JP2004039284A - Method for manufacturing square type battery - Google Patents

Method for manufacturing square type battery Download PDF

Info

Publication number
JP2004039284A
JP2004039284A JP2002190833A JP2002190833A JP2004039284A JP 2004039284 A JP2004039284 A JP 2004039284A JP 2002190833 A JP2002190833 A JP 2002190833A JP 2002190833 A JP2002190833 A JP 2002190833A JP 2004039284 A JP2004039284 A JP 2004039284A
Authority
JP
Japan
Prior art keywords
welding
point
laser
start point
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002190833A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kondo
近藤 敏之
Takashi Nagase
長瀬 敬
Satoru Yonetani
米谷 悟
Hideyuki Asanuma
浅沼 英之
Yoshihiro Masuda
増田 喜裕
Eiji Enishi
江西 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002190833A priority Critical patent/JP2004039284A/en
Publication of JP2004039284A publication Critical patent/JP2004039284A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a square type buttery stabilizing a welding quality that is safe and highly reliable. <P>SOLUTION: An abutting region of a sheath can and a seal plate is joined by an energy irradiation process for drawing a nearly rectangular pattern by using an energy beam. In the energy irradiation process, a drawing starts from a start point positioned on a shorter side or a longer side of the rectangle, continues along the abutting region to go around the circumference once, passes at least one of the corner parts, and ends at an end point positioned on the short side or the longer side of the rectangle. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、角形電池の製造方法にかかり、特に、角形電池の外装容器と封口体との溶接方法に関する。
【0002】
【従来の技術】
一般に、ニッケル−水素化物蓄電池、ニッケル−カドミウム蓄電池などのアルカリ蓄電池は、正極および負極の間にセパレータを介在させ、これらを渦巻状に巻回もしくは積層した後、正極あるいは負極の端部に集電体を接続して電極体を形成し、この電極体を外装容器としての金属製電池ケースに収納して集電体から伸長する集電リードを封口体に溶接した後、封口体を電池ケースの開口部に装着することにより密閉される。
【0003】
一般に、ニッケルーカドミウム蓄電池、ニッケルー水素蓄電池などのアルカリ蓄電池は、集電体から導出した集電リードと封口体とを溶接接続し、封口体を外装容器(電池ケース)の開口部に配置し、溶接により封口するかあるいは、外装容器をかしめ封口することによって封口処理がなされるようになっている。
【0004】
【発明が解決しようとする課題】
特に、このようなアルカリ蓄電池のうち、金属からなる角形ケースの一端に形成された開口部に金属板からなる封口体を嵌入し、当接部にレーザ溶接して密閉容器を形成した角形電池は、円筒型電池に比べてスペース使用効率が優れており、また、レーザ溶接は他の溶接方式に比較して電解液や電気絶縁部分などに対する熱的影響が少なく作業効率に優れているという利点を有している。
【0005】
通常、上述のような角形ケースは金属平板の成型によって形成されるため、角部はある曲率半径をもち、それに応じて封口体の角部もそれに応じた曲率半径を持つ。
【0006】
このような角形電池の封口体をレーザ溶接するに際し、レーザ溶接開始、終了位置をコーナー部とした場合、コーナー部の形状が不安定であることからずれが発生し易い。また、内外比により内側にレーザ深度が深く品質が不安定である。
【0007】
そこで図6に示すように、レーザ照射の始点S・終点Eを一直線上にすることで溶接品質の安定化をはかるようにしている(特許第3099670号公報)。図6は、角形電池を上面からみた模式図であり、矢印は、外装容器10の上面に封口体30を溶接するレーザの照射プロファイルを示す図である。16は封口体30から突出する端子部である。
【0008】
ここで、レーザ照射の始点Sおよび終点Eが同じ位置である場合は、4辺の溶接強度が同等になるように溶接されている。そのため、図7に示すように、内部圧力の異常上昇時には、上方への応力Fが大きくなり、4辺同時に亀裂が入り、蓄積ガスgとともに、内容物の噴出を引き起こしてしまう可能性がある。
また、始点Sおよび終点Eが同じ位置でない場合でも、図8に示すように2回走行部が1辺のみであれば、図9に示すように、1回走行部の3辺が先に亀裂が入ることで蓄積ガスgを排出できるものの、万が一、内容物の噴出が起こりそうな場合、電極体などの内容物が電池外に出やすいという問題がある。
本発明は前記実情に鑑みてなされたもので、更に溶接品質の安定化をはかり、更にまた安全で信頼性の高い角形電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明では、外装缶と封口板との当接領域を、エネルギービームを用いてほぼ方形のパターンを描画するエネルギー照射工程により接合する方法であって、前記エネルギー照射工程は、描画開始点が、前記方形の短辺または長辺上の1点にあり、前記当接領域に沿って1周したのち、少なくとも1つのコーナー部を経て、描画終了点が長辺または短辺上の1点に位置するように実行されることを特徴とする。
【0010】
かかる構成によれば、描画開始点と、少なくとも1つのコーナー部を挟んだ位置にある描画終了点とを含む領域が2回描画領域となっており、他は1回描画領域であるため、この描画開始点と描画終了点とを含む2回描画領域で溶接強度が高くなっている。従って、内部圧力上昇時には、溶接強度が他部よりも弱く、先に亀裂が入る1回描画領域の2辺から蓄積ガスを排出することができる上、万が一内容物の噴出が起こりそうな場合でも、溶接強度が高い2回描画領域においては、封口板を外装缶に強固に固定でき、封口板が外装缶内の内容物を押さえ、電池系外に出さないような構造となり、安全性をさらに向上させることが可能となる。
【0011】
望ましくは、前記エネルギー照射工程は、描画開始点が、前記方形の短辺上の1点にあり、前記当接領域に沿って1周したのち、少なくとも1つのコーナー部を経て、描画終了点が長辺上の1点に位置するように実行されることを特徴とする。
【0012】
かかる構成によれば、描画開始点が、樹脂部品からもっとも遠い領域すなわち、長方形パターンからなる外装缶と封口板との当接領域の短辺上とし、樹脂部品への熱的影響がもっとも少ない領域となるようにすることにより、描画開始時に認められるレーザスポット強度のばらつきが、強度が強くなる方向にずれたとしても、樹脂部品への熱影響は最小限に抑制される。
【0013】
また、レーザ照射が当接領域上で終了する場合、照射強度のばらつきにより、クラックやピンホールが発生することがあるため、所定のレーザ強度を保持したままで照射領域上からレーザ走査を内方にずらす、すなわち、封口板上で照射を終了することでクラック、ピンホールの発生をより確実に抑制することが可能となる。
【0014】
また、照射終了点を接合領域の外側にずらすようにしても良い。
【0015】
一方、描画開始点が、前記方形の長辺上の1点にあり、前記当接領域に沿って1周したのち、少なくとも1つのコーナー部を経て、描画終了点が短辺上の1点に位置するように実行してもよい。
【0016】
これにより、レーザ強度のばらつきが大きい描画終了点が、樹脂部品からもっとも遠い領域すなわち、長方形パターンからなる外装缶と封口板との当接領域の短辺上とし、樹脂部品への熱的影響がもっとも少ない領域となるようにすることにより、描画終了時に認められるレーザスポット強度のばらつきが、強度が強くなる方向にずれたとしても樹脂部品への熱影響は最小限に抑制される。
【0017】
また、レーザ照射の描画開始点が当接領域上にある場合、照射強度のばらつきにより、クラックやピンホールが発生することがあるが、当接領域上からレーザ走査を内方にずらす、すなわち、封口板上で照射を開始することでクラック、ピンホールの発生をより確実に抑制することが可能となる。
【0018】
また、照射開始点を接合領域の外側にずらすようにしても良い。
【0019】
前記エネルギー照射工程は、2回の描画パターンが重なった2回描画領域の溶接深度が、1回の描画パターンからなる1回描画領域の溶接深度よりも深くなるように溶接エネルギーを調整したことを特徴とする。
【0020】
また望ましくは、前記エネルギー照射工程は、1回の描画パターンからなる1回描画領域の溶接深度が、使用する封口板肉厚の0.25〜0.45倍程度とする。封口板肉厚の0.25倍未満にした場合、溶接強度が著しく低下することがある。一方、0.45倍を越えると溶接強度が強すぎるためである。
【0021】
このようにして、確実な溶接が可能となり、更に信頼性の高い蓄電池を提供する事が可能となる。
【0022】
【発明の実施の形態】
以下、本発明をニッケル−水素蓄電池に適用した場合について図面を参照しつつ詳細に説明する。
(第1の実施の形態)
なお、図1は本発明の第1の実施の形態のビーム溶接方法を示す説明図、図2は本発明の方法で形成したニッケル−水素蓄電池の要部を示す斜視図、図3(a)および(b)はその平面図および断面図である。本発明の方法は、外装容器10の開口部に、ニッケルめっきのなされた鉄板からなり、長方形の封口板30を、外装容器10の上面にレーザ溶接するもので、レーザビーム描画を短辺上の1点を描画開始点Sとし、図1に矢印で示すように封口板30と外装容器10の開口部との当接領域に沿ってレーザ溶接を行い、描画終了点Eは描画開始点Sを越えて、さらにコーナー部を通過し隣接する長辺上の点となるようにしたことを特徴とするものである。16は封口板に突出して装着される端子部である。
【0023】
図2は、このニッケル−水素蓄電池の斜視図、図3は、電極体20を外装容器10に挿入して前記導電タブ11aを介して封口体30と溶接した状態を示す一部破断図である。
【0024】
かかる方法によれば、描画開始点Sと、1つのコーナー部を挟んだ位置にある描画終了点Eとを含む領域が2回描画領域となっており、他は1回描画領域であるため、この描画開始点Sと描画終了点Eとを含む2回描画領域で溶接強度が高くなっている。
【0025】
従って、図4に示すように、内部圧力上昇時に、応力Fがかかった場合、溶接強度が他部よりも弱く、先に亀裂が入る1回描画領域の2辺から蓄積ガスgを排出することができる。従って、万が一内容物の噴出が起こりそうな場合でも、溶接強度が高い2回描画領域においては、封口板を外装缶に強固に固定でき、封口板が外装缶内の内容物を押さえ、電池系外に出さないような構造となっており、安全性をさらに向上させることが可能となる。
【0026】
このように、2回照射領域を、コーナー部を挟んで2辺にわたるように形成することにより、1回照射領域に対して溶接強度を高くしておくことにより、内部圧力が高くなった場合に、1回照射領域から亀裂が入ることにより、ガスgが良好に排出される。一方、コーナー部を挟んだ2回照射領域は、確実に溶接された状態で維持されるため、電極体などの内容物が飛び出したりすることもなく、安全性の高い封止状態を形成することが可能となる。
【0027】
(第2の実施の形態)
前記第1の実施の形態では、描画開始点Sを短辺上、描画終了点Eを長辺上となるようにしたが、本発明の第2の実施の形態では、同様にして形成した外装容器、電極体および封口体を用いて、図5に示すような描画プロファイルでレーザビーム照射を行うことを特徴とするものである。本実施の形態では、図5に矢印で示すように、封口板30と外装容器10の開口部との当接領域に沿ってレーザ溶接を行い、描画終了点Eは描画開始点Sを越えて、さらにコーナー部を通過し隣接する短辺上の点となるようにしたことを特徴とするものである。
【0028】
かかる方法によれば、描画開始点Sと、1つのコーナー部を挟んだ位置にある描画終了点Eとを含む領域が2回描画領域となっており、他は1回描画領域であるため、この描画開始点Sと描画終了点Eとを含む2回描画領域で溶接強度が高くなっている。
【0029】
従って、前記第1の実施の形態で説明したのと同様に、内部圧力上昇時に、応力がかかった場合、溶接強度が2回描画領域よりも弱く、先に亀裂が入る1回描画領域の2辺から蓄積ガスを排出することができる。万が一内容物の噴出が起こりそうな場合でも、溶接強度が高い2回描画領域において、封口板を外装缶に強固に固定でき、封口板が外装缶内の内容物を押さえ、電池系外に出さないような構造となっており、安全性をさらに向上させることが可能となる。
【0030】
なお前記第1および第2の実施の形態では、レーザ照射の描画開始点Sも描画終了点Eも当接領域上となるようにしたが、いずれかを当接領域の外側あるいは内側に位置するようにし、レーザビームが不安定となる部分は溶接領域にならないようにするようにし、当接領域すなわちレーザ溶接すべき領域に確実にレーザ照射を行うようにしてもよい。これにより、レーザ深度の不安定部を当接領域から回避することができ、容易に確実な溶接面を形成することができ、確実で信頼性の高い封止接続が可能となる。
【0031】
<実施例>
次にこの溶接方法を用いて形成されるニッケル−水素蓄電池について説明する。
【0032】
1.封口体の作製
本実施形態のニッケル−水素蓄電池の封口体30は、図2および3に示すように、底面に円形状の下方突出部を形成してなる蓋体16aと、正極キャップ16eと、これら蓋体16aおよび正極キャップ16e間に介在されるEPDM(エチレンプロプレンジエンゴム:弾性体)からなる弁体16fを備えており、蓋体16aの中央にはガス抜き孔が形成されている。16b、cは集電リード、16dはガスケットである。16fは弁体、16gは排気孔である。そして正極キャップ16e周辺部が突出して正極端子として、正極外部端子部(端子部)16を構成している。15はスペーサである。
【0033】
2.電極体の作製
本実施形態のニッケル−水素蓄電池100は、図2および3に示すように、ニッケル正極板11と水素吸蔵合金負極板12とを備えている。ニッケル正極板11は、パンチングメタルからなる極板芯体の表面にニッケル焼結多孔体を形成した後、化学含浸法により水酸化ニッケルを主体とする活物質をニッケル焼結多孔体内に充填して作製されている。一方、水素吸蔵合金負極板12は、パンチングメタルからなる極板芯体の表面に水素吸蔵合金からなるペースト状負極活物質を充填し、乾燥させた後、所定の厚みになるまで圧延して作製されている。
【0034】
これらのニッケル正極板11と水素吸蔵合金負極板12との間にセパレータ13を介在させて積層し、電極群を作製した。この電極群の上端面には、ニッケル正極板11の端部から延出する導電タブ11aが露出し、封口体に形成された正極端子接続部14に溶接する。また、下端面には水素吸蔵合金負極板12の極板芯体であるパンチングメタルの端部12aが露出し、外装容器の内底面に接触せしめられている。
【0035】
3.ニッケル−水素蓄電池の作製
そして、この封口体30を用いてニッケル−水素蓄電池を組み立てるに際しては、まず、上述の電極体20を、板厚0.4mmの鉄にニッケルメッキを施した有底筒状の外装容器(底面の外面は負極外部端子となる)10内に収納する。
ついで、外装容器10内に30質量%の水酸化カリウム(KOH)水溶液からなる電解液を注入した後、この外装容器10の開口部の上部に、封口体30を配置した。
【0036】
4.封口(レーザ照射)
(実施例1)
上述のように封口体を配置した後、図1に示したような描画軌跡を描くように、レーザ照射を行う。すなわち、図1に示すように、短辺上の1点を描画開始点Sとして描画を開始し、外装容器10の内壁と封口体10の外周との当接領域を、電力500Wのレーザビームを速度1500mm/minで照射し、描画開始点S通過後、描画開始点に隣接するコーナー部を挟んで長辺上の点を描画終了点Eとして描画を終了する。
【0037】
その結果内部欠陥のない溶接強度に優れた溶接部を形成することができ、良好で確実な封止を行うことができた。
【0038】
これにより、公称容量650mAhの角形ニッケル−水素蓄電池を作製した。このようにして作製された実施例1のニッケル−水素蓄電池を電池Aとした。
【0039】
(実施例2)
また同様にして形成した外装容器、電極体および封口体を用いて、第2の実施の形態で説明したように、図5に示す描画プロファイルでレーザビーム照射を行った。ここでは、描画開始点Sは長辺上の点とし、電力を500Wで描画し、描画開始点S通過後、描画開始点に隣接するコーナー部を挟んで短辺上の点を描画終了点Eとして描画を終了する。
このようにして作製された実施例2のニッケル−水素蓄電池を電池Bとした。
【0040】
(比較例1)
また同様にして形成した外装容器、電極体および封口体を用いて、図6に示したような描画プロファイルでレーザビーム照射を行った。ここでは、描画開始点Sは長辺上とし、描画終了点Eが描画開始点Sと一致するようにした。このようにして作製されたニッケル−水素蓄電池を電池Cとした。
【0041】
(比較例2)
また同様にして形成した外装容器、電極体および封口体を用いて、図8に示したような描画プロファイルでレーザビーム照射を行った。ここでは、描画開始点Sは長辺上とし、描画終了点Eが描画開始点Sを越えて、同じ長辺上に位置するようにした。このようにして作製されたニッケル−水素蓄電池を電池Dとした。
【0042】
5.実験
上述のように作製した各電池A、B、C、及びDをそれぞれ150個用い、缶底部分に直径数十μmの孔をあけ、ヘリウムHeガスを注入し続けた後の電池の外観状況を確認し、外観状況別にレーザ溶接外れ、内容物の噴出の発生率を確認した。
なお、レーザ溶接の外れについては、レーザ照射領域における割れ目の有無を目視によって確認した。
また、内容物の噴出については、封口板の一部が外れて外装缶内の電池内容物が噴出しているものを目視により確認した。
【0043】
その結果を表1に示す。
【表1】

Figure 2004039284
【0044】
表1の結果から、レーザの描画開始点と終了点とがコーナー部を挟んで隣接し、2辺の溶接深度がより深く形成された電池A及びBは、電池C及びDに比べてレーザ溶接外れの発生率は高いものの、その後に生じるこのレーザ溶接外れよりも安全上問題視されている内容物の噴出の発生率が、電池C及びDよりも大幅に低減されていることがわかる。から、レーザー溶接外れのみで電池の異常状況を回避できていると考えられる。
以上のことから、電池A及びBの方が、電池C及びDよりも、レーザー溶接外れのみで電池の異常状況を回避できており、安全性が更に向上していることがわかる。
【0045】
これは、レーザ照射が2回走行する部分をコーナーを含む2辺に設けることにより、内部圧力上昇時に、先に亀裂が入る1回照射領域の2辺から蓄積ガスを排出し得るためである。また内容物の噴出が起こりそうな場合にも、コーナー部を含む2辺の溶接強度が強く、しっかりと封口板を抑えているため、内容物が電池系が出るようなことはない。この結果内部圧力による内容物の噴出を起こす可能性はさらに低減され、安全性の向上をはかることが可能となったためである。
【0046】
また、溶接深度(対封口板肉厚)を変化させてその後溶接深度とリーク発生率との関係を測定した。ここではまず溶接深度を変化させてレーザ溶接を行った外装缶を高さ方向の約1/2程度の部分で切断する。そして押し込み試験装置を用いて、断面積が数十mmの金属板を数mm/sの速度で、電池の内側より封口板に対して水平方向に押し込んでいった場合に、レーザ溶接部に亀裂が入る時の力(N/mm)を測定した。溶接深度0.9のときの溶接強度を100とする。この結果を図10に示す。ここで横軸は溶接深度、縦軸は溶接強度である。
【0047】
図10から、溶接深度が、使用する封口板肉圧の0.25倍未満であると、充分な溶接強度が得られない。また、溶接深度が0.45倍を越えると溶接深度が変化しても溶接強度はほとんど変化しなくなる。即ち、1回描画領域の溶接深度が0.45倍を越えていると、1回描画領域の溶接強度と、2回描画領域の溶接強度との差がほとんどなくなり、2回描画領域を強固に溶接するという本発明の効果が得られない。
したがって、1回描画領域の溶接深度は、使用する封口板肉厚の0.25〜0.45倍程度とすることが好ましい。
【0048】
このように、溶接深度を調整することにより、確実な溶接が可能となり、信頼性の高い蓄電池を提供する事が可能となる。
【0049】
なお、前記各実施の形態ではレーザビームを用いたが、本発明の方法は、レーザビームに限定されることなく、電子ビームなど種々のエネルギービームを用いた溶接工程にも適用可能である。
【0050】
さらにまた、上述した実施の形態および変形例においては、本発明をニッケル−水素蓄電池に適用する例について説明したが、本発明はニッケル−水素蓄電池に限らず、ニッケル−カドミウム蓄電池、リチウムイオン電池など等の他の角形電池にも適用可能であることは明らかである。
【0051】
【発明の効果】
以上説明してきたように、本発明によれば、レーザ溶接の開始点を短辺の途中または長辺の途中からとし、終点を長辺若しくは短辺までとすることで、2回照射領域をコーナ部を含む2辺に設けることにより、内圧上昇時に先に亀裂が入る2辺から蓄積ガスを排出することができる。そして残る2辺では溶接強度が確実となっており、内容物の噴出を防止し、安全性を向上することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態のレーザ溶接方法を示す図である。
【図2】本発明の実施の形態のニッケルー水素蓄電池の斜視図である。
【図3】本発明の実施の形態のニッケルー水素蓄電池の断面図である。
【図4】本発明の第1の実施の形態のレーザ溶接方法による溶接後の状態を示す図である。
【図5】本発明の第2の実施の形態のレーザ溶接方法を示す図である。
【図6】従来例のレーザ溶接方法を示す図である。
【図7】従来例のレーザ溶接方法による溶接後の状態を示す図である。
【図8】従来例のレーザ溶接方法を示す図である。
【図9】従来例のレーザ溶接方法による溶接後の状態を示す図である。
【図10】溶接深度とリーク発生率との関係を示す図である。
【符号の説明】
10 外装容器 16 端子部、20 電極体、11 正極板、12 負極板、13 セパレータ、30 封口体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a prismatic battery, and more particularly to a method for welding an outer container and a sealing body of the prismatic battery.
[0002]
[Prior art]
Generally, in alkaline storage batteries such as nickel-hydride storage batteries and nickel-cadmium storage batteries, a separator is interposed between a positive electrode and a negative electrode, and after spirally winding or laminating them, current is collected at the end of the positive electrode or the negative electrode. After connecting the bodies to form an electrode body, the electrode body is housed in a metal battery case as an outer container, and a current collecting lead extending from the current collector is welded to the sealing body. It is sealed by attaching to the opening.
[0003]
Generally, alkaline storage batteries such as nickel-cadmium storage batteries and nickel-metal hydride storage batteries are connected by welding between a current collecting lead derived from a current collector and a sealing body, and the sealing body is arranged in an opening of an outer container (battery case). Sealing is performed by sealing by welding or by swaging the outer container.
[0004]
[Problems to be solved by the invention]
In particular, among such alkaline storage batteries, a prismatic battery formed by fitting a sealing body made of a metal plate into an opening formed at one end of a prismatic case made of metal, and laser welding the contact portion to form a sealed container is In addition, laser welding has the advantage of being more efficient in space utilization than cylindrical batteries, and has the advantage that it has less thermal effects on the electrolyte and electrical insulation parts than other welding methods, and has excellent work efficiency. Have.
[0005]
Usually, since the above-described square case is formed by molding a metal flat plate, the corner has a certain radius of curvature, and accordingly, the corner of the sealing body also has a corresponding radius of curvature.
[0006]
When performing laser welding of such a sealed body of a rectangular battery, when the laser welding start and end positions are defined as corners, deviation is likely to occur because the shape of the corners is unstable. Also, the laser depth is deep inside due to the inside / outside ratio, and the quality is unstable.
[0007]
Therefore, as shown in FIG. 6, the starting point S and the ending point E of the laser irradiation are made linear to stabilize the welding quality (Japanese Patent No. 3099670). FIG. 6 is a schematic view of the prismatic battery as viewed from above, and the arrows indicate the irradiation profile of the laser for welding the sealing body 30 to the upper surface of the outer container 10. Reference numeral 16 denotes a terminal portion projecting from the sealing body 30.
[0008]
Here, when the start point S and the end point E of the laser irradiation are at the same position, welding is performed so that the welding strengths of the four sides are equal. Therefore, as shown in FIG. 7, when the internal pressure is abnormally increased, the upward stress F is increased, and cracks are simultaneously formed on the four sides, which may cause ejection of the contents together with the accumulated gas g.
Further, even if the start point S and the end point E are not at the same position, as shown in FIG. 8, if the twice-traveled portion has only one side, as shown in FIG. , The accumulated gas g can be discharged, but if the contents are likely to erupt, there is a problem that the contents such as the electrode body are likely to come out of the battery.
The present invention has been made in view of the above circumstances, and has an object to further stabilize welding quality and to provide a safe and highly reliable prismatic battery.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method of joining an abutting region between an outer can and a sealing plate by an energy irradiation step of drawing a substantially rectangular pattern using an energy beam, wherein the energy irradiation step The drawing start point is located at one point on the short side or the long side of the rectangle, and after making one round along the contact area, the drawing end point is set to the long side or the short side through at least one corner. It is performed so as to be located at one point on the side.
[0010]
According to such a configuration, the region including the drawing start point and the drawing end point at the position sandwiching at least one corner is the twice drawing region, and the other region is the once drawing region. The welding strength is high in the two-time drawing area including the drawing start point and the drawing end point. Therefore, when the internal pressure rises, the welding strength is weaker than the other parts, and the accumulated gas can be discharged from the two sides of the one-time drawing area where the crack is formed first, and even if the ejection of the contents is likely to occur. In the twice-drawing area where the welding strength is high, the sealing plate can be firmly fixed to the outer can, and the sealing plate presses down the contents in the outer can and does not come out of the battery system. It can be improved.
[0011]
Preferably, in the energy irradiation step, the drawing start point is located at one point on the short side of the rectangle, and after making one round along the contact area, the drawing end point is passed through at least one corner. It is characterized by being executed so as to be located at one point on the long side.
[0012]
According to this configuration, the drawing start point is located on the shortest side of the area farthest from the resin component, that is, the short side of the contact area between the outer can made of a rectangular pattern and the sealing plate, and has the least thermal effect on the resin component. By doing so, even if the variation in the laser spot intensity observed at the start of writing deviates in the direction in which the intensity increases, the thermal effect on the resin component is minimized.
[0013]
In addition, when laser irradiation ends on the contact area, cracks and pinholes may occur due to variations in irradiation intensity. Therefore, laser scanning is performed inward from the irradiation area while maintaining the predetermined laser intensity. In other words, by terminating the irradiation on the sealing plate, the occurrence of cracks and pinholes can be suppressed more reliably.
[0014]
Further, the irradiation end point may be shifted to the outside of the bonding area.
[0015]
On the other hand, the drawing start point is located at one point on the long side of the rectangle, and after making one round along the contact area, the drawing end point is located at one point on the short side through at least one corner. It may be executed to be located.
[0016]
With this, the drawing end point where the laser intensity variation is large is located on the shortest side of the region farthest from the resin component, that is, the short side of the contact region between the outer can made of a rectangular pattern and the sealing plate, and the thermal effect on the resin component is reduced. By making the area the smallest, even if the variation in the laser spot intensity observed at the end of writing deviates in the direction in which the intensity increases, the thermal effect on the resin component is minimized.
[0017]
In addition, when the drawing start point of the laser irradiation is on the contact area, cracks and pinholes may occur due to the variation in irradiation intensity, but the laser scanning is shifted inward from above the contact area, that is, By starting irradiation on the sealing plate, it is possible to more reliably suppress the occurrence of cracks and pinholes.
[0018]
Further, the irradiation start point may be shifted to the outside of the bonding area.
[0019]
In the energy irradiation step, the welding energy may be adjusted such that the welding depth of the two-time writing area where the two-time writing patterns overlap is deeper than the welding depth of the one-time writing area including the one-time writing pattern. Features.
[0020]
More preferably, in the energy irradiation step, the welding depth of a single writing region including a single writing pattern is about 0.25 to 0.45 times the thickness of the sealing plate used. If the thickness is less than 0.25 times the thickness of the sealing plate, the welding strength may be significantly reduced. On the other hand, if it exceeds 0.45 times, the welding strength is too strong.
[0021]
In this way, reliable welding can be performed, and a highly reliable storage battery can be provided.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a case where the present invention is applied to a nickel-hydrogen storage battery will be described in detail with reference to the drawings.
(First Embodiment)
FIG. 1 is an explanatory view showing a beam welding method according to the first embodiment of the present invention, FIG. 2 is a perspective view showing a main part of a nickel-hydrogen storage battery formed by the method of the present invention, and FIG. And (b) are a plan view and a sectional view thereof. In the method of the present invention, a rectangular sealing plate 30 made of a nickel-plated iron plate is laser-welded to the upper surface of the outer container 10 at the opening of the outer container 10. One point is set as a drawing start point S, laser welding is performed along the contact area between the sealing plate 30 and the opening of the outer container 10 as indicated by an arrow in FIG. 1, and the drawing end point E is set as the drawing start point S. Beyond, further, it passes through a corner and becomes a point on an adjacent long side. Reference numeral 16 denotes a terminal portion that protrudes and is mounted on the sealing plate.
[0023]
FIG. 2 is a perspective view of the nickel-hydrogen storage battery, and FIG. 3 is a partially cutaway view showing a state where the electrode body 20 is inserted into the outer container 10 and welded to the sealing body 30 via the conductive tab 11a. .
[0024]
According to such a method, the area including the drawing start point S and the drawing end point E at a position sandwiching one corner is the twice drawing area, and the other is the once drawing area. The welding strength is high in the two-time drawing area including the drawing start point S and the drawing end point E.
[0025]
Therefore, as shown in FIG. 4, when the stress F is applied when the internal pressure rises, the welding strength is weaker than the other parts, and the accumulated gas g is discharged from two sides of the one-time drawing area where a crack is formed first. Can be. Therefore, even if the contents are likely to erupt, the sealing plate can be firmly fixed to the outer can in the twice-drawing area where the welding strength is high, and the sealing plate presses the contents in the outer can, and the battery system The structure is such that it does not go outside, and it is possible to further improve safety.
[0026]
As described above, by forming the twice-irradiation area so as to extend over two sides with the corner portion therebetween, by increasing the welding strength with respect to the once-irradiation area, the internal pressure becomes high. First, the gas g is satisfactorily discharged due to cracking from the single irradiation area. On the other hand, since the twice-irradiation area sandwiching the corner portion is securely maintained in a welded state, the contents such as the electrode body do not jump out and a highly safe sealed state is formed. Becomes possible.
[0027]
(Second embodiment)
In the first embodiment, the drawing start point S is on the short side and the drawing end point E is on the long side. However, in the second embodiment of the present invention, the exterior formed in the same manner. It is characterized in that laser beam irradiation is performed with a drawing profile as shown in FIG. 5 using a container, an electrode body and a sealing body. In the present embodiment, laser welding is performed along the contact area between the sealing plate 30 and the opening of the outer package 10 as indicated by the arrow in FIG. 5, and the drawing end point E exceeds the drawing start point S. And a point on the short side adjacent to the corner portion.
[0028]
According to such a method, the area including the drawing start point S and the drawing end point E at a position sandwiching one corner is the twice drawing area, and the other is the once drawing area. The welding strength is high in the two-time drawing area including the drawing start point S and the drawing end point E.
[0029]
Therefore, as described in the first embodiment, when a stress is applied when the internal pressure is increased, the welding strength is weaker than that of the twice-drawing area, and the welding strength of the two-time drawing area is smaller than that of the twice-drawing area. The accumulated gas can be discharged from the side. In the unlikely event that the contents are likely to erupt, the sealing plate can be firmly fixed to the outer can in the twice-drawing area where the welding strength is high, and the sealing plate presses down the contents inside the outer can and removes the contents from the battery system. It is possible to further improve safety.
[0030]
In the first and second embodiments, both the drawing start point S and the drawing end point E of the laser irradiation are set on the contact area, but either one is located outside or inside the contact area. In this way, the portion where the laser beam becomes unstable may not be in the welding region, and the contact region, that is, the region to be laser-welded may be reliably irradiated with the laser. As a result, an unstable portion of the laser depth can be avoided from the contact area, a reliable welding surface can be easily formed, and a reliable and highly reliable sealing connection can be achieved.
[0031]
<Example>
Next, a nickel-hydrogen storage battery formed by using this welding method will be described.
[0032]
1. As shown in FIGS. 2 and 3, the sealing body 30 of the nickel-hydrogen storage battery according to the present embodiment includes a lid 16 a having a circular downward projection formed on the bottom surface, a positive electrode cap 16 e, A valve body 16f made of EPDM (ethylene proprendiene rubber: elastic body) is provided between the lid 16a and the positive electrode cap 16e, and a gas vent hole is formed in the center of the lid 16a. 16b and c are current collecting leads, and 16d is a gasket. 16f is a valve element, and 16g is an exhaust hole. The peripheral portion of the positive electrode cap 16e protrudes to form a positive external terminal portion (terminal portion) 16 as a positive terminal. Reference numeral 15 denotes a spacer.
[0033]
2. Preparation of Electrode Assembly As shown in FIGS. 2 and 3, the nickel-hydrogen storage battery 100 of the present embodiment includes a nickel positive electrode plate 11 and a hydrogen storage alloy negative electrode plate 12. The nickel positive electrode plate 11 is formed by forming a nickel sintered porous body on the surface of an electrode core made of punched metal, and then filling the nickel sintered porous body with an active material mainly composed of nickel hydroxide by a chemical impregnation method. Has been made. On the other hand, the hydrogen-absorbing alloy negative electrode plate 12 is prepared by filling the surface of an electrode plate core made of punching metal with a paste-like negative-electrode active material made of a hydrogen-absorbing alloy, drying it, and rolling it to a predetermined thickness. Have been.
[0034]
The separator was interposed between the nickel positive electrode plate 11 and the hydrogen storage alloy negative electrode plate 12 to form an electrode group. A conductive tab 11a extending from the end of the nickel positive electrode plate 11 is exposed from the upper end surface of this electrode group, and is welded to the positive electrode terminal connecting portion 14 formed on the sealing body. Further, an end portion 12a of a punching metal which is an electrode plate body of the hydrogen storage alloy negative electrode plate 12 is exposed at the lower end surface, and is brought into contact with the inner bottom surface of the outer container.
[0035]
3. Preparation of Nickel-Hydrogen Storage Battery When assembling a nickel-hydrogen storage battery using this sealing body 30, first, the above-mentioned electrode body 20 is made of a 0.4 mm thick iron-plated cylindrical bottomed iron. (The outer surface of the bottom surface is a negative electrode external terminal) 10.
Then, after injecting an electrolytic solution composed of a 30% by mass aqueous solution of potassium hydroxide (KOH) into the outer container 10, the sealing body 30 was disposed above the opening of the outer container 10.
[0036]
4. Sealing (laser irradiation)
(Example 1)
After arranging the sealing member as described above, laser irradiation is performed so as to draw a drawing trajectory as shown in FIG. That is, as shown in FIG. 1, drawing is started with one point on the short side as a drawing start point S, and a contact area between the inner wall of the outer container 10 and the outer periphery of the sealing body 10 is irradiated with a laser beam of 500 W power. Irradiation is performed at a speed of 1500 mm / min, and after passing the drawing start point S, drawing is completed with a point on the long side sandwiching a corner portion adjacent to the drawing start point as a drawing end point E.
[0037]
As a result, it was possible to form a welded portion having no internal defects and excellent in welding strength, and it was possible to perform good and reliable sealing.
[0038]
As a result, a prismatic nickel-metal hydride storage battery having a nominal capacity of 650 mAh was produced. The nickel-hydrogen storage battery of Example 1 thus manufactured was referred to as Battery A.
[0039]
(Example 2)
In addition, as described in the second embodiment, laser beam irradiation was performed with the drawing profile shown in FIG. 5 using the outer container, the electrode body, and the sealing body formed in the same manner. Here, the drawing start point S is a point on the long side, and drawing is performed at a power of 500 W. After passing the drawing start point S, a point on the short side across the corner adjacent to the drawing start point is drawn as the drawing end point E And the drawing ends.
The nickel-hydrogen storage battery of Example 2 thus manufactured was referred to as Battery B.
[0040]
(Comparative Example 1)
Further, using the exterior container, the electrode body, and the sealing body formed in the same manner, laser beam irradiation was performed with a drawing profile as shown in FIG. Here, the drawing start point S is set on the long side, and the drawing end point E is set to coincide with the drawing start point S. The nickel-hydrogen storage battery thus manufactured was referred to as Battery C.
[0041]
(Comparative Example 2)
Further, using the exterior container, the electrode body and the sealing body formed in the same manner, laser beam irradiation was performed with a drawing profile as shown in FIG. Here, the drawing start point S is on the long side, and the drawing end point E is located on the same long side beyond the drawing start point S. The nickel-hydrogen storage battery manufactured in this manner was designated as Battery D.
[0042]
5. Experiment 150 cells of each of the batteries A, B, C, and D produced as described above, a hole having a diameter of several tens of μm was drilled in the bottom of the can, and the appearance of the battery after continuous injection of helium He gas was performed. Was confirmed, and the occurrence rate of laser welding separation and ejection of the contents was confirmed according to appearance conditions.
Regarding the deviation from laser welding, the presence or absence of a crack in the laser irradiation area was visually confirmed.
Regarding the ejection of the contents, it was visually confirmed that a part of the sealing plate was detached and the battery contents in the outer can were ejected.
[0043]
Table 1 shows the results.
[Table 1]
Figure 2004039284
[0044]
From the results in Table 1, it is found that the batteries A and B in which the laser drawing start and end points are adjacent to each other across the corner portion and the two sides have a deeper welding depth are compared with the batteries C and D by the laser welding. It can be seen that, although the occurrence rate of detachment is high, the incidence rate of ejection of the contents, which is regarded as a safety problem, is much lower than that of the batteries C and D after the subsequent laser welding detachment. Therefore, it is considered that the abnormal state of the battery can be avoided only by laser welding.
From the above, it can be seen that the batteries A and B can avoid the abnormal state of the batteries only by the laser welding disengagement, and the safety is further improved than the batteries C and D.
[0045]
This is because, by providing a portion where laser irradiation travels twice on two sides including a corner, the accumulated gas can be discharged from two sides of the single irradiation region where a crack first occurs when the internal pressure increases. Further, even when the contents are likely to be ejected, since the welding strength of the two sides including the corners is strong and the sealing plate is firmly suppressed, the contents do not come out of the battery system. As a result, the possibility that the contents are ejected due to the internal pressure is further reduced, and safety can be improved.
[0046]
Further, the relationship between the welding depth and the leak occurrence rate was measured after changing the welding depth (the thickness of the sealing plate). Here, first, the outer can which has been laser-welded while changing the welding depth is cut at a portion of about 1/2 in the height direction. Then, when a metal plate having a cross-sectional area of several tens of mm 2 was pressed horizontally at a speed of several mm / s from the inside of the battery to the sealing plate using an indentation tester, The force (N / mm 2 ) at the time of cracking was measured. The welding strength at a welding depth of 0.9 is set to 100. The result is shown in FIG. Here, the horizontal axis is the welding depth and the vertical axis is the welding strength.
[0047]
According to FIG. 10, if the welding depth is less than 0.25 times the used sealing plate thickness, sufficient welding strength cannot be obtained. When the welding depth exceeds 0.45 times, the welding strength hardly changes even if the welding depth changes. That is, when the welding depth of the one-time drawing region exceeds 0.45 times, there is almost no difference between the welding strength of the one-time drawing region and the welding strength of the two-time drawing region. The effect of the present invention of welding cannot be obtained.
Therefore, it is preferable that the welding depth of the one-time drawing area is about 0.25 to 0.45 times the thickness of the sealing plate used.
[0048]
As described above, by adjusting the welding depth, reliable welding can be performed, and a highly reliable storage battery can be provided.
[0049]
Although a laser beam is used in each of the above embodiments, the method of the present invention is not limited to a laser beam but can be applied to a welding process using various energy beams such as an electron beam.
[0050]
Furthermore, in the above-described embodiments and modified examples, an example in which the present invention is applied to a nickel-hydrogen storage battery has been described. However, the present invention is not limited to a nickel-hydrogen storage battery, but may be a nickel-cadmium storage battery, a lithium ion battery, or the like. It is apparent that the present invention can be applied to other prismatic batteries.
[0051]
【The invention's effect】
As described above, according to the present invention, the start point of laser welding is set at the middle of the short side or the middle of the long side, and the end point is set at the long side or the short side. By providing the gas on the two sides including the portion, the accumulated gas can be discharged from the two sides on which the crack is formed first when the internal pressure increases. In the remaining two sides, the welding strength is assured, and the ejection of the contents can be prevented, and the safety can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a laser welding method according to a first embodiment of the present invention.
FIG. 2 is a perspective view of the nickel-metal hydride storage battery according to the embodiment of the present invention.
FIG. 3 is a cross-sectional view of the nickel-metal hydride storage battery according to the embodiment of the present invention.
FIG. 4 is a diagram showing a state after welding by the laser welding method according to the first embodiment of the present invention.
FIG. 5 is a diagram showing a laser welding method according to a second embodiment of the present invention.
FIG. 6 is a diagram showing a conventional laser welding method.
FIG. 7 is a diagram showing a state after welding by a conventional laser welding method.
FIG. 8 is a view showing a conventional laser welding method.
FIG. 9 is a diagram showing a state after welding by a conventional laser welding method.
FIG. 10 is a diagram showing a relationship between a welding depth and a leak occurrence rate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Outer container 16 Terminal part, 20 electrode body, 11 Positive electrode plate, 12 Negative electrode plate, 13 Separator, 30 Sealing body

Claims (3)

外装缶と封口板との当接領域を、エネルギービームを用いてほぼ方形のパターンを描画するエネルギー照射工程により接合する方法であって、
前記エネルギー照射工程は、描画開始点が、前記方形の短辺または長辺上の1点にあり、前記当接領域に沿って1周したのち、少なくとも1つのコーナー部を経て、描画終了点が長辺または短辺上の1点に位置するように実行されることを特徴とする角形電池の製造方法。
A method in which the contact area between the outer can and the sealing plate is joined by an energy irradiation step of drawing a substantially rectangular pattern using an energy beam,
In the energy irradiation step, the drawing start point is located at one point on the short side or the long side of the rectangle, and after making one round along the contact area, the drawing end point is passed through at least one corner. A method for manufacturing a prismatic battery, wherein the method is performed so as to be located at one point on a long side or a short side.
前記エネルギー照射工程は、描画開始点が、前記方形の短辺上の1点にあり、前記当接領域に沿って1周したのち、少なくとも1つのコーナー部を経て、描画終了点が長辺上の1点に位置するように実行されることを特徴とする請求項1に記載の角形電池の製造方法。In the energy irradiation step, the drawing start point is located at one point on the short side of the rectangle, and after making one round along the contact area, the drawing end point is located on the long side through at least one corner. The method for manufacturing a prismatic battery according to claim 1, wherein the method is performed so as to be located at one point. 前記エネルギー照射工程は、2回の描画パターンが重なった2回描画領域の溶接深度が、1回の描画パターンからなる1回描画領域の溶接深度よりも深いことを特徴とする請求項1または2に記載の角形電池の製造方法。3. The energy irradiation step according to claim 1, wherein a welding depth of a two-time writing area where two writing patterns are overlapped is deeper than a welding depth of a one-time writing area including one writing pattern. 3. The method for manufacturing a prismatic battery according to 1.
JP2002190833A 2002-06-28 2002-06-28 Method for manufacturing square type battery Pending JP2004039284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190833A JP2004039284A (en) 2002-06-28 2002-06-28 Method for manufacturing square type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190833A JP2004039284A (en) 2002-06-28 2002-06-28 Method for manufacturing square type battery

Publications (1)

Publication Number Publication Date
JP2004039284A true JP2004039284A (en) 2004-02-05

Family

ID=31700642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190833A Pending JP2004039284A (en) 2002-06-28 2002-06-28 Method for manufacturing square type battery

Country Status (1)

Country Link
JP (1) JP2004039284A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205441A (en) * 2009-02-27 2010-09-16 Sanyo Electric Co Ltd Manufacturing method of square-shaped sealed battery, and square-shaped sealed battery
JP2018029068A (en) * 2017-09-26 2018-02-22 株式会社Gsユアサ Power storage element and power storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205441A (en) * 2009-02-27 2010-09-16 Sanyo Electric Co Ltd Manufacturing method of square-shaped sealed battery, and square-shaped sealed battery
JP2018029068A (en) * 2017-09-26 2018-02-22 株式会社Gsユアサ Power storage element and power storage device

Similar Documents

Publication Publication Date Title
JP5449961B2 (en) Secondary battery
JP5081932B2 (en) Sealed battery and manufacturing method thereof
JP6208687B2 (en) Cylindrical secondary battery and manufacturing method thereof
JP5470142B2 (en) Secondary battery and manufacturing method thereof
KR20120108045A (en) Battery and method for producing same
CN109713353B (en) Secondary battery, secondary battery assembling method, and battery module
JP3252846B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US20090029244A1 (en) Battery, and battery manufacturing method
JP5159076B2 (en) Cylindrical storage battery and manufacturing method thereof
JP5364512B2 (en) Cylindrical battery
JP2002270148A (en) Manufacturing method of cylinder sealing type lithium secondary battery and lithium secondary battery
JP4596842B2 (en) Sealed battery and manufacturing method thereof
JP2012185912A (en) Cylindrical secondary cell
JP3926147B2 (en) battery
JP2018055812A (en) Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method
JP4522123B2 (en) Cylindrical battery and manufacturing method thereof
JP4251829B2 (en) Battery and manufacturing method thereof
JP2004039284A (en) Method for manufacturing square type battery
KR102666014B1 (en) Method of manufacturing cylindricality can for secondary battery and secondary battery comprising the same
JP2008251207A (en) Cylindrical battery and its manufacturing method
JP3902427B2 (en) Method for producing electrode for storage battery
JP2003282030A (en) Manufacturing method of square type battery
JP2003282029A (en) Manufacturing method of square type battery
EP3627588B1 (en) Secondary battery and method of manufacturing the same
JP2000195496A (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070530