecting lead is long), which causes a problem that the battery resistance increases.

そこで、本出願人は下方突出部47aを形成した封口体47を用いないで、正極集電体の全面が直接封口体(この場合は、第1ケーシング)に接触するようにした円筒型蓄電池を特願2006−52324号にて提案した。この特願2006−52324号にて提案した円筒型蓄電池50においては、図9に示すように、導電性の第1ケーシング51と第2ケ−シング52からなる容器を備えている。そして、この容器内に正極板53と負極板54とがセパレータ55を介して渦巻状に巻回された電極群の正極板51の導電端縁(正極芯体)53aに正極集電体56に溶接され、負極板54の導電端縁(負極芯体)54aを負極集電体57が溶接された電極体が収容されている。   Therefore, the present applicant does not use the sealing body 47 in which the downward projecting portion 47a is formed, but a cylindrical storage battery in which the entire surface of the positive electrode current collector is in direct contact with the sealing body (in this case, the first casing). Proposed in Japanese Patent Application No. 2006-52324. The cylindrical storage battery 50 proposed in Japanese Patent Application No. 2006-52324 includes a container including a conductive first casing 51 and a second casing 52, as shown in FIG. Then, the positive electrode plate 53 and the negative electrode plate 54 are spirally wound through the separator 55 in the container, and the positive electrode current collector 53 (positive electrode core) 53a of the positive electrode plate 51 of the electrode group is connected to the positive electrode current collector 56. An electrode body that is welded and in which a negative electrode current collector 57 is welded to a conductive edge (negative electrode core) 54a of the negative electrode plate 54 is accommodated.

ここで、第2ケーシング52は電極体の大半を収容し、第1ケーシング51は残りの電極体を収容している。そして、正極用集電体56が溶接された容器の上端壁は、第1ケーシング51の底壁であり、第1ケーシング51は正極端子として機能する。また、負極用集電体57が溶接された容器の下端壁は、第2ケーシング52の底壁であり、第2ケーシング52は、負極端子としての機能を有する。第1ケーシング51および第2ケーシング52の開口端同士を結合するために、これら第1および第2ケーシング51,52の開口端には、それぞれ外向きフランジ51b,52bがそれぞれ各ケーシング51,52と一体的に形成されている。   Here, the second casing 52 accommodates most of the electrode bodies, and the first casing 51 accommodates the remaining electrode bodies. The upper end wall of the container to which the positive electrode current collector 56 is welded is the bottom wall of the first casing 51, and the first casing 51 functions as a positive electrode terminal. The lower end wall of the container to which the negative electrode current collector 57 is welded is the bottom wall of the second casing 52, and the second casing 52 has a function as a negative electrode terminal. In order to connect the opening ends of the first casing 51 and the second casing 52, outward flanges 51b and 52b are respectively connected to the casings 51 and 52 at the opening ends of the first and second casings 51 and 52, respectively. It is integrally formed.

そして、第2ケーシング52の外向きフランジ52bの外周縁はかしめ部となり、このかしめ部は、第1ケーシング51の外向きフランジ51bの外周部を覆うように折曲げられ、第1ケーシングの外向きフランジ51bの外周部を拘束している。これによって、第1ケーシング51と第2ケーシング52とが結合され、電池内が気密に封口されることとなる。ただし、第1ケーシング51と第2ケーシング52との間の電気絶縁性及び気密性を確保するために、第1ケーシング51の外向きフランジ51bは、環状の絶縁ガスケット59によってほぼ覆われている。また、第1ケーシング51の底壁には中央にガス抜き孔が形成され、このガス抜き孔を覆うように正極キャップ58が配設され、この正極キャップ58内に弁板58aとスプリング58bとからなる弁体が設けられている。
特開2001−160388号公報
Then, the outer peripheral edge of the outward flange 52b of the second casing 52 becomes a caulking portion, and this caulking portion is bent so as to cover the outer peripheral portion of the outward flange 51b of the first casing 51, and the outward direction of the first casing 51 The outer peripheral part of the flange 51b is restrained. As a result, the first casing 51 and the second casing 52 are coupled, and the inside of the battery is hermetically sealed. However, the outward flange 51 b of the first casing 51 is substantially covered with an annular insulating gasket 59 in order to ensure electrical insulation and airtightness between the first casing 51 and the second casing 52. In addition, a gas vent hole is formed in the center of the bottom wall of the first casing 51, and a positive electrode cap 58 is disposed so as to cover the gas vent hole, and a valve plate 58a and a spring 58b are provided in the positive electrode cap 58. A valve body is provided.
JP 2001-160388 A

しかしながら、上述した特願2006−52324号にて提案した円筒型蓄電池50においては、渦巻状電極群の上端に溶接された正極集電体が直接、第1ケーシング51の内底面に溶接されている。このため、渦巻状電極群の高さにバラツキがあると、電池全高にバラツキが発生して、均一な製品を安定的に生産できないという問題を生じた。一方、電池全高のバラツキを生じなくするために、封口部分となる環状の絶縁ガスケット59の押圧力(圧縮力)を調整すると、今度は逆に、絶縁ガスケット59の圧縮バラツキを生じるようになる。このため、絶縁ガスケット59の押圧力(圧縮力)が弱い場合は、封口部分に電解液の漏れが発生するという問題を生じるようになる。   However, in the cylindrical storage battery 50 proposed in the above-mentioned Japanese Patent Application No. 2006-52324, the positive electrode current collector welded to the upper end of the spiral electrode group is directly welded to the inner bottom surface of the first casing 51. . For this reason, if the height of the spiral electrode group varies, there arises a problem that the whole battery height varies and a uniform product cannot be stably produced. On the other hand, if the pressing force (compression force) of the annular insulating gasket 59 serving as the sealing portion is adjusted in order to prevent the variation in the total battery height, this causes the compression variation of the insulating gasket 59 to occur. For this reason, when the pressing force (compression force) of the insulating gasket 59 is weak, there arises a problem that the electrolyte solution leaks at the sealing portion.

そこで、本発明は上記問題点を解決するためになされたものであって、渦巻状電極群に高さバラツキがあっても、電池全高にバラツキが生じないようにして均一な製品を安定的に生産でき、封口部分に電解液の漏れが発生しなく、高信頼性で高品質の円筒型蓄電池を提供できるようにすることを目的とするものである。   Accordingly, the present invention has been made to solve the above-described problems, and even if the spiral electrode group has a height variation, a uniform product can be stably produced so that the overall battery height does not vary. An object of the present invention is to provide a highly reliable and high-quality cylindrical storage battery that can be produced and does not cause electrolyte leakage in the sealing portion.

本発明の円筒型蓄電池は、正極板と負極板がセパレータを介して積層されて渦巻状に巻回された電極群の一方の端部に正極集電体が溶接され他方の端部に負極集電体が溶接された電極体が正極端子を兼ねる金属製第1外装缶と負極端子を兼ねる金属製第2外装缶との間に収容され、これらの第1外装缶と第2外装缶との開口部が絶縁体を介して封止されて電極体がこれらの缶内に密封されている。そして、上記課題を解決するため、正極集電体は正極端子を兼ねる金属製第1外装缶の底部に直接電気的に接続され、負極集電体は負極端子を兼ねる金属製第2外装缶の底部に直接電気的に接続されているとともに、第1外装缶と第2外装缶はそれぞれ有底の円筒部と、該円筒部の開口端縁及びその近傍部分であって、該円筒部より外径方向に延出したフランジ部とを備え、有底の円筒部の少なくとも一方の底部には電池内部に向かって凹部が形成されていることを特徴とする。
The cylindrical storage battery of the present invention has a positive electrode current collector welded to one end of an electrode group in which a positive electrode plate and a negative electrode plate are laminated via a separator and wound in a spiral shape, and a negative electrode current collector is connected to the other end. The electrode body to which the electric body is welded is accommodated between a metal first outer can that also serves as a positive electrode terminal and a metal second outer can that also serves as a negative electrode terminal, and the first outer can and the second outer can The opening is sealed through an insulator, and the electrode body is sealed in these cans. And in order to solve the said subject, a positive electrode collector is directly electrically connected to the bottom part of the metal 1st exterior can which also serves as a positive electrode terminal, and a negative electrode current collector is a metal 2nd exterior can also serving as a negative electrode terminal. The first and second outer cans are electrically connected directly to the bottom, and each of the first outer can and the second outer can is a bottomed cylindrical portion, an opening edge of the cylindrical portion, and a portion in the vicinity thereof. And a flange portion extending in the radial direction , and a concave portion is formed toward the inside of the battery in at least one bottom portion of the bottomed cylindrical portion.

このように、有底の円筒部の少なくとも一方の底部に電池内部に向かって凹部が形成されていると、渦巻状電極群に高さバラツキがあっても、この凹部への押圧力を調整することにより、電池全高を均一にすることが可能となる。これにより、電池全高にバラツキが生じないとともに、封口部での漏液も生じなくて、高信頼性で高品質の円筒型蓄電池を提供できるようになる。この場合、凹部は有底の円筒部の底部の中心部に形成されいるとともに、この凹部の底面は平坦面となされているのが望ましい。
As described above, when the concave portion is formed toward the inside of the battery in at least one bottom portion of the bottomed cylindrical portion, the pressing force to the concave portion is adjusted even if the spiral electrode group has a height variation. As a result, the overall height of the battery can be made uniform. As a result, there is no variation in the overall height of the battery, and there is no leakage at the sealing portion, so that a highly reliable and high quality cylindrical storage battery can be provided. In this case, the recess together is formed in the center portion of the bottom portion of the cylindrical portion of the bottomed, the bottom surface of the recess is desirably are made flat.

そして、上述のような円筒型蓄電池を製造するには、有底の円筒部と該円筒部の開口部端縁より外方に延出したフランジ部とを備えた負極端子を兼ねる金属製第2外装缶の底面に電極体の負極集電体を溶接し、有底の円筒部と該円筒部の開口端縁及びその近傍部分であって、該円筒部より外径方向に延出したフランジ部とを備えた正極端子を兼ねる金属製第1外装缶の底面に電極体の正極集電体を溶接する溶接工程と、第1外装缶のフランジ部
と第2外装缶のフランジ部との間に絶縁ガスケットを配置して両フランジ部が互に対向するように重ね合わせた後、第1外装缶の円筒部の底面と第2外装缶の円筒部の底面との間が所定の距離になるように相互に加圧する加圧工程と、互に対向するように重ね合わされた両フランジ部の一部をかしめて密閉する密閉工程とを備えるようにすればよい。
これにより、有底の円筒部の少なくとも一方の底部に電池内部に向かって凹部が形成されていれば、加圧工程における加圧力により当該凹部は該缶の内部より外部に向けて変形(膨出)することとなり、電池全高のバラツキが抑制されることとなる。

In order to manufacture the cylindrical storage battery as described above, a second metal made also serving as a negative electrode terminal having a bottomed cylindrical portion and a flange portion extending outward from the edge of the opening of the cylindrical portion. A negative electrode current collector of an electrode body is welded to the bottom surface of the outer can, and a bottomed cylindrical portion, an opening edge of the cylindrical portion, and a vicinity thereof , a flange portion extending from the cylindrical portion in an outer diameter direction A welding step of welding the positive electrode current collector of the electrode body to the bottom surface of the metal first outer can also serving as the positive electrode terminal, and between the flange portion of the first outer can and the flange portion of the second outer can After the insulating gaskets are arranged and overlapped so that both flange portions face each other, a predetermined distance is formed between the bottom surface of the cylindrical portion of the first outer can and the bottom surface of the cylindrical portion of the second outer can. The pressurizing process that pressurizes each other and caulking part of both flanges that are overlapped to face each other It is sufficient to include a sealing step of sealing.
Thus, if a concave portion is formed toward the inside of the battery in at least one bottom portion of the bottomed cylindrical portion, the concave portion is deformed (bulged out) from the inside of the can to the outside due to the pressurizing force in the pressurizing step. ) And variation in the overall battery height is suppressed.

本発明により、低抵抗かつ電池全高のバラツキと封口部分の絶縁部材の圧縮バラツキを抑制することが可能となるから、電池全高が均一で、電解液の漏れが発生しない高信頼性の円筒型電池を提供することが可能となる。   According to the present invention, it is possible to suppress variation in low resistance and variation in the overall height of the battery and compression variation of the insulating member in the sealing portion. Therefore, a highly reliable cylindrical battery in which the overall height of the battery is uniform and no electrolyte leakage occurs. Can be provided.

以下に、本発明をニッケル−水素蓄電池に適用した場合の一実施の形態を図1〜図7に基づいて説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1は本発明の一実施例のニッケル−水素蓄電池を示す図であり、図1(a)は電極体を第1外装缶と第2外装缶とからなる電池容器内に収納して完成されたニッケル−水素蓄電池を模式的に示す断面図であり、図1(b)は渦巻状電極群の上・下端部に正・負極集電体が溶接された電極体を模式的に示す斜視図であり、図1(c)は渦巻状電極群の下端部に溶接された負極集電体を模式的に示す上面図である。図2は外装缶を示す図であり、図2(a)は第1外装缶(正極外装缶)を示す半断面図であり、図2(b)は第2外装缶(負極外装缶)を示す半断面図である。   Below, although one embodiment at the time of applying the present invention to a nickel-hydrogen storage battery is described based on Drawing 1-Drawing 7, the present invention is not limited to this, and the range which does not change the gist And can be implemented with appropriate changes. FIG. 1 is a view showing a nickel-hydrogen storage battery according to an embodiment of the present invention. FIG. 1 (a) shows an electrode body housed in a battery container composed of a first outer can and a second outer can. It is sectional drawing which shows the completed nickel-hydrogen storage battery typically, FIG.1 (b) shows typically the electrode body by which the positive / negative electrode electrical power collector was welded to the upper and lower end part of the spiral electrode group. FIG. 1C is a top view schematically showing a negative electrode current collector welded to the lower end portion of the spiral electrode group. FIG. 2 is a view showing an outer can, FIG. 2 (a) is a half sectional view showing a first outer can (positive electrode outer can), and FIG. 2 (b) is a second outer can (negative electrode outer can). FIG.

図3は溶接工程を示す図であり、図3(a)は第2外装缶(負極外装缶)の底面に負極集電体を溶接する状態を模式的に示す半断面図であり、図3(b)は第1外装缶(正極外装缶)の底面に正極集電体を溶接する状態を模式的に示す半断面図である。図4は封口工程を模式的に示す半断面図である。図5は仮封口状態のニッケル−水素蓄電池を模式的に示す半断面図である。図6は封口後のニッケル−水素蓄電池の第2外装缶(負極外装缶)の底部近傍の状態を示す半断面図であり、図6(a)は渦巻状電極群の全高が低い場合の状態を模式的に示す半断面図であり、図6(b)は渦巻状電極群の全高が高い場合の状態を模式的に示す半断面図である。図7は本発明の変形例のニッケル−水素蓄電池を模式的に示す半断面図である。   FIG. 3 is a view showing a welding process, and FIG. 3A is a half sectional view schematically showing a state in which the negative electrode current collector is welded to the bottom surface of the second outer can (negative electrode outer can). (B) is a half cross-sectional view schematically showing a state in which the positive electrode current collector is welded to the bottom surface of the first outer can (positive electrode outer can). FIG. 4 is a half sectional view schematically showing the sealing step. FIG. 5 is a half sectional view schematically showing a nickel-hydrogen storage battery in a temporarily sealed state. FIG. 6 is a half cross-sectional view showing a state in the vicinity of the bottom of the second outer can (negative electrode outer can) of the nickel-hydrogen storage battery after sealing, and FIG. 6 (a) is a state when the total height of the spiral electrode group is low. FIG. 6B is a half sectional view schematically showing a state in which the total height of the spiral electrode group is high. FIG. 7 is a half sectional view schematically showing a nickel-hydrogen storage battery according to a modification of the present invention.

1.ニッケル−水素蓄電池
本発明の実施例のニッケル−水素蓄電池10は、図2(a)に示すように、正極端子を兼ねるとともに、有底の円筒部11aと、該円筒部の開口部端縁より外方に延出したフランジ部11bとを備えた金属製第1外装缶11と、図2(b)に示すように、負極端子を兼ねるとともに、有底の円筒部12aと、該円筒部の開口部端縁より外方に延出したフランジ部12bとを備えた第2外装缶12とからなる電池容器を備えている。そして、図1に示すように、この電池容器内に正極板14と負極板15がセパレータ15を介して積層されて渦巻状に巻回された渦巻状電極群a1の一方の端部に正極集電体16が溶接され、他方の端部に負極集電体17が溶接された電極体aとアルカリ電解液とを収容している。
1. Nickel-hydrogen storage battery As shown in FIG. 2A, the nickel-hydrogen storage battery 10 of the embodiment of the present invention also serves as a positive electrode terminal, and has a bottomed cylindrical portion 11a and an opening edge of the cylindrical portion. As shown in FIG. 2B, the first metal outer can 11 provided with the flange portion 11b extending outward, and also serving as the negative electrode terminal, the bottomed cylindrical portion 12a, and the cylindrical portion A battery container including a second outer can 12 having a flange portion 12b extending outward from the edge of the opening is provided. As shown in FIG. 1, a positive electrode plate 14 and a negative electrode plate 15 are stacked in this battery container via a separator 15 and wound in a spiral shape at one end of a spiral electrode group a1. The electrode body a to which the electric body 16 is welded and the negative electrode current collector 17 is welded to the other end portion and the alkaline electrolyte are accommodated.

この場合、正極集電体16は、図1(b)に示すように、略円形の本体部16aの中心部に溶接電極挿入用の中心開口16bが形成されており、中心開口16bの周囲から本体部16aの端部に向けて多数のバーリング孔16cが形成されているとともに、中心開口16bの周囲にはプロジェクション突起16dが形成されている。また、本体部16aの中心開口16bと端部までの中間から端縁に向けて開口する一対のスリット16e,16eが形成されている。このようなスリット16e,16eを設けることにより、無効な溶接電流を減少させ、有効な溶接電流を増大させることが可能となる。そして、正極集電体16は正極端子を兼ねる金属製第1外装缶11の底面にプロジェクション突起16dが溶接されて直接電気接続されるようになされている。   In this case, as shown in FIG. 1B, the positive electrode current collector 16 has a central opening 16b for inserting a welding electrode formed at the center of a substantially circular main body 16a. A large number of burring holes 16c are formed toward the end of the main body 16a, and projection projections 16d are formed around the central opening 16b. Further, a pair of slits 16e and 16e are formed which open from the middle between the center opening 16b and the end of the main body 16a toward the end edge. By providing such slits 16e, 16e, it becomes possible to reduce the invalid welding current and increase the effective welding current. The positive electrode current collector 16 is directly electrically connected by welding a projection projection 16d to the bottom surface of the first metal outer can 11 serving also as a positive electrode terminal.

一方、負極集電体17は、図1(c)に示すように、略円形の本体部17aの中心部に複数個のプロジェクション突起17bが形成されており、これらのプロジェクション突起17bの周囲から本体部17aの端部に向けて多数のバーリング孔17cが形成されているとともに、本体部17aの中心部と端部までの中間から端縁に向けて開口する一対のスリット17d,17dが形成されている。そして、負極集電体17は負極端子を兼ねる金属製第2外装缶12の底面にプロジェクション突起17bが溶接されて直接電気接続されるようになされている。   On the other hand, as shown in FIG. 1C, the negative electrode current collector 17 has a plurality of projection protrusions 17b formed at the center of a substantially circular main body portion 17a, and the main body extends from the periphery of the projection protrusions 17b. A large number of burring holes 17c are formed toward the end of the portion 17a, and a pair of slits 17d and 17d are formed that open from the middle to the edge of the center portion and end of the main body portion 17a. Yes. The negative electrode current collector 17 is configured to be directly electrically connected by welding a projection projection 17b to the bottom surface of the second metal outer can 12 also serving as a negative electrode terminal.

ここで、第2外装缶12の円筒部12aの底部の中心部には凹部12cが形成されているとともに、この凹部12cの底面は平坦面となされており、凹部12cの外周部は、該凹部12cより外方に突出する凸部12dが形成されている。なお、第1外装缶11の円筒部11aの底部中心部にはガス抜き孔11cが形成されていて、このガス抜き孔11cを覆うように正極キャップ18が被着されていて、この正極キャップ18内に弁板18aとスプリング18bからなる弁体が配設されている。   Here, a recess 12c is formed at the center of the bottom of the cylindrical portion 12a of the second outer can 12, and the bottom surface of the recess 12c is a flat surface. A convex portion 12d that protrudes outward from 12c is formed. A gas vent hole 11c is formed in the center of the bottom of the cylindrical portion 11a of the first outer can 11 and a positive electrode cap 18 is attached so as to cover the gas vent hole 11c. A valve body composed of a valve plate 18a and a spring 18b is disposed therein.

2.製造方法
ついで、上述のような構成となるニッケル−水素蓄電池の製造方法を以下に説明する。
パンチングメタルからなる正極芯体の表面にニッケル焼結多孔体を形成した後、化学含浸法により水酸化ニッケルを主体とする活物質をニッケル焼結多孔体に充填して活物質充填層を形成した。ついで、これを乾燥させた後、所定の厚みになるまで圧延し、所定の寸法になるように切断してニッケル正極板13を作製した。なお、このニッケル正極板13の上端部には正極芯体が露出した芯体露出部13aが形成されている。
2. Manufacturing Method Next, a manufacturing method of the nickel-hydrogen storage battery having the above-described configuration will be described below.
After forming a nickel sintered porous body on the surface of the positive electrode core body made of punching metal, an active material mainly composed of nickel hydroxide was filled into the nickel sintered porous body by a chemical impregnation method to form an active material filled layer. . Subsequently, after drying this, it rolled until it became predetermined thickness, and cut | disconnected so that it might become a predetermined dimension, and the nickel positive electrode plate 13 was produced. A core body exposed portion 13 a is formed at the upper end of the nickel positive electrode plate 13 so that the positive electrode core body is exposed.

一方、パンチングメタルからなる負極芯体の表面に水素吸蔵合金からなるペースト状負極活物質を充填して活物質充填層を形成した。ついで、これを、乾燥させた後、所定の厚みになるまで圧延し、所定の寸法になるように切断して水素吸蔵合金負極板14を作製した。なお、この水素吸蔵合金負極板14の下端部には負極芯体が露出した芯体露出部14aが形成されている。   On the other hand, the surface of the negative electrode core made of punching metal was filled with a paste-like negative electrode active material made of a hydrogen storage alloy to form an active material filled layer. Next, after drying this, it was rolled to a predetermined thickness and cut to a predetermined size to produce a hydrogen storage alloy negative electrode plate 14. Note that a core body exposed portion 14 a in which the negative electrode core body is exposed is formed at the lower end portion of the hydrogen storage alloy negative electrode plate 14.

これらのニッケル正極板13と水素吸蔵合金負極板14との間に、ポリプロピレン製不織布からなるセパレータ15を介在させて積層した後、これらを渦巻状に巻回して、直径が略30mmとなる渦巻状電極群a1を作製した。なお、このようにして作製された渦巻状電極群a1の上部にはニッケル正極板13の芯体露出部13aが露出しており、その下部には水素吸蔵合金負極板14の芯体露出部14aが露出している。   These nickel positive electrode plate 13 and hydrogen storage alloy negative electrode plate 14 are laminated with a separator 15 made of polypropylene nonwoven fabric interposed therebetween, and then wound into a spiral shape so that the diameter becomes approximately 30 mm. Electrode group a1 was produced. The core exposed portion 13a of the nickel positive electrode plate 13 is exposed at the upper portion of the spiral electrode group a1 thus manufactured, and the core exposed portion 14a of the hydrogen storage alloy negative electrode plate 14 at the lower portion thereof. Is exposed.

ついで、得られた渦巻状電極群a1の上端面に露出するニッケル正極板13の芯体露出部13aの上に、上述した正極集電体16を載置し、この正極集電体16の上に図示しない一対の溶接電極を載置する。これらの一対の溶接電極で正極集電体16を押圧して、正極集電体16の各バーリング孔16cを極板群a1より若干突出した正極板13の芯体露出部13aに食い込ませるようにして、一対の溶接電極間に溶接電流を流して抵抗溶接して、ニッケル正極板13の芯体露出部13aに正極集電体16を溶接した。   Next, the positive electrode current collector 16 described above is placed on the core body exposed portion 13a of the nickel positive electrode plate 13 exposed at the upper end surface of the spiral electrode group a1 thus obtained. A pair of welding electrodes (not shown) are mounted. The positive electrode current collector 16 is pressed by the pair of welding electrodes so that each burring hole 16c of the positive electrode current collector 16 is bitten into the core body exposed portion 13a of the positive electrode plate 13 slightly protruding from the electrode plate group a1. The positive electrode current collector 16 was welded to the core exposed portion 13a of the nickel positive electrode plate 13 by flowing a welding current between the pair of welding electrodes and resistance welding.

また、渦巻状電極群a1の下端面に露出する水素吸蔵合金負極板14の芯体露出部14aの上に、上述した負極集電体17を載置し、この負極集電体17の上に図示しない一対の溶接電極を載置する。これらの一対の溶接電極で負極集電体17を押圧して、負極集電体17の各バーリング孔17cを極板群a1より若干突出した負極板14の芯体露出部14aに食い込ませるようにして、一対の溶接電極間に溶接電流を流して抵抗溶接して、水素吸蔵合金負極板14の芯体露出部14aに負極集電体17を溶接した。
これにより、渦巻状電極群a1の上端面に正極集電体16が溶接され、渦巻状電極群a1の下端面に負極集電体17が溶接された電極体a(図1(b)参照)が得られることとなる。
Further, the above-described negative electrode current collector 17 is placed on the core exposed portion 14 a of the hydrogen storage alloy negative electrode plate 14 exposed at the lower end surface of the spiral electrode group a 1, and the negative electrode current collector 17 is placed on the negative electrode current collector 17. A pair of welding electrodes (not shown) is placed. The negative electrode current collector 17 is pressed by the pair of welding electrodes so that each burring hole 17c of the negative electrode current collector 17 is bitten into the core body exposed portion 14a of the negative electrode plate 14 slightly protruding from the electrode plate group a1. The negative electrode current collector 17 was welded to the core exposed portion 14a of the hydrogen storage alloy negative electrode plate 14 by resistance welding with a welding current flowing between the pair of welding electrodes.
Thus, the positive electrode current collector 16 is welded to the upper end surface of the spiral electrode group a1, and the negative electrode current collector 17 is welded to the lower end surface of the spiral electrode group a1 (see FIG. 1B). Will be obtained.

ついで、図2(a)に示すように、正極端子を兼ねるとともに有底の円筒部11aと、該円筒部11aの開口部端縁より外方に延出したフランジ部11bとを備えた鉄にニッケルメッキを施した金属製第1外装缶11を用意した。なお、この第1外装缶11の円筒部11aの底部の中心部にはガス抜き孔11cが形成されているとともに、このガス抜き孔11cを覆うように正極キャップ18が被着されていて、この正極キャップ18内に弁板18aとスプリング18bからなる弁体が配設されている。   Next, as shown in FIG. 2 (a), an iron provided with a bottomed cylindrical portion 11a that also serves as a positive electrode terminal and a flange portion 11b that extends outward from the opening edge of the cylindrical portion 11a. A metal first outer can 11 with nickel plating was prepared. A gas vent hole 11c is formed at the center of the bottom of the cylindrical portion 11a of the first outer can 11, and a positive electrode cap 18 is attached to cover the gas vent hole 11c. A valve body including a valve plate 18 a and a spring 18 b is disposed in the positive electrode cap 18.

一方、図2(b)に示すように、負極端子を兼ねるとともに有底の円筒部12aと、該円筒部12aの開口部端縁より外方に延出したフランジ部12bとを備えた鉄にニッケルメッキを施した金属製第2外装缶12を用意した。この場合、第2外装缶12の円筒部12aの底部の中心部には凹部12cが形成されているとともに、この凹部12cの底面は平坦面となされており、凹部12cの外周部は、該凹部12cより外方に突出する凸部12dが形成されている。なお、フランジ部12bの一部は該フランジ部12bに垂直な立ち上がり部12eが形成されている。   On the other hand, as shown in FIG. 2 (b), an iron provided with a bottomed cylindrical portion 12a that also serves as a negative electrode terminal and a flange portion 12b that extends outward from the opening edge of the cylindrical portion 12a. A metallic second outer can 12 having a nickel plating was prepared. In this case, a recess 12c is formed at the center of the bottom of the cylindrical portion 12a of the second outer can 12, and the bottom surface of the recess 12c is a flat surface. A convex portion 12d that protrudes outward from 12c is formed. A part of the flange portion 12b has a rising portion 12e perpendicular to the flange portion 12b.

ついで、上述のように形成した電極体aの負極集電体17側が下向きになるようにして、この電極体aを第2外装缶12の円筒部12a内に収納した。この後、図3(a)に示すように、第2外装缶12の外底面に第1溶接電極R1を配置するとともに、正極集電体16の中心開口16bを通して第2溶接電極(溶接電極棒)R2を負極集電体17の表面に接するように挿入した。この後、これらの溶接電極R1,R2間に所定の溶接電流(この場合は2kAのパルス電流とした)を流す通電処理を施した。この通電処理により、第2外装缶12の円筒部12aの底部に形成された凹部12cの平坦面と、水素吸蔵合金負極板15に溶接された負極集電体17に形成されたプロジェクション突起17dとが抵抗溶接されることとなる。その後、第2外装缶12内に7規定のKOHからなる10gのアルカリ電解液を注液した。   Next, the electrode body a was housed in the cylindrical portion 12 a of the second outer can 12 so that the negative electrode current collector 17 side of the electrode body a formed as described above faces downward. Thereafter, as shown in FIG. 3A, the first welding electrode R1 is disposed on the outer bottom surface of the second outer can 12 and the second welding electrode (welding electrode rod) is passed through the central opening 16b of the positive electrode current collector 16. ) R2 was inserted in contact with the surface of the negative electrode current collector 17. Thereafter, an energization process was performed in which a predetermined welding current (in this case, a pulse current of 2 kA) was passed between the welding electrodes R1 and R2. By this energization process, the flat surface of the recess 12 c formed at the bottom of the cylindrical portion 12 a of the second outer can 12, and the projection protrusion 17 d formed on the negative electrode current collector 17 welded to the hydrogen storage alloy negative electrode plate 15, Will be resistance welded. Thereafter, 10 g of alkaline electrolyte made of 7N KOH was injected into the second outer can 12.

ついで、図3(b)に示すように、第2外装缶12のフランジ部12bの上にナイロン製の絶縁ガスケット19を配置した後、第2外装缶12の上に第1外装缶11を配置した。この後、第2外装缶12の外底面に第3溶接電極R3を配置するとともに、この第1外装缶11の第4溶接電極R4を配置した。この場合、第4溶接電極R4の下面には正極キャップ18を保護するための空間部R4−aが形成されている。この後、これらの溶接電極R3,R4間に所定の溶接電流(この場合は4kAのパルス電流とした)を流す通電処理を施した。この通電処理により、第1外装缶12の内底面とニッケル正極板14に溶接された正極集電体16に形成されたプロジェクション突起16dとが抵抗溶接されることとなる。   Next, as shown in FIG. 3 (b), after the nylon insulating gasket 19 is disposed on the flange portion 12 b of the second exterior can 12, the first exterior can 11 is disposed on the second exterior can 12. did. Thereafter, the third welding electrode R3 was disposed on the outer bottom surface of the second outer can 12 and the fourth welding electrode R4 of the first outer can 11 was disposed. In this case, a space R4-a for protecting the positive electrode cap 18 is formed on the lower surface of the fourth welding electrode R4. Thereafter, an energization process was performed to pass a predetermined welding current (in this case, a 4 kA pulse current) between the welding electrodes R3 and R4. By this energization process, the inner bottom surface of the first outer can 12 and the projection protrusion 16 d formed on the positive electrode current collector 16 welded to the nickel positive electrode plate 14 are resistance-welded.

ついで、上述のように第2外装缶12の円筒部12aの底部の中心部に形成された凹部12cの平坦面に負極集電体17を溶接し、第1外装缶11の円筒部11aの内底面に正極集電体16を溶接した後、図4に示すように、第2外装缶12を円筒状の固定治具20内に配置した。この場合、第2外装缶12のフランジ部12bは固定治具20の上端部に載置されるように配置した。この後、固定治具20の下部より下カシメパンチ22を固定治具20内に挿入させて、第2外装缶12の外底面に下カシメパンチ22を接触させた。ついで、第1外装缶12の上部に上カシメパンチ23を配置した。この後、下カシメパンチ22および上カシメパンチ23にそれぞれ押圧力を付与して、第1外装缶11の円筒部11aの底面部を所定の位置まで押圧するとともに、第2外装缶12の底面部を所定位置まで押圧した。   Next, the negative electrode current collector 17 is welded to the flat surface of the concave portion 12c formed at the center of the bottom portion of the cylindrical portion 12a of the second outer can 12 as described above, and the inner portion of the cylindrical portion 11a of the first outer can 11 is After welding the positive electrode current collector 16 to the bottom surface, the second outer can 12 was placed in a cylindrical fixing jig 20 as shown in FIG. In this case, the flange portion 12 b of the second outer can 12 was arranged to be placed on the upper end portion of the fixing jig 20. Thereafter, the lower caulking punch 22 was inserted into the fixing jig 20 from below the fixing jig 20, and the lower caulking punch 22 was brought into contact with the outer bottom surface of the second outer can 12. Next, an upper caulking punch 23 was disposed on the upper portion of the first outer can 12. Thereafter, a pressing force is applied to each of the lower caulking punch 22 and the upper caulking punch 23 to press the bottom surface portion of the cylindrical portion 11a of the first outer can 11 to a predetermined position, and the lower surface portion of the second outer can 12 is predetermined. Pressed to position.

これにより、電極群a1の高さバラツキに応じて、第2外装缶12の円筒部12aの底部の中心部に形成された凹部12cが第2外装缶12の外方に向けて押圧されて、第2外装缶12の外方側に変形(膨出)することとなる。このとき、上カシメパンチ23を押圧しながら、上カシメパンチ23の外周部に形成されたテーパー部23aを第2外装缶12のフランジ部12bの立ち上がり部12eに押し当てるようにした。これにより、第2外装缶12のフランジ部12bの立ち上がり部12eは内方に押し曲げられることとなり、図5に示すように、第1外装缶11のフランジ部11bは絶縁ガスケット19を介して第2外装缶12の立ち上がり部12eにより仮封口されることとなる。   Thereby, according to the height variation of the electrode group a1, the recess 12c formed at the center of the bottom of the cylindrical portion 12a of the second outer can 12 is pressed toward the outside of the second outer can 12, The second outer can 12 is deformed (bulged) outward. At this time, while pressing the upper caulking punch 23, the tapered portion 23 a formed on the outer peripheral portion of the upper caulking punch 23 is pressed against the rising portion 12 e of the flange portion 12 b of the second outer can 12. As a result, the rising portion 12e of the flange portion 12b of the second outer can 12 is bent inward, and the flange portion 11b of the first outer can 11 is inserted through the insulating gasket 19 as shown in FIG. 2 The outer can 12 is temporarily sealed by the rising portion 12e.

この場合、上カシメパンチ23が第1外装缶11に接触すると、正極端子と負極端子が短絡することとなることから、例えば、円筒状の絶縁部材24を上カシメパンチ23の底面に配設するようにして、上カシメパンチ23と第1外装缶11との接触を防止する必要がある。ついで、上述のように仮封口した後、この仮封口部を接触面が水平になるように形成されたカシメパンチ(図示せず)により押圧することにより、図1に示すような公称容量が6.0Ahの円筒型ニッケル−水素蓄電池を作製し、これを実施例1の電池Aとした。   In this case, when the upper caulking punch 23 comes into contact with the first outer can 11, the positive electrode terminal and the negative electrode terminal are short-circuited. For example, the cylindrical insulating member 24 is disposed on the bottom surface of the upper caulking punch 23. Thus, it is necessary to prevent contact between the upper caulking punch 23 and the first outer can 11. Then, after temporarily sealing as described above, the temporary sealing portion is pressed by a caulking punch (not shown) formed so that the contact surface is horizontal, so that the nominal capacity as shown in FIG. A 0 Ah cylindrical nickel-hydrogen storage battery was produced, and this was designated as battery A of Example 1.

一方、上述した電極体aを用いて、特許文献1(図8参照のこと)に記載されるように公称容量6.0Ahの円筒型ニッケル−水素蓄電池を作製し、これを比較例1の電池Xとした。さらに、同様に上述した電極体aを用いて、先行出願(特願2006−52324号:図9参照のこと)に記載されるように公称容量6.0Ahの円筒型ニッケル−水素蓄電池を作製し、これを比較例2の電池Yとした。   On the other hand, using the electrode body a described above, a cylindrical nickel-hydrogen storage battery having a nominal capacity of 6.0 Ah was prepared as described in Patent Document 1 (see FIG. 8), and this was used as the battery of Comparative Example 1. X. Further, similarly as described in the prior application (Japanese Patent Application No. 2006-52324: see FIG. 9), a cylindrical nickel-hydrogen storage battery having a nominal capacity of 6.0 Ah is manufactured using the electrode body a described above. This was designated as Battery Y of Comparative Example 2.

3.電池試験
(1)電池全高バラツキ結果
ついで、上述のように作製した実施例1の電池A、比較例1の電池Xおよび比較例2の電池Yを用いて、これらの各100個の電池A,X,Yの全高をそれぞれ測定した。この後、電池全高(基準値)に対して2%以上の高さバラツキがある電池を電池全高NG(不良)と判定して、その個数を求めると、下記の表1に示すような結果が得られた。
3. Battery Test (1) Battery Total Height Results Next, using the battery A of Example 1, the battery X of Comparative Example 1, and the battery Y of Comparative Example 2 manufactured as described above, each of these 100 batteries A, The total heights of X and Y were measured respectively. Thereafter, a battery having a height variation of 2% or more with respect to the total battery height (reference value) is determined as the total battery height NG (defective), and the number thereof is obtained. The result shown in Table 1 below is obtained. Obtained.

(2)電池抵抗指数の測定
ついで、上述のように作製した実施例1の電池A、比較例1の電池Xおよび比較例2の電池Yを用いて、25℃の温度雰囲気で、6A(1ItA)の充電電流で電池容量の50%まで充電した。
この後、30A放電→30A充電→60A放電→60A充電→90A放電→90A充電→120A放電→120A充電→150A放電→150A充電の順で、それぞれ10分間の休止を挟みながら10秒間ずつ通電し、10秒後の電池電圧(V)をそれぞれ測定した。
この後、放電電流(A)を横軸(X軸)とし、10秒後の電池電圧(V)を縦軸(Y軸)として、V−I直線を求めた。
ついで、V−I直線の傾きを電池直流抵抗として求め、電池Aの電池直流抵抗を基準(100)とし、電池Xおよび電池Yの電池直流抵抗をそれとの比率として求めると、下記の表1に示すような結果が得られた。

Figure 0005159076
(2) Measurement of battery resistance index Next, using the battery A of Example 1, the battery X of Comparative Example 1, and the battery Y of Comparative Example 2 manufactured as described above, 6A (1 ItA ) To 50% of the battery capacity.
Then, 30A discharge → 30A charge → 60A discharge → 60A charge → 90A discharge → 90A charge → 120A discharge → 120A charge → 150A discharge → 150A charge The battery voltage (V) after 10 seconds was measured.
Thereafter, the V-I straight line was obtained with the discharge current (A) as the horizontal axis (X axis) and the battery voltage (V) after 10 seconds as the vertical axis (Y axis).
Next, the slope of the V-I straight line is obtained as the battery DC resistance, the battery DC resistance of the battery A is taken as a reference (100), and the battery DC resistance of the battery X and the battery Y is obtained as a ratio thereof. The results shown were obtained.
Figure 0005159076

上記表1の結果から明らかなように、比較例1の電池Xは、電池抵抗が高く、かつ電池全高のバラツキも大きいことが分かる。また、比較例2の電池Yは、電池抵抗は低いが電池全高のバラツキは小さいことが分かる。これらに対して、実施例1の電池Aは電池抵抗が低く、かつ電池全高のバラツキも小さいことが分かる。即ち、実施例1の電池Aにおいては、低い電池抵抗を維持したまま電池全高のバラツキを低減させることが可能となる。   As is clear from the results in Table 1 above, it can be seen that the battery X of Comparative Example 1 has a high battery resistance and a large variation in the overall battery height. In addition, it can be seen that the battery Y of Comparative Example 2 has low battery resistance but small variation in the overall battery height. On the other hand, it can be seen that the battery A of Example 1 has a low battery resistance and a small variation in the total battery height. That is, in the battery A of Example 1, it is possible to reduce the variation in the total battery height while maintaining a low battery resistance.

図6は、完成後の実施例1の電池Aの第2外装缶(負極外装缶)12の底部近傍の状態を模式的に示している。ここで、渦巻状電極群a1の全高が低い場合は、図6(a)に示すように、凹部12cの変形(膨出)量は少な目となることが分かる。一方、渦巻状電極群の全高が高い場合は、図6(b)に示すように、凹部12cの変形(膨出)量は多目となることが分かる。このように、実施例1の電池Aにおいては、渦巻状電極群a1の高さに応じて、第2外装缶(負極外装缶)12の円筒部12aの底部に形成された凹部12cの変形(膨出)量が変化することとなる。これにより、渦巻状電極群a1の高さのバラツキを凹部12cの変形(膨出)量で吸収できるようなって、封止部での絶縁ガスケット19の圧縮量を常に一定に保つことができるようになる。この結果、高出力用途の円筒型ニッケル−水素蓄電池において、密閉性が高く、かつ高品質で高信頼性を達成することが可能となる。   FIG. 6 schematically shows a state in the vicinity of the bottom of the second outer can (negative electrode outer can) 12 of the battery A of Example 1 after completion. Here, when the total height of the spiral electrode group a1 is low, as shown in FIG. 6A, it can be seen that the amount of deformation (bulging) of the recess 12c is small. On the other hand, when the total height of the spiral electrode group is high, as shown in FIG. 6B, it can be seen that the amount of deformation (bulging) of the recess 12c becomes large. Thus, in the battery A of Example 1, the deformation of the recess 12c formed on the bottom of the cylindrical portion 12a of the second outer can (negative electrode outer can) 12 according to the height of the spiral electrode group a1 ( The amount of bulging will change. As a result, the variation in the height of the spiral electrode group a1 can be absorbed by the deformation (bulge) amount of the recess 12c, so that the compression amount of the insulating gasket 19 at the sealing portion can always be kept constant. become. As a result, in a cylindrical nickel-hydrogen storage battery for high output use, it is possible to achieve high sealing performance, high quality and high reliability.

4.変形例
上述した実施例1においては、第2外装缶(負極外装缶)の円筒部の底部に凹部を形成する例について説明したが、このような凹部は第1外装缶(正極外装缶)に設けるようにしてもよい。ついで、第1外装缶(正極外装缶)に円筒部の底部に凹部を形成した変形例の円筒型ニッケル−水素蓄電池について、図7に基づいて以下に説明する。
この変形例の円筒型ニッケル−水素蓄電池30は、図7に示すように、第1外装缶(正極外装缶)31と第2外装缶(負極外装缶)32とで電池容器を形成しており、この容器内に電極体a(上述した実施例と同様に、正極板14と負極板15がセパレータ15を介して積層されて渦巻状に巻回された渦巻状電極群a1の一方の端部に正極集電体16が溶接され、他方の端部に負極集電体17が溶接されたもの)とアルカリ電解液とが密封されている。
4). In the above-described first embodiment, the example in which the concave portion is formed in the bottom portion of the cylindrical portion of the second outer can (negative electrode outer can) has been described. Such a concave portion is formed in the first outer can (positive electrode outer can). You may make it provide. Next, a cylindrical nickel-hydrogen storage battery of a modified example in which a concave portion is formed at the bottom of the cylindrical portion in the first outer can (positive electrode outer can) will be described with reference to FIG.
As shown in FIG. 7, the cylindrical nickel-hydrogen storage battery 30 of this modification forms a battery container with a first outer can (positive electrode outer can) 31 and a second outer can (negative electrode outer can) 32. In this container, an electrode body a (one end portion of a spiral electrode group a1 in which a positive electrode plate 14 and a negative electrode plate 15 are laminated via a separator 15 and wound in a spiral manner, as in the above-described embodiments) The positive electrode current collector 16 is welded to the other end, and the negative electrode current collector 17 is welded to the other end) and the alkaline electrolyte is sealed.

第1外装缶(正極外装缶)31は、鉄にニッケルメッキが施された有底の円筒部31aと、該円筒部31aの開口部端縁より外方に延出したフランジ部31bとを備えている。この場合、円筒部31aの底部には凹部31cが形成されているとともに、この凹部31cの外周部には凸部32dが形成されている。なお、この第1外装缶31の円筒部31aの底部の中心部にはガス抜き孔31eが形成されているとともに、このガス抜き孔31eを覆うように正極キャップ38が被着されていて、この正極キャップ38内に弁板38aとスプリング38bからなる弁体が配設されている。一方、第2外装缶(負極外装缶)32は、鉄にニッケルメッキが施された有底の円筒部32aと、該円筒部32aの開口部端縁より外方に延出したフランジ部32bとを備えている。   The first outer can (positive electrode outer can) 31 includes a bottomed cylindrical portion 31a in which nickel plating is applied to iron, and a flange portion 31b extending outward from the opening edge of the cylindrical portion 31a. ing. In this case, a concave portion 31c is formed at the bottom of the cylindrical portion 31a, and a convex portion 32d is formed at the outer peripheral portion of the concave portion 31c. A gas vent hole 31e is formed at the center of the bottom of the cylindrical portion 31a of the first outer can 31 and a positive electrode cap 38 is attached so as to cover the gas vent hole 31e. A valve body including a valve plate 38a and a spring 38b is disposed in the positive electrode cap 38. On the other hand, the second outer can (negative electrode outer can) 32 includes a bottomed cylindrical portion 32a in which nickel is plated on iron, and a flange portion 32b extending outward from the opening edge of the cylindrical portion 32a. It has.

このような第1外装缶(正極外装缶)31を用いると、図4に示すように、下カシメパンチ22と上カシメパンチ23に押圧力を付与して、第1外装缶31の円筒部31aの底面部を所定の位置まで押圧するとともに、第2外装缶32の底面部を所定位置まで押圧すると、電極群a1の高さバラツキに応じて、第1外装缶31の円筒部31aの底部に形成された凹部31cが第1外装缶31の外方に向けて変形(膨出)することとなる。これにより、本変形例の円筒型ニッケル−水素蓄電池30においても実施例と同様に、渦巻状電極群a1の高さのバラツキを凹部31cの変形(膨出)量で吸収できるようなって、封止部での絶縁ガスケット39の圧縮量を常に一定に保つことができるようになり、密閉性が高く、かつ高品質で高信頼性を達成することが可能となる。   When such a first outer can (positive electrode outer can) 31 is used, as shown in FIG. 4, a pressing force is applied to the lower caulking punch 22 and the upper caulking punch 23, and the bottom surface of the cylindrical portion 31 a of the first outer can 31. When the bottom portion of the second outer can 32 is pressed to a predetermined position, the bottom portion of the cylindrical portion 31a of the first outer can 31 is formed according to the height variation of the electrode group a1. The recessed portion 31 c is deformed (bulged) toward the outside of the first outer can 31. As a result, in the cylindrical nickel-hydrogen storage battery 30 of the present modification, as in the embodiment, the height variation of the spiral electrode group a1 can be absorbed by the deformation (bulge) amount of the recess 31c. The amount of compression of the insulating gasket 39 at the stop portion can be kept constant at all times, so that the sealing performance is high, and high quality and high reliability can be achieved.

なお、本変形例の第2外装缶(負極外装缶)32の円筒部32aの底部は、全体が平面となるように形成されているが、この底部にも上述した実施例の円筒部12aの底面と同様に凹部を形成するようにしてもよい。また、上述した実施例に正極集電体16および負極集電体17にそれぞれプロジェクション突起16dおよび17bを設けるようにしたが、これらのプロジェクション突起は設けなくても、正極集電体と第1外装缶(正極外装缶)および負極集電体と第2外装缶(負極外装缶)とが直接接触できるようにすれば、同様の効果が得られる。   In addition, although the bottom part of the cylindrical part 32a of the 2nd exterior can (negative electrode exterior can) 32 of this modification is formed so that the whole may become a plane, the cylindrical part 12a of the Example mentioned above is also formed in this bottom part. You may make it form a recessed part similarly to a bottom face. Further, although the projection protrusions 16d and 17b are respectively provided on the positive electrode current collector 16 and the negative electrode current collector 17 in the above-described embodiment, the positive electrode current collector and the first exterior can be provided without providing these projection protrusions. The same effect can be obtained if the can (positive electrode outer can) and the negative electrode current collector can be in direct contact with the second outer can (negative electrode outer can).

上述した実施の形態においては、本発明をニッケル−水素蓄電池に適用する例について説明したが、本発明はニッケル−水素蓄電池以外にも、ニッケル−カドミウム蓄電池、リチウム二次電池などの密閉型蓄電池に適用しても同様の効果が得られることは明らかである。   In the embodiment described above, an example in which the present invention is applied to a nickel-hydrogen storage battery has been described. However, the present invention can be applied to a sealed storage battery such as a nickel-cadmium storage battery or a lithium secondary battery in addition to a nickel-hydrogen storage battery. It is clear that the same effect can be obtained even if applied.

本発明の一実施例のニッケル−水素蓄電池を示す図であり、図1(a)は電極体を第1外装缶と第2外装缶とからなる電池容器内に収納して完成されたニッケル−水素蓄電池を模式的に示す断面図であり、図1(b)は渦巻状電極群の上・下端部に正・負極集電体が溶接された電極体を模式的に示す斜視図であり、図1(c)は渦巻状電極群の下端部に溶接された負極集電体を模式的に示す上面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a nickel-hydrogen storage battery according to an embodiment of the present invention, and FIG. 1 (a) is a diagram showing a completed nickel-hydrogen battery housed in a battery container composed of a first outer can and a second outer can. FIG. 1 (b) is a perspective view schematically showing an electrode body in which positive and negative electrode current collectors are welded to the upper and lower ends of a spiral electrode group; FIG.1 (c) is a top view which shows typically the negative electrode electrical power collector welded to the lower end part of the spiral electrode group. 外装缶を示す図であり、図2(a)は第1外装缶(正極外装缶)を模式的に示す半断面図であり、図2(b)は第2外装缶(負極外装缶)を模式的に示す半断面図である。FIG. 2A is a half sectional view schematically showing a first outer can (positive electrode outer can), and FIG. 2B is a second outer can (negative electrode outer can). It is a half sectional view showing typically. 溶接工程を示す図であり、図3(a)は第2外装缶(負極外装缶)の底面に負極集電体を溶接する状態を模式的に示す半断面図であり、図3(b)は第1外装缶(正極外装缶)の底面に正極集電体を溶接する状態を模式的に示す半断面図である。FIG. 3 (a) is a half sectional view schematically showing a state in which the negative electrode current collector is welded to the bottom surface of the second outer can (negative electrode outer can). FIG. 5 is a half cross-sectional view schematically showing a state in which a positive electrode current collector is welded to the bottom surface of a first outer can (positive electrode outer can). 封口工程を模式的に示す半断面図である。It is a half cross-sectional view schematically showing the sealing step. 仮封口状態のニッケル−水素蓄電池を模式的に示す半断面図である。It is a half sectional view showing typically a nickel-hydrogen storage battery of a temporarily sealed state. 封口後のニッケル−水素蓄電池の第2外装缶(負極外装缶)の底部近傍の状態を示す半断面図であり、図6(a)は渦巻状電極群の全高が低い場合の状態を模式的に示す半断面図であり、図6(b)は渦巻状電極群の全高が高い場合の状態を模式的に示す半断面図である。FIG. 6A is a half cross-sectional view showing a state in the vicinity of the bottom of the second outer can (negative electrode outer can) of the nickel-hydrogen storage battery after sealing, and FIG. 6A schematically shows the state when the total height of the spiral electrode group is low. FIG. 6B is a half sectional view schematically showing a state where the total height of the spiral electrode group is high. 本発明の変形例のニッケル−水素蓄電池を模式的に示す半断面図である。It is a half sectional view showing typically the nickel hydride storage battery of the modification of the present invention. 従来例(比較例1)の円筒型ニッケル−水素蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the cylindrical nickel-hydrogen storage battery of a prior art example (comparative example 1). 他の従来例(比較例2)の円筒型ニッケル−水素蓄電池を模式的に示す半断面図である。It is a half sectional view showing typically a cylindrical nickel-hydrogen storage battery of other conventional examples (comparative example 2).

符号の説明Explanation of symbols

10…ニッケル−水素蓄電池、11…第1外装缶(正極外装缶)、11a…円筒部、11b…フランジ部、12…第2外装缶(負極外装缶)、12a…円筒部、12b…フランジ部、12c…凹部、12d…凸部、13…ニッケル正極板、13a…芯体露出部、14…水素吸蔵合金負極板、14a…芯体露出部、15…セパレータ、16…正極集電体、17…負極集電体、18…正極キャップ、18a…弁板、18b…スプリング、19…絶縁ガスケット DESCRIPTION OF SYMBOLS 10 ... Nickel-hydrogen storage battery, 11 ... 1st exterior can (positive electrode exterior can), 11a ... Cylindrical part, 11b ... Flange part, 12 ... 2nd exterior can (negative electrode exterior can), 12a ... Cylindrical part, 12b ... Flange part , 12c ... concave portion, 12d ... convex portion, 13 ... nickel positive electrode plate, 13a ... core exposed portion, 14 ... hydrogen storage alloy negative electrode plate, 14a ... core exposed portion, 15 ... separator, 16 ... positive electrode current collector, 17 ... Negative electrode current collector, 18 ... Positive electrode cap, 18a ... Valve plate, 18b ... Spring, 19 ... Insulating gasket

Claims (4)

正極板と負極板がセパレータを介して積層されて渦巻状に巻回された電極群の一方の端部に正極集電体が溶接され他方の端部に負極集電体が溶接された電極体が正極端子を兼ねる金属製第1外装缶と負極端子を兼ねる金属製第2外装缶との間に収容され、前記第1外装缶と前記第2外装缶との開口部が絶縁体を介して封止されて前記電極体がこれらの缶内に密封された円筒型蓄電池であって、
前記正極集電体は前記正極端子を兼ねる金属製第1外装缶の底面に直接電気的に接続され、前記負極集電体は前記負極端子を兼ねる金属製第2外装缶の底面に直接電気的に接続されているとともに、
前記第1外装缶と前記第2外装缶はそれぞれ有底の円筒部と、該円筒部の開口端縁及びその近傍部分であって、該円筒部より外径方向に延出したフランジ部とを備え、前記有底の円筒部の少なくとも一方の底部には電池内部に向かって凹部が形成されていることを特徴とする円筒型蓄電池。
An electrode body in which a positive electrode current collector is welded to one end of an electrode group in which a positive electrode plate and a negative electrode plate are stacked via a separator and wound in a spiral shape, and a negative electrode current collector is welded to the other end Is accommodated between a metal first outer can also serving as a positive electrode terminal and a metal second outer can also serving as a negative electrode terminal, and an opening between the first outer can and the second outer can is interposed via an insulator. A cylindrical storage battery that is sealed and the electrode body is sealed in these cans,
The positive electrode current collector is directly electrically connected to the bottom surface of the first metal outer can also serving as the positive electrode terminal, and the negative electrode current collector is directly electrically connected to the bottom surface of the second metal outer can serving also as the negative electrode terminal. Connected to the
The first outer can and the second outer can each have a bottomed cylindrical portion, an opening edge of the cylindrical portion, and a portion in the vicinity thereof , and a flange portion extending in an outer diameter direction from the cylindrical portion. A cylindrical storage battery, wherein a recess is formed in the bottom of at least one of the bottomed cylindrical portions toward the inside of the battery.
前記凹部は前記有底の円筒部の底部の中心部に形成されているとともに、該凹部の底面は平坦面となされていることを特徴とする請求項1に記載の円筒型蓄電池。   2. The cylindrical storage battery according to claim 1, wherein the concave portion is formed at a central portion of the bottom portion of the bottomed cylindrical portion, and a bottom surface of the concave portion is a flat surface. 正極板と負極板がセパレータを介して積層されて渦巻状に巻回された電極群の一方の端部に正極集電体が溶接され他方の端部に負極集電体が溶接された電極体が正極端子を兼ねる金属製第1外装缶と負極端子を兼ねる第2外装缶との間に収容し、前記第1外装缶と前記第2外装缶との開口部が絶縁体を介して封止することにより前記電極体をこれらの缶内に密封する円筒型蓄電池の製造方法であって、
有底の円筒部と該円筒部の開口端縁及びその近傍部分であって、該円筒部より外径方向に延出したフランジ部とを備えた負極端子を兼ねる金属製第2外装缶の底部に前記電極体の負極集電体を溶接し、有底の円筒部と該円筒部の開口端縁及びその近傍部分であって、該円筒部より外径方向に延出したフランジ部とを備えた正極端子を兼ねる金属製第1外装缶の底部に前記電極体の正極集電体を溶接する溶接工程と、
前記第1外装缶のフランジ部と前記第2外装缶のフランジ部との間に絶縁ガスケットを配置して両フランジ部が互に対向するように重ね合わせた後、前記第1外装缶の円筒部の
底部と前記第2外装缶の円筒部の底部との間が所定の距離になるように相互に加圧する加圧工程と、
前記互に対向するように重ね合わされた両フランジ部の一部をかしめて密閉する密閉工程とを備えたことを特徴とする円筒型蓄電池の製造方法。
An electrode body in which a positive electrode current collector is welded to one end of an electrode group in which a positive electrode plate and a negative electrode plate are stacked via a separator and wound in a spiral shape, and a negative electrode current collector is welded to the other end Is accommodated between the first metal outer can also serving as the positive electrode terminal and the second outer can serving also as the negative electrode terminal, and the opening between the first outer can and the second outer can is sealed through an insulator. A cylindrical storage battery manufacturing method for sealing the electrode body in these cans,
The bottom of the metal second outer can that also serves as a negative electrode terminal having a bottomed cylindrical portion, an opening edge of the cylindrical portion, and a portion in the vicinity thereof , and a flange portion extending from the cylindrical portion in the outer diameter direction. A negative electrode current collector of the electrode body is welded to a bottomed cylindrical portion, an opening edge of the cylindrical portion, and a portion in the vicinity thereof , and a flange portion extending in an outer diameter direction from the cylindrical portion. Welding the positive electrode current collector of the electrode body to the bottom of the first metal outer can that also serves as the positive electrode terminal;
After the insulating gasket is disposed between the flange portion of the first outer can and the flange portion of the second outer can and the two flange portions are opposed to each other, the cylindrical portion of the first outer can A pressurizing step of pressurizing each other so that a predetermined distance is formed between the bottom of the second outer can and the cylindrical portion of the second outer can,
A method of manufacturing a cylindrical storage battery, comprising: a sealing step of caulking and sealing a part of both flange portions that are overlapped so as to face each other.
前記有底の円筒部の少なくとも一方の底部には電池内部に向かって凹部が形成されていて、前記加圧工程における加圧力により当該凹部は該缶の内部より外部に向けて変形するようになされていることを特徴とする請求項3に記載の円筒型蓄電池の製造方法。
At least one bottom of the bottomed cylindrical portion is formed with a recess toward the inside of the battery, and the recess is deformed from the inside of the can toward the outside by the pressing force in the pressurizing step. The manufacturing method of the cylindrical storage battery of Claim 3 characterized by the above-mentioned.
JP2006262216A 2006-09-27 2006-09-27 Cylindrical storage battery and manufacturing method thereof Active JP5159076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262216A JP5159076B2 (en) 2006-09-27 2006-09-27 Cylindrical storage battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262216A JP5159076B2 (en) 2006-09-27 2006-09-27 Cylindrical storage battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008084650A JP2008084650A (en) 2008-04-10
JP5159076B2 true JP5159076B2 (en) 2013-03-06

Family

ID=39355291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262216A Active JP5159076B2 (en) 2006-09-27 2006-09-27 Cylindrical storage battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5159076B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210137B2 (en) * 2008-12-10 2013-06-12 株式会社神戸製鋼所 Circular container for secondary battery
CN104953182B (en) * 2015-05-25 2018-03-30 安徽天康(集团)股份有限公司 The method of solution party's shaped steel shell power lithium-ion battery side potting problem
US10756398B2 (en) * 2018-06-22 2020-08-25 Wisk Aero Llc Capacitance reducing battery submodule with thermal runaway propagation prevention and containment features
US10593920B2 (en) 2018-08-13 2020-03-17 Wisk Aero Llc Capacitance reduction in battery systems
US20220190411A1 (en) * 2019-04-19 2022-06-16 Panasonic Intellectual Property Management Co., Ltd. Battery
WO2023092604A1 (en) * 2021-11-29 2023-06-01 宁德时代新能源科技股份有限公司 Battery cell, battery, power consumption apparatus, and method and apparatus for manufacturing battery cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231368U (en) * 1985-08-07 1987-02-25
JPH01177864A (en) * 1987-12-29 1989-07-14 Nec Home Electron Ltd Actuator
JP2000331655A (en) * 1999-05-21 2000-11-30 Sanyo Electric Co Ltd Electric energy accumulating device
JP4146665B2 (en) * 2002-04-24 2008-09-10 松下電器産業株式会社 Sealed secondary battery
JP4501361B2 (en) * 2003-06-05 2010-07-14 パナソニック株式会社 Secondary battery
JP2005150073A (en) * 2003-08-28 2005-06-09 Matsushita Electric Ind Co Ltd Battery and its manufacturing method
JP2007234306A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Cylindrical battery and battery pack using the same

Also Published As

Publication number Publication date
JP2008084650A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4020590B2 (en) Current collecting lead and storage battery manufacturing method using the same
EP2367219A2 (en) Cylindrical secondary battery and method of manufacturing the same
JP2004273229A (en) Sealed storage battery
JP5159076B2 (en) Cylindrical storage battery and manufacturing method thereof
US20040142237A1 (en) Alkaline storage battery and method
JP5127250B2 (en) Cylindrical storage battery and manufacturing method thereof
JP4368113B2 (en) battery
JP2007066604A (en) Secondary battery and battery module
JP2008243811A (en) Battery
JP5196824B2 (en) Cylindrical battery and manufacturing method thereof
EP4250440A1 (en) Cylindrical battery
JP4079563B2 (en) Storage battery and manufacturing method thereof
JP5383154B2 (en) Cylindrical secondary battery
JP4251829B2 (en) Battery and manufacturing method thereof
KR100946455B1 (en) The Cylindrical Battery
JP2007280743A (en) Cylindrical storage battery
JP5183251B2 (en) Assembled battery
JP3902427B2 (en) Method for producing electrode for storage battery
JP5064713B2 (en) Storage battery
JP2002141028A (en) Sealed cell and manufacturing method of the same
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
JP4698159B2 (en) Sealed battery and manufacturing method thereof
JP2016012393A (en) Storage battery module
WO2022196172A1 (en) Battery and method for manufacturing battery
JP2009245733A (en) Module battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R151 Written notification of patent or utility model registration

Ref document number: 5159076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3