JP5364512B2 - Cylindrical battery - Google Patents

Cylindrical battery Download PDF

Info

Publication number
JP5364512B2
JP5364512B2 JP2009201444A JP2009201444A JP5364512B2 JP 5364512 B2 JP5364512 B2 JP 5364512B2 JP 2009201444 A JP2009201444 A JP 2009201444A JP 2009201444 A JP2009201444 A JP 2009201444A JP 5364512 B2 JP5364512 B2 JP 5364512B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collecting
lid
gasket
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009201444A
Other languages
Japanese (ja)
Other versions
JP2011054380A (en
Inventor
佳正 小石川
祐紀 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2009201444A priority Critical patent/JP5364512B2/en
Publication of JP2011054380A publication Critical patent/JP2011054380A/en
Application granted granted Critical
Publication of JP5364512B2 publication Critical patent/JP5364512B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

この発明は、円筒型電池に関する。   The present invention relates to a cylindrical battery.

リチウム二次電池等に代表される円筒型電池では、軸芯に捲回された正極または負極に接続された集電部材の一方を蓋に、他方を電池容器に接続する構造を有する。一般的には、正極を蓋に接続し、負極を電池容器に接続するが、逆の接続構造を有するものもある。   A cylindrical battery represented by a lithium secondary battery or the like has a structure in which one of current collecting members connected to a positive electrode or a negative electrode wound around an axis is connected to a lid and the other is connected to a battery container. In general, the positive electrode is connected to the lid and the negative electrode is connected to the battery container, but some have a reverse connection structure.

蓋と電池容器とは、ゴム等で形成されたガスケットにより絶縁する。この場合、ガスケットにより絶縁を図ると同時に蓋を保持する構造が知られている。このような円筒型電池の製造方法の一例を示すと、まず、円筒型の容器の上部側にプレス等により、電池容器の一部を内側に突出すように変形してほぼV字形状の溝を形成する。次に、この溝の上方に円筒状のガスケットを配置し、その上にガスケットより僅かに小さい円盤状の蓋の外周縁を載置する。そして、プレス等により電池容器およびガスケットを軸方向に圧縮するかしめを行い、電池容器の一側縁と溝部との間に、蓋とガスケットを固定する。蓋を固定することにより蓋に接続された集電部材が固定され、これにより正極、負極等含む発電要素が固定される。(例えば、特許文献1参照)   The lid and the battery container are insulated by a gasket made of rubber or the like. In this case, a structure is known in which insulation is achieved by a gasket and at the same time a lid is held. An example of a method for manufacturing such a cylindrical battery is as follows. First, a substantially V-shaped groove is formed by deforming a part of the battery container so as to protrude inward by pressing or the like on the upper side of the cylindrical container. Form. Next, a cylindrical gasket is disposed above the groove, and an outer peripheral edge of a disc-shaped lid slightly smaller than the gasket is placed thereon. Then, the battery container and the gasket are caulked in the axial direction by a press or the like, and the lid and the gasket are fixed between one side edge of the battery container and the groove. By fixing the lid, the current collecting member connected to the lid is fixed, and thereby the power generation elements including the positive electrode and the negative electrode are fixed. (For example, see Patent Document 1)

特開2009−104979号公報(図3)JP 2009-104979 A (FIG. 3)

上記構造の場合、集電部材はガスケットにより円筒電池の軸方向に保持されているが、軸方向と垂直な方向には保持されていない。   In the case of the above structure, the current collecting member is held in the axial direction of the cylindrical battery by the gasket, but is not held in the direction perpendicular to the axial direction.

本発明の円筒型電池は、正極と負極とがセパレータを介して軸芯に捲回された電極群と、電極群の軸方向の一端側および他端側に配置され、それぞれ、正極および負極の一方および他方に接続された一対の集電部材と、電極群および一対の集電部材を収容し、一対の集電部材の一方に接続された電池容器と、一対の集電部材の他方に接続された蓋と、蓋の外周縁と電池容器の軸方向の一方の側縁との間に介在され、蓋の外周縁と電池容器との間にかしめにより固定されたゴム製のガスケットと、軸方向と垂直な方向に作用する外力に抗して蓋に接続された集電部材を保持する軸垂直方向保持手段とを具備し、蓋の外周縁と電池容器の軸方向の一方の側縁との間に介在されたガスケットは、蓋の上面側を覆う上部と蓋の下面側を覆う下部を有し、下部の一部が、軸垂直方向保持手段を兼用し、集電部材は筒状の側部を有し、集電部材に接続される正極または負極は多数のリード部を有し、ガスケットの下部の一部は、多数のリード部が接続された集電部材の側部に、直接または他の部材を介して当接していることを特徴とする。 The cylindrical battery according to the present invention includes an electrode group in which a positive electrode and a negative electrode are wound around an axis through a separator, and is disposed on one end side and the other end side in the axial direction of the electrode group. A pair of current collectors connected to one and the other, an electrode group and a pair of current collectors are accommodated, a battery container connected to one of the pair of current collectors, and connected to the other of the pair of current collectors And a rubber gasket interposed between the outer peripheral edge of the lid and one side edge in the axial direction of the battery container, and fixed by caulking between the outer peripheral edge of the cover and the battery container; comprising the axial vertical holding means for holding a current collecting member connected to the lid against the external force acting in a direction perpendicular to the direction, and one side edge in the axial direction of the outer peripheral edge and the battery container cover The gasket interposed between and has an upper part that covers the upper surface side of the lid and a lower part that covers the lower surface side of the lid. A part of the lower part also serves as a vertical axis holding means, the current collecting member has a cylindrical side part, and the positive electrode or the negative electrode connected to the current collecting member has a number of lead parts, A part of the lower portion is in contact with a side portion of a current collecting member to which a large number of lead portions are connected, directly or via another member .

この発明の円筒型電池によれば、集電部材を軸方向に作用する外力に対して確実に保持することができ、且つ、軸方向に垂直な方向に作用する衝撃・振動等の外力に対する耐久性を向上することができる。   According to the cylindrical battery of the present invention, the current collecting member can be reliably held against an external force acting in the axial direction, and is resistant to external forces such as shock and vibration acting in a direction perpendicular to the axial direction. Can be improved.

この発明の円筒型電池の一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the cylindrical battery of this invention. 図1に示された円筒型電池の電極群の一部を切断した外観斜視図。FIG. 2 is an external perspective view in which a part of an electrode group of the cylindrical battery shown in FIG. 1 is cut. 図1に示された円筒型電池の分解斜視図。FIG. 2 is an exploded perspective view of the cylindrical battery shown in FIG. 1. 本発明の円筒型電池におけるガスケットを用いた密封方法の最初の工程を示す断面図。Sectional drawing which shows the 1st process of the sealing method using the gasket in the cylindrical battery of this invention. 図4に続く工程を示す断面図。Sectional drawing which shows the process of following FIG. 図5に続く工程を示す断面図。Sectional drawing which shows the process of following FIG. 図6に続く工程を示す断面図。Sectional drawing which shows the process of following FIG. この発明の第1の変形例を示し、かしめをする前の状態を示す要部断面図。The principal part sectional drawing which shows the state before showing the 1st modification of this invention and crimping. 図8の後工程を示し、かしめをした後の状態を示す要部断面図。FIG. 9 is an essential part cross-sectional view showing a state after caulking, showing a post-process of FIG. 8. この発明の第2の変形例を示し、かしめをする前の状態を示す要部断面図。The principal part sectional drawing which shows the 2nd modification of this invention and shows the state before crimping. 図10の後工程を示し、かしめをした後の状態を示す要部断面図。FIG. 11 is a main part sectional view showing a state after caulking, showing a post-process of FIG. 10.

(円筒型電池の構造)
以下、この発明の円筒型電池の一実施形態を、リチウム二次電池を例として図面と共に説明する。
図1は、この発明の円筒型電池の一実施形態を示す断面図であり、図2は、図1に示された円筒型電池の電極群の一部を切断した外観斜視図であり、図3は、図1に示された円筒型電池の分解斜視図である。但し、図3においては、負極集電板および電池容器は、図示を省略されている。
円筒型電池1は、例えば、外形40mmφ、高さ100mmの寸法を有する。
この円筒型電池1は、有底円筒型の電池容器2およびハット型の蓋3の内部に、以下に説明する発電用の各構成部材を収容している。電池容器2は、その開放側の側部が内側に突出すように変形され、溝2aが形成されている。
(Structure of cylindrical battery)
Hereinafter, an embodiment of a cylindrical battery of the present invention will be described with reference to the drawings by taking a lithium secondary battery as an example.
FIG. 1 is a cross-sectional view showing an embodiment of a cylindrical battery according to the present invention. FIG. 2 is a perspective view of an external appearance of a part of the electrode group of the cylindrical battery shown in FIG. 3 is an exploded perspective view of the cylindrical battery shown in FIG. However, in FIG. 3, the negative electrode current collector plate and the battery container are not shown.
The cylindrical battery 1 has dimensions of, for example, an outer diameter of 40 mmφ and a height of 100 mm.
This cylindrical battery 1 accommodates each component for power generation described below in a cylindrical battery container 2 with a bottom and a hat-shaped lid 3. The battery container 2 is deformed so that the open side portion protrudes inward, and a groove 2a is formed.

10は、電極群である。電極群10は、図2に図示されるように、軸芯15と、軸芯15の周囲に捲回された正極シート(正極)11、負極シート(負極)12、および正極シート11と負極シート12との間に配置されたセパレータ13を有する。   Reference numeral 10 denotes an electrode group. As illustrated in FIG. 2, the electrode group 10 includes a shaft core 15, a positive electrode sheet (positive electrode) 11 wound around the shaft core 15, a negative electrode sheet (negative electrode) 12, and a positive electrode sheet 11 and a negative electrode sheet. 12 and a separator 13 disposed between the two.

正極シート11は、アルミニウム箔により形成され、両面に正極活物質等を塗布する正極処理が施された正極処理部11aと、正極処理が施されずアルミニウム箔が表出した正極未処理部11bとを有する。正極未処理部11bには、多数の正極リード(リード部)11b1が、等間隔に一体的に形成されている。   The positive electrode sheet 11 is formed of an aluminum foil, and a positive electrode processing portion 11a that has been subjected to a positive electrode treatment for applying a positive electrode active material or the like on both sides; Have A large number of positive electrode leads (lead portions) 11b1 are integrally formed at equal intervals in the positive electrode untreated portion 11b.

正極シート11の形成方法の一例を説明すれば、正極シート11は、リチウムマンガン複酸化物として代表的なマンガン酸リチウム(LiMn24)を正極活物質として用い、次のように作製される。正極活物質90重量部に対して、導電剤として燐片状黒鉛10重量部と、結着剤としてポリフッ化ジビニリデン(PVDF)5重量部とを添加し、これを分散溶媒としてN−メチル−2−ピロリドンを添加、混練したスラリを、厚さ20μmのアルミニウム箔の両面に均一に塗布し、乾燥させた後、プレス、裁断する。 To describe an example of a method of forming a positive electrode sheet 11, the positive electrode sheet 11, using a typical lithium manganate (LiMn 2 O 4) as a positive electrode active material as a lithium-manganese complex oxide is prepared in the following manner . 10 parts by weight of flake graphite as a conductive agent and 5 parts by weight of polyvinylidene fluoride (PVDF) as a binder are added to 90 parts by weight of the positive electrode active material, and N-methyl-2 is used as a dispersion solvent. -The slurry in which pyrrolidone is added and kneaded is uniformly applied to both sides of an aluminum foil having a thickness of 20 µm, dried, then pressed and cut.

負極シート12は、銅箔により形成され、両面に負極活物質等を塗布する負極処理が施された負極処理部12aと、負極処理が施されず銅箔が表出した負極未処理部12bとを有する。負極未処理部12bには、多数の負極リード(リード部)12b1が等間隔に一体的に形成されている。   The negative electrode sheet 12 is formed of a copper foil, and a negative electrode treatment portion 12a that has been subjected to a negative electrode treatment for applying a negative electrode active material or the like on both sides; Have In the negative electrode untreated portion 12b, a large number of negative electrode leads (lead portions) 12b1 are integrally formed at equal intervals.

負極シート12の形成方法の一例を説明すれば、負極シート12は負極活物質の炭素材として非晶質炭素粉末を用い次のように作製される。非晶質炭素粉末90重量部に、結着剤としてポリフッ化ジビニリデン(PVDF)10重量部を添加し、これに分散溶媒としてN−メチル−2−ピロリドンを添加、混練したスラリを、厚さ10μmの圧延銅箔の両面に均一に塗布し、乾燥させた後、プレス、裁断する。   If an example of the formation method of the negative electrode sheet 12 is demonstrated, the negative electrode sheet 12 will be produced as follows using an amorphous carbon powder as a carbon material of a negative electrode active material. A slurry obtained by adding 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder to 90 parts by weight of amorphous carbon powder, and adding and kneading N-methyl-2-pyrrolidone as a dispersion solvent to this is 10 μm thick. After uniformly applying to both sides of the rolled copper foil and drying, it is pressed and cut.

セパレータ13は、例えば、厚さ40μmのポリエチレン製多孔膜である。
軸芯15は軸方向(図面の上下方向)に延出された中空な細い筒形状を有し、上部には、正極集電部材31が圧入されている。正極集電部材31は、例えば、アルミニウムにより形成され、円盤状の基部31aの軸芯側に、下面側に突出して形成され、軸芯15の内面に圧入される下部筒部31bを有し、外周縁に上面側に突き出す上部筒部(側部)31cを有する。
The separator 13 is, for example, a polyethylene porous film having a thickness of 40 μm.
The shaft core 15 has a hollow thin cylindrical shape extending in the axial direction (vertical direction in the drawing), and a positive electrode current collecting member 31 is press-fitted into the upper portion thereof. The positive electrode current collecting member 31 is formed of, for example, aluminum, and has a lower cylindrical portion 31b that is formed on the shaft core side of the disc-shaped base portion 31a so as to protrude from the lower surface side and press-fitted into the inner surface of the shaft core 15. It has an upper cylinder part (side part) 31c protruding to the upper surface side on the outer peripheral edge.

正極シート11の正極リード11b1は、すべて、正極集電部材31の上部筒部31cに溶接される。すなわち、図3に図示されるように、正極リード11b1は、正極集電部材31の上部筒部31c上に重なり合って接合される。各正極リード11b1は大変薄いため、1つでは大電流を取りだすことができない。このため、軸芯15への巻き始めから巻き終わりまでの全長に亘り、多数の正極リード11b1が所定間隔で形成されている。
正極集電部材31は、電解液によって酸化されるので、アルミニウムで形成することにより信頼性を向上することができる。アルミニウムは、なんらかの加工により表面が表出すると、直ちに、表面に酸化アルミウム皮膜が形成され、この酸化アルミニウム皮膜により、電解液による酸化を防止することができる。
また、正極集電部材31をアルミニウムで形成することにより、正極シート11の正極リード11b1を超音波溶接またはスポット溶接等により溶接することが可能となる。
All the positive electrode leads 11 b 1 of the positive electrode sheet 11 are welded to the upper cylindrical portion 31 c of the positive electrode current collecting member 31. That is, as illustrated in FIG. 3, the positive electrode lead 11 b 1 is overlapped and joined to the upper cylindrical portion 31 c of the positive electrode current collecting member 31. Since each positive electrode lead 11b1 is very thin, a large current cannot be taken out by one. For this reason, a large number of positive electrode leads 11b1 are formed at predetermined intervals over the entire length from the start of winding to the shaft core 15 to the end of winding.
Since the positive electrode current collecting member 31 is oxidized by the electrolytic solution, the reliability can be improved by forming it with aluminum. As soon as the surface of aluminum is exposed by some processing, an aluminum oxide film is formed on the surface, and this aluminum oxide film can prevent oxidation by the electrolytic solution.
Further, by forming the positive electrode current collecting member 31 from aluminum, the positive electrode lead 11b1 of the positive electrode sheet 11 can be welded by ultrasonic welding or spot welding.

負極集電部材21(図1参照)は、例えば、銅により形成され、円盤状の基部21aの軸芯側に軸芯15の外面に圧入される内周筒部21bを有し、外周縁に、内周筒部21bと同方向に突き出す外周筒部21cを有する。
負極シート12の負極リード12b1は、すべて、負極集電部材21の外周筒部21cに、超音波溶接またはスポット溶接により溶接される。各負極リード12b1は大変薄いため、大電流を取りだすために、軸芯15への巻き始めから巻き終わりまで全長にわたり、所定間隔で多数形成されている。
The negative electrode current collecting member 21 (see FIG. 1) is formed of, for example, copper, and has an inner peripheral cylindrical portion 21b that is press-fitted into the outer surface of the shaft core 15 on the shaft core side of the disc-shaped base portion 21a. The outer peripheral cylindrical portion 21c protrudes in the same direction as the inner peripheral cylindrical portion 21b.
All of the negative electrode leads 12b1 of the negative electrode sheet 12 are welded to the outer peripheral cylindrical portion 21c of the negative electrode current collecting member 21 by ultrasonic welding or spot welding. Since each negative electrode lead 12b1 is very thin, a large number of negative leads 12b1 are formed at predetermined intervals over the entire length from the start of winding to the shaft core 15 to take out a large current.

負極集電部材21の外周筒部21cの外周には、負極シート12の負極リード12b1およびリング状の押え部材22が溶接されている。負極リード12b1は多数あるので、負極集電部材21の外周筒部21cの外周に密着させておき、負極リード12b1の外周に押え部材22を巻き付けて仮固定し、この状態で溶接される。
負極集電部材21の下面には、銅製の負極通電リード23が溶接されている。
負極通電リード23は、電池容器2の底部において、電池容器2に溶接されている。電池容器2は、例えば、0.5mmの厚さの炭素鋼で形成され、表面にニッケルメッキが施されている。このような材料を用いることにより、負極通電リード23は、電池容器2に抵抗溶接により溶接することができる。
The negative electrode lead 12b1 of the negative electrode sheet 12 and the ring-shaped pressing member 22 are welded to the outer periphery of the outer peripheral cylindrical portion 21c of the negative electrode current collecting member 21. Since there are a large number of the negative electrode leads 12b1, they are brought into close contact with the outer periphery of the outer peripheral cylindrical portion 21c of the negative electrode current collecting member 21, and the holding member 22 is wound around the outer periphery of the negative electrode lead 12b1 to be temporarily fixed and welded in this state.
A negative electrode conducting lead 23 made of copper is welded to the lower surface of the negative electrode current collecting member 21.
The negative electrode conducting lead 23 is welded to the battery container 2 at the bottom of the battery container 2. The battery container 2 is formed of, for example, carbon steel having a thickness of 0.5 mm, and the surface thereof is plated with nickel. By using such a material, the negative electrode energizing lead 23 can be welded to the battery container 2 by resistance welding.

図7は、図1に図示された円筒型電池1の領域Aの拡大図である。以下の説明においては、図1および図3と共にこの図7を参照されたい。
正極集電部材31の上部筒部31cの外周には、正極シート11の正極リード11b1およびリング状の押え部材32が溶接されている。正極リード11b1は多数あるので、正極集電部材31の上部筒部31cの外周に密着させておき、正極リード11b1の外周に押え部材32を巻き付けて仮固定し、この状態で溶接する。
電極群10を構成する正極シート11に形成された多数の正極リード11b1が、正極集電部材31の上部筒部31cに溶接されることにより、正極集電部材31は電極群10と一体的に構成される。
FIG. 7 is an enlarged view of a region A of the cylindrical battery 1 shown in FIG. In the following description, please refer to FIG. 7 together with FIGS.
The positive electrode lead 11b1 of the positive electrode sheet 11 and the ring-shaped pressing member 32 are welded to the outer periphery of the upper cylindrical portion 31c of the positive electrode current collecting member 31. Since there are a large number of positive electrode leads 11b1, they are brought into close contact with the outer periphery of the upper cylindrical portion 31c of the positive electrode current collecting member 31, and the holding member 32 is wound around the outer periphery of the positive electrode lead 11b1 and temporarily fixed, and welding is performed in this state.
A large number of positive leads 11 b 1 formed on the positive electrode sheet 11 constituting the electrode group 10 are welded to the upper cylindrical portion 31 c of the positive electrode current collector 31, so that the positive electrode current collector 31 is integrated with the electrode group 10. Composed.

また、正極集電部材31の基部31aの上面には、多数のアルミニウム箔が積層されて構成された第1フレキシブル接続部材33が、その一部を溶接されて接合されている。第1フレキシブル接続部材33は、多数のアルミニウム箔を積層して一体化することにより、大電流を流すことが可能とされ、且つ、フレキシブル性を付与されている。つまり、大電流を流すには接続部材の厚さを大きくする必要があるが、1枚の金属板で形成すると剛性が大きくなり、フレキシブル性が損なわれる。そこで、板厚の小さな多数のアルミニウム箔を積層してフレキシブル性を持たせている。第1フレキシブル部材33がフルキシブル性を必要とされる理由は後述する。   A first flexible connection member 33 formed by laminating a number of aluminum foils is joined to the upper surface of the base portion 31a of the positive electrode current collecting member 31 by welding a part thereof. The first flexible connecting member 33 can flow a large current by laminating and integrating a large number of aluminum foils, and is provided with flexibility. In other words, it is necessary to increase the thickness of the connecting member in order to pass a large current, but if it is formed of a single metal plate, the rigidity increases and the flexibility is impaired. Therefore, a large number of aluminum foils having a small thickness are laminated to give flexibility. The reason why the first flexible member 33 is required to be flexible will be described later.

図3に示すように、正極集電部材31の上部筒部31c上には、円形の開口部41aを有する絶縁性樹脂材料からなるリング状の絶縁板41が搭載されている。
絶縁板41は、開口部41aと下方に突出す側部41bを有している。
絶縁材41の開口部41a内には、アルミニウム製の内蓋35が嵌合されている。この内蓋35の下面には、第2フレキシブル接続部材34が、その一部が内蓋35に溶接されている。第2フレキシブル部材34は、多数のアルミニウム箔を積層して一体化することにより、大電流を流すことが可能とされ、且つ、フレキシブル性を付与されている。
As shown in FIG. 3, a ring-shaped insulating plate 41 made of an insulating resin material having a circular opening 41 a is mounted on the upper cylindrical portion 31 c of the positive electrode current collecting member 31.
The insulating plate 41 has an opening 41a and a side portion 41b protruding downward.
An aluminum inner lid 35 is fitted in the opening 41 a of the insulating material 41. A part of the second flexible connecting member 34 is welded to the inner lid 35 on the lower surface of the inner lid 35. The second flexible member 34 can flow a large current by laminating and integrating a large number of aluminum foils, and is provided with flexibility.

第1フレキシブル接続部材33と第2フレキシブル接続部材34は、電池容器2内部に電解液を注入する前は、図3に図示されるように、それぞれ、溶接により一端側が固定されているに対し、他端側が開放端部となっている。電解液を注入した後は、図1に図示されるように、第1フレキシブル接続部材33と第2フレキシブル接続部材34の開放端部同士が溶接される。
内蓋35には、第1フレキシブル部材33と第2フレキシブル部材34を溶接するための開口部36が形成されている。
As shown in FIG. 3, the first flexible connecting member 33 and the second flexible connecting member 34 are fixed at one end side by welding, as shown in FIG. 3, before the electrolyte is injected into the battery container 2. The other end side is an open end. After injecting the electrolytic solution, the open ends of the first flexible connecting member 33 and the second flexible connecting member 34 are welded together as shown in FIG.
An opening 36 for welding the first flexible member 33 and the second flexible member 34 is formed in the inner lid 35.

内蓋35の上方には、周縁部が絶縁板41上に載置され、中央部分が内蓋35の上面に接する、アルミニウム等で形成された開裂弁37が配置されている。開裂弁37には、切込み37aが形成されている。開裂弁37は、電池の安全性確保のために設けられており、リチウム電池の内圧が上昇すると、第1段階として、上方に反り、内蓋35から離間して通電を絶つ。第2段階として、それでも内圧が上昇する場合は切込み37aにおいて開裂し、内部のガスを放出する機能を有する。
上述した絶縁板41は、内蓋35の外周部と開裂弁37の周縁部側に介在され、初期状態では、開裂弁37の中央部のみが内蓋35に接触されるようにする。
Above the inner lid 35, there is disposed a cleavage valve 37 made of aluminum or the like whose peripheral portion is placed on the insulating plate 41 and whose central portion is in contact with the upper surface of the inner lid 35. The cleavage valve 37 has a cut 37a. The cleavage valve 37 is provided for ensuring the safety of the battery. When the internal pressure of the lithium battery increases, the cleavage valve 37 warps upward and is separated from the inner lid 35 to cut off the current supply as the first stage. As a second stage, when the internal pressure still rises, it has a function of cleaving at the cut 37a and releasing the internal gas.
The insulating plate 41 described above is interposed between the outer peripheral portion of the inner lid 35 and the peripheral edge side of the cleavage valve 37, so that only the central portion of the cleavage valve 37 is in contact with the inner lid 35 in the initial state.

開裂弁37の上面には蓋3が配置されている。蓋3は、表面をNiめっきされた炭素鋼等の鉄で形成されており、開裂弁37に接触する円盤状の周縁部3aとこの周縁部3aから上方に突出す有頭無底の筒部3bを有するハット型を有する。筒部3bには複数の開口部3cが形成されている。
蓋3の周縁部3aの上下面および外周側面は、開裂弁37の周縁部により覆われている。開裂弁37は、当初、図3に図示されているように円盤状の基部に対して垂直に起立した側壁37bを有する形状に形成されており、蓋3の周縁部3aが搭載された後、プレス等によりかしめられ、コ字上に折曲されて、蓋3の周縁部3aの上面側を覆う。
なお、蓋3が鉄で形成されている場合には、別の円筒型電池と直列に接合する際、鉄で形成された別の円筒型電池とスポット溶接により溶接することができる。
A lid 3 is disposed on the upper surface of the cleavage valve 37. The lid 3 is formed of iron such as carbon steel plated with Ni, and has a disk-shaped peripheral portion 3a that contacts the cleavage valve 37 and a headless and bottomless cylindrical portion that protrudes upward from the peripheral portion 3a. It has a hat shape with 3b. A plurality of openings 3c are formed in the cylindrical portion 3b.
The upper and lower surfaces and outer peripheral side surfaces of the peripheral edge 3 a of the lid 3 are covered with the peripheral edge of the cleavage valve 37. The cleavage valve 37 is initially formed in a shape having a side wall 37b standing perpendicular to the disc-shaped base as shown in FIG. 3, and after the peripheral edge 3a of the lid 3 is mounted, It is caulked by a press or the like and is bent in a U shape so as to cover the upper surface side of the peripheral edge portion 3 a of the lid 3.
In addition, when the lid | cover 3 is formed with iron, when joining in series with another cylindrical battery, it can weld by another cylindrical battery formed with iron by spot welding.

開裂弁37の周縁部の上下面および外周側面を覆ってガスケット43が設けられている。ガスケット43は、当初、図3に図示されるように、リング状の基部43aの周側縁に、上方に起立して形成された外周壁部43bと、内周側に、基部43aから下方に向かってほぼ垂直に垂下して形成された筒部43cとを有する形状を有している。
そして、詳細は後述するが、プレス等により、ガスケット43の外周壁部43bを折曲して基部43aと外周壁部43bにより、開裂弁37と蓋3を軸方向に圧接するように加工される。また、これと同時に、ガスケット43の基部43aと筒部43cの境界部の角部43d(図7)を正極集電部材31の上部筒部31cに当接して、正極集電部材31が軸方向と垂直な方向へ移動するのを阻止する。換言すれば、軸垂直方向に作用する外力に抗して正極集電部材31を保持する構造とされる。
A gasket 43 is provided to cover the upper and lower surfaces and the outer peripheral surface of the peripheral edge of the cleavage valve 37. As shown in FIG. 3, the gasket 43 initially includes an outer peripheral wall 43 b that is erected upward on the peripheral edge of the ring-shaped base 43 a, and an inner peripheral side that extends downward from the base 43 a. And a cylindrical portion 43c that is formed to hang substantially perpendicularly.
As will be described in detail later, the outer peripheral wall portion 43b of the gasket 43 is bent by a press or the like, and is processed so as to press the cleavage valve 37 and the lid 3 in the axial direction by the base portion 43a and the outer peripheral wall portion 43b. . At the same time, the corner 43d (FIG. 7) at the boundary between the base 43a and the cylinder 43c of the gasket 43 is brought into contact with the upper cylinder 31c of the positive current collector 31 so that the positive current collector 31 is axially moved. To move in the direction perpendicular to the. In other words, the positive electrode current collecting member 31 is held against an external force acting in the direction perpendicular to the axis.

電池容器2の内部には、非水電解液が所定量注入されている。非水電解液の一例としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)とを体積比で1:1:1の割合で混合した混合有機溶媒中に、電解質として六フッ化リン酸リチウム(LiPF6)を1モル/リットル溶解したものをあげることができる。
以下、上記構成の円筒型電池の製造方法の一例を説明する。
A predetermined amount of non-aqueous electrolyte is injected into the battery container 2. As an example of the non-aqueous electrolyte, six electrolytes may be used in a mixed organic solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1: 1. An example is one obtained by dissolving 1 mol / liter of lithium fluorophosphate (LiPF 6 ).
Hereinafter, an example of a manufacturing method of the cylindrical battery having the above-described configuration will be described.

(円筒型電池の製造方法)
正極処理部11aと、多数の正極リード11b1が形成された正極未処理部11bを有する正極シート11を作製する。また、負極処理部12aと、多数の負極リード12b1が形成された負極シート12を作製する。
正極シート11と負極シート12とを、両シート間にセパレータ13を挟んで軸芯15の周囲に多重に捲回して電極群10を作製する。
(Cylindrical battery manufacturing method)
A positive electrode sheet 11 having a positive electrode processing part 11a and a positive electrode unprocessed part 11b on which a large number of positive electrode leads 11b1 are formed is produced. Further, the negative electrode sheet 12 on which the negative electrode processing part 12a and a large number of negative electrode leads 12b1 are formed is prepared.
The electrode group 10 is produced by winding the positive electrode sheet 11 and the negative electrode sheet 12 around the shaft core 15 with the separator 13 between the two sheets.

この電極群10の軸芯15の下部に負極集電部材21を取り付ける。負極集電部材21の取り付けは、負極集電部材21の内周筒部21bを軸芯15の外周に嵌入して行う。負極集電部材21の外周筒部21cの外周の全周囲に亘り、負極リード12b1をほぼ均等に配分して密着し、負極リード12b1の外周に押え部材22を巻き付ける。そして、超音波溶接等により、負極集電部材21に負極リード12b1および押えリング22を溶接する。   A negative electrode current collecting member 21 is attached to the lower portion of the shaft core 15 of the electrode group 10. The negative electrode current collector 21 is attached by fitting the inner peripheral cylinder portion 21 b of the negative electrode current collector 21 into the outer periphery of the shaft core 15. The negative electrode lead 12b1 is distributed almost uniformly around the entire periphery of the outer peripheral cylindrical portion 21c of the negative electrode current collecting member 21, and the presser member 22 is wound around the outer periphery of the negative electrode lead 12b1. Then, the negative electrode lead 12b1 and the presser ring 22 are welded to the negative electrode current collecting member 21 by ultrasonic welding or the like.

上面側に第1フレキシブル接続部材33の一端が溶接された正極集電部材31を、軸芯15の上部に取り付ける。第1フレキシブル接続部材33と正極集電部材31との溶接は、スポット溶接を用いることができる。正極集電部材31の軸芯15への取り付けは、正極集電部材31の下部筒部31bを軸芯15の内面に嵌合して行う。   A positive electrode current collecting member 31 having one end of the first flexible connecting member 33 welded to the upper surface side is attached to the upper portion of the shaft core 15. Spot welding can be used for welding of the first flexible connecting member 33 and the positive electrode current collecting member 31. The positive current collector 31 is attached to the shaft core 15 by fitting the lower cylindrical portion 31 b of the positive current collector 31 to the inner surface of the shaft 15.

正極集電部材31の上部筒部31cの外周の全周囲に亘り、正極リード11b1をほぼ均等に配分して密着し、正極リード11b1の外周に押え部材32を巻き付ける。そして、超音波溶接等により、正極集電部材31に正極リード11b1および押えリング32を溶接する。このようにして、図3に図示される発電ユニット20が作製される。   The positive electrode lead 11b1 is distributed almost uniformly around the entire circumference of the upper cylindrical portion 31c of the positive electrode current collecting member 31, and the presser member 32 is wound around the outer periphery of the positive electrode lead 11b1. Then, the positive electrode lead 11b1 and the presser ring 32 are welded to the positive electrode current collecting member 31 by ultrasonic welding or the like. In this way, the power generation unit 20 illustrated in FIG. 3 is produced.

発電ユニット20を収容可能なサイズを有する金属製の有底円筒部材に、上述の工程を経て作製された発電ユニット20を収容する。付言する必要も無いが、有底円筒部材は、電池容器2となるものである。
以下において、説明を簡素にして明瞭にするために、この有底円筒部材を電池容器2として説明する。
電池容器2内に収納した発電ユニット20の負極通電リード22を、電池容器2に抵抗溶接により溶接する。
次に、電池容器2を絞り加工して、電池容器2の一部を内方に突出し、外面にほぼV字状の溝2aを形成する。電池容器2の溝2aは、発電ユニット20の上端部、換言すれば、正極集電部材31の上端部近傍に位置するように形成する。
The power generation unit 20 produced through the above-described steps is accommodated in a metal bottomed cylindrical member having a size that can accommodate the power generation unit 20. Although it is not necessary to add, the bottomed cylindrical member is the battery container 2.
Hereinafter, in order to simplify and clarify the description, this bottomed cylindrical member will be described as the battery container 2.
The negative electrode conducting lead 22 of the power generation unit 20 housed in the battery container 2 is welded to the battery container 2 by resistance welding.
Next, the battery container 2 is drawn, a part of the battery container 2 protrudes inward, and a substantially V-shaped groove 2a is formed on the outer surface. The groove 2 a of the battery container 2 is formed so as to be positioned in the upper end portion of the power generation unit 20, in other words, in the vicinity of the upper end portion of the positive electrode current collector 31.

発電ユニット20が収容された電池容器2内部に、電解液を所定量注入する。
電解液を注入する際、第1フレキシブル接続部材33は、注入に邪魔とならない位置に曲げておく。また、電解液の注入が終わったあとは変形させて、その開放端部が内蓋35の開口部36に対応する位置に配置する。
A predetermined amount of electrolyte is injected into the battery container 2 in which the power generation unit 20 is accommodated.
When injecting the electrolytic solution, the first flexible connecting member 33 is bent at a position that does not interfere with the injection. Further, after the injection of the electrolytic solution is finished, it is deformed and its open end is arranged at a position corresponding to the opening 36 of the inner lid 35.

第2フレキシブル接続部材34の一端が溶接された内蓋35を絶縁板41に取り付け、正極集電部材31上に配置する。第2フレキシブル接続部材34と内蓋35との溶接は、超音波溶接を用いることができる。内蓋35と絶縁板41との取り付けは、圧入、溶着、接着などによる。正極集電部材31上への配置は、絶縁板41の側部41bに正極集電部材31の上部筒部31cの内面を嵌入した状態で、正極集電部材31の上部筒部31c上に載置する。
第2フレキシブル接続部材34の開放端部を内蓋35の開口部36に対応する位置にして、第1フレキシブル接続部剤31の開放端部と重合させておく。
An inner lid 35 to which one end of the second flexible connecting member 34 is welded is attached to the insulating plate 41 and disposed on the positive electrode current collecting member 31. For welding of the second flexible connecting member 34 and the inner lid 35, ultrasonic welding can be used. The inner lid 35 and the insulating plate 41 are attached by press fitting, welding, adhesion, or the like. The positive electrode current collector 31 is placed on the upper cylinder part 31c of the positive electrode current collector 31 with the inner surface of the upper cylinder part 31c of the positive electrode current collector 31 fitted into the side part 41b of the insulating plate 41. Put.
The open end portion of the second flexible connection member 34 is positioned at a position corresponding to the opening portion 36 of the inner lid 35 and overlapped with the open end portion of the first flexible connection member 31.

第1フレキシブル接続部材33と第2フレキシブル接続部材34の開放端部同士をスポット溶接等により溶接する。第1フレキシブル接続部材33と第2フレキシブル接続部材34の溶接に際しては、上述した如く、それぞれの開放端部の位置を変位させるために、第1フレキシブル接続部材33および第2フレキシブル接続部材34を変形させる必要があるが、それぞれが、アルミニウム箔等の薄い金属箔を複数積層して形成されているので、変形に十分な可撓性を有している。   The open ends of the first flexible connection member 33 and the second flexible connection member 34 are welded together by spot welding or the like. When welding the first flexible connection member 33 and the second flexible connection member 34, as described above, the first flexible connection member 33 and the second flexible connection member 34 are deformed in order to displace the positions of the respective open ends. However, since each is formed by laminating a plurality of thin metal foils such as aluminum foils, it has sufficient flexibility for deformation.

次に、開裂弁37が固定された蓋3を絶縁板41上に載置する。開裂弁37と蓋3との固定は、かしめ等により行う。図3に図示された如く、開裂弁37には、当初、側壁37bは基部37aに垂直に形成されているので、蓋3の周縁部3aを開裂弁37の側壁37b内に配置する。そして、開裂弁37の側壁37bをプレス等により変形させて、蓋3の周縁部の上面および下面、および外周側面を覆って圧接する。
この後、蓋3および電池容器2をかしめて、ガスケット43により、蓋3、換言すれば、正極集電部材31および電極群10を軸方向に保持すると共に、正極集電部材31を軸方向と垂直な方向に対して確実に保持させるための加工を行う。
その方法を、図1に図示された領域Aの拡大断面を示す図4〜図7を用いて説明する。
Next, the lid 3 to which the cleavage valve 37 is fixed is placed on the insulating plate 41. The cleavage valve 37 and the lid 3 are fixed by caulking or the like. As shown in FIG. 3, since the side wall 37 b is initially formed perpendicular to the base portion 37 a in the cleavage valve 37, the peripheral edge portion 3 a of the lid 3 is disposed in the side wall 37 b of the cleavage valve 37. Then, the side wall 37b of the cleavage valve 37 is deformed by a press or the like so as to cover the upper and lower surfaces and the outer peripheral side surface of the peripheral edge of the lid 3 and press-contact.
Thereafter, the lid 3 and the battery container 2 are crimped, and the gasket 3 holds the lid 3, in other words, the positive electrode current collecting member 31 and the electrode group 10 in the axial direction, and the positive electrode current collecting member 31 is set in the axial direction. Processing to ensure that the vertical direction is maintained.
The method will be described with reference to FIGS. 4 to 7 showing an enlarged cross section of the region A shown in FIG.

図4に図示されるように、かしめによって開裂弁37が固定された蓋3と電池容器2との間にガスケット43を配置する。ガスケット43は、ゴムで形成されており、限定する意図ではないが、1つの好ましい材料の例として、エチレンプロピレン共重合体(EPDM)をあげることができる。また、例えば、電池容器2が厚さ0.5mmの炭素鋼製で、外径が40mmΦの場合、ガスケット43の厚さは10mm程度とされる。   As shown in FIG. 4, a gasket 43 is disposed between the lid 3 to which the cleavage valve 37 is fixed by caulking and the battery container 2. The gasket 43 is formed of rubber and is not intended to be limited, but an example of one preferred material is ethylene propylene copolymer (EPDM). For example, when the battery container 2 is made of carbon steel having a thickness of 0.5 mm and the outer diameter is 40 mmΦ, the thickness of the gasket 43 is about 10 mm.

図4に図示された状態では、ガスケット43は、電池容器2の溝2aの内側に留まっている。また、発電ユニット20は、その上端の位置が、電池容器2の溝2aの上部に対応する。   In the state illustrated in FIG. 4, the gasket 43 remains inside the groove 2 a of the battery container 2. In addition, the position of the upper end of the power generation unit 20 corresponds to the upper part of the groove 2 a of the battery container 2.

上述した通り、ガスケット43は、当初、リング上の基部43aの上方に外周壁部43bを有し、下方に向かって基部43aに垂直方向に突出す筒部43cを有する形状に作製されている。外周壁部43bも基部43aに対してほぼ垂直方向に突出して形成されている。また、この状態では、正極集電部材31とガスケット43の筒部43cとの間には径方向クリアランスC1が、押え部材32とガスケット43の筒部43cとの間には径方向クリアランスC2が存在する。   As described above, the gasket 43 is initially formed in a shape having the outer peripheral wall portion 43b above the base portion 43a on the ring and the cylindrical portion 43c projecting downward in the vertical direction to the base portion 43a. The outer peripheral wall 43b is also formed so as to protrude in a substantially vertical direction with respect to the base 43a. In this state, a radial clearance C1 exists between the positive electrode current collecting member 31 and the cylindrical portion 43c of the gasket 43, and a radial clearance C2 exists between the holding member 32 and the cylindrical portion 43c of the gasket 43. To do.

図4に図示されるように、ガスケット43上に、開裂弁37がかしめられた蓋3を搭載した状態で、図5に図示されるように、内側上方から外周下方に傾斜したプレス面を有する成形金型61を電池容器2の軸方向に押し下げて、電池容器2の上側の側縁と共にガスケット43の外周壁部43bを内側に向けて傾斜させる。このように、プレス加工によってガスケット43の外周壁部43bを内側に傾斜させると、これに伴って、ガスケット43の筒部43cが軸方向に対して反時計方向に回転する。
プレス加工は、プレス面の傾斜が垂直に近いものから、順次、水平に近づくように傾斜が緩やかになる成形金型に変更して、複数回行うようにしてもよい。
As shown in FIG. 4, with the lid 3 on which the cleavage valve 37 is caulked mounted on the gasket 43, as shown in FIG. The molding die 61 is pushed down in the axial direction of the battery container 2, and the outer peripheral wall 43 b of the gasket 43 is inclined inward along with the upper side edge of the battery container 2. As described above, when the outer peripheral wall portion 43b of the gasket 43 is inclined inward by pressing, the tube portion 43c of the gasket 43 rotates counterclockwise with respect to the axial direction.
The press working may be performed a plurality of times by changing from a press surface whose inclination is nearly vertical to a molding die whose inclination is gradually lowered so as to approach the horizontal.

図6は、プレス面が水平の成形金型62を用いて、蓋3とガスケット43にかしめを行う工程の状態を示す。この工程では、電池容器2の溝2a内に、溝2aの傾斜面とほぼ同じ角度に傾斜した成形金型63を配し、成形金型62と63の間に、開裂弁37がかしめられた蓋3に、ガスケット43および電池容器2の上部の側縁を軸方向に圧縮してかしめを行う。このかしめによって、ガスケット43の外周壁部43bは、開裂弁37の上面および外周側面に沿ってL字状に折曲される。
このように圧縮されると、ガスケット43に内部応力が発生し、この内部応力によって、ガスケット43は、基部43aおよび外周壁部43bの部分が、圧縮方向と垂直な方向に伸展する。このため、正極集電部材31とガスケット43の筒部43cとの間のクリアランスc1および押え部材32とガスケット43の筒部43cとの間のクリアランスc2は共に図4に図示される加工前よりも小さくなる。
FIG. 6 shows a state of a process of caulking the lid 3 and the gasket 43 using a molding die 62 having a horizontal press surface. In this step, a molding die 63 inclined at substantially the same angle as the inclined surface of the groove 2 a is disposed in the groove 2 a of the battery container 2, and the cleavage valve 37 is caulked between the molding dies 62 and 63. The lid 3 is caulked by compressing the gasket 43 and the upper side edge of the battery container 2 in the axial direction. By this caulking, the outer peripheral wall portion 43 b of the gasket 43 is bent in an L shape along the upper surface and outer peripheral side surface of the cleavage valve 37.
When compressed in this way, an internal stress is generated in the gasket 43, and the gasket 43 causes the base 43a and the outer peripheral wall 43b to extend in a direction perpendicular to the compression direction. For this reason, the clearance c1 between the positive electrode current collecting member 31 and the cylindrical portion 43c of the gasket 43 and the clearance c2 between the holding member 32 and the cylindrical portion 43c of the gasket 43 are both larger than those before the processing shown in FIG. Get smaller.

図7は、図6の状態から、さらに軸方向に圧縮した状態を示す。
この状態では、電池容器2の上部の側縁は、ガスケット43の上面に食い込む。
また、ガスケット43の基部43aおよび外周壁部43bは圧縮方向と垂直な方向にさらに伸展し、基部43aと筒部43cの境界部の角部43dが正極集電部材31の上部筒部31cの外面に当接する。これと共に、ガスケット43の筒部43cは押え部材32に強く密着する。
このようにして、蓋3が電池容器2およびガスケット43に保持されることにより正極集電部材31および電極群10は、軸方向と垂直な方向に対して強固に保持される。また、正極集電部材31の上部筒部31cの外面に、ガスケット43の角部43dが強く当接することにより、正極集電部材31およびこの正極集電部材31に一体化された電極群10は、軸方向と垂直な方向に対して強固に保持される。
なお、上記の説明において、ガスケット43を、正極集電部材43と押え部材32に同時に当接あるいは密着させる必要はなく、どちらか一方にのみ当接するようにすればよい。
FIG. 7 shows a state further compressed in the axial direction from the state of FIG.
In this state, the upper side edge of the battery container 2 bites into the upper surface of the gasket 43.
Further, the base portion 43a and the outer peripheral wall portion 43b of the gasket 43 further extend in a direction perpendicular to the compression direction, and the corner portion 43d at the boundary portion between the base portion 43a and the cylindrical portion 43c is the outer surface of the upper cylindrical portion 31c of the positive electrode current collecting member 31. Abut. At the same time, the cylindrical portion 43 c of the gasket 43 is in close contact with the pressing member 32.
In this way, the lid 3 is held by the battery container 2 and the gasket 43, whereby the positive electrode current collecting member 31 and the electrode group 10 are firmly held in the direction perpendicular to the axial direction. Further, the corner portion 43d of the gasket 43 is in strong contact with the outer surface of the upper cylindrical portion 31c of the positive electrode current collecting member 31, so that the positive electrode current collecting member 31 and the electrode group 10 integrated with the positive electrode current collecting member 31 are It is firmly held in the direction perpendicular to the axial direction.
In the above description, the gasket 43 does not need to be in contact with or in close contact with the positive electrode current collecting member 43 and the pressing member 32, but only with respect to either one.

表1は、ガスケット43をEPDMで作製し、ショア硬度Hsをパラメータとして、振動試験を行った後の内部短絡発生数を示す。
実施例1〜5は、それぞれ、図1に図示する円筒型電池の構造を有しており、ガスケット43のショア硬度Hsは、それぞれ、50度、60度、70度、80度および90度である。また、比較例として、ガスケットと正極集電部材との間にクリアランスを有する従来の構造を有し、ショア硬度Hsが70度のEPDM製のガスケットを用いた円筒型電池を作製し、同様な振動試験を行った結果を掲載する。
Table 1 shows the number of internal short-circuit occurrences after the gasket 43 is made of EPDM and the vibration test is performed using the Shore hardness Hs as a parameter.
Each of Examples 1 to 5 has the structure of the cylindrical battery illustrated in FIG. 1, and the Shore hardness Hs of the gasket 43 is 50 degrees, 60 degrees, 70 degrees, 80 degrees, and 90 degrees, respectively. is there. Further, as a comparative example, a cylindrical battery having a conventional structure having a clearance between the gasket and the positive electrode current collector and using an EPDM gasket having a shore hardness Hs of 70 degrees is manufactured, and the same vibration is produced. Post the results of the test.

上記振動試験は、「JISC8713 密閉形小形二次電池の機械的試験」に準じ、振動数10〜500Hz、振幅0.35mmのピークまたは最大50m/s2とし、振動軸は効果を検証しやすい円筒の長手(軸)方向に垂直な方向とした。また、掃引速度は1オクターブ/分とし、100サイクルまで繰り返し実施した。20サイクル毎に電圧を測定して内部短絡の有無を確認し、各電池の内部短絡の発生数をカウントした。電池電圧は、初期2.7Vであり、20サイクル毎に電池電圧を測定し、電池電圧が2.5V以下となった電池を、内部短絡が発生したものとした。試験は、実施例毎に電池20個を行った。周囲温度は20+0.5−0.5℃である。表1に記載の内部短絡発生数は、累積数である。 The vibration test is in accordance with “JISC8713 sealed small secondary battery mechanical test” with a vibration frequency of 10 to 500 Hz, an amplitude of 0.35 mm peak or a maximum of 50 m / s 2 , and the vibration axis is a cylinder whose effect is easy to verify. The direction perpendicular to the longitudinal (axis) direction was taken. The sweep rate was 1 octave / minute and repeated up to 100 cycles. The voltage was measured every 20 cycles to check for the presence of internal short circuits, and the number of internal short circuits in each battery was counted. The battery voltage was 2.7 V in the initial stage, the battery voltage was measured every 20 cycles, and the battery whose battery voltage was 2.5 V or less was regarded as an internal short circuit. In the test, 20 batteries were used for each example. The ambient temperature is 20 + 0.5-0.5 ° C. The number of internal short-circuit occurrences shown in Table 1 is a cumulative number.

表1に掲載されている如く、比較例では、40サイクルから内部短絡を発生した電池が確認され、60サイクルでは7個の電池に内部短絡が発生した。しかも、100サイクル終了時点では、全数20に対し殆ど全数ともいえる19個が内部短絡を生じた。これに対し、実施例では1〜5のすべてにおいて、60サイクルまでは内部短絡を発生した電池は皆無であった。従って、いずれの実施例も、比較例に対して、信頼性が向上したことが確認された。中でも、実施例2〜4(Hs60〜80)は、100サイクル終了後においても、短絡を発生した電池は皆無であった。   As listed in Table 1, in the comparative example, a battery in which an internal short circuit occurred from 40 cycles was confirmed, and in 60 cycles, an internal short circuit occurred in 7 batteries. In addition, at the end of 100 cycles, 19 of the total number of 20 were almost all, and an internal short circuit occurred. On the other hand, in all of Examples 1 to 5, none of the batteries generated an internal short circuit until 60 cycles. Therefore, it was confirmed that the reliability of each of the examples was improved with respect to the comparative example. Among them, in Examples 2 to 4 (Hs 60 to 80), there was no battery that caused a short circuit even after the end of 100 cycles.

従って、表1の結果からは、ショア硬度Hsが60〜80度が最も望ましいといえる。但し、初期状態における正極集電部材31とガスケット43とのクリアランスおよびプレスによる圧縮力によって最適なHsの値は変動することも考慮すべきである。
以上の通り、上記実施形態によれば、蓋3の周縁部3aを挟んで電池容器2とガスケット43をかしめることにより、軸方向に作用する外力に抗して正極集電部材31を強固に保持する。また、ガスケット43の基部43aと筒部43cの境界部の角部43dを正極集電部材31の上部筒部31cに当接させるので、正極集電部材31および正極集電部材43に一体的に構成された電極群10を、軸方向に垂直な方向に作用する衝撃・振動等の外力に抗して確実に保持し、耐久性の向上を図ることができる。
なお、上記実施形態では、ガスケット43による正極電極集電部材31の軸方向の保持および軸と垂直方向の保持をガスケット43に対して同時に行う加工により行う方法であったが、正極電極集電部材31の軸方向の保持および軸と垂直方向の保持を別工程で行うようにしてもよい。次に、そのような変形例を示す。
Therefore, from the results in Table 1, it can be said that the Shore hardness Hs is most preferably 60 to 80 degrees. However, it should be considered that the optimum value of Hs varies depending on the clearance between the positive electrode current collecting member 31 and the gasket 43 in the initial state and the compressive force of the press.
As described above, according to the above embodiment, the positive electrode current collecting member 31 is strengthened against the external force acting in the axial direction by caulking the battery container 2 and the gasket 43 with the peripheral edge portion 3a of the lid 3 interposed therebetween. Hold. Further, the corner 43d at the boundary between the base 43a of the gasket 43 and the cylinder 43c is brought into contact with the upper cylinder 31c of the positive current collector 31 so that the positive current collector 31 and the positive current collector 43 are integrated with each other. The configured electrode group 10 can be securely held against external forces such as impact and vibration acting in a direction perpendicular to the axial direction, and durability can be improved.
In the above-described embodiment, the positive electrode current collector 31 is a method of performing the holding of the positive electrode current collector 31 in the axial direction and the vertical direction of the axis by the gasket 43 simultaneously. The axial holding of 31 and the holding in the direction perpendicular to the axis may be performed in separate steps. Next, such a modification is shown.

(変形例1)
図8および図9は、実施形態の第1の変形例を示す要部断面であり、図8はかしめ前の状態を示し、図9はかしめ後の状態を示す。以下の説明において、実施形態と同一の部材には、同一の参照番号を付し、その説明を省略する。
図8および図9において、実施形態と異なる構成は、電池容器2に第1の溝2a1および第2の溝2a2が形成されていること、および正極集電部材31に溶接された正極リード11b1の周囲に巻き付けられている押え部材32が無いことである。
図8までの工程の概略を示すと、実施形態の場合と同様に、発電ユニット20を電池容器2内に収容した後、第1の溝2a1を、ガスケット43の上部に対応する位置に、また、第2の溝2a2を、ガスケット43の下部に対応する位置に、同時に、あるいは別工程により形成する。
(Modification 1)
FIGS. 8 and 9 are cross-sectional views showing main parts of a first modification of the embodiment. FIG. 8 shows a state before caulking, and FIG. 9 shows a state after caulking. In the following description, the same members as those in the embodiment are denoted by the same reference numerals, and the description thereof is omitted.
8 and 9, the configuration different from the embodiment is that the first groove 2 a 1 and the second groove 2 a 2 are formed in the battery container 2, and that the positive electrode lead 11 b 1 welded to the positive electrode current collecting member 31 is formed. That is, there is no presser member 32 wound around.
When the outline of the process up to FIG. 8 is shown, like the case of the embodiment, after the power generation unit 20 is accommodated in the battery container 2, the first groove 2 a 1 is positioned at a position corresponding to the upper part of the gasket 43, and The second groove 2a2 is formed at a position corresponding to the lower portion of the gasket 43 simultaneously or by a separate process.

絶縁板41上に、ガスケット43および開裂弁37がかしめられた蓋3を載置した後、先ず、第1の溝2a1を用いて、実施形態の場合と同様に、プレス等により、開裂弁37および蓋3の周縁部3aを挟んで、電池容器2およびガスケット43を軸方向に圧縮する。但し、実施形態の場合と異なり、電池容器2の圧縮は、ガスケット43の筒部43cが正極集電部材31に溶接された正極リード11b1に当接しない状態に留める。すなわち、変形例1における第1の加工工程は、正極集電部材31を軸方向に移動しないように保持するために行う。   After placing the lid 3 on which the gasket 43 and the cleavage valve 37 are caulked on the insulating plate 41, first, using the first groove 2a1, as in the case of the embodiment, by the press or the like, the cleavage valve 37 is used. The battery container 2 and the gasket 43 are compressed in the axial direction with the peripheral edge portion 3a of the lid 3 interposed therebetween. However, unlike the case of the embodiment, the compression of the battery container 2 remains in a state where the cylindrical portion 43 c of the gasket 43 does not contact the positive electrode lead 11 b 1 welded to the positive electrode current collecting member 31. That is, the first processing step in the first modification is performed to hold the positive electrode current collecting member 31 so as not to move in the axial direction.

次に、プレス等により、電池容器2の第2の溝2a2を、さらに、内方に突出すように変形させる。図9に図示されるように、この第2の加工工程により、電池容器2の第2の溝2a2の先端部に対応する部分2bがガスケット43の筒部43cを押圧して、正極集電部材31に溶接された正極リード11b1に当接させる。
この場合には、図9において、ガスケット43の筒部43cが、実施形態の場合とは逆に、軸方向に対して時計方向に回転される。そして、ガスケット43の筒部43cの先端部側が正極集電部材31の上部筒部31cに当接して、軸方向に垂直方向の外力に抗して正極集電部材31を保持する。
Next, the second groove 2a2 of the battery container 2 is further deformed so as to protrude inward by a press or the like. As shown in FIG. 9, by this second processing step, the portion 2 b corresponding to the tip of the second groove 2 a 2 of the battery container 2 presses the cylindrical portion 43 c of the gasket 43, and the positive electrode current collecting member The positive electrode lead 11 b 1 welded to 31 is brought into contact with the positive electrode lead 11 b 1.
In this case, in FIG. 9, the cylinder part 43c of the gasket 43 is rotated clockwise with respect to the axial direction, contrary to the case of the embodiment. And the front end part side of the cylinder part 43c of the gasket 43 contact | abuts to the upper cylinder part 31c of the positive electrode current collection member 31, and hold | maintains the positive electrode current collection member 31 against the external force perpendicular | vertical to an axial direction.

変形例1の場合にも、実施形態の場合と同様な効果を奏することができる。加えて、電池容器2の第1の溝2a1を用いて正極集電板31を軸方向に保持する加工と、電池容器2の第2の溝2a2を用いて正極集電板31を軸方向と垂直な方向に保持する加工とを別工程で行うので、ガスケット43に対して、それぞれに適切な荷重で加工することができる。従って、正極集電板31の固定をより高精度で且つ信頼性の高いものとすることができる。   Also in the case of the modification 1, the same effect as the case of embodiment can be show | played. In addition, the process of holding the positive electrode current collector plate 31 in the axial direction using the first groove 2a1 of the battery case 2, and the positive electrode current collector plate 31 in the axial direction using the second groove 2a2 of the battery case 2 Since the process of holding in the vertical direction is performed in a separate process, each gasket 43 can be processed with an appropriate load. Therefore, the positive current collector 31 can be fixed with higher accuracy and reliability.

(変形例2)
図10および図11は、実施形態の第2の変形例を示す要部断面であり、図10はかしめ前の状態を示し、図11はかしめ後の状態を示す。第2の変形例においても、実施形態と同一の部材には、同一の参照番号を付し、その説明を省略する。
図10および図11に示される変形例2においても、変形例1と同様に、電池容器2に第1の溝2a1および第2の溝2a2が形成されている。しかし、変形例1においては、正極集電部材31に溶接された正極リード11b1の周囲に嵌合されている押え部材32が無い構造であるのに比し、変形例2では、正極リード11b1の周囲に、例えば、EPDM等のゴム製のリング44が装着されている。
(Modification 2)
FIGS. 10 and 11 are cross-sectional views showing a main part of a second modification of the embodiment. FIG. 10 shows a state before caulking, and FIG. 11 shows a state after caulking. Also in the second modification, the same members as those in the embodiment are denoted by the same reference numerals, and the description thereof is omitted.
Also in the second modification shown in FIGS. 10 and 11, the first groove 2 a 1 and the second groove 2 a 2 are formed in the battery container 2 as in the first modification. However, in the first modification, compared to the structure in which the holding member 32 fitted around the positive electrode lead 11b1 welded to the positive electrode current collecting member 31 is not provided, in the second modification, the positive electrode lead 11b1 has a structure. Around the periphery, for example, a rubber ring 44 such as EPDM is mounted.

リング44は、発電ユニット20を電池容器2内に収容する前に、正極集電部材31に溶接された正極リード11b1の外面に密着して装着されている。
図10までの工程の概略を示すと、リング44が正極リード11b1の周囲に装着された発電ユニット20を電池容器2内に収容した後、第1の溝2a1および第2の溝2a2を形成する。
The ring 44 is attached in close contact with the outer surface of the positive electrode lead 11 b 1 welded to the positive electrode current collector 31 before the power generation unit 20 is accommodated in the battery container 2.
Referring to the outline of the process up to FIG. 10, after the power generation unit 20 with the ring 44 mounted around the positive electrode lead 11b1 is accommodated in the battery container 2, the first groove 2a1 and the second groove 2a2 are formed. .

そして、第1の溝2a1を用いて、プレス等により、ガスケット43が正極集電部材31に溶接された正極リード11b1に当接しない程度に電池容器2およびガスケット43を軸方向に圧縮する。この第1の加工は、変形例1の場合と同様に、正極集電部材31を軸方向に移動しないように保持するために行う。   Then, by using the first groove 2a1, the battery container 2 and the gasket 43 are compressed in the axial direction by a press or the like so that the gasket 43 does not contact the positive electrode lead 11b1 welded to the positive electrode current collecting member 31. This first processing is performed to hold the positive electrode current collecting member 31 so as not to move in the axial direction, as in the first modification.

次に、プレス等により、電池容器2の第2の溝2a2を、さらに内方に突出すように変形させる。図11に図示されるように、この変形により、電池容器2の第2の溝2a2の先端部に対応する部分2bがガスケット43の筒部43cに当接する。
そして、ガスケット43の筒部43cが、軸方向に対して時計方向に僅かに回転された位置でリング44に当接する。リング44は、ガスケット43に加圧されて正極集電部材31を圧迫し、軸方向に垂直な外力に抗して正極集電板31を保持する。
Next, the second groove 2a2 of the battery case 2 is deformed by a press or the like so as to protrude further inward. As shown in FIG. 11, due to this deformation, the portion 2 b corresponding to the tip of the second groove 2 a 2 of the battery container 2 comes into contact with the cylindrical portion 43 c of the gasket 43.
And the cylinder part 43c of the gasket 43 contact | abuts to the ring 44 in the position rotated slightly clockwise with respect to the axial direction. The ring 44 is pressed by the gasket 43 to press the positive current collector 31 and holds the positive current collector 31 against an external force perpendicular to the axial direction.

変形例2の場合にも、実施形態と同様な効果を奏することができる。また、変形例1と同様に、電池容器2の第1の溝2a1を用いて正極集電板31を軸方向に保持する加工と、電池容器2の第2の溝2a2を用いて正極集電板31を軸方向と垂直な方向に保持する加工とを別工程で行うので、ガスケット43に対して、それぞれに適切な荷重で加工することができる。しかも、変形例2の場合には、正極集電板31をゴム製のリング44を介して保持する構造であり、ガスケット43とは関係なく、ゴムのショア硬度が最適な値のものを自由に選択することができる。よって、一層、正極集電板31の保持を高精度で且つ信頼性の高いものとすることができる。   Also in the case of the modification 2, the effect similar to embodiment can be show | played. Similarly to the first modification, the positive electrode current collecting plate 31 is held in the axial direction using the first groove 2a1 of the battery container 2, and the positive electrode current collector is used using the second groove 2a2 of the battery container 2. Since the process of holding the plate 31 in the direction perpendicular to the axial direction is performed in a separate process, the gasket 43 can be processed with an appropriate load. Moreover, in the case of the second modification, the structure is such that the positive electrode current collecting plate 31 is held via a rubber ring 44, and the rubber having the optimum value for the Shore hardness of the rubber can be freely used regardless of the gasket 43. You can choose. Therefore, the positive electrode current collecting plate 31 can be held with high accuracy and high reliability.

なお、上記の実施形態では、リチウム電池の場合で説明したが、この発明は、リチウム電池に限られるものではなく、ニッケル水素電池、ニッケルカドミウム電池など、他の円筒型電池にも適用をすることができる。   In the above embodiment, the case of a lithium battery has been described. However, the present invention is not limited to a lithium battery, and may be applied to other cylindrical batteries such as a nickel metal hydride battery and a nickel cadmium battery. Can do.

上記の実施形態では、ガスケットにより正極集電部材31を保持する場合で示したが、ガスケットにより負極集電部材を保持する構造とすることができる。集電部材を負極にした円筒型電池では、負極集電部材に接続された蓋が炭素鋼等の鉄製材料で形成され、正極である電池容器がアルミニウムで形成される。すなわち、図1において、リード(正極)12b1、集電部材(正極)21、集電リード(正極)22および電池容器2がアルミニウムで形成され、リード(負極)11b1が銅で形成され、集電部材(負極)31、内蓋35、開裂弁37および蓋3が炭素鋼等の鉄で形成される。蓋3はアルミニウムで形成しても良い。但し、この場合においても、材料は一例であって、他の材料で形成されたものも本発明に含まれる。   In the above embodiment, the case where the positive electrode current collecting member 31 is held by the gasket is shown. However, the negative electrode current collecting member can be held by the gasket. In a cylindrical battery having a current collecting member as a negative electrode, a lid connected to the negative electrode current collecting member is formed of an iron material such as carbon steel, and a battery container as a positive electrode is formed of aluminum. That is, in FIG. 1, the lead (positive electrode) 12b1, the current collecting member (positive electrode) 21, the current collecting lead (positive electrode) 22 and the battery container 2 are formed of aluminum, and the lead (negative electrode) 11b1 is formed of copper. The member (negative electrode) 31, the inner lid 35, the cleavage valve 37, and the lid 3 are formed of iron such as carbon steel. The lid 3 may be formed of aluminum. However, even in this case, the material is an example, and the material formed of other materials is also included in the present invention.

その他、本発明の円筒型電池は、発明の趣旨の範囲内において、種々、変形して構成することが可能であり、要は、正極と負極とがセパレータを介して軸芯に捲回された電極群と、電極群の軸方向の一端側および他端側に配置され、それぞれ、正極および負極の一方および他方に接続された一対の集電部材と、電極群および記一対の集電部材を収容し、一対の集電部材の一方に接続された電池容器と、一対の集電部材の他方に接続された蓋と、蓋の外周縁と電池容器の軸方向の一方の側縁との間に介在され、蓋の外周縁と電池容器の軸方向に作用する圧接力により固定されたゴム製のガスケットと、軸方向と垂直な方向に作用する外力に抗して記蓋に接続された集電部材を保持する軸垂直方向保持手段と、を具備するものであればよい。   In addition, the cylindrical battery of the present invention can be variously modified and configured within the scope of the invention. In short, the positive electrode and the negative electrode are wound around the shaft core via the separator. An electrode group, a pair of current collecting members disposed on one end side and the other end side in the axial direction of the electrode group, respectively connected to one and the other of the positive electrode and the negative electrode, and an electrode group and the pair of current collecting members A battery container housed and connected to one of the pair of current collecting members; a lid connected to the other of the pair of current collecting members; and an outer peripheral edge of the lid and one side edge in the axial direction of the battery container And a rubber gasket fixed by a pressure contact force acting on the outer peripheral edge of the lid and the battery container in the axial direction, and a collector connected to the lid against the external force acting in a direction perpendicular to the axial direction. What is necessary is just to comprise the axial perpendicular direction holding means holding an electric member.

1 円筒型電池
2 電池容器
2a 溝
2a1 第1の溝
2a2 第2の溝
3 蓋
3a 周縁部
3b 筒部
10 電極群
11 正極シート(正極)
11a 正極処理部
11b 正極未処理部
11b1 正極リード
12 負極シート(負極)
12a 負極処理部
12b 負極未処理部
12b1 負極リード
13 セパレータ
15 軸芯
20 発電ユニット
21 負極集電部材
31 正極集電部材
35 内蓋
37 開裂弁
41 絶縁板
43 ガスケット
43a 基部
43b 外周壁部
43c 筒部
44 リング
DESCRIPTION OF SYMBOLS 1 Cylindrical battery 2 Battery container 2a Groove 2a1 1st groove 2a2 2nd groove 3 Lid 3a Peripheral part 3b Tube part 10 Electrode group 11 Positive electrode sheet (positive electrode)
11a Positive electrode processing part 11b Positive electrode non-processing part 11b1 Positive electrode lead 12 Negative electrode sheet (negative electrode)
12a Negative electrode processing part 12b Negative electrode unprocessed part 12b1 Negative electrode lead 13 Separator 15 Core 20 Power generation unit 21 Negative electrode current collecting member 31 Positive electrode current collecting member 35 Inner lid 37 Cleavage valve 41 Insulating plate 43 Gasket 43a Base part 43b Outer peripheral wall part 43c Tube part 44 rings

Claims (3)

正極と負極とがセパレータを介して軸芯に捲回された電極群と、
前記電極群の軸方向の一端側および他端側に配置され、それぞれ、前記正極および前記負極の一方および他方に接続された一対の集電部材と、
前記電極群および前記一対の集電部材を収容し、前記一対の集電部材の一方に接続された電池容器と、
前記一対の集電部材の他方に接続された蓋と、
前記蓋の外周縁と前記電池容器の軸方向の一方の側縁との間に介在され、前記蓋の外周縁と前記電池容器との間にかしめにより固定されたゴム製のガスケットと、
軸方向と垂直な方向に作用する外力に抗して前記蓋に接続された前記集電部材を保持する軸垂直方向保持手段とを具備し、
前記蓋の外周縁と前記電池容器の軸方向の一方の側縁との間に介在された前記ガスケットは、前記蓋の上面側を覆う上部と前記蓋の下面側を覆う下部を有し、前記下部の一部が、前記軸垂直方向保持手段を兼用し、
前記集電部材は筒状の側部を有し、前記集電部材に接続される正極または負極は多数のリード部を有し、前記ガスケットの下部の一部は、前記多数のリード部が接続された前記集電部材の側部に、直接または他の部材を介して当接していることを特徴とする円筒型電池。
An electrode group in which a positive electrode and a negative electrode are wound around an axis through a separator;
A pair of current collecting members disposed on one end side and the other end side in the axial direction of the electrode group, respectively connected to one and the other of the positive electrode and the negative electrode;
A battery container containing the electrode group and the pair of current collecting members and connected to one of the pair of current collecting members;
A lid connected to the other of the pair of current collecting members;
A rubber gasket interposed between the outer peripheral edge of the lid and one side edge in the axial direction of the battery container, and fixed by caulking between the outer peripheral edge of the lid and the battery container;
Comprising the axial vertical holding means against the external force acting in the axial direction perpendicular to retain the current collector member connected to the lid, a,
The gasket interposed between the outer peripheral edge of the lid and one side edge of the battery container in the axial direction has an upper portion covering the upper surface side of the lid and a lower portion covering the lower surface side of the lid, A part of the lower part also serves as the axial vertical direction holding means,
The current collecting member has a cylindrical side portion, the positive electrode or the negative electrode connected to the current collecting member has a number of lead portions, and a part of the lower portion of the gasket is connected to the number of lead portions. A cylindrical battery, wherein the cylindrical battery is in contact with a side portion of the current collecting member directly or via another member .
請求項に記載の円筒型電池において、前記ガスケットの下部は、リング状の基部と、前記リング状の基部にほぼ垂直に形成された筒状部とを有し、前記基部および前記筒状部が、軸方向に傾斜した状態で前記集電部材に当接していることを特徴とする円筒型電池。 2. The cylindrical battery according to claim 1 , wherein a lower portion of the gasket includes a ring-shaped base portion and a cylindrical portion formed substantially perpendicular to the ring-shaped base portion, and the base portion and the cylindrical portion. However, the cylindrical battery is in contact with the current collecting member while being inclined in the axial direction. 請求項1または2に記載の円筒型電池において、前記ガスケットは、ショア硬度がHs50〜90度であることを特徴とする円筒型電池。 3. The cylindrical battery according to claim 1, wherein the gasket has a Shore hardness of Hs 50 to 90 degrees.
JP2009201444A 2009-09-01 2009-09-01 Cylindrical battery Expired - Fee Related JP5364512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201444A JP5364512B2 (en) 2009-09-01 2009-09-01 Cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201444A JP5364512B2 (en) 2009-09-01 2009-09-01 Cylindrical battery

Publications (2)

Publication Number Publication Date
JP2011054380A JP2011054380A (en) 2011-03-17
JP5364512B2 true JP5364512B2 (en) 2013-12-11

Family

ID=43943178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201444A Expired - Fee Related JP5364512B2 (en) 2009-09-01 2009-09-01 Cylindrical battery

Country Status (1)

Country Link
JP (1) JP5364512B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101313325B1 (en) * 2011-07-13 2013-09-27 주식회사 엘지화학 Cylindrical-type secondary battery
US9490079B2 (en) * 2014-03-28 2016-11-08 Cooper Technologies Company Electrochemical energy storage device with flexible metal contact current collector and methods of manufacture
CN110337743B (en) * 2017-03-30 2022-06-14 松下知识产权经营株式会社 Winding type battery
WO2020202744A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Battery and production method therefor
BR112022014379A2 (en) * 2020-09-30 2023-04-11 Contemporary Amperex Technology Co Ltd BATTERY CELL, BATTERY, ELECTRICAL APPLIANCE, BATTERY CELL MANUFACTURING METHOD AND BATTERY CELL MANUFACTURING SYSTEM

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223183A (en) * 1997-02-03 1998-08-21 Toshiba Battery Co Ltd Cylindrical battery
JP2000235848A (en) * 1999-02-16 2000-08-29 Matsushita Electric Ind Co Ltd Sealed battery
JP2001068163A (en) * 1999-08-26 2001-03-16 Shin Kobe Electric Mach Co Ltd Wound secondary battery
JP5145705B2 (en) * 2006-11-28 2013-02-20 パナソニック株式会社 battery

Also Published As

Publication number Publication date
JP2011054380A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP4207451B2 (en) Cylindrical lithium ion secondary battery and manufacturing method thereof
JP5396349B2 (en) Secondary battery
JP5011664B2 (en) Sealed secondary battery
JP5715155B2 (en) Cylindrical secondary battery
JP6208687B2 (en) Cylindrical secondary battery and manufacturing method thereof
JP5081932B2 (en) Sealed battery and manufacturing method thereof
JP5470142B2 (en) Secondary battery and manufacturing method thereof
KR20100089092A (en) Secondary battery
KR20120024503A (en) Terminal of sealed battery and manufacturing method thereof
JP5368345B2 (en) Non-aqueous electrolyte cylindrical battery
JP3877619B2 (en) Sealed battery
JP5364512B2 (en) Cylindrical battery
JPWO2011092845A1 (en) Sealed battery and manufacturing method thereof
JP5198134B2 (en) Method for manufacturing cylindrical battery
JP6045286B2 (en) Cylindrical energy storage device
JP3786074B2 (en) Sealed battery
JP2012185912A (en) Cylindrical secondary cell
JP3926147B2 (en) battery
JP5098285B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5196824B2 (en) Cylindrical battery and manufacturing method thereof
JP5364511B2 (en) Cylindrical battery
JP4909508B2 (en) Battery case and secondary battery using the same
JP2012178266A (en) Winding type battery
WO2023152916A1 (en) Battery and method for producing battery
JP2012204226A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees