JP3902427B2 - Method for producing electrode for storage battery - Google Patents

Method for producing electrode for storage battery Download PDF

Info

Publication number
JP3902427B2
JP3902427B2 JP2001231808A JP2001231808A JP3902427B2 JP 3902427 B2 JP3902427 B2 JP 3902427B2 JP 2001231808 A JP2001231808 A JP 2001231808A JP 2001231808 A JP2001231808 A JP 2001231808A JP 3902427 B2 JP3902427 B2 JP 3902427B2
Authority
JP
Japan
Prior art keywords
outer container
gasket
opening
current collector
reduced diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001231808A
Other languages
Japanese (ja)
Other versions
JP2003045476A (en
Inventor
博之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001231808A priority Critical patent/JP3902427B2/en
Publication of JP2003045476A publication Critical patent/JP2003045476A/en
Application granted granted Critical
Publication of JP3902427B2 publication Critical patent/JP3902427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、蓄電池およびその製造方法にかかり、特に、正・負極の少なくとも一方に接続された集電体と封口体とを直接溶接して接続した蓄電池構造およびその溶接方法の改善に関する。
【0002】
【従来の技術】
一般に、ニッケル−水素化物蓄電池、ニッケル−カドミウム蓄電池などのアルカリ蓄電池は、正極および負極の間にセパレータを介在させ、これらを渦巻状に巻回した後、正極あるいは負極の端部に集電体を接続して電極体を形成し、この電極体を外装容器としての金属製外装容器に収納して集電体から延伸する集電リードを封口体に溶接した後、封口体を外装容器の開口部に絶縁ガスケットを介在させて装着することにより密閉して構成されている。
【0003】
このようなアルカリ蓄電池が電動工具や電気自動車などの高率での充放電を行なう用途に使用する電池では、電池構成の中でも集電体と封口体との間を電気的に接続する接続部の電気抵抗が電池特性に大きく影響してくる。
【0004】
従来の円筒型電池では、図10(a)乃至(d)にその製造工程を示すように、集電体の一端と封口体とを溶接した後に電解液を注入し、封口するという方法がとられていた。すなわち図10(a)に示すように、正極および負極板とこれらの間に介挿されたセパレータとよりなる電極体10の上下に集電体14を溶接後、その巻取体を外装容器16としての金属缶に収納し、外装容器側面から溝入れを行い溝入れ部16aを形成する。
【0005】
この後、図10(b)に示すように、封口体20の一端を集電体14の先端に配設された集電タブ14tに溶接する。
そして、電解液を注入後、図10(c)に示すように、溝入れ部16aにガスケット9を介して封口体20を装着する。
【0006】
最後に図10(d)に示すように、開口部の端縁を嵌めることにより封口する。
【0007】
従来は、以上のように封口体と集電体とを接続した後、電解液を注入して封口するという方法がとられていた。
しかしながら、近年、大電流用途への需要が高まり、外装容器下面と封口体との間で電解液を介して通電することで封口体下面と集電体とを直接溶接することにより、この接続部の接続抵抗を低減する直接溶接法が提案されている。
【0008】
この直接溶接法では、集電体と封口体とが直接接続される場合、あるいは筒状体あるいは板状体などからなる集電リードを介して接続される場合などがあるが、このような接続部(以下集電接続部)の電気抵抗が大きい場合、大電流での放電を行なった場合に集電接続部の電気抵抗に起因する電圧低下が生じ、電池電圧が低下するという問題が生じる。
【0009】
そこで、本出願人らは、図11(a)乃至(c)に示すように、外装容器16と電極体10のいずれか一方の極とが溶接された状態で電極体を収納し(図11(a))たのち、この外装容器内に電解液を注入し、前記電極体の上端部に、前記正極あるいは負極の一方に電気的に接続される集電体14と電気的に接続するように下面に少なくとも一つの突起を備えた封口体20を配置(図11(b))し、外装容器と前記封口体との間に電流を流すことにより、前記封口体と前記集電体との接触部分を溶接して溶接部分を形成する溶接方法を提案している(特開2001-160338)。
【0010】
この方法では、電解液を導体パスとして形成された導電路内で、突起と集電体との間が高抵抗となり発熱し、溶接されることにより通電経路が形成され、その結果電気抵抗の小さい蓄電池を提供することができる。
【0011】
【発明が解決しようとする課題】
しかしながら、上記溶接方法は、溶接工程に先立ち、外装容器に装着された電極体に浸透するように電解液を注入する必要があった。
これは以下のような理由による。すなわち、通常は、電流を通電する封口体と外装容器との間は、正極板と負極板との間に介在せしめられたセパレータで電気的に隔離されている。すなわち、封口体は集電接続部を介して正極板に接続されており、また、外装容器は負極板と溶接接続されており、正極板と負極板との間はセパレータを介して電気的に隔離されている。
【0012】
この状態で、大電流、大電圧を印加すると、正極板と負極板との間に印加された過電圧により、両者の間のセパレータにしみ込んでいる電解液中の水の電気分解が起こる。例えば正極板側の封口体にプラスの溶接電極、負極板側の外装容器にマイナスの溶接電極をあてて、大電流、大電圧を印加した場合、負極板表面では、
2H++2e‐→H2
の反応が生じる。
【0013】
一方正極板表面では、
2O→1/2O2↑+2H++2e‐
となり、この水の電気分解反応により、正極板と負極板との間には、電流が流れる。この電流により封口板と集電接続部の溶接点に溶接電流が流れ、両者間を溶接接続することができる。このため、この溶接法では、溶接工程に先立ち電解液をあらかじめ注液しておくことが必須要件であった。
【0014】
しかし、この溶接工程では、封口体下面と集電体とが直接溶接される接点において発熱することで、内部の電解液が、外装容器内面と封口体とを組み込んだガスケット外周の間を通って、外部へ噴出するという問題があった。
また、アルカリ蓄電池の場合、溶接工程では、通電時に水素ガスと酸素ガスが正負極表面から発生する。その結果、発生したガスが上方に抜け出ていく際に、電解液がガスによって押し上げられ、電極体の上部にあふれだす、「ふきあがり」現象が発生する。このとき、外装容器開口部と封口体のガスケットとの間のすきまに電解液をかみこんでしまうことになる。さらにひどい場合は、電解液が外装容器からあふれでてしまうことになる。そのまま電池ケースをかしめて封口しても、封口体とガスケットの隙間から、または外装容器と封口体との隙間から電解液が這い上がる現象‐電解液のクリーピング現象が発生することになる。
【0015】
このように、電解液を介して溶接電流を流すいわゆる直接溶接法を用いる場合には、セパレータが電解液が十分含浸している状態で電極間に通電する必要がある。
【0016】
一方で、電解液が通電時に噴出すれば、電解液量にばらつきが生じ、電池特性を低下させる原因となる。また噴出した電解液によって外装容器の封口体近傍が腐蝕されるという問題もあった。
【0017】
さらにまた、正極および負極表面からガスが発生するため、ガスによる電解液のふきあがり現象を防ぐには、発生したガスを効率良く逃がすための間隙も必要であるため、電解液は多すぎないようにしなければならなかった。
【0018】
このように、電極体を外装容器に収納した後、集電体に溶接された集電リードを封口体下面に接触させた状態で外装容器の開口部を封口体で密閉し、その後、外装容器と封口体との間に電流を流すことにより、集電リードと封口体との接触部分を溶接するため、電解液はセパレータに十分に浸透していなければならない反面、通電時の発熱により、電解液が開口部とガスケットの隙間からあふれたり、また、電気分解により発生したガスが電解液を押し上げ、電解液があふれるという問題があった。
【0019】
本発明は前記実情に鑑みてなされたものであって、電解液を介して溶接電流を流し、外装容器又は他方極の端子と、正極および負極の対応する一方とを直接又は集電体を介して、溶接する方法、例えば封口体と集電体とを溶接する方法において、溶接工程における、電解液のふきあがり現象によるあふれを抑制するとともに、封口体表面への電解液のクリーピングを低減し、信頼性が高く歩留まりの高い蓄電池を提供することを目的とする。
【0020】
【課題を解決するための手段】
上記目的を達成するため、本発明では、一方極の端子を兼ねる外装容器内に、正および負の電極からなる電極体を配置するとともに、これら正および負の電極間に電解液を充填する工程と、前記正および負の電極の一方に一端が当接するように集電体を配置する工程と、前記外装容器の開口部近傍を、縮径せしめて縮径部を形成する縮径部形成工程と、前記外装容器の開口部に、ガスケットを装着する工程と、前記外装容器の前記開口部にガスケットを介して封口体を当接させるとともに、前記ガスケットの外壁が前記外装容器の内壁に当接するように、前記外装容器を前記縮径部よりも開口部側で内側に加圧することにより前記ガスケットと前記外装容器の前記開口部との間で密閉空間を形成し、前記外装容器と前記封口体との間で通電し、前記封口体と前記集電体との溶接を行う直接溶接工程と、前記溶接工程の後に、前記開口部を気密的に封止する封止工程とを含むことを特徴とする。
また上記方法において、前記封止工程は、嵌め加工工程を含み、前記ガスケットの内方の先端は少なくとも前記縮径部の中心よりも外側に位置しているものを含む。
また上記方法において、前記直接溶接工程は、前記外装容器の前記開口部にガスケットを介して封口体を当接させるとともに、外装容器の内壁に前記ガスケットの先端を当接せしめて、前記ガスケットと前記外装容器の内壁との間で密閉空間を形成しつつ、前記外装容器と前記封口体との間で通電し、前記封口体と前記集電体との溶接を行うものとしたものを含む。
また上記方法において、前記ガスケットは、前記外装容器の縮径部に相当する領域に縮径部を具備し、前記外装容器の内方に広がり、先端が前記外装容器の内壁に当接するように構成されたスカート部を具備してなる筒状体からなるものを含む。
また上記方法において、前記正および負の電極の一方に一端が当接するように集電体を配置するとともに、前記電極体上に、前記集電体を挿通する挿通穴を有する絶縁板を載置する工程を含み、前記直接溶接工程は、前記ガスケットが、縮径部よりも開口側で、前記ガスケットの下端(内方端)が前記絶縁板に当接すると共に、前記絶縁板の外周が前記外装容器の内壁に当接するように、前記外装容器の開口部近傍を、縮径せしめて縮径部を形成する縮径部形成工程と、前記絶縁板および前記ガスケットと前記外装容器の前記開口部との間で密閉空間を形成し、前記外装容器と前記封口体との間で通電し、前記封口体と前記集電体との溶接を行うものとしたものを含む。
また、本発明の参考例の第1の蓄電池では、外装容器と、前記外装容器内に配置せしめられた正および負の電極と、これら正および負の電極間に充填せしめられた電解液とを具備し、前記外装容器が、前記正または負の電極の一方に電気的に接続されて一方極の端子を構成し、前記外装容器の開口部が、ガスケットを介して、前記外装容器と電気的に絶縁され、他方極の端子を構成する封口体で封口されると共に、前記外装容器の周壁に縮径部が形成された蓄電池において、前記ガスケットが、前記外装容器の開口部の内壁に沿って配設せしめられ、前記縮径部よりも内方で前記外装容器の内壁に当接せしめられていることを特徴とする。
【0021】
かかる構成によれば、ガスケットが、前記外装容器の開口部の内壁に沿って配設せしめられ、前記縮径部よりも内方で前記外装容器の内壁に当接せしめられているため、外装容器の内壁とガスケットとで気密にシールされ、通電時においても、このガスケットにより、内壁に沿った電解液の噴き上がりが良好に阻止せしめられる。このため、電解液量にばらつきが生じ、電池特性を低下させることもなく、また噴出した電解液によって封口体近傍が腐蝕されるという問題もなく、長寿命で信頼性の高い蓄電池を提供することが可能となる。
【0022】
望ましくは、前記ガスケットは、前記外装容器の縮径部に相当する領域に縮径部を具備し、前記外装容器の内方に広がり、先端が前記外装容器の内壁に当接するように構成されたスカート部を具備してなる筒状体からなることを特徴とする。
【0023】
かかる構成によれば、ガスケットを、先端が前記外装容器の内壁に当接するように構成されたスカート部を具備してなる筒状体で構成しているため、外装容器の内壁とガスケットとで気密にシールされ、通電時においてもこのガスケットにより、内壁に沿った電解液の噴き上がりを良好に阻止することができる。
【0024】
また本発明の参考例の第2の蓄電池では、外装容器と、前記外装容器内に配置せしめられた正および負の電極と、これら正および負の電極間に充填せしめられた電解液とを具備し、前記外装容器が、前記正または負の電極の一方に電気的に接続されて一方極の端子を構成し、前記外装容器の開口部が、ガスケットを介して、前記外装容器と電気的に絶縁され、他方極の端子を構成する封口体で封口されると共に、前記外装容器の周壁に縮径部が形成された蓄電池において、前記ガスケットが、前記外装容器の開口部の内壁に沿って配設せしめられ、前記ガスケットの内方の先端が、前記外装容器の縮径部の中心よりも外方に位置していることを特徴とする。
【0025】
かかる構成によれば、通電時においては、外装容器の開口部で外装容器から内方に向けて加圧することにより、前記ガスケットは圧縮され外装容器に密着する。従って、外装容器の開口部は、外装容器内壁とガスケットとで気密にシールされ、このガスケットにより、内壁に沿った電解液の噴き上がりを良好に阻止することができる。そして、嵌めにより、外装容器の開口を封止するに際して、ガスケットは外装容器の縮径部の中心よりも上方に位置しているため、嵌めによる力がガスケットを大きく押圧し変位させることなく、封止が完了する。したがってガスケットの変位による変形のために隙間が生じたりすることもなく良好な封止がなされ、高効率で信頼性の高い蓄電池を形成することが可能となる。また、外装容器をかしめて封口する工程においても、ガスケットの変位による変形のために集電体が変位せしめられたりすることもなく、より正しい水平状態を維持でき、確実な押圧が可能となり、かしめに際しても、ガスケットの変位により、溶接点に不均一な応力がかかることも無く、溶接点のはずれをなくし、歩留まりの向上をはかることが可能となる。
【0026】
望ましくは、前記正および負の電極からなる電極体と、前記封口体との間には、前記正および負の電極の一方と封口体とを接続する集電体を挿通するように形成された絶縁板が配設され、前記ガスケットは前記絶縁板と当接することなく、自由端を構成していることを特徴とする。
【0027】
かかる構成によれば、ガスケットは絶縁板と当接しておらず、封止工程においても、ガスケットが絶縁板に押圧せしめられて大きく変形されることなく、封止が完了する。したがってガスケットの変位による変形のために隙間が生じたりすることもなく良好な封止がなされ、高効率で信頼性の高い蓄電池を形成することが可能となる。
【0028】
本発明の参考例の第3では、一方極の端子を兼ねる外装容器内に、正および負の電極からなる電極体を配置するとともに、これら正および負の電極間に電解液を充填する工程と、前記正および負の電極の一方に一端が当接するように集電体を配置する工程と、前記外装容器の開口部近傍を、絞り加工などにより、縮径せしめて縮径部を形成する縮径部形成工程と、前記外装容器の開口部の内壁に沿って配設せしめられ、前記縮径部よりも内方で前記外装容器の内壁に当接せしめるように構成されたガスケットを装着する工程と、前記外装容器の前記開口部にガスケットを介して封口体を当接させるとともに、外装容器の内壁に前記ガスケットの先端を当接せしめて、前記ガスケットと前記外装容器の内壁との間で密閉空間を形成しつつ、前記外装容器と前記封口体との間で通電し、前記封口体と前記集電体との溶接を行う直接溶接工程と、前記溶接工程の後に、前記開口部を気密的に封止する工程とを含むことを特徴とする。
【0029】
かかる構成によれば、ガスケットが、前記外装容器の開口部の内壁に沿って配設せしめられ、前記縮径部よりも内方で前記外装容器の内壁に当接せしめられるため、外装容器の内壁とガスケットとで気密にシールされ、通電時においても、このガスケットにより、内壁に沿った電解液の噴き上がりが良好に阻止せしめられる。このため、電解液量にばらつきが生じ、電池特性を低下させることもなく、また噴出した電解液によって封口体近傍が腐蝕されるという問題もなく、長寿命で信頼性の高い蓄電池を提供することが可能となる。
【0030】
望ましくは、前記ガスケットは、前記外装容器の縮径部に相当する領域に縮径部を具備し、前記外装容器の内方に広がり、先端が前記外装容器の内壁に当接するように構成されたスカート部を具備してなる筒状体からなり、前記直接溶接工程は、前記外装容器の前記開口部にガスケットを介して封口体を当接させるとともに、外装容器の内壁に前記ガスケットの先端を当接せしめて、前記ガスケットと前記外装容器の内壁との間で密閉空間を形成しつつ、前記外装容器と前記封口体との間で通電し、前記封口体と前記集電体との溶接を行う工程であることを特徴とする。
【0031】
かかる構成によれば、ガスケットを、先端が前記外装容器の内壁に当接するように構成されたスカート部を具備してなる筒状体で構成しているため、外装容器の内壁とガスケットとで気密にシールされ、通電時においてもこのガスケットにより、内壁に沿った電解液の噴き上がりを良好に阻止することができる。
【0032】
本発明の参考例の第4では、一方極の端子を兼ねる外装容器内に、正および負の電極からなる電極体を配置するとともに、これら正および負の電極間に電解液を充填する工程と、前記正および負の電極の一方に一端が当接するように集電体を配置する工程と、前記外装容器の開口部近傍を、絞り加工などにより、縮径せしめて縮径部を形成する縮径部形成工程と、前記外装容器の開口部に、ガスケットを装着する工程と、前記ガスケットの外壁が前記外装容器の内壁に当接するように、前記外装容器を前記縮径部よりも開口部側で内側に加圧することにより前記ガスケットと前記外装容器の前記開口部との間で密閉空間を形成し、前記外装容器と前記封口体との間で通電し、前記封口体と前記集電体との溶接を行う直接溶接工程と、前記溶接工程の後に、前記開口部を気密的に封止する封止工程とを含むことを特徴とする。
【0033】
かかる構成によれば、通電時においては、外装容器の開口部で外装容器から内方に向けて加圧しつつ通電することにより、前記ガスケットは圧縮され、外装容器は、外装容器の内壁とガスケットとで気密にシールされ、このガスケットにより、内壁に沿った電解液の噴き上がりを良好に阻止しながら溶接を行うことができる。
【0034】
望ましくは、前記封止工程は、嵌め加工工程を含み、前記ガスケットの内方の先端は少なくとも前記縮径部の中心よりも外側に位置していることを特徴とする。
【0035】
かかる構成によれば、嵌めにより、外装容器の開口を封止するに際して、ガスケットは外装容器の縮径部の中心よりも上方に位置しているため、嵌めによる力がガスケットを大きく押圧し変位させることなく、封止が完了する。したがってガスケットの変位による変形のために隙間が生じたりすることもなく良好な封止がなされ、高効率で信頼性の高い蓄電池を形成することが可能となる。また、外装容器をかしめて封口する工程においても、より正しい水平状態を維持でき、確実な押圧が可能となり、かしめに際しても、ガスケットの変位により、溶接点に不均一な応力がかかることも無く、溶接点のはずれをなくし、歩留まりの向上をはかることが可能となる。
【0036】
本発明の参考例の第5では、一方極の端子を兼ねる外装容器内に、正および負の電極からなる電極体を配置するとともに、これら正および負の電極間に電解液を充填する工程と、前記正および負の電極の一方に一端が当接するように集電体を配置するとともに、前記電極体上に、前記集電体を挿通する挿通穴を有する絶縁板を載置する工程と、前記外装容器の開口部に、ガスケットを装着する工程と、前記ガスケットが、縮径部よりも開口側で、前記ガスケットの下端(内方端)が前記絶縁板に当接すると共に、前記絶縁板の外周が前記外装容器の内壁に当接するように、前記外装容器の開口部近傍を、絞り加工などにより、縮径せしめて縮径部を形成する縮径部形成工程と、前記絶縁板および前記ガスケットと前記外装容器の前記開口部との間で密閉空間を形成し、前記外装容器と前記封口体との間で通電し、前記封口体と前記集電体との溶接を行う直接溶接工程と、前記溶接工程の後に、前記開口部を気密的に封止する工程とを含むことを特徴とする。
【0037】
かかる構成によれば、前記外装容器を内方に押圧しながら通電するなどの方法により、前記絶縁板および前記ガスケットと前記外装容器の前記開口部との間で密閉空間を形成し、前記外装容器と前記封口体との間で通電しているため、外装容器の内壁と絶縁板とガスケットとで気密にシールされ、外装容器の内壁に沿った電解液の噴き上がりを絶縁板とガスケットとで良好に阻止しながら溶接を行うことができる。
【0038】
また、外装容器の外側から加圧しながら通電する際、集電体と封口体とが接触した状態となるように外装容器の開口部に封口体を配置することができ、外装容器と封口体との間に溶接電流を流すようにしているので、直接溶接法を用いる場合にも、溶接時に接触部を加圧することが可能となる。これにより、「溶接ちり」の発生を伴うことなく、良好に溶接されるようになる。
【0039】
さらにまた、外装容器の外側から加圧しながら通電する際、この加圧力は、ガスケットが5〜50%程度圧縮される程度の力であることが望ましい。
【0040】
【発明の実施の形態】
以下、本発明をニッケル−水素蓄電池に適用した場合について図面を参照しつつ詳細に説明する。
実施形態1
図1乃至5は、本発明の第1の実施形態のニッケル−水素蓄電池の製造工程を示す説明図である。
【0041】
このニッケル−水素蓄電池は、図5に示すように、負極側端子を構成する外装容器16の開口部が、ガスケット19を介して、この外装容器16と電気的に絶縁され、他方極の端子を構成する封口体で封口されている蓄電池において、前記ガスケット19が、外装容器16の開口部の内壁に沿って配設せしめられ、外装容器16の縮径部16aよりも内方で広がり、縮径部16aよりも内方で外装容器16の内壁に当接せしめられていることを特徴とする。
【0042】
次にこのニッケル−水素蓄電池の製造方法について詳細に説明する。
1.電極体の作製
本実施形態のニッケル−水素蓄電池は図1に封口体装着前の状態を示すように、外装容器16としての金属缶内に、ニッケル正極板11と水素吸蔵合金負極板12とを備えている。ニッケル正極板11は、パンチングメタルからなる極板芯体の表面にニッケル焼結多孔体を形成した後、化学含浸法により水酸化ニッケルを主体とする活物質をニッケル焼結多孔体内に充填して作製される。一方、水素吸蔵合金負極板12は、パンチングメタルからなる極板芯体の表面に水素吸蔵合金からなるペースト状負極活物質を充填し、乾燥させた後、所定の厚みになるまで圧延して作製される。
【0043】
これらのニッケル正極板11と水素吸蔵合金負極板12との間にポリオレフィン製の不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製する。この渦巻状電極群の上端面には、ニッケル正極板11の極板芯体であるパンチングメタルの端部が露出し、また、下端面には水素吸蔵合金負極板12の極板芯体であるパンチングメタルの端部が露出している。そして、この渦巻状電極群の上端面に露出する正極芯体に多数の開口を有する円板状の集電体14を溶接するとともに、下端面に露出する負極芯体に多数の開口を有する円板状の負極集電体(図示せず)を溶接して、渦巻状電極体10を作製する。
【0044】
2.ニッケル−水素蓄電池の作製
ニッケル−水素蓄電池を組み立てるに際しては、まず、上述の電極体10を鉄にニッケルメッキを施した有底筒状の外装容器(底面の外面は負極外部端子となる)16内に収納し、電極体10の中心部に形成された空間部に、図示しない溶接電極を挿入して、水素吸蔵合金負極板12に溶接された負極集電体を外装容器16の内底面にスポット溶接した。この後、上述した集電体14の本体部が正極集電体としての集電リードの直径上に位置するように載置するとともに、集電体本体部14と正極とをスポット溶接した。そして外装容器16の外周側に溝入れ加工を施して環状溝としての縮径部16aを形成した(図1)。
【0045】
このようにして、電極体10と集電体14を配置した後、外装容器16内に30質量%の水酸化カリウム(KOH)水溶液からなる電解液を注入する。
【0046】
そしてこの後、外装容器16の開口部の内壁に沿って配設せしめられ、外装容器16の縮径部16aよりも内方で広がり、縮径部16aよりも内方で外装容器16の内壁に先端が当接せしめられてなるスカート部19Sを備えたガスケット19を装着し、さらに封口キャップ20aと封口体本体20bとからなる封口体を装着する(図2)。
【0047】
ここで封口体20は、底面に円形状の下方突出部を形成してなる封口体本体部20bと、正極キャップ(正極外部端子)20aと、これら封口体本体部および正極キャップ間に介在されるスプリングと弁板からなる弁体を備えており、封口体本体部20bの中央にはガス抜き孔20cが形成されている。
【0048】
このようにして封口体を配置した後、正極キャップ(正極外部端子)20aの上面に一方の溶接電極W1を配置するとともに、外装容器16の底面(負極外部端子)の下面に他方の溶接電極W2を配置した。この後、これらの一対の溶接電極W1,W2間、および外装容器の開口端縁16bの回りから、2×106N/m2の圧力を加えながら、これらの溶接電極W1,W2間に電池の放電方向に24Vの電圧を印加し、3KAの電流を約15msecの時間流す通電処理を施した。この通電処理により、封口体20の底面と集電体14の溶接面の突起(図示せず)との接触部分が溶接(第2溶接)されて、溶接部が形成される。なお、ここで溶接電流は電池の放電方向に流したが、充電方向でもよいことはいうまでもない。ただ、充電方向に流した場合、過充電となる危険がある。このため、溶接電流を電池の放電方向に流すのが望ましく、過充電を防止することができる。
【0049】
このように図2に示すように、前記外装容器16の外側から圧力Pを印加しつつ、一対の溶接電極W1,W2間および、外装容器の開口端縁16bの回りから2×106N/m2の圧力を印加しながら、これらの溶接電極W1,W2間に電圧を印加して、通電処理を施すことにより、内部欠陥のない溶接強度に優れた溶接部を形成することができるようになる。(図4は要部拡大図である。)
【0050】
ここで、集電体と封口体との接触部分を溶接するに際し、十分な溶接電流をながすことができる。そして、ガスケット19は外装容器16の開口部の内壁に沿って配設せしめられ、外装容器16の縮径部16aよりも内方で広がり、縮径部16aよりも内方で外装容器16の内壁に先端が当接せしめられてなるスカート部19Sを具備しているため、外装容器16の開口部周辺への電解液の漏れを防止することができる。
【0051】
ついで、図3に示すように、外装容器16の開口端縁16bを内方にかしめて電池を封口することにより、半完成の電池とした。
この後、図4に示すように、この半完成の電池を一対の割型A1,A2内に配置するとともに、封口体20の上部にプレス機に連結されたパンチPを配置した。ついで、プレス機を駆動してパンチPを下降させて、封口体20の封口部(外装容器16の開口端縁16b)をパンチPにより加圧して、封口体20を外装容器16内に押し込んだ。
【0052】
これにより、ガスケット19の下端(内方端)は前記外装容器の内壁に当接した状態で環状溝16aは押しつぶされる。
これにより、図5に示すように、公称容量6.5Ahの円筒形ニッケル−水素蓄電池を作製した。
【0053】
比較例
図11に示したような従来のガスケットを用いた方法により、溶接を行い、他の構成は、前記実施例と全く同様にして円筒形ニッケル−水素蓄電池を作製した。
【0054】
3.試験結果
上述のようにして作製した電池を用いて、溶接結果および組み立てた電池のクリーピング試験結果を示す。クリーピング試験は組み立てた電池を0.2Itで8時間充電した後、45℃雰囲気下で2週間放置したのちに封口体とガスケット又は外装容器とガスケットとのすきまから電解液が這い出してきていないかを目視およびフェノールフィオフタレイン溶液による示色試験にて確認した。その結果を次表に示す。
【0055】

Figure 0003902427
【0056】
本発明の減圧注液法を用いた電池は溶接時の液あふれやガスケットへの電解液のまわりこみが100個中2個(2%)であり、ほとんどなかった。
これに対し、比較例の方法で形成した電池は全数溶接時のふきあがりによる液あふれやガスケットへの電解液のまわりこみが100個中100個(100%)確認された。
【0057】
又2週間の放置後のクリーピング試験では、本発明の注液法を用いた電池ではクリーピングがほとんど確認されなかったのに対し、比較例では9割以上にはクリーピングが確認された。
なお、前記実施形態ではガスケットが外装容器の内壁に当接しているため、外装容器と電極体の正極板との接触防止のための絶縁ワッシャは不要であるが、集電体の下方に集電リード挿通穴を有するドーナッツ状の絶縁板からなる絶縁ワッシャを設けてもよい。
【0058】
実施形態2
また、本発明の第2の実施形態として、図7に示すようにガスケット29が、前記外装容器16の開口部の内壁に沿って配設せしめられ、ガスケット29の内方(下方)の先端が、前記外装容器の縮径部の中心よりも外方(上方)に位置していることを特徴とする。
【0059】
そして通電時においては、ガスケットは図6に示すように外装容器の開口部で外装容器から内方に向けて圧縮する(P)ことにより、外装容器の内壁とガスケットとで気密にシールされるようにしたものである。なおここでは、電極体を外装容器に収納した後、絶縁ワッシャ15すなわち、外装容器16の内壁に当接するドーナッツ状の絶縁板15を配置し、この後集電体14を載置している。
図6はこの通電時の状態を示す図である。このように加圧しつつ通電することにより、ガスケットが圧縮され、気密にシールすることになり、内壁に沿った電解液の噴き上がりを良好に阻止することができる。
【0060】
そして、嵌めにより、図7に示すように、外装容器の開口が封止される。このとき、ガスケットは外装容器の縮径部の中心よりも上方に位置しているため、嵌めによる力がガスケットを大きく押圧し変位させることなく、封止が完了し、図8に示すような蓄電池が形成される。
したがってガスケットの変位による変形のために隙間が生じたりすることもなく良好な封止がなされ、高効率で信頼性の高い蓄電池を形成することが可能となる。また、外装容器をかしめて封口する工程においても、ガスケットの変位による変形のために集電体が変位せしめられたりすることもなく、より正しい水平状態を維持でき、確実な押圧が可能となり、かしめに際しても、ガスケットの変位により、溶接点に不均一な応力がかかることも無く、溶接点のはずれをなくし、歩留まりの向上をはかることが可能となる。
なお、絶縁ワッシャ15は外装容器と電極体の正極板が接触しないように形成できれば、省略してもよい。かかる構成によれば、部品点数が低減される。
【0061】
実施形態3
また、本発明の第3の実施形態として、図9に示すようにガスケット39が、前記外装容器16の開口部の内壁に沿って配設せしめられ、ガスケット39の内方の先端39Sが、外装容器16の縮径部16aよりも開口側で、集電体を挿通する挿通穴を有し電極体10上に載置された絶縁ワッシャ15に当接すると共に、前記絶縁ワッシャ15の外周が前記外装容器の内壁に当接するよう構成されていることを特徴とする。
【0062】
製造に際しては、前記第1の実施形態と同様に、外装容器16内に、正および負の電極からなる電極体10を配置するとともに、これら正および負の電極間に電解液を充填する。
【0063】
そして、前記正極に一端が当接するように集電体14を配置するとともに、前記電極体10上に、前記集電体を挿通する挿通穴を有する絶縁ワッシャ15を載置する。
【0064】
この後、前記外装容器の開口部に、ガスケット39を装着し、前記ガスケットが、縮径部よりも開口側で、前記ガスケットの下端(内方端)が前記絶縁板に当接すると共に、前記絶縁板の外周が前記外装容器の内壁に当接するように、前記外装容器の開口部近傍を絞り加工して、縮径せしめて縮径部を形成する。
【0065】
そして、図9に示すように、絶縁ワッシャ15および前記ガスケット39と前記外装容器16の前記開口部との間で密閉空間を形成し、前記外装容器下面と前記封口体20との間で通電し、前記封口体と前記集電体14との溶接を行う。望ましくは外装容器を内方に押圧しながら通電する。
【0066】
そして最後に、前記開口部を気密的に封止する。
この方法によっても、絶縁ワッシャ15および前記ガスケット39と前記外装容器16の前記開口部との間で密閉空間を形成し、前記外装容器16下面と前記封口体20との間で通電しているため、外装容器16の内壁と絶縁ワッシャ15とガスケット39とで気密にシールされ、外装容器16の内壁に沿った電解液の噴き上がりを絶縁ワッシャ15とガスケット39とで良好に阻止しながら溶接を行うことができる。
【0067】
なお、上述した実施の形態および変形例においては、封口体を正極端子とし、外装容器を負極端子とした例について説明したが、封口体を負極端子とし、外装容器を正極端子としてもよい。
【0068】
また前記実施形態では集電体を介して溶接したが、集電体なしに直接電極と封口体とが溶接される構造にも適用可能であることはいうまでもない。
【0069】
また、前記実施例では外装容器を金属缶で構成した、ニッケル水素電池について説明したが、ニッケル水素電池に限定されることなく、ニッケルーカドミウム電池や、リチウム電池、固体電解質電池など他の電池にも適用可能であることはいうまでもない。
【0070】
【発明の効果】
以上説明してきたように、本発明の蓄電池によれば、ガスケットが、前記外装容器の開口部の内壁に沿って配設せしめられ、前記縮径部よりも内方で前記外装容器の内壁に当接せしめられているため、外装容器の内壁とガスケットとで気密にシールされ、通電時においても、このガスケットにより、内壁に沿った電解液の噴き上がりが良好に阻止せしめられる。このため、電解液量にばらつきが生じ、電池特性を低下させることもなく、また噴出した電解液によって封口体近傍が腐蝕されるという問題もなく、長寿命で信頼性の高い蓄電池を提供することが可能となる。
【0071】
また、本発明の方法によれば、通電時においては、前記ガスケットは外装容器の開口部で外装容器から内方に向けて圧縮しつつ通電することにより、外装容器の内壁とガスケットとで気密にシールされ、このガスケットにより、内壁に沿った電解液の噴き上がりを良好に阻止しながら溶接を行うことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の蓄電池の製造工程を示す図。
【図2】本発明の第1の実施形態の蓄電池の製造工程を示す図。
【図3】本発明の第1の実施形態の蓄電池の製造工程を示す図。
【図4】本発明の第1の実施形態の蓄電池の製造工程を示す図。
【図5】本発明の第1の実施形態の蓄電池の製造工程を示す図。
【図6】本発明の第2の実施形態の蓄電池の製造工程を示す図。
【図7】本発明の第2の実施形態の蓄電池の製造工程を示す図。
【図8】本発明の第2の実施形態の蓄電池の製造工程を示す図。
【図9】本発明の第3の実施形態の蓄電池の製造工程を示す図。
【図10】従来例の蓄電池の製造工程を示す図。
【図11】従来例の蓄電池の製造工程を示す図。
【符号の説明】
9…ガスケット、10…電極体、11…正極板、12…負極板、13…セパレータ、14…集電体、15…絶縁ワッシャ、16…外装容器(負極外部端子)、16a…溝部、
17…封口体、17a…蓋、17b…正極キャップ(正極外部端子)、19…ガスケット、29…ガスケット、39…ガスケット、W1,W2…溶接電極、A1,A2…割型、P…パンチ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a storage battery and a method for manufacturing the same, and more particularly, to a storage battery structure in which a current collector connected to at least one of a positive electrode and a negative electrode and a sealing body are connected by direct welding and an improvement in the welding method.
[0002]
[Prior art]
In general, alkaline storage batteries such as nickel-hydride storage batteries and nickel-cadmium storage batteries interpose a separator between a positive electrode and a negative electrode, wind them in a spiral shape, and then attach a current collector to the end of the positive electrode or the negative electrode. An electrode body is formed by connection, and the electrode body is accommodated in a metal outer container as an outer container and a current collecting lead extending from the current collector is welded to the sealing body, and then the sealing body is opened to the outer container. It is configured to be hermetically sealed by mounting with an insulating gasket interposed therebetween.
[0003]
In a battery used for such an application where the alkaline storage battery performs charging / discharging at a high rate such as an electric tool or an electric vehicle, the connection part for electrically connecting the current collector and the sealing body among the battery configurations. Electrical resistance greatly affects battery characteristics.
[0004]
In a conventional cylindrical battery, as shown in FIGS. 10 (a) to 10 (d), a method of injecting an electrolytic solution after sealing one end of a current collector and a sealing body and sealing the same is performed. It was done. That is, as shown in FIG. 10A, after the current collector 14 is welded to the upper and lower sides of the electrode body 10 composed of the positive and negative plates and the separator interposed therebetween, the wound body is attached to the outer container 16. And grooving from the side of the outer container to form a grooving portion 16a.
[0005]
Thereafter, as shown in FIG. 10B, one end of the sealing body 20 is welded to a current collecting tab 14 t disposed at the tip of the current collector 14.
And after inject | pouring electrolyte solution, as shown in FIG.10 (c), the sealing body 20 is mounted | worn through the gasket 9 in the groove part 16a.
[0006]
Finally, as shown in FIG. 10D, sealing is performed by fitting the edge of the opening.
[0007]
Conventionally, after the sealing body and the current collector are connected as described above, the electrolytic solution is injected and sealed.
However, in recent years, the demand for high-current applications has increased, and this connecting portion can be directly welded between the bottom surface of the sealing body and the current collector by energizing the bottom surface of the outer container and the sealing body via the electrolyte. A direct welding method has been proposed that reduces the connection resistance.
[0008]
In this direct welding method, the current collector and the sealing body may be directly connected, or may be connected via a current collecting lead made of a cylindrical body or a plate-like body. When the electrical resistance of the portion (hereinafter referred to as the current collector connection portion) is large, a voltage drop due to the electrical resistance of the current collector connection portion occurs when discharging with a large current occurs, resulting in a problem that the battery voltage decreases.
[0009]
Therefore, as shown in FIGS. 11A to 11C, the applicants accommodate the electrode body in a state where the outer container 16 and one of the electrodes of the electrode body 10 are welded (FIG. 11). (A) After that, an electrolyte is injected into the outer container, and the upper end of the electrode body is electrically connected to the current collector 14 electrically connected to one of the positive electrode and the negative electrode. The sealing body 20 having at least one protrusion on the lower surface is disposed (FIG. 11B), and an electric current is passed between the outer container and the sealing body, whereby the sealing body and the current collector are A welding method in which a contact portion is welded to form a weld portion has been proposed (Japanese Patent Laid-Open No. 2001-160338).
[0010]
In this method, in the conductive path formed by using the electrolytic solution as a conductor path, a high resistance is generated between the protrusion and the current collector, and heat is generated, and an energization path is formed by welding, resulting in a low electrical resistance. A storage battery can be provided.
[0011]
[Problems to be solved by the invention]
However, prior to the welding process, the above-described welding method needs to inject an electrolytic solution so as to penetrate into the electrode body attached to the outer container.
This is due to the following reasons. That is, normally, the sealing member that energizes the current and the outer container are electrically isolated by a separator interposed between the positive electrode plate and the negative electrode plate. That is, the sealing body is connected to the positive electrode plate via the current collector connection portion, and the outer container is welded to the negative electrode plate, and the positive electrode plate and the negative electrode plate are electrically connected via the separator. Isolated.
[0012]
When a large current and a large voltage are applied in this state, electrolysis of water in the electrolytic solution that has permeated the separator between the two occurs due to an overvoltage applied between the positive electrode plate and the negative electrode plate. For example, when a positive welding electrode is applied to the sealing body on the positive electrode plate side, a negative welding electrode is applied to the outer casing on the negative electrode plate side, and a large current or large voltage is applied,
2H++ 2e- → H2
Reaction occurs.
[0013]
On the other hand, on the positive electrode surface,
H2O → 1 / 2O2↑ + 2H++ 2e-
As a result of this electrolysis reaction of water, a current flows between the positive electrode plate and the negative electrode plate. This current causes a welding current to flow at the welding point between the sealing plate and the current collector connection portion, and the two can be welded together. For this reason, in this welding method, it was an essential requirement to inject an electrolytic solution in advance prior to the welding process.
[0014]
However, in this welding process, heat is generated at the contact point where the sealing member lower surface and the current collector are directly welded, so that the internal electrolyte passes between the outer periphery of the gasket incorporating the outer container inner surface and the sealing member. There was a problem of erupting outside.
In the case of an alkaline storage battery, in the welding process, hydrogen gas and oxygen gas are generated from the positive and negative electrode surfaces during energization. As a result, when the generated gas escapes upward, the electrolyte is pushed up by the gas and overflows to the upper part of the electrode body. At this time, the electrolytic solution is bitten into the gap between the outer container opening and the gasket of the sealing body. In a more severe case, the electrolyte will overflow from the outer container. Even if the battery case is crimped as it is, a phenomenon in which the electrolyte crawls up from the gap between the sealing body and the gasket or from the gap between the outer container and the sealing body—a creeping phenomenon of the electrolyte occurs.
[0015]
Thus, when using a so-called direct welding method in which a welding current is passed through the electrolytic solution, it is necessary to energize the electrodes while the separator is sufficiently impregnated with the electrolytic solution.
[0016]
On the other hand, if the electrolytic solution is ejected at the time of energization, the amount of the electrolytic solution varies, which causes deterioration of battery characteristics. There is also a problem that the vicinity of the sealing body of the outer container is corroded by the ejected electrolyte.
[0017]
Furthermore, since gas is generated from the surfaces of the positive electrode and the negative electrode, it is necessary to provide a gap for efficiently escaping the generated gas in order to prevent the electrolyte from being blown up by the gas. Had to be.
[0018]
Thus, after the electrode body is housed in the outer container, the opening of the outer container is sealed with the sealing body in a state where the current collector lead welded to the current collector is in contact with the lower surface of the sealing body, and then the outer container In order to weld the contact portion between the current collector lead and the sealing body by passing an electric current between the current collector and the sealing body, the electrolyte must be sufficiently infiltrated into the separator. There is a problem that the liquid overflows from the gap between the opening and the gasket, and gas generated by electrolysis pushes up the electrolyte and overflows.
[0019]
The present invention has been made in view of the above circumstances, and a welding current is passed through an electrolytic solution, and the outer container or the terminal of the other electrode and the corresponding one of the positive electrode and the negative electrode are directly or via a current collector. In the welding method, for example, the method of welding the sealing body and the current collector, the overflow due to the electrolyte spilling phenomenon in the welding process is suppressed, and creeping of the electrolyte onto the surface of the sealing body is reduced. An object is to provide a storage battery with high reliability and high yield.
[0020]
[Means for Solving the Problems]
  To achieve the above objective,In the present invention, a step of placing an electrode body composed of positive and negative electrodes in an outer container also serving as a terminal of one electrode, and filling the electrolyte between these positive and negative electrodes, and the positive and negative electrodes A step of arranging a current collector so that one end of the electrode comes into contact with one end of the electrode, a reduced diameter portion forming step of reducing the diameter of the vicinity of the opening of the outer container to form a reduced diameter portion, and opening of the outer container Attaching the gasket to the part, and bringing the sealing body into contact with the opening of the outer container via the gasket, so that the outer wall of the gasket contacts the inner wall of the outer container. Forming a sealed space between the gasket and the opening of the outer container by applying pressure on the opening side from the reduced diameter part, and energizing between the outer container and the sealing body, The sealing body and the current collector Direct welding step for welding, after the welding process, characterized in that it comprises a sealing step of hermetically sealing the opening.
Further, in the above method, the sealing step includes a fitting step, and an inner tip of the gasket is located at least outside the center of the reduced diameter portion.
Further, in the above method, in the direct welding step, a sealing body is brought into contact with the opening of the outer container via a gasket, and a tip of the gasket is brought into contact with an inner wall of the outer container, so that the gasket and the In this case, a sealed space is formed between the outer wall and the inner wall of the outer container, and electricity is passed between the outer container and the sealing body to weld the sealing body and the current collector.
Further, in the above method, the gasket includes a reduced diameter portion in a region corresponding to the reduced diameter portion of the outer container, extends inwardly of the outer container, and is configured so that a tip abuts against an inner wall of the outer container. Including a cylindrical body provided with a formed skirt portion.
  Further, in the above method, the current collector is disposed so that one end thereof is in contact with one of the positive and negative electrodes, and an insulating plate having an insertion hole for inserting the current collector is placed on the electrode body. And the direct welding step includes a step in which the gasket is on the opening side of the reduced diameter portion, a lower end (inner end) of the gasket is in contact with the insulating plate, and an outer periphery of the insulating plate is the exterior. A reduced diameter portion forming step of forming a reduced diameter portion by reducing the diameter of the vicinity of the opening portion of the outer container so as to contact the inner wall of the container; the insulating plate, the gasket, and the opening portion of the outer container; A sealed space is formed between the outer container and the sealing body, and welding is performed between the sealing body and the current collector.
In the first storage battery of the reference example of the present invention,An outer case, a positive and negative electrode disposed in the outer case, and an electrolyte filled between the positive and negative electrodes, the outer case being the positive or negative electrode A sealing body that is electrically connected to one of the terminals to form a terminal of one electrode, and the opening of the outer container is electrically insulated from the outer container through a gasket, and constitutes a terminal of the other electrode. In the storage battery that is sealed and has a reduced diameter portion formed on the peripheral wall of the outer container, the gasket is disposed along the inner wall of the opening of the outer container, and is located inward of the reduced diameter portion. It is abutted against the inner wall of the exterior container.
[0021]
According to such a configuration, the gasket is disposed along the inner wall of the opening of the outer container, and is in contact with the inner wall of the outer container inward of the reduced diameter portion. The inner wall and the gasket are hermetically sealed, and even when energized, the gasket prevents the electrolyte from spraying along the inner wall satisfactorily. Therefore, it is possible to provide a long-life and highly reliable storage battery without variation in the amount of electrolyte, without deteriorating battery characteristics, and without the problem that the vicinity of the sealing body is corroded by the sprayed electrolyte. Is possible.
[0022]
Preferably, the gasket includes a reduced diameter portion in a region corresponding to a reduced diameter portion of the outer container, extends inward of the outer container, and is configured so that a tip contacts the inner wall of the outer container. It consists of the cylindrical body which comprises a skirt part, It is characterized by the above-mentioned.
[0023]
According to such a configuration, since the gasket is formed of a cylindrical body having a skirt portion whose tip is configured to abut against the inner wall of the outer container, the inner wall of the outer container and the gasket are airtight. Even when energized, the gasket can satisfactorily prevent the electrolyte from spraying along the inner wall.
[0024]
  The present inventionReference exampleThe second storage battery comprises an outer container, positive and negative electrodes disposed in the outer container, and an electrolyte filled between the positive and negative electrodes, and the outer container includes: A terminal of one electrode is configured to be electrically connected to one of the positive or negative electrodes, and an opening of the outer container is electrically insulated from the outer container via a gasket, and a terminal of the other electrode And the gasket is disposed along the inner wall of the opening of the outer container, and the gasket is disposed on the peripheral wall of the outer container. The inner tip is located outward from the center of the reduced diameter portion of the outer container.
[0025]
According to such a configuration, when energized, the gasket is compressed and is in close contact with the exterior container by applying pressure from the exterior container inward through the opening of the exterior container. Therefore, the opening of the outer container is hermetically sealed with the inner wall of the outer container and the gasket, and the gasket can satisfactorily prevent the electrolyte from spraying along the inner wall. Then, when sealing the opening of the outer container by fitting, the gasket is positioned above the center of the reduced diameter portion of the outer container, so that the force of the fitting does not greatly press and displace the gasket without sealing. Stop is completed. Therefore, it is possible to form a high-efficiency and highly reliable storage battery without causing a gap due to deformation due to the displacement of the gasket so that a good sealing is achieved. In addition, in the process of caulking and sealing the outer container, the current collector is not displaced due to the deformation due to the displacement of the gasket, so that a more accurate horizontal state can be maintained and reliable pressing can be performed. At this time, non-uniform stress is not applied to the welding point due to the displacement of the gasket, so that the welding point is not displaced and the yield can be improved.
[0026]
Preferably, a current collector connecting one of the positive and negative electrodes and the sealing body is inserted between the electrode body composed of the positive and negative electrodes and the sealing body. An insulating plate is provided, and the gasket constitutes a free end without contacting the insulating plate.
[0027]
According to this configuration, the gasket is not in contact with the insulating plate, and the sealing is completed in the sealing process without the gasket being pressed against the insulating plate and greatly deformed. Therefore, it is possible to form a high-efficiency and highly reliable storage battery without causing a gap due to deformation due to the displacement of the gasket so that a good sealing is achieved.
[0028]
  Of the present inventionThird reference exampleThen, an electrode body composed of positive and negative electrodes is disposed in an outer container also serving as a terminal of one electrode, and an electrolyte solution is filled between the positive and negative electrodes, and the positive and negative electrodes A step of arranging a current collector so that one end abuts on one side, a reduced diameter portion forming step of forming a reduced diameter portion by reducing the diameter of the vicinity of the opening of the outer container by drawing or the like, and the outer packaging Attaching a gasket disposed along the inner wall of the opening of the container and configured to contact the inner wall of the outer container inward of the reduced diameter portion; and the opening of the outer container The sealing body is brought into contact with a part via a gasket, and the outer end of the gasket is brought into contact with the inner wall of the outer container to form a sealed space between the gasket and the inner wall of the outer container. Container and said sealing body Energized between the direct welding step for welding between the current collector and the sealing member, after the welding process, characterized in that it comprises a step of hermetically sealing the opening.
[0029]
According to such a configuration, the gasket is disposed along the inner wall of the opening of the outer container and is brought into contact with the inner wall of the outer container inward of the reduced diameter portion. And the gasket are hermetically sealed, and even when energized, the gasket prevents the electrolyte from spraying along the inner wall satisfactorily. Therefore, it is possible to provide a long-life and highly reliable storage battery without variation in the amount of electrolyte, without deteriorating battery characteristics, and without the problem that the vicinity of the sealing body is corroded by the sprayed electrolyte. Is possible.
[0030]
Preferably, the gasket includes a reduced diameter portion in a region corresponding to a reduced diameter portion of the outer container, extends inward of the outer container, and is configured so that a tip contacts the inner wall of the outer container. In the direct welding process, the sealing body is brought into contact with the opening of the outer container via a gasket and the front end of the gasket is applied to the inner wall of the outer container. The sealing body and the current collector are welded to form a sealed space between the gasket and the inner wall of the outer container, and the energization is performed between the outer container and the sealing body. It is a process.
[0031]
According to such a configuration, since the gasket is formed of a cylindrical body having a skirt portion whose tip is configured to abut against the inner wall of the outer container, the inner wall of the outer container and the gasket are airtight. Even when energized, the gasket can satisfactorily prevent the electrolyte from spraying along the inner wall.
[0032]
  Of the present inventionFourth reference exampleThen, an electrode body composed of positive and negative electrodes is disposed in an outer container also serving as a terminal of one electrode, and an electrolyte solution is filled between the positive and negative electrodes, and the positive and negative electrodes A step of arranging a current collector so that one end abuts on one side, a reduced diameter portion forming step of forming a reduced diameter portion by reducing the diameter of the vicinity of the opening of the outer container by drawing or the like, and the outer packaging Attaching the gasket to the opening of the container, and pressurizing the outer container inwardly on the opening side of the reduced diameter portion so that the outer wall of the gasket contacts the inner wall of the outer container. A direct welding step of forming a sealed space between the gasket and the opening of the outer container, energizing the outer container and the sealing body, and welding the sealing body and the current collector; After the welding process, the opening The characterized in that it comprises a sealing step of hermetically sealing.
[0033]
According to such a configuration, during energization, the gasket is compressed by energizing while pressing inward from the exterior container at the opening of the exterior container, and the exterior container is formed with the inner wall and the gasket of the exterior container. With this gasket, it is possible to perform welding while satisfactorily preventing the electrolyte from spraying along the inner wall.
[0034]
Desirably, the sealing step includes a fitting step, and an inner tip of the gasket is located at least outside a center of the reduced diameter portion.
[0035]
According to such a configuration, when the opening of the outer container is sealed by fitting, the gasket is positioned above the center of the reduced diameter portion of the outer container, so that the force due to the fitting greatly presses and displaces the gasket. The sealing is completed without any problem. Therefore, it is possible to form a high-efficiency and highly reliable storage battery without causing a gap due to deformation due to the displacement of the gasket so that a good sealing is achieved. Also, in the process of caulking and sealing the outer container, it is possible to maintain a more accurate horizontal state, and it is possible to press reliably, and even during caulking, there is no uneven stress on the welding point due to the displacement of the gasket, It is possible to eliminate the welding point deviation and improve the yield.
[0036]
  Of the present inventionReference exampleIn the fifth aspect, a step of placing an electrode body composed of positive and negative electrodes in an outer container also serving as a terminal of one electrode and filling an electrolyte between these positive and negative electrodes; Placing the current collector so that one end of the electrode abuts against one of the electrodes, and placing an insulating plate having an insertion hole through which the current collector is inserted on the electrode body; and an opening of the outer container The gasket is mounted on the opening side of the reduced diameter portion, the lower end (inner end) of the gasket is in contact with the insulating plate, and the outer periphery of the insulating plate is the outer container. A reduced diameter portion forming step of forming a reduced diameter portion by reducing the diameter of the vicinity of the opening portion of the outer container by drawing or the like so as to contact the inner wall, and the insulating plate, the gasket, and the outer container A sealed space between the opening And a direct welding process in which current is passed between the outer container and the sealing body to weld the sealing body and the current collector, and the opening is hermetically sealed after the welding process. And a step of performing.
[0037]
According to such a configuration, a sealed space is formed between the insulating plate and the gasket and the opening of the outer container by a method such as energization while pressing the outer container inward, and the outer container. Is sealed between the inner wall of the outer container, the insulating plate, and the gasket, and the spray of electrolyte along the inner wall of the outer container is good for the insulating plate and the gasket. Welding can be performed while preventing the above.
[0038]
In addition, when energizing while applying pressure from the outside of the outer container, the sealing body can be disposed at the opening of the outer container so that the current collector and the sealing body are in contact with each other. Since the welding current is caused to flow during the welding, the contact portion can be pressurized during welding even when the direct welding method is used. As a result, the welding is favorably performed without the occurrence of “welding dust”.
[0039]
Furthermore, when energizing while applying pressure from the outside of the outer container, it is desirable that this applied pressure is a force that compresses the gasket by about 5 to 50%.
[0040]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the case where the present invention is applied to a nickel-hydrogen storage battery will be described in detail with reference to the drawings.
Embodiment 1
1-5 is explanatory drawing which shows the manufacturing process of the nickel hydride storage battery of the 1st Embodiment of this invention.
[0041]
As shown in FIG. 5, in this nickel-hydrogen storage battery, the opening of the outer casing 16 constituting the negative electrode side terminal is electrically insulated from the outer casing 16 via the gasket 19, and the terminal of the other electrode is used. In the storage battery sealed by the sealing body that constitutes the gasket 19, the gasket 19 is disposed along the inner wall of the opening of the outer container 16, spreads inwardly from the reduced diameter portion 16a of the outer container 16, and has a reduced diameter. It is characterized by being in contact with the inner wall of the outer container 16 inward of the portion 16a.
[0042]
Next, the manufacturing method of this nickel-hydrogen storage battery will be described in detail.
1. Production of electrode body
The nickel-hydrogen storage battery of this embodiment includes a nickel positive electrode plate 11 and a hydrogen storage alloy negative electrode plate 12 in a metal can as an outer container 16 as shown in FIG. The nickel positive electrode plate 11 is formed by forming a nickel sintered porous body on the surface of an electrode plate core made of punching metal, and then filling the nickel sintered porous body with an active material mainly composed of nickel hydroxide by a chemical impregnation method. Produced. On the other hand, the hydrogen storage alloy negative electrode plate 12 is prepared by filling the surface of an electrode plate core made of punching metal with a paste-like negative electrode active material made of hydrogen storage alloy, drying, and rolling to a predetermined thickness. Is done.
[0043]
A separator 13 made of a non-woven fabric made of polyolefin is interposed between the nickel positive electrode plate 11 and the hydrogen storage alloy negative electrode plate 12 to form a spiral electrode group. An end of a punching metal that is an electrode plate core of the nickel positive electrode plate 11 is exposed at the upper end surface of the spiral electrode group, and an electrode plate core of the hydrogen storage alloy negative electrode plate 12 is exposed at the lower end surface. The edge of the punching metal is exposed. A circular current collector 14 having a large number of openings is welded to the positive electrode core exposed at the upper end surface of the spiral electrode group, and a large number of openings are formed in the negative electrode core exposed at the lower end surface. A plate-like negative electrode current collector (not shown) is welded to produce a spiral electrode body 10.
[0044]
2. Preparation of nickel-hydrogen storage battery
When assembling the nickel-hydrogen storage battery, first, the electrode body 10 described above is housed in a bottomed cylindrical outer container 16 in which iron is nickel-plated (the outer surface of the bottom surface serves as a negative electrode external terminal). A welding electrode (not shown) was inserted into the space formed in the central portion of 10, and the negative electrode current collector welded to the hydrogen storage alloy negative electrode plate 12 was spot welded to the inner bottom surface of the outer container 16. After that, the current collector 14 was placed so that the main body portion of the current collector 14 was positioned on the diameter of the current collector lead as the positive electrode current collector, and the current collector main body portion 14 and the positive electrode were spot welded. Then, the outer peripheral side of the outer container 16 was grooved to form a reduced diameter portion 16a as an annular groove (FIG. 1).
[0045]
After arranging the electrode body 10 and the current collector 14 in this way, an electrolytic solution made of a 30 mass% potassium hydroxide (KOH) aqueous solution is injected into the outer container 16.
[0046]
After that, it is disposed along the inner wall of the opening of the outer container 16, spreads inwardly from the reduced diameter portion 16a of the outer container 16, and extends to the inner wall of the outer container 16 inward of the reduced diameter portion 16a. A gasket 19 having a skirt portion 19S with the tip abutted thereon is mounted, and a sealing body composed of a sealing cap 20a and a sealing body main body 20b is mounted (FIG. 2).
[0047]
Here, the sealing body 20 is interposed between a sealing body main body portion 20b formed by forming a circular downward projecting portion on the bottom surface, a positive electrode cap (positive electrode external terminal) 20a, and the sealing body main body portion and the positive electrode cap. A valve body including a spring and a valve plate is provided, and a gas vent hole 20c is formed in the center of the sealing body main body 20b.
[0048]
After arranging the sealing body in this way, one welding electrode W1 is arranged on the upper surface of the positive electrode cap (positive electrode external terminal) 20a, and the other welding electrode W2 is arranged on the lower surface of the bottom surface (negative electrode external terminal) of the outer casing 16. Arranged. Thereafter, 2 × 10 2 between the pair of welding electrodes W1 and W2 and around the opening edge 16b of the outer container.6N / m2A voltage of 24 V was applied between the welding electrodes W1 and W2 in the discharge direction of the battery while applying a pressure of 3 mm, and an energization process was performed to pass a 3 KA current for about 15 msec. By this energization process, the contact portion between the bottom surface of the sealing body 20 and the projection (not shown) on the welding surface of the current collector 14 is welded (second welding) to form a welded portion. Here, the welding current flows in the discharging direction of the battery, but it goes without saying that it may be in the charging direction. However, there is a danger of overcharging if it is applied in the charging direction. For this reason, it is desirable to flow a welding current in the discharge direction of the battery, and overcharge can be prevented.
[0049]
Thus, as shown in FIG. 2, the pressure P is applied from the outside of the outer container 16 and 2 × 10 between the pair of welding electrodes W1 and W2 and around the opening edge 16b of the outer container.6N / m2By applying a voltage between the welding electrodes W1 and W2 while applying the pressure of and applying an energization treatment, it becomes possible to form a welded portion having no internal defects and excellent in welding strength. (FIG. 4 is an enlarged view of a main part.)
[0050]
Here, when welding the contact part of a collector and a sealing body, sufficient welding current can be flowed. The gasket 19 is disposed along the inner wall of the opening of the outer container 16, spreads inward from the reduced diameter portion 16 a of the outer container 16, and extends inward from the reduced diameter portion 16 a. Since the skirt portion 19 </ b> S having the tip abutted on the outer periphery of the outer container 16 is provided, leakage of the electrolyte solution around the opening of the outer container 16 can be prevented.
[0051]
Next, as shown in FIG. 3, a semi-finished battery was obtained by sealing the battery by crimping the opening edge 16b of the outer container 16 inward.
Thereafter, as shown in FIG. 4, this semi-finished battery was placed in a pair of split molds A <b> 1 and A <b> 2, and a punch P connected to a press machine was placed above the sealing body 20. Next, the punch P is lowered by driving the press machine, the sealing portion of the sealing body 20 (opening edge 16b of the outer container 16) is pressurized by the punch P, and the sealing body 20 is pushed into the outer container 16. .
[0052]
Thereby, the annular groove 16a is crushed in a state where the lower end (inward end) of the gasket 19 is in contact with the inner wall of the outer container.
Thereby, as shown in FIG. 5, a cylindrical nickel-hydrogen storage battery having a nominal capacity of 6.5 Ah was produced.
[0053]
Comparative example
Welding was performed by a method using a conventional gasket as shown in FIG. 11, and a cylindrical nickel-metal hydride storage battery was fabricated in the same manner as in the previous example except for the other configurations.
[0054]
3. Test results
A welding result and a creeping test result of the assembled battery are shown using the battery manufactured as described above. In the creeping test, after charging the assembled battery for 8 hours at 0.2 It, after leaving it in a 45 ° C atmosphere for 2 weeks, the electrolyte does not come out from the gap between the sealing body and the gasket or the outer container and the gasket. Was confirmed by visual observation and a color test using a phenol fiuoftalein solution. The results are shown in the following table.
[0055]
Figure 0003902427
[0056]
In the battery using the reduced pressure injection method of the present invention, there were almost 2 overflows (2%) out of 100 (2%) of the liquid overflow during welding and the electrolyte spilling into the gasket.
On the other hand, 100 batteries out of 100 (100%) were confirmed in the batteries formed by the method of the comparative example.
[0057]
In the creep test after standing for 2 weeks, almost no creeping was confirmed in the battery using the injection method of the present invention, whereas creeping was confirmed in 90% or more in the comparative example.
In the above embodiment, since the gasket is in contact with the inner wall of the outer container, an insulating washer is not required to prevent contact between the outer container and the positive electrode plate of the electrode body, but the current collector is disposed below the current collector. An insulating washer made of a donut-like insulating plate having a lead insertion hole may be provided.
[0058]
Embodiment 2
As a second embodiment of the present invention, as shown in FIG. 7, a gasket 29 is disposed along the inner wall of the opening of the outer container 16, and the inner (downward) tip of the gasket 29 is arranged. The outer container is located outward (upward) from the center of the reduced diameter portion.
[0059]
When energized, the gasket is compressed inwardly from the outer container at the opening of the outer container as shown in FIG. 6 (P), so that the inner wall of the outer container and the gasket are hermetically sealed. It is a thing. Here, after the electrode body is housed in the outer container, the insulating washer 15, that is, the doughnut-shaped insulating plate 15 in contact with the inner wall of the outer container 16 is disposed, and then the current collector 14 is placed.
FIG. 6 is a diagram showing a state during energization. By energizing while applying pressure in this manner, the gasket is compressed and hermetically sealed, and the electrolyte can be prevented from being blown up along the inner wall.
[0060]
And the opening of an exterior container is sealed by fitting as shown in FIG. At this time, since the gasket is located above the center of the reduced diameter portion of the outer container, the sealing is completed without the force due to fitting greatly pressing and displacing the gasket, and the storage battery as shown in FIG. Is formed.
Therefore, it is possible to form a high-efficiency and highly reliable storage battery without causing a gap due to deformation due to the displacement of the gasket so that a good sealing is achieved. In addition, in the process of caulking and sealing the outer container, the current collector is not displaced due to the deformation due to the displacement of the gasket, so that a more accurate horizontal state can be maintained and reliable pressing can be performed. At this time, non-uniform stress is not applied to the welding point due to the displacement of the gasket, so that the welding point is not displaced and the yield can be improved.
The insulating washer 15 may be omitted if it can be formed so that the outer container and the positive electrode plate of the electrode body do not contact. With this configuration, the number of parts is reduced.
[0061]
Embodiment 3
Further, as a third embodiment of the present invention, as shown in FIG. 9, a gasket 39 is disposed along the inner wall of the opening of the exterior container 16, and an inner end 39 </ b> S of the gasket 39 is On the opening side of the diameter-reduced portion 16a of the container 16 is abutted against an insulating washer 15 that has an insertion hole for inserting a current collector and is placed on the electrode body 10, and the outer periphery of the insulating washer 15 is the outer sheath. It is comprised so that it may contact | abut to the inner wall of a container.
[0062]
At the time of manufacture, as in the first embodiment, the electrode body 10 composed of positive and negative electrodes is disposed in the outer container 16 and an electrolyte is filled between the positive and negative electrodes.
[0063]
Then, the current collector 14 is disposed so that one end thereof is in contact with the positive electrode, and an insulating washer 15 having an insertion hole through which the current collector is inserted is placed on the electrode body 10.
[0064]
Thereafter, a gasket 39 is attached to the opening of the outer container, the gasket is on the opening side of the reduced diameter portion, and the lower end (inner end) of the gasket is in contact with the insulating plate, and the insulation The vicinity of the opening of the outer container is drawn so that the outer periphery of the plate is in contact with the inner wall of the outer container, and the diameter is reduced to form the reduced diameter portion.
[0065]
Then, as shown in FIG. 9, a sealed space is formed between the insulating washer 15 and the gasket 39 and the opening of the outer container 16, and energization is performed between the lower surface of the outer container and the sealing body 20. The sealing body and the current collector 14 are welded. Desirably, electricity is applied while pressing the outer container inward.
[0066]
Finally, the opening is hermetically sealed.
This method also forms a sealed space between the insulating washer 15 and the gasket 39 and the opening of the outer container 16, and energizes between the lower surface of the outer container 16 and the sealing body 20. The inner wall of the outer container 16, the insulating washer 15 and the gasket 39 are hermetically sealed, and welding is performed while the insulating washer 15 and the gasket 39 prevent well the spraying of the electrolyte along the inner wall of the outer container 16. be able to.
[0067]
In the embodiment and the modification described above, the example in which the sealing body is the positive electrode terminal and the outer container is the negative electrode terminal has been described. However, the sealing body may be the negative electrode terminal and the outer container may be the positive electrode terminal.
[0068]
In the above-described embodiment, welding is performed via a current collector. However, it goes without saying that the present invention can also be applied to a structure in which an electrode and a sealing body are welded directly without a current collector.
[0069]
Moreover, although the said Example demonstrated the nickel metal hydride battery which comprised the exterior container with the metal can, it is not limited to a nickel metal hydride battery, For other batteries, such as a nickel cadmium battery, a lithium battery, and a solid electrolyte battery It goes without saying that is also applicable.
[0070]
【The invention's effect】
As described above, according to the storage battery of the present invention, the gasket is disposed along the inner wall of the opening of the outer container, and contacts the inner wall of the outer container inside the reduced diameter portion. Since they are in contact with each other, the inner wall of the outer container and the gasket are hermetically sealed, and even when energized, the gasket prevents the electrolyte from spraying along the inner wall satisfactorily. Therefore, it is possible to provide a long-life and highly reliable storage battery without variation in the amount of electrolyte, without deteriorating battery characteristics, and without the problem that the vicinity of the sealing body is corroded by the sprayed electrolyte. Is possible.
[0071]
Further, according to the method of the present invention, when energized, the gasket is air-tightly connected between the inner wall of the outer container and the gasket by energizing while compressing inward from the outer container at the opening of the outer container. Sealed, and with this gasket, welding can be performed while preventing the spraying of the electrolyte along the inner wall.
[Brief description of the drawings]
FIG. 1 is a diagram showing a manufacturing process of a storage battery according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a manufacturing process of the storage battery according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a manufacturing process of the storage battery according to the first embodiment of the present invention.
FIG. 4 is a diagram showing a manufacturing process of the storage battery according to the first embodiment of the present invention.
FIG. 5 is a diagram showing a manufacturing process of the storage battery according to the first embodiment of the present invention.
FIG. 6 is a diagram showing a manufacturing process of the storage battery according to the second embodiment of the present invention.
FIG. 7 is a diagram showing a manufacturing process of the storage battery according to the second embodiment of the present invention.
FIG. 8 is a view showing a manufacturing process of the storage battery according to the second embodiment of the present invention.
FIG. 9 is a diagram showing a manufacturing process of the storage battery according to the third embodiment of the present invention.
FIG. 10 is a diagram showing a manufacturing process of a conventional storage battery.
FIG. 11 is a diagram showing a manufacturing process of a conventional storage battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 9 ... Gasket, 10 ... Electrode body, 11 ... Positive electrode plate, 12 ... Negative electrode plate, 13 ... Separator, 14 ... Current collector, 15 ... Insulating washer, 16 ... Exterior container (negative electrode external terminal), 16a ... Groove part,
17 ... Sealing body, 17a ... Lid, 17b ... Positive electrode cap (positive electrode external terminal), 19 ... Gasket, 29 ... Gasket, 39 ... Gasket, W1, W2 ... Welding electrode, A1, A2 ... Split mold, P ... Punch

Claims (5)

一方極の端子を兼ねる外装容器内に、正および負の電極からなる電極体を配置するとともに、これら正および負の電極間に電解液を充填する工程と、
前記正および負の電極の一方に一端が当接するように集電体を配置する工程と、
前記外装容器の開口部近傍を、縮径せしめて縮径部を形成する縮径部形成工程と、
前記外装容器の開口部に、ガスケットを装着する工程と、
前記外装容器の前記開口部にガスケットを介して封口体を当接させるとともに前記ガスケットの外壁が前記外装容器の内壁に当接するように、前記外装容器を前記縮径部よりも開口部側で内側に加圧することにより前記ガスケットと前記外装容器の前記開口部との間で密閉空間を形成し、前記外装容器と前記封口体との間で通電し、前記封口体と前記集電体との溶接を行う直接溶接工程と、
前記溶接工程の後に、前記開口部を気密的に封止する封止工程とを含むことを特徴とする蓄電池の製造方法。
A step of placing an electrode body composed of positive and negative electrodes in an outer container also serving as a terminal of one electrode, and filling an electrolyte between these positive and negative electrodes;
Disposing a current collector so that one end abuts one of the positive and negative electrodes;
A reduced diameter portion forming step of reducing the diameter of the vicinity of the opening of the outer container to form a reduced diameter portion;
Attaching a gasket to the opening of the outer container;
The sealing container is brought into contact with the opening of the outer container via a gasket, and the outer container is placed closer to the opening than the reduced diameter portion so that the outer wall of the gasket contacts the inner wall of the outer container. A sealed space is formed between the gasket and the opening of the outer container by applying pressure to the inside, and energization is performed between the outer container and the sealing body, and the sealing body and the current collector Direct welding process for welding,
The manufacturing method of the storage battery characterized by including the sealing process of airtightly sealing the said opening part after the said welding process.
前記封止工程は、嵌め加工工程を含み、前記ガスケットの内方の先端は少なくとも前記縮径部の中心よりも外側に位置していることを特徴とする請求項1に記載の蓄電池の製造方法。  The method for producing a storage battery according to claim 1, wherein the sealing step includes a fitting step, and an inner tip of the gasket is positioned at least outside a center of the reduced diameter portion. . 前記直接溶接工程は、前記外装容器の前記開口部にガスケットを介して封口体を当接させるとともに、外装容器の内壁に前記ガスケットの先端を当接せしめて、前記ガスケットと前記外装容器の内壁との間で密閉空間を形成しつつ、前記外装容器と前記封口体との間で通電し、前記封口体と前記集電体との溶接を行うものとしたことを特徴とする請求項1に記載の蓄電池の製造方法。In the direct welding step, the sealing body is brought into contact with the opening of the outer container via a gasket, and the front end of the gasket is brought into contact with the inner wall of the outer container, so that the gasket and the inner wall of the outer container are 2. The method according to claim 1, wherein the sealed container and the current collector are welded by energizing the outer container and the sealing body while forming a sealed space therebetween. Storage battery manufacturing method. 前記ガスケットは、前記外装容器の縮径部に相当する領域に縮径部を具備し、前記外装容器の内方に広がり、先端が前記外装容器の内壁に当接するように構成されたスカート部を具備してなる筒状体からなることを特徴とする請求項3に記載の蓄電池の製造方法。The gasket has a reduced diameter portion in a region corresponding to the reduced diameter portion of the outer container, extends inward of the outer container, and has a skirt portion configured so that a tip abuts against an inner wall of the outer container. The method for producing a storage battery according to claim 3, comprising a cylindrical body provided. 前記正および負の電極の一方に一端が当接するように集電体を配置するとともに、前記電極体上に、前記集電体を挿通する挿通穴を有する絶縁板を載置する工程を含み、Placing the current collector so that one end abuts one of the positive and negative electrodes, and placing an insulating plate having an insertion hole through which the current collector is inserted on the electrode body;
前記直接溶接工程は、前記ガスケットが、縮径部よりも開口側で、前記ガスケットの下端(内方端)が前記絶縁板に当接すると共に、前記絶縁板の外周が前記外装容器の内壁に当接するように、前記外装容器の開口部近傍を、縮径せしめて縮径部を形成する縮径部形成工程と、  In the direct welding process, the gasket is on the opening side of the reduced diameter portion, the lower end (inner end) of the gasket is in contact with the insulating plate, and the outer periphery of the insulating plate is in contact with the inner wall of the outer container. A reduced diameter portion forming step of reducing the diameter of the vicinity of the opening of the outer container to form a reduced diameter portion so as to contact,
前記絶縁板および前記ガスケットと前記外装容器の前記開口部との間で密閉空間を形成し、前記外装容器と前記封口体との間で通電し、前記封口体と前記集電体との溶接を行うものとしたことを特徴とする請求項1に記載の蓄電池の製造方法。  A sealed space is formed between the insulating plate and the gasket and the opening of the outer container, energization is performed between the outer container and the sealing body, and welding of the sealing body and the current collector is performed. The method for producing a storage battery according to claim 1, wherein the method is performed.
JP2001231808A 2001-07-31 2001-07-31 Method for producing electrode for storage battery Expired - Fee Related JP3902427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001231808A JP3902427B2 (en) 2001-07-31 2001-07-31 Method for producing electrode for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231808A JP3902427B2 (en) 2001-07-31 2001-07-31 Method for producing electrode for storage battery

Publications (2)

Publication Number Publication Date
JP2003045476A JP2003045476A (en) 2003-02-14
JP3902427B2 true JP3902427B2 (en) 2007-04-04

Family

ID=19063814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231808A Expired - Fee Related JP3902427B2 (en) 2001-07-31 2001-07-31 Method for producing electrode for storage battery

Country Status (1)

Country Link
JP (1) JP3902427B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995766B1 (en) 2006-12-11 2010-11-22 주식회사 엘지화학 Cylindrical Secondary Battery of Improved Safety
US8147999B2 (en) * 2008-06-11 2012-04-03 Eveready Battery Company, Inc. Closure assembly with low vapor transmission for electrochemical cell
EP4270614A1 (en) * 2022-04-29 2023-11-01 VARTA Microbattery GmbH Energy storage cell

Also Published As

Publication number Publication date
JP2003045476A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
US6599660B2 (en) Battery module and method of manufacturing thereof
EP0663104B1 (en) A current collector assembly for an electrochemical cell
JP4020590B2 (en) Current collecting lead and storage battery manufacturing method using the same
JP4039792B2 (en) Storage battery and manufacturing method thereof
US20110229748A1 (en) Cylindrical secondary battery and method of manufacturing the same
JP5159076B2 (en) Cylindrical storage battery and manufacturing method thereof
JP4368113B2 (en) battery
KR101038115B1 (en) The cylindrical storage battery
JP5127250B2 (en) Cylindrical storage battery and manufacturing method thereof
JP3902427B2 (en) Method for producing electrode for storage battery
JP4079563B2 (en) Storage battery and manufacturing method thereof
JP4090167B2 (en) Storage battery and manufacturing method thereof
JP4251829B2 (en) Battery and manufacturing method thereof
JP5196824B2 (en) Cylindrical battery and manufacturing method thereof
KR20220162580A (en) Cylindrical battery can assembly and its manufacturing method
JP5183251B2 (en) Assembled battery
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
JP2016012393A (en) Storage battery module
JP7399147B2 (en) Batteries and their manufacturing methods
EP4250441A1 (en) Cylindrical battery
JPH11238499A (en) Storage battery and its manufacture
JP3614785B2 (en) Manufacturing method of secondary battery
JP2004039284A (en) Method for manufacturing square type battery
JP2003282029A (en) Manufacturing method of square type battery
JP2001283795A (en) Sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees