JP3869540B2 - Cylindrical battery with spiral electrode body and method for manufacturing the same - Google Patents

Cylindrical battery with spiral electrode body and method for manufacturing the same Download PDF

Info

Publication number
JP3869540B2
JP3869540B2 JP32913597A JP32913597A JP3869540B2 JP 3869540 B2 JP3869540 B2 JP 3869540B2 JP 32913597 A JP32913597 A JP 32913597A JP 32913597 A JP32913597 A JP 32913597A JP 3869540 B2 JP3869540 B2 JP 3869540B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
spiral
negative electrode
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32913597A
Other languages
Japanese (ja)
Other versions
JPH11162447A (en
Inventor
忠司 伊勢
順康 石丸
博 福田
秀夫 春日
俊裕 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32913597A priority Critical patent/JP3869540B2/en
Publication of JPH11162447A publication Critical patent/JPH11162447A/en
Application granted granted Critical
Publication of JP3869540B2 publication Critical patent/JP3869540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・亜鉛蓄電池、リチウムイオン電池などの正・負極板をセパレータを介して渦巻状に巻回した渦巻状電極体を備えた円筒状電池に係り、特に、渦巻状電極体と集電体との導電接続に関する。
【0002】
【従来の技術】
従来、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池、ニッケル・亜鉛蓄電池、リチウムイオン電池などの円筒状電池においては、図5,図6に示すように、正極板10と負極板20とをセパレータ30を介して渦巻状に巻回して渦巻状電極体D,Eとする。
【0003】
そして、図5に示すように、このように形成した渦巻状電極体Dの負極板20の芯体21を負極集電体50に溶接するとともに、渦巻状電極体Dの正極板10の芯体11aを正極集電体40に溶接した後、この渦巻状電極体Dを負極端子を兼ねる金属製円筒状外装缶70に挿入し、負極集電体50を金属製外装缶70の底部に溶接するとともに、正極集電体40より延出する導出部42を正極端子を兼ねる封口体60の底部に溶接して構成する。
【0004】
あるいは、図6に示すように、このように形成した渦巻状電極体Eを負極端子を兼ねる金属製円筒状外装缶70に挿入し、渦巻状電極体Eの負極板20の芯体21を金属製外装缶70の底部に接触させるとともに、芯体21より延出する集電タブ21aを金属製外装缶70の底部に溶接する。一方、渦巻状電極体Eの正極板10の芯体11aを正極集電体40に溶接し、正極集電体40より延出する導出部42を正極端子を兼ねる封口体60の底部に溶接して構成するのが一般的である。
【0005】
このように渦巻状電極体D,Eの負極板20の芯体21を金属製外装缶70の底部に電気的に接続するとともに、渦巻状電極体D,Eの正極板10の芯体11aを正極集電体40に溶接すると、正極板10から正極端子(封口体60)までの電流分布、および負極板20から負極端子(金属製外装缶70)までの電流分布が均一になるため、高率放電特性が向上した電池が得られるようになる。
【0006】
【発明が解決しようとする課題】
ところで、上述のように形成する電池においては、金属製外装缶70は負極端子を兼ねているため、正極集電体40と金属製外装缶70が接触すると内部短絡を生じるため、正極集電体40は金属製外装缶70と接触しない程度の大きさにする必要がある。
しかしながら、正極集電体40を金属製外装缶70と接触しない程度の大きさにすると、図8(a)(なお、図8(a)は図5,図6の渦巻状電極体D,Eの渦巻を平板に引き延ばした正極板10のみを示す)に示すように、正極板10と正極集電体40との溶接部に正極集電体40が溶接されない部分10aが生じる。
【0007】
正極板10が正極集電体40に溶接されている部分は、図8(a)の矢印で示すように、正極集電体40から正極板10の下端までの集電経路の電流分布は均一になるが、正極板10が正極集電体40に溶接されない部分10aは、図8(a)の矢印で示すように、正極集電体40から正極板10の下端までの集電経路の電流分布が不均一になって、図8(b)に示すように、正極板10の正極集電体40に溶接されない部分10aに電圧降下を生じる。そして、正極板10に電圧降下を生じると、高率放電特性が低下するという問題を生じる。
【0008】
そこで、本発明は上記問題点に鑑みてなされたものであり、正極板上端部と正極集電体との溶接部に溶接されない部分が生じても、この溶接されない部分の集電性を向上させて、高率放電特性を向上させた円筒状電池を得ることにある。
【0009】
【課題を解決するための手段およびその作用・効果】
本発明は正・負極板をセパレータを介して渦巻状に巻回した渦巻状電極体を負極端子を兼ねる金属製円筒状外装缶内に備えた円筒状電池であって、上記課題を解決するために、本発明の渦巻状電極体を備えた円筒状電池は、渦巻状電極体の正極板上端部はその一部を除いて正極端子を兼ねる封口体に接続される正極集電体に接続され、かつこの正極集電体に接続されない正極板上端部に集電タブを備え、渦巻状電極体の負極板下端部は負極端子を兼ねる金属製円筒状外装缶に電気的に接続され、集電タブは正極集電体に接続されたことを特徴とする。
【0010】
このように、正極集電体に接続されない正極板の上端部に集電タブを設け、この集電タブと正極集電体とを接続するようにすると、正極集電体に接続されない部分の正極板内の電流分布も均一になるため、電圧降下が低減して、高率放電特性が向上する。
【0011】
また、負極板の下端部を負極集電体に接続するとともに、この負極集電体を負極端子を兼ねる金属製円筒状外装缶に接続するようにすると、負極集電体と負極端子を兼ねる金属製円筒状外装缶が接触しても問題を生じない。このため、負極集電体を大きく形成することができるので、負極板の下端部を負極集電体に接続すると負極板内の電流分布も均一になるため、さらに電圧降下が低減して、さらに高率放電特性が向上する。そして、正極集電体に接続された部分の端部近傍に集電タブを設けてもそれほど電圧降下が低減しないため、集電タブを設ける位置は正極集電体に接続されない部分の正極板の渦巻状に巻回した巻終わり端から1/2以内の位置とすることが好ましい。
【0012】
また、本発明は、正・負極板をセパレータを介して渦巻状に巻回した渦巻状電極体を負極端子を兼ねる金属製円筒状外装缶内に挿入して製造する円筒状電池の製造方法であって、上記課題を解決するために、本発明の円筒状電池の製造方法は、正極板上端部の渦巻状電極体としたときに正極端子を兼ねる封口体に接続される正極集電体に接続されない部位に集電タブを溶接する集電タブ溶接工程と、渦巻状電極体の正極板上端部をその一部を除いて正極集電体に溶接する正極集電体溶接工程と、正極板上端部に溶接された集電タブを正極集電体に溶接する集電タブ−正極集電体溶接工程と、正極集電体が溶接された渦巻状電極体を負極端子を兼ねる金属製円筒状外装缶内に挿入する電極体挿入工程と、渦巻状電極体の負極板下端部を金属製円筒状外装缶の底部に電気的に接続する接続工程と、正極集電体を正極端子を兼ねる封口体に溶接する封口体溶接工程とを備えたことを特徴とする。
【0013】
このように、集電タブが溶接された正極板を用いて形成された渦巻状電極体の正極板上端部を正極集電体に溶接した後、集電タブを正極集電体に溶接すると、正極板内の正極集電体に接続されない部分の電流分布も均一になるため、電圧降下が低減して、高率放電特性が向上する。
【0014】
また、本発明の円筒状電池の製造方法は、正極板上端部の渦巻状電極体としたときに正極端子を兼ねる封口体に接続される正極集電体に接続されない部位に集電タブを溶接する集電タブ溶接工程と、正極板上端部に溶接された集電タブを正極集電体に溶接する集電タブ−正極集電体溶接工程と、渦巻状電極体の正極板上端部を集電タブが溶接された正極集電体に溶接する正極集電体溶接工程と、正極集電体をその上端部に溶接した渦巻状電極体を負極端子を兼ねる金属製円筒状外装缶内に挿入する電極体挿入工程と、正極集電体の集電部を正極端子を兼ねる封口体に溶接する封口体溶接工程とを備えたことを特徴とする。
【0015】
このように、集電タブが溶接された正極板を用いて形成された渦巻状電極体の集電タブと正極集電体とを溶接した後、正極板上端部を正極集電体に溶接するようにしても、正極板内の正極集電体に接続されない部分の電流分布も均一になるため、電圧降下が低減して、高率放電特性が向上する。
【0016】
そして、電極体挿入工程前に、渦巻状電極体の負極板下端部を負極集電体に溶接する負極集電体溶接工程とを備えるとともに、電極体挿入工程後に、負極集電体を金属製円筒状外装缶の底部に溶接する外装缶溶接工程とを備えるようにすると、負極板内の電流分布も均一になるため、さらに電圧降下が低減して、さらに高率放電特性が向上する。
【0017】
【発明の実施の形態】
以下に、本発明の渦巻状電極体を備えた円筒状電池をニッケル・水素蓄電池に適用した場合の一実施の形態を図に基づいて説明する。なお、図1はニッケル正極板を示し、図1(a)は渦巻状に巻回したニッケル正極板を平板に引き延ばした状態を示し、図1(b)はこのニッケル正極板の位置に対する電圧を示す図である。図2はニッケル正極板と水素吸蔵合金からなる負極板を渦巻状に巻回した電極体に正・負の集電体を溶接した後、金属製円筒状外装缶内に収納して正極集電タブと正極集電体とを溶接した状態を示す図であり、図2(a)は断面図であり、図2(b)は封口体を封口する前の上面図である。
【0018】
図3はニッケル正極板と水素吸蔵合金からなる負極板を渦巻状に巻回した電極体の正極集電タブと正極集電体とを溶接した後、金属製円筒状外装缶内に収納して各集電体を電極体に溶接した状態を示す図であり、図3(a)は断面図であり、図3(b)は封口体を封口する前の上面図である。図4はニッケル正極板と水素吸蔵合金からなる負極板を渦巻状に巻回した電極体に正極集電体を溶接して金属製円筒状外装缶内に収納した後、正極集電タブと正極集電体とを溶接した状態を示す図であり、その断面を示す図である。
【0019】
1.ニッケル正極板の作製
(1)焼結式電極
ニッケル粉末にカルボキシメチルセルロース等の増粘剤および水を混練してスラリーを調整し、このスラリーをニッケル多孔体からなる導電性芯体に塗着する。スラリーを導電性芯体に塗着するに際しては、この導電性芯体の中央部に帯状に未塗着部分を形成するように塗着する。なお、この帯状の未塗着部分は電流の導出部となり、後の工程で正極集電体との溶接部となる。
【0020】
この後、スラリーを塗着した導電性芯体を還元性雰囲気下で焼結し、多孔度80%の焼結基板11を作製する。このように作成した焼結基板11を硝酸ニッケル溶液に浸漬して、この焼結基板11中に硝酸ニッケルを含浸する。その後、水酸化ナトリウム水溶液中に浸漬し、硝酸ニッケルを水酸化ニッケルに置換する。このような硝酸ニッケルの含浸工程と水酸化ニッケルへの置換工程とを繰り返して、硝酸ニッケルを水酸化ニッケル活物質にする活物質充填操作を行って、長尺の焼結式ニッケル正極板を作製する。
【0021】
このようにして作製された長尺の焼結式ニッケル正極板を長さ方向の中央部で帯状に形成された芯体の未塗着部分(導電性芯体)11aの中央で切断するとともに、長さが210mmになるように切断して焼結式ニッケル正極板10(焼結式ニッケル正極板a)を作製する。ついで、厚みが0.10mmのニッケル金属板を幅が3.0mmになるように切断して作製した舌片状の集電タブ12を用意し、この舌片状の集電タブ12を焼結式ニッケル正極板10の端部(渦巻状に巻回された際の巻終わり端、x=0mm)の位置に溶接して焼結式ニッケル正極板a1を作製する。
【0022】
同様に、渦巻状に巻回された際の巻終わり端より25mm(x=25mm)の位置に集電タブ12を溶接して焼結式ニッケル正極板a2を、33mm(x=33mm)の位置に集電タブ12を溶接して焼結式ニッケル正極板a3を、50mm(x=50mm)の位置に集電タブ12を溶接して焼結式ニッケル正極板a4を、66mm(x=66mm)の位置に集電タブ12を溶接して焼結式ニッケル正極板a5を、75mm(x=75mm)の位置に集電タブ12を溶接して焼結式ニッケル正極板a6を、100mm(x=100mm)の位置に集電タブ12を溶接して焼結式ニッケル正極板a7をそれぞれ作製する。
【0023】
(2)非焼結式電極
水酸化ニッケル90重量部と、金属コバルト粉末5重量部と、水酸化コバルト粉末5重量部とを混合し、これをメチルセルロース1重量%水溶液20重量部とを混練してペースト状活物質を作製する。このようにして作製したペースト状活物質を、基体目付が600g/m2(なお、基体目付は400〜700g/m2の間で使用可能である)で厚みが1.5mmであるニッケル発泡体(ニッケルスポンジ)11に充填する。ついで、ペースト状活物質を充填したニッケル発泡体11を乾燥させた後、厚みが約0.7mmになるまで圧延する。
【0024】
ついで、このようにペースト状活物質を充填したニッケル発泡体11の上辺部に超音波ホーンを押し当てて、上辺部に垂直方向に超音波振動を加えて、上辺部に充填された活物質をニッケル発泡体11より脱落させて剥離部を形成する。このとき、超音波ホーンを押し当てて超音波振動を与えることにより、上辺部は圧縮されて薄肉部となる。一方、厚みが0.06mmのニッケル金属製の帯状金属薄板11aを用意し、この帯状金属薄板11aをニッケル発泡体11の剥離部に載置し、溶接棒を用いて2mm間隔で抵抗溶接を行い、非焼結式ニッケル正極板を作製する。
【0025】
このようにして作成された非焼結式ニッケル正極板10を長さが210mmになるように切断して非焼結式ニッケル正極板10(非焼結式ニッケル正極板b)を作製する。ついで、厚みが0.10mmのニッケル金属板を幅が3.0mmになるように切断して作製した舌片状の集電タブ12を用意し、この舌片状の集電タブ12を非焼結式ニッケル正極板10の帯状金属薄板11aの端部(渦巻状に巻回された際の巻終わり端、x=0mm)の位置に溶接して非焼結式ニッケル正極板b1を作製する。
【0026】
同様に、渦巻状に巻回された際の巻終わり端より25mm(x=25mm)の位置の位置に集電タブ12を溶接して非焼結式ニッケル正極板b2を、33mm(x=33mm)の位置に集電タブ12を溶接して非焼結式ニッケル正極板b3を、50mm(x=50mm)の位置に集電タブ12を溶接して非焼結式ニッケル正極板b4を、66mm(x=66mm)の位置に集電タブ12を溶接して非焼結式ニッケル正極板b5を、75mm(x=75mm)の位置に集電タブ12を溶接して非焼結式ニッケル正極板b6を、100mm(x=100mm)の位置に集電タブ12を溶接して非焼結式ニッケル正極板b7をそれぞれ作成する。
【0027】
2.ニッケル・水素蓄電池の作製
(1)焼結式ニッケル正極板を用いたニッケル・水素蓄電池
a.実施例1〜7
ついで、上述のように作製した各焼結式ニッケル正極板a1、a2、a3、a4、a5、a6、a7を用いた実施例1〜7のニッケル・水素蓄電池の作製例を図2に基づいて説明する。
上述のように作製した各焼結式ニッケル正極板a1、a2、a3、a4、a5、a6、a7と、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをそれぞれポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回して、図2(a)に示すように、それぞれ渦巻状電極体Aを作製する。このとき、各焼結式ニッケル正極板a1、a2、a3、a4、a5、a6、a7の芯体の未塗着部分11aがセパレータ30より突出するとともに、負極板20の芯体21がセパレータ30より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Aの直径は約22mmであった。
【0028】
一方、正極集電体40はニッケル金属からなり、図2(b)に示すように、この正極集電体40は直径18mmの略円板状集電部41と導出部42とを備え、略円板状集電部41は下部に突起を有する多数の開口43を有するとともに、中心部には電解液注液孔44が設けられている。また、負極集電体50はニッケル金属を直径21mmの円板状に形成して構成されるものである。そして、上述のようにして作成した渦巻状電極体Aの負極板20の芯体21の負極集電体50とを抵抗溶接するとともに、各焼結式ニッケル正極板a1、a2、a3、a4、a5、a6、a7の芯体の未塗着部分11aと正極集電体40の集電部41とを抵抗溶接する。
【0029】
なお、この溶接工程において、各焼結式ニッケル正極板a1、a2、a3、a4、a5、a6、a7の芯体の未塗着部分11aは正極集電体40の集電部41と溶接されない部分(巻終わり端から100mmまで)が生じることになる。そのため、各焼結式ニッケル正極板a1、a2、a3、a4、a5、a6、a7に形成した集電タブ12を正極集電体40の集電部41側に折り曲げた後、集電タブ12の上部に一対の溶接電極(図示せず)を配置し、これらの一対の溶接電極間に溶接電流を流して抵抗溶接を行う。なお、図1(a)の符号12の仮想線(二点鎖線)は集電タブ12が正極集電体40に溶接された状態を模式的に示している。
【0030】
このように、正極集電体40に溶接されない正極板10の上端部に集電タブ12を溶接し、この集電タブ12と正極集電体40とを溶接するようにすると、正極集電体40に接続されない部分の正極板10内の電流分布も均一になるため、電圧降下が低減して、高率放電特性が向上する。
【0031】
ついで、有底円筒形の金属外装缶70を用意し、上記のように各集電体40,50を溶接した渦巻状電極体Aを金属外装缶70内に挿入し、集電体40の電解液注液孔44より一方の溶接電極を挿入して負極集電体50に当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極集電体50と金属外装缶70の底部をスポット溶接する。
【0032】
一方、正極キャップと蓋体(なお、正極キャップと蓋体との間には圧力弁が配置されている)とからなる封口体60を用意し、正極集電体40の導出部42を封口体60の蓋体底部に接触させて、蓋体底部と導出部42とを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの各実施例1〜7の円筒形ニッケル・水素蓄電池をそれぞれ作製する。
【0033】
b.実施例8
ついで、上述のように作製した焼結式ニッケル正極板a3を用いた実施例8のニッケル・水素蓄電池の作製例を図3に基づいて説明する。
上述のように作製した焼結式ニッケル正極板a3(渦巻状に巻回された際の巻終わり端より33mm(x=33mm)の位置に予め集電タブ12が溶接されている)と、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回して渦巻状電極体Bを作製する。このとき、焼結式ニッケル正極板a3の芯体の未塗着部分11aがセパレータ30より突出するとともに、負極板20の芯体21がセパレータ50より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Bの直径は約22mmであった。
【0034】
ついで、焼結式ニッケル正極板a3に形成した集電タブ12と、上述の実施例1〜7と同様に形成した正極集電体40の集電部41とを抵抗溶接した後、渦巻状電極体Bの負極板20の芯体21と、上述の実施例1〜7と同様に形成した負極集電体50とを抵抗溶接する。この後、焼結式ニッケル正極板a3に形成した集電タブ12が溶接された正極集電体40を渦巻状電極体Bの上に載置し、焼結式ニッケル正極板a3の芯体の未塗着部分11aと正極集電体40の集電部41とを抵抗溶接する。
【0035】
なお、この溶接工程において、焼結式ニッケル正極板a3の巻終わり端から100mmまでの芯体の未塗着部分11aは正極集電体40の集電部41と溶接されないこととなるが、渦巻状に巻回された際の巻終わり端より33mm(x=33mm)の位置には予め溶接された集電タブ12が正極集電体40の集電部41の下面に溶接されている。このように、正極集電体40に溶接されない正極板10の上端部に集電タブ12を溶接し、この集電タブ12と正極集電体40とを溶接するようにすると、正極集電体40に接続されない部分の正極板10内の電流分布も均一になるため、電圧降下が低減して、高率放電特性が向上する。
【0036】
ついで、有底円筒形の金属外装缶70を用意し、上記のように各集電体40,50を溶接した渦巻状電極体Bを金属外装缶70内に挿入し、集電体40の電解液注液孔44より一方の溶接電極を挿入して負極集電体50に当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極集電体50と金属外装缶70の底部をスポット溶接する。
【0037】
一方、上述の実施例1〜7と同様の封口体60を用意し、正極集電体40の導出部42を封口体60の蓋体底部に接触させて、蓋体底部と導出部42とを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの実施例8の円筒形ニッケル・水素蓄電池を作製する。
【0038】
c.実施例9
ついで、上述のように作製した焼結式ニッケル正極板a3を用いた実施例9のニッケル・水素蓄電池の作製例を図4に基づいて説明する。
上述のように作製した焼結式ニッケル正極板a3(渦巻状に巻回された際の巻終わり端より33mm(x=33mm)の位置に予め集電タブ12が溶接されている)と、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回して渦巻状電極体Cを作製する。このとき、焼結式ニッケル正極板a3の芯体11aがセパレータ30より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Cの直径は約22mmであった。なお、負極板20の芯体21の一部には負極用集電タブ21aが設けられている。
【0039】
ついで、焼結式ニッケル正極板a3の芯体の未塗着部分11aと、上述の実施例1〜7と同様に形成した正極集電体40の集電部41と上述の実施例1〜7と同様に抵抗溶接する。なお、この溶接工程において、焼結式ニッケル正極板a3の巻終わり端から100mmまでの芯体露出部は正極集電体40の集電部41と溶接されないこととなる。そのため、渦巻状に巻回された際の巻終わり端より33mm(x=33mm)の位置に予め溶接された集電タブ12を正極集電体40の集電部41側に折り曲げた後、集電タブ12の上部に一対の溶接電極(図示せず)を配置し、これらの一対の溶接電極間に溶接電流を流して抵抗溶接を行う。
【0040】
ついで、有底円筒形の金属外装缶70を用意し、上記のように集電体40を溶接した渦巻状電極体Cを金属外装缶70内に挿入し、集電体40の電解液注液孔44より一方の溶接電極を挿入して負極用集電タブ21aに当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極用集電タブ21aと金属外装缶70の底部をスポット溶接する。
【0041】
一方、上述の実施例1〜7と同様の封口体60を用意し、正極集電体40の導出部42を封口体60の蓋体底部に接触させて、蓋体底部と導出部42とを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの実施例9の円筒形ニッケル・水素蓄電池を作製する。
【0042】
d.比較例1
ついで、上述のように作製した焼結式ニッケル正極板aを用いた比較例1のニッケル・水素蓄電池の作製例を図5に基づいて説明する。なお、図5は正・負極板を渦巻状に巻回した渦巻状電極体に正極集電体と負極集電体を溶接した後、金属製円筒状外装缶内に収納した状態を示す図であり、図5(a)は断面図であり、図5(b)は封口体を封口する前の上面図である。
【0043】
上述のように作製した焼結式ニッケル正極板aと、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回して渦巻状電極体Dを作製する。このとき、焼結式ニッケル正極板aの芯体の未塗着部分11aがセパレータ30より突出するとともに、負極板20の芯体21がセパレータ30より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Dの直径は約22mmであった。
【0044】
そして、上述のようにして作成した渦巻状電極体Dの負極板20の芯体21と上述の実施例1〜7と同様の負極集電体50とを上述の実施例1〜7と同様に抵抗溶接するとともに、焼結式ニッケル正極板aの芯体の未塗着部分11aと上述の実施例1〜7と同様の正極集電体40の集電部41とを上述の実施例1〜7と同様に抵抗溶接する。なお、この溶接工程において、焼結式ニッケル正極板aの巻終わり端から100mmまでの芯体の未塗着部分11aは正極集電体40の集電部41と溶接されないこととなる。
【0045】
ついで、有底円筒形の金属外装缶70を用意し、上記のように各集電体40,50を溶接した渦巻状電極体Dを金属外装缶70内に挿入し、集電体40の電解液注液孔44より一方の溶接電極を挿入して負極集電体50に当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極集電体50と金属外装缶70の底部をスポット溶接する。
【0046】
一方、上述の実施例1〜7と同様の封口体60を用意し、正極集電体40の導出部42を封口体60の蓋体底部に接触させて、蓋体底部と導出部42とを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの比較例1の円筒形ニッケル・水素蓄電池を作製する。
【0047】
e.比較例2
ついで、上述のように作製した焼結式ニッケル正極板aを用いた比較例2のニッケル・水素蓄電池の作製例を図6に基づいて説明する。なお、図6は正・負極板を渦巻状に巻回した渦巻状電極体に正極集電体を溶接し、金属製円筒状外装缶内に収納した後、負極集電タブと金属製円筒状外装缶とを溶接した状態を示す図であり、図6(a)は断面図であり、図6(b)は封口体を封口する前の上面図である。
【0048】
上述のように作製した焼結式ニッケル正極板aと、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回して渦巻状電極体Eを作製する。このとき、焼結式ニッケル正極板aの芯体11aがセパレータ30より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Eの直径は約22mmであった。なお、負極板20の芯体21には負極用集電タブ21aが設けられている。
【0049】
ついで、焼結式ニッケル正極板aの芯体の未塗着部分11aと、上述の実施例1〜7と同様の正極集電体40の集電部41とを上述の実施例1〜7と同様に抵抗溶接する。なお、この溶接工程において、焼結式ニッケル正極板aの巻終わり端から100mmまでの芯体の未塗着部分11aは正極集電体40の集電部41と溶接されないこととなる。
【0050】
ついで、有底円筒形の金属外装缶70を用意し、上記のように集電体40を溶接した渦巻状電極体Eを金属外装缶70内に挿入し、集電体40の電解液注液孔44より一方の溶接電極を挿入して負極用集電タブ21aに当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極用集電タブ21aと金属外装缶70の底部をスポット溶接する。
【0051】
一方、上述の実施例1〜7と同様の封口体60を用意し、正極集電体40の導出部42を封口体60の蓋体底部に接触させて、蓋体底部と導出部42とを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの比較例2の円筒形ニッケル・水素蓄電池を作製する。
【0052】
f.比較例3
ついで、上述のように作製した焼結式ニッケル正極板aを用いた比較例3のニッケル・水素蓄電池の作製例を図7に基づいて説明する。なお、集電タブを備えた正・負極板を渦巻状に巻回した渦巻状電極体を金属製円筒状外装缶内に収納した状態を示す図であり、その断面を示している。
【0053】
上述のように作製した焼結式ニッケル正極板aと、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回して渦巻状電極体Fを作製する。このとき、負極板20の芯体21がセパレータ30より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Fの直径は約22mmであった。なお、焼結式ニッケル正極板aの芯体の未塗着部分11aには正極用集電タブ11bが形成されている。
【0054】
ついで、上述のようにして作成した渦巻状電極体Fの負極板20の芯体21と、上述の実施例1〜7と同様の負極集電体50とを上述の実施例1〜7と同様に抵抗溶接する。ついで、有底円筒形の金属外装缶70を用意し、上記のように負極集電体50を溶接した渦巻状電極体Fを金属外装缶70内に挿入し、渦巻状電極体Fの中心部の空隙内に一方の溶接電極を挿入して負極集電体50に当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極集電体50と金属外装缶70の底部をスポット溶接する。
【0055】
一方、上述の実施例1〜7と同様の封口体60を用意し、正極用集電タブ11bを封口体60の蓋体底部に接触させて、蓋体底部と正極用集電タブ11bとを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの比較例3の円筒形ニッケル・水素蓄電池を作製する。
【0056】
(2)非焼結式電極を用いたニッケル・水素蓄電池
a.実施例10〜16
ついで、上述のように作製した各非焼結式ニッケル正極板b1、b2、b3、b4、b5、b6、b7を用いた実施例10〜16のニッケル・水素蓄電池の作製例を図2に基づいて説明する。
上述のように作製した各非焼結式ニッケル正極板b1、b2、b3、b4、b5、b6、b7と、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをそれぞれポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回してそれぞれ渦巻状電極体Aを作製する。このとき、各非焼結式ニッケル正極板b1、b2、b3、b4、b5、b6、b7の帯状金属薄板11aがセパレータ30より突出するとともに、負極板20の芯体21がセパレータ30より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Aの直径は約22mmであった。
【0057】
ついで、上述のようにして作製した渦巻状電極体Aの負極板20の芯体21と、上述の実施例1〜7と同様の直径21mmの負極集電体50とを抵抗溶接するとともに、各非焼結式ニッケル正極板b1、b2、b3、b4、b5、b6、b7の帯状金属薄板11aと上述の実施例1〜7と同様の直径18mmの正極集電体40の集電部41とを、上述の実施例1〜7と同様にして抵抗溶接する。この後、各非焼結式ニッケル正極板b1、b2、b3、b4、b5、b6、b7に形成した集電タブ12を正極集電体40の集電部41側に折り曲げた後、抵抗溶接する。
【0058】
ついで、有底円筒形の金属外装缶70を用意し、上記のように各集電体40,50を溶接した渦巻状電極体Aを金属外装缶70内に挿入し、集電体40の電解液注液孔44より一方の溶接電極を挿入して負極集電体50に当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極集電体50と金属外装缶70の底部をスポット溶接する。
【0059】
一方、上述の実施例1〜7と同様の封口体60を用意し、正極集電体40の導出部42を封口体60の蓋体底部に接触させて、蓋体底部と導出部42とを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの各実施例10〜16の円筒形ニッケル・水素蓄電池をそれぞれ作製する。
【0060】
b.実施例17
ついで、上述のように作製した非焼結式ニッケル正極板b3を用いた実施例17のニッケル・水素蓄電池の作製例を図3に基づいて説明する。
上述のように作製した非焼結式ニッケル正極板b3と、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回して渦巻状電極体Bを作製する。このとき、非焼結式ニッケル正極板b3の上端部がセパレータ50より突出するとともに、負極板40の下端部がセパレータ50より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Bの直径は約22mmであった。
【0061】
ついで、非焼結式ニッケル正極板b3の帯状金属薄板11aに溶接した集電タブ12と、上述の実施例1〜7と同様に形成した正極集電体40の集電部41とを抵抗溶接した後、渦巻状電極体Aの負極板20の端部21と、上述の実施例1〜7と同様に形成した負極集電体50とを抵抗溶接する。この後、非焼結式ニッケル正極板b3の集電タブ12に溶接された正極集電体40を渦巻状電極体Bの上に載置し、非焼結式ニッケル正極板b3の帯状金属薄板11aの端部と正極集電体40の集電部41とを抵抗溶接する。
【0062】
なお、この溶接工程において、非焼結式ニッケル正極板b3の巻終わり端から100mmまでの帯状金属薄板11aは正極集電体40の集電部41と溶接されないこととなるが、非焼結式ニッケル正極板b3に形成した集電タブ12は予め正極集電体40の集電部41の下面に溶接されている。
【0063】
ついで、有底円筒形の金属外装缶70を用意し、上記のように各集電体40,50を溶接した渦巻状電極体Bを金属外装缶70内に挿入し、集電体40の電解液注液孔44より一方の溶接電極を挿入して負極集電体50に当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極集電体50と金属外装缶70の底部をスポット溶接する。
【0064】
一方、上述の実施例1〜7と同様の封口体60を用意し、正極集電体40の導出部42を封口体60の蓋体底部に接触させて、蓋体底部と導出部42とを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの実施例17の円筒形ニッケル・水素蓄電池を作製する。
【0065】
c.実施例18
ついで、上述のように作製した非焼結式ニッケル正極板b3を用いた実施例18のニッケル・水素蓄電池の作製例を図4に基づいて説明する。
上述のように作製した非焼結式ニッケル正極板b3と、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回して渦巻状電極体Cを作製する。このとき、非焼結式ニッケル正極板b3の帯状金属薄板11aがセパレータ30より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Cの直径は約22mmであった。なお、負極板20の下端部には負極用集電タブ21aが設けられている。
【0066】
ついで、非焼結式ニッケル正極板b3の帯状金属薄板11aの端部と、上述の実施例1〜7と同様に形成した正極集電体40の集電部41とを上述の実施例1〜7と同様に抵抗溶接する。なお、この溶接工程において、非焼結式ニッケル正極板b3の巻終わり端から100mmまでの帯状金属薄板11aは正極集電体40の集電部41と溶接されないこととなる。そのため、非焼結式ニッケル正極板b3に形成した集電タブ12を正極集電体40の集電部41側に折り曲げた後、集電タブ12の上部に一対の溶接電極(図示せず)を配置し、これらの一対の溶接電極間に溶接電流を流して抵抗溶接を行う。
【0067】
ついで、有底円筒形の金属外装缶70を用意し、上記のように集電体40を溶接した渦巻状電極体Cを金属外装缶70内に挿入し、集電体40の電解液注液孔44より一方の溶接電極を挿入して負極用集電タブ21aに当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極用集電タブ21aと金属外装缶70の底部をスポット溶接する。
【0068】
一方、上述の実施例1〜7と同様の封口体60を用意し、正極集電体40の導出部42を封口体60の蓋体底部に接触させて、蓋体底部と導出部42とを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの実施例18の円筒形ニッケル・水素蓄電池を作製する。
【0069】
d.比較例4
ついで、上述のように作製した非焼結式ニッケル正極板bを用いた比較例4のニッケル・水素蓄電池の作製例を図5に基づいて説明する。
上述のように作製した非焼結式ニッケル正極板bと、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回して渦巻状電極体Dを作製する。このとき、非焼結式ニッケル正極板bの帯状金属薄板11aの上端部がセパレータ30より突出するとともに、負極板20の芯体21の下端部がセパレータ30より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Dの直径は約22mmであった。
【0070】
そして、上述のようにして作成した渦巻状電極体Dの負極板20の芯体21の下端部21と上述の実施例1〜7と同様に形成した負極集電体50とを上述の実施例1〜7と同様に抵抗溶接するとともに、非焼結式ニッケル正極板bの帯状金属薄板11aの端部と正極集電体40の集電部41とを抵抗溶接する。なお、この溶接工程において、非焼結式ニッケル正極板bの巻終わり端から100mmまでの帯状金属薄板11aは正極集電体40の集電部41と溶接されないこととなる。
【0071】
ついで、有底円筒形の金属外装缶70を用意し、上記のように各集電体40,50を溶接した渦巻状電極体Dを金属外装缶70内に挿入し、集電体40の電解液注液孔44より一方の溶接電極を挿入して負極集電体50に当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極集電体50と金属外装缶70の底部をスポット溶接する。
【0072】
一方、上述の実施例1〜7と同様の封口体60を用意し、正極集電体40の導出部42を封口体60の蓋体底部に接触させて、蓋体底部と導出部42とを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの比較例4の円筒形ニッケル・水素蓄電池を作製する。
【0073】
e.比較例5
ついで、上述のように作製した非焼結式ニッケル正極板bを用いた比較例5のニッケル・水素蓄電池の作製例を図6に基づいて説明する。
上述のように作製した非焼結式ニッケル正極板bと、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回して渦巻状電極体Eを作製する。このとき、非焼結式ニッケル正極板bの帯状金属薄板11aの上端部がセパレータ30より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Eの直径は約22mmであった。なお、負極板20の芯体21には負極用集電タブ21aが設けられている。
【0074】
ついで、非焼結式ニッケル正極板bの帯状金属薄板11aの上端部と、上述の実施例1〜7と同様に形成した正極集電体40の集電部41とを上述の実施例1〜7と同様に抵抗溶接する。なお、この溶接工程において、非焼結式ニッケル正極板bの巻終わり端から100mmまでの帯状金属薄板11aは正極集電体40の集電部41と溶接されないこととなる。
【0075】
ついで、有底円筒形の金属外装缶70を用意し、上記のように集電体40を溶接した渦巻状電極体Eを金属外装缶70内に挿入し、集電体40の電解液注液孔44より一方の溶接電極を挿入して負極用集電タブ21aに当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極用集電タブ21aと金属外装缶70の底部をスポット溶接する。
【0076】
一方、上述の実施例1〜7と同様の封口体60を用意し、正極集電体40の導出部42を封口体60の蓋体底部に接触させて、蓋体底部と導出部42とを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの比較例5の円筒形ニッケル・水素蓄電池を作製する。
【0077】
f.比較例6
ついで、上述のように作製した非焼結式ニッケル正極板bを用いた比較例6のニッケル・水素蓄電池の作製例を図7に基づいて説明する。
上述のように作製した非焼結式ニッケル正極板bと、水素吸蔵合金をパンチングメタル(芯体)21に塗布した負極板20とをポリプロピレン製不織布からなるセパレータ30を介して、最外周が負極板20となるようにして渦巻状に卷回して渦巻状電極体Fを作製する。このとき、負極板20の帯状金属薄板11aの下端部がセパレータ30より突出するように巻回する。このように渦巻状に巻回した渦巻状電極体Fの直径は約22mmであった。なお、非焼結式ニッケル正極板bの帯状金属薄板11aには正極用集電タブ11bが溶接されている。
【0078】
ついで、上述のようにして作成した渦巻状電極体Fの負極板20の芯体21との上述の実施例1〜7と同様に形成した負極集電体50と上述の実施例1〜7と同様に抵抗溶接する。ついで、有底円筒形の金属外装缶70を用意し、上記のように集電体50を溶接した渦巻状電極体Fを金属外装缶70内に挿入し、渦巻状電極体Fの中心部の空隙内に一方の溶接電極を挿入して負極集電体50に当接させるとともに金属外装缶70の底部に他方の溶接電極を当接して、負極集電体50と金属外装缶70の底部をスポット溶接する。
【0079】
一方、上述の実施例1〜7の封口体60を用意し、正極用集電タブ11bを封口体60の蓋体底部に接触させて、蓋体底部と正極用集電タブ11bとを溶接して接続する。この後、金属外装缶70内にそれぞれ30重量%の水酸化カリウム(KOH)水溶液よりなる電解液を注液し、封口体60を封口ガスケット61を介して外装缶70の開口部71に載置するとともに、この開口部71を封口体60側にカシメて封口する。これにより、公称容量2000mAHの比較例6の円筒形ニッケル・水素蓄電池を作製する。
【0080】
3.ニッケル・水素蓄電池の活性化
上述のように作製した実施例1〜18および比較例1〜6の24種類のニッケル・水素蓄電池を200mA(0.1C)の充電々流で16時間充電した後、1時間休止させる。その後、400mA(0.2C)の放電々流で終止電圧が1.0Vになるまで放電させた後、1時間休止させる。この充放電を室温で3サイクル繰り返して、実施例1〜18および比較例1〜6の24種類のニッケル・水素蓄電池を活性化する。
【0081】
4.高率放電試験
上述のようにして作製した実施例1〜9および比較例1〜3の12種類のニッケル・水素蓄電池を200mA(0.1C)の充電々流で16時間充電した後、1時間休止させる。その後、10A(5C)の放電々流で終止電圧が0.5Vになるまで放電させて高率放電を行い、放電容量が50%のときの電圧(作動電圧)の測定を行うと、下記の表1に示すような結果となった。
【0082】
【表1】

Figure 0003869540
【0083】
上記表1より明らかなように、負極集電体50を用いた実施例1〜8のニッケル・水素蓄電池と比較例1,3のニッケル・水素蓄電池とを比較すると、実施例1〜8のニッケル・水素蓄電池の作動電圧が向上することが分かる。また、負極集電体50を用いないで負極集電タブ21aを用いた実施例9のニッケル・水素蓄電池と比較例2のニッケル・水素蓄電池とを比較すると、実施例9のニッケル・水素蓄電池の作動電圧が向上することが分かる。このように、正極板10の正極集電体40との未接続部11a(図1(a)参照)に集電タブ12を溶接すると、図1(b)に示すように、正極板10内での電流分布が均一化するため、電圧降下が低減されて高率放電時の作動電圧が向上する。
【0084】
また、ニッケル正極板a3を用いるとともに負極集電体50を用いた実施例3のニッケル・水素蓄電池と、ニッケル正極板a3を用いるとともに負極集電体50を用いないで負極タブ21aを用いた実施例9のニッケル・水素蓄電池とを比較すると、実施例3のニッケル・水素蓄電池の作動電圧が向上することが分かる。このことから、負極集電体50を用いた方が作動電圧が向上することが分かる。
【0085】
また、ニッケル正極板a3を用いた実施例3のニッケル・水素蓄電池の作動電圧は1.25Vで、ニッケル正極板a3を用いた実施例8のニッケル・水素蓄電池の作動電圧も1.25Vで等しい。このことから、正極集電体40を電極体Aの未充填部11aに溶接した後、集電タブ12を正極集電体40の集電部41上に溶接(実施例3)しても、あるいは集電タブ12を正極集電体40の集電部41に溶接した後、正極集電体40を電極体Aの未充填部11aに溶接(実施例8)しても、どちの方法を採用しても良いことが分かる。
【0086】
さらに、渦巻状に巻回された際の巻終わり端より33mm(x=33mm)の位置に集電タブ12が溶接された実施例3および実施例8のニッケル・水素蓄電池の作動電圧は最高(1.25V)となったが、集電タブ12の位置がこれより両側にづれるに伴ってその作動電圧が低下することが分かる。したがって、集電タブ12を渦巻状に巻回された際の巻終わり端より0〜50mmの位置に設けると高作動電圧となるので、集電タブ12の位置は渦巻状に巻回された際の巻終わり端より1/2以内にするのが好ましい。
【0087】
同様に、上述のようにして作製した実施例10〜18および比較例4〜6の12種類のニッケル・水素蓄電池を200mA(0.1C)の充電々流で16時間充電した後、1時間休止させる。その後、10A(5C)の放電々流で終止電圧が0.5Vになるまで放電させて高率放電を行い、放電容量が50%のときの電圧(作動電圧)の測定を行うと、下記の表2に示すような結果となった。
【0088】
【表2】
Figure 0003869540
【0089】
上記表2より明らかなように、負極集電体50を用いた実施例10〜17のニッケル・水素蓄電池と比較例4および6のニッケル・水素蓄電池とを比較すると、実施例10〜17のニッケル・水素蓄電池の作動電圧が向上することが分かる。また、負極集電体50を用いないで負極集電タブ21aを用いた実施例18のニッケル・水素蓄電池と比較例5のニッケル・水素蓄電池とを比較すると、実施例18のニッケル・水素蓄電池の作動電圧が向上することが分かる。このように、正極板10の正極集電体40の帯状金属薄板11b(図1(a)参照)に集電タブ12を溶接すると、図1(b)に示すように、正極板10内での電流分布が均一化するため、電圧降下が低減されて高率放電時の作動電圧が向上する。
【0090】
また、ニッケル正極板b3を用いるとともに負極集電体50を用いた実施例12のニッケル・水素蓄電池と、ニッケル正極板b3を用いるとともに負極集電体50を用いないで負極タブ21aを用いた実施例18のニッケル・水素蓄電池とを比較すると、実施例12のニッケル・水素蓄電池の作動電圧が向上することが分かる。このことから、負極集電体50を用いた方が作動電圧が向上することが分かる。
【0091】
また、ニッケル正極板a3を用いた実施例12のニッケル・水素蓄電池の作動電圧は1.25Vで、ニッケル正極板a3を用いた実施例17のニッケル・水素蓄電池の作動電圧も1.26Vでほぼ等しい。このことから、正極集電体40を電極体Aの帯状金属薄板11aに溶接した後、集電タブ12を正極集電体40の集電部41上に溶接(実施例3)しても、あるいは集電タブ12を正極集電体40の集電部41に溶接した後、正極集電体40を電極体Aの帯状金属薄板11aに溶接(実施例8)しても、どちの方法を採用しても良いことが分かる。
【0092】
また、渦巻状に巻回された際の巻終わり端より33mm(x=33mm)の位置に集電タブ12が溶接された実施例17のニッケル・水素蓄電池の作動電圧は最高(1.26V)となったが、集電タブ12の位置がこれより両側にづれるに伴ってその作動電圧は低下することが分かる。したがって、集電タブ12を渦巻状に巻回された際の巻終わり端より0〜50mmの位置に設けると高作動電圧となるので、集電タブ12の位置は渦巻状に巻回された際の巻終わり端より1/2以内にするのが好ましい。
【0093】
さらに、表1の実施例1〜9のニッケル・水素蓄電池と表2の実施例10〜18のニッケル・水素蓄電池とを比較しても、その作動電圧は格別に相違しないのに対し、表1の比較例1〜3のニッケル・水素蓄電池と表2の比較例4〜6のニッケル・水素蓄電池とを比較すると、比較例4〜6のニッケル・水素蓄電池の作動電圧が低下していることが分かる。このことから、実施例10〜18のニッケル・水素蓄電池、即ち、本発明を非焼結式ニッケル正極板を用いたニッケル・水素蓄電池に適用した方が効果が大きいことが分かる。
【0094】
なお、上述した実施形態においては、本発明をニッケル・水素蓄電池に適用した例について説明したが、これに限らず、ニッケル・カドミウム蓄電池、ニッケル・亜鉛蓄電池、リチウムイオン電池などの正・負極板をセパレータを介して渦巻状に巻回した渦巻状電極体を備えた円筒状電池であれば、どのような電池であっても同様の効果が得られる。
【図面の簡単な説明】
【図1】 本発明のニッケル正極板を示す図である。
【図2】 本発明の電池の正・負極板を渦巻状に巻回した電極体に正極集電体と負極集電体を溶接した後、金属製外装缶内に収納して正極集電タブと正極集電体とを溶接した状態を示す図である。
【図3】 本発明の電池の正・負極板を渦巻状に巻回した渦巻状電極体の正極集電タブと正極集電体とを溶接し、電極体に正極集電体と負極集電体を溶接した後、金属製外装缶内に収納した状態を示す図である。
【図4】 本発明の電池の正・負極板を渦巻状に巻回した渦巻状電極体に正極集電体を溶接し、金属製円筒状外装缶内に収納した後、正極集電タブと正極集電体とを溶接した状態を示す図である。
【図5】 従来の電池(比較例の電池)の正・負極板を渦巻状に巻回した渦巻状電極体に正極集電体と負極集電体を溶接した後、金属製円筒状外装缶内に収納した状態を示す図である。
【図6】 従来の電池(比較例の電池)の正・負極板を渦巻状に巻回した渦巻状電極体に正極集電体を溶接し、金属製円筒状外装缶内に収納した後、負極集電タブと金属製円筒状外装缶とを溶接した状態を示す図である。
【図7】 従来の電池(比較例の電池)の集電タブを備えた正・負極板を渦巻状に巻回した渦巻状電極体を金属製円筒状外装缶内に収納した状態を示す図である。
【図8】 従来のニッケル正極板を示す図である。
【符号の説明】
10…ニッケル正極板、11…活物質保持体(焼結基板または発泡ニッケル)、11a…活物質未充填部または帯状金属薄板、11b…正極集電タブ、12…集電タブ、20…負極板、21a…負極集電タブ、30…セパレータ、40…正極集電体、41…集電部、42…導出部、50…負極集電体、60…封口体、70…金属製円筒状外装缶、71…開口部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical battery provided with a spiral electrode body in which positive and negative electrodes such as nickel / hydrogen storage battery, nickel / cadmium storage battery, nickel / zinc storage battery, and lithium ion battery are spirally wound through a separator. In particular, the present invention relates to a conductive connection between a spiral electrode body and a current collector.
[0002]
[Prior art]
Conventionally, in a cylindrical battery such as a nickel / cadmium storage battery, a nickel / hydrogen storage battery, a nickel / zinc storage battery, or a lithium ion battery, as shown in FIG. 5 and FIG. And spirally wound to form spiral electrode bodies D and E.
[0003]
Then, as shown in FIG. 5, the core 21 of the negative electrode plate 20 of the spiral electrode body D formed in this way is welded to the negative electrode current collector 50 and the core of the positive electrode plate 10 of the spiral electrode body D. 11a is welded to the positive electrode current collector 40, and then the spiral electrode body D is inserted into a metal cylindrical outer can 70 also serving as a negative electrode terminal, and the negative electrode current collector 50 is welded to the bottom of the metal outer can 70. At the same time, the lead-out portion 42 extending from the positive electrode current collector 40 is welded to the bottom of the sealing body 60 that also serves as the positive electrode terminal.
[0004]
Alternatively, as shown in FIG. 6, the spiral electrode body E thus formed is inserted into a metal cylindrical outer can 70 that also serves as a negative electrode terminal, and the core body 21 of the negative electrode plate 20 of the spiral electrode body E is made of metal. While being brought into contact with the bottom of the outer can 70, the current collecting tab 21 a extending from the core body 21 is welded to the bottom of the metal outer can 70. On the other hand, the core 11a of the positive electrode plate 10 of the spiral electrode body E is welded to the positive electrode current collector 40, and the lead-out portion 42 extending from the positive electrode current collector 40 is welded to the bottom of the sealing body 60 that also serves as the positive electrode terminal. It is common to configure.
[0005]
In this way, the core body 21 of the negative electrode plate 20 of the spiral electrode bodies D and E is electrically connected to the bottom of the metal outer can 70, and the core body 11 a of the positive electrode plate 10 of the spiral electrode bodies D and E is When welding to the positive electrode current collector 40, the current distribution from the positive electrode plate 10 to the positive electrode terminal (sealing body 60) and the current distribution from the negative electrode plate 20 to the negative electrode terminal (metal outer can 70) become uniform. A battery with improved rate discharge characteristics can be obtained.
[0006]
[Problems to be solved by the invention]
By the way, in the battery formed as described above, since the metal outer can 70 also serves as a negative electrode terminal, an internal short circuit occurs when the positive electrode current collector 40 and the metal outer can 70 come into contact with each other. 40 needs to have a size that does not contact the metal outer can 70.
However, if the positive electrode current collector 40 is sized so as not to contact the metal outer can 70, FIG. 8 (a) (FIG. 8 (a) shows the spiral electrode bodies D and E of FIGS. 5 and 6). As shown in FIG. 4, only the positive electrode plate 10 in which the spiral of the positive electrode 10 is extended to a flat plate is shown), a portion 10 a where the positive electrode current collector 40 is not welded is formed at the welded portion between the positive electrode plate 10 and the positive electrode current collector 40.
[0007]
In the portion where the positive electrode plate 10 is welded to the positive electrode current collector 40, the current distribution in the current collection path from the positive electrode current collector 40 to the lower end of the positive electrode plate 10 is uniform as shown by the arrow in FIG. However, the portion 10a where the positive electrode plate 10 is not welded to the positive electrode current collector 40 is the current in the current collecting path from the positive electrode current collector 40 to the lower end of the positive electrode plate 10 as shown by the arrow in FIG. As shown in FIG. 8B, the distribution becomes non-uniform, and a voltage drop occurs in a portion 10a of the positive electrode plate 10 that is not welded to the positive electrode current collector 40. When a voltage drop occurs in the positive electrode plate 10, there arises a problem that high rate discharge characteristics are deteriorated.
[0008]
Therefore, the present invention has been made in view of the above problems, and even if a portion that is not welded occurs in the welded portion between the upper end portion of the positive electrode plate and the positive electrode current collector, the current collecting performance of the unwelded portion is improved. Thus, it is to obtain a cylindrical battery having improved high rate discharge characteristics.
[0009]
[Means for solving the problems and their functions and effects]
The present invention is a cylindrical battery having a spiral electrode body obtained by winding a positive / negative electrode plate in a spiral shape with a separator interposed in a metal cylindrical outer can that also serves as a negative electrode terminal. Further, in the cylindrical battery provided with the spiral electrode body of the present invention, the upper end portion of the positive electrode plate of the spiral electrode body is connected to a positive electrode current collector connected to a sealing body that also serves as a positive electrode terminal except for a part thereof. And a collector tab at the upper end of the positive electrode plate not connected to the positive electrode current collector, and the lower end of the negative electrode plate of the spiral electrode body is electrically connected to a metal cylindrical outer can also serving as a negative electrode terminal, The tab is connected to the positive electrode current collector.
[0010]
In this way, when a current collecting tab is provided at the upper end portion of the positive electrode plate that is not connected to the positive electrode current collector, and the current collecting tab and the positive electrode current collector are connected, the positive electrode of the portion that is not connected to the positive electrode current collector Since the current distribution in the plate is also uniform, the voltage drop is reduced and the high rate discharge characteristics are improved.
[0011]
In addition, when the lower end of the negative electrode plate is connected to the negative electrode current collector and the negative electrode current collector is connected to a metal cylindrical outer can that also serves as the negative electrode terminal, the metal that serves as the negative electrode current collector and the negative electrode terminal. There is no problem even if the cylindrical outer can is in contact. For this reason, since the negative electrode current collector can be formed large, since the current distribution in the negative electrode plate becomes uniform when the lower end of the negative electrode plate is connected to the negative electrode current collector, the voltage drop is further reduced. High rate discharge characteristics are improved. And even if a current collecting tab is provided near the end of the portion connected to the positive electrode current collector, the voltage drop is not reduced so much, so the position where the current collecting tab is provided is the portion of the positive electrode plate that is not connected to the positive electrode current collector. It is preferable to set the position within 1/2 from the end of the winding wound in a spiral shape.
[0012]
The present invention also relates to a method of manufacturing a cylindrical battery in which a spiral electrode body obtained by winding a positive / negative electrode plate spirally through a separator is inserted into a metal cylindrical outer can also serving as a negative electrode terminal. In order to solve the above problems, the method for manufacturing a cylindrical battery according to the present invention provides a positive electrode current collector connected to a sealing body that also serves as a positive electrode terminal when the spiral electrode body is formed at the upper end of the positive electrode plate. A current collecting tab welding step of welding the current collecting tab to a non-connected portion, a positive electrode current collector welding step of welding the positive electrode upper end portion of the spiral electrode body to the positive electrode current collector excluding a part thereof, and a positive electrode plate Current collecting tab for welding current collecting tab welded to upper end to positive electrode current collector-metal positive electrode current collector welding process and spiral cylindrical electrode body welded with positive electrode current collector serving as negative electrode terminal Inserting the electrode body into the outer can and the lower end of the negative electrode plate of the spiral electrode body made of metal A connecting step of electrically connecting the bottom of Jogaiso cans, characterized by comprising a sealing body welding step of welding the sealing body serving as a positive electrode terminal of the positive electrode current collector.
[0013]
Thus, after welding the positive electrode plate upper end of the spiral electrode body formed using the positive electrode plate to which the current collector tab is welded to the positive electrode current collector, the current collector tab is welded to the positive electrode current collector, Since the current distribution in the portion of the positive electrode plate not connected to the positive electrode current collector is also uniform, the voltage drop is reduced and the high rate discharge characteristics are improved.
[0014]
In addition, the cylindrical battery manufacturing method of the present invention welds a current collecting tab to a portion that is not connected to a positive electrode current collector that is connected to a sealing body that also serves as a positive electrode terminal when a spiral electrode body is formed at the upper end of the positive electrode plate. Current collector tab welding step, current collector tab-positive electrode current collector welding step for welding the current collector tab welded to the upper end portion of the positive electrode plate to the positive electrode current collector, and collecting the upper end portion of the positive electrode plate of the spiral electrode body. The positive electrode current collector welding process for welding to the positive electrode current collector with the electric tab welded, and the spiral electrode body in which the positive electrode current collector is welded to the upper end of the positive electrode current collector is inserted into the metal cylindrical outer can also serving as the negative electrode terminal And a sealing body welding step of welding a current collector of the positive electrode current collector to a sealing body that also serves as a positive electrode terminal.
[0015]
Thus, after welding the current collector tab of the spiral electrode body formed using the positive electrode plate to which the current collector tab is welded and the positive electrode current collector, the upper end of the positive electrode plate is welded to the positive electrode current collector. Even if it does, since the current distribution of the part which is not connected to the positive electrode electrical power collector in a positive electrode plate will also become uniform, a voltage drop will reduce and a high rate discharge characteristic will improve.
[0016]
And a negative electrode current collector welding step of welding the lower end of the negative electrode plate of the spiral electrode body to the negative electrode current collector before the electrode body insertion step, and after the electrode body insertion step, the negative electrode current collector is made of metal When the outer can welding process for welding to the bottom of the cylindrical outer can is provided, the current distribution in the negative electrode plate becomes uniform, so that the voltage drop is further reduced and the high rate discharge characteristics are further improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment when a cylindrical battery provided with a spiral electrode body of the present invention is applied to a nickel-hydrogen storage battery will be described with reference to the drawings. 1 shows a nickel positive electrode plate, FIG. 1 (a) shows a state in which a nickel positive electrode plate wound in a spiral shape is extended to a flat plate, and FIG. 1 (b) shows a voltage with respect to the position of the nickel positive electrode plate. FIG. Fig. 2 shows a positive and negative current collector that is welded in a metal cylindrical outer can after welding a positive and negative current collector to an electrode body in which a negative electrode plate made of a nickel positive electrode plate and a hydrogen storage alloy is spirally wound. It is a figure which shows the state which welded the tab and the positive electrode electrical power collector, FIG. 2 (a) is sectional drawing, FIG.2 (b) is a top view before sealing a sealing body.
[0018]
FIG. 3 shows that a positive electrode current collector tab and a positive electrode current collector of an electrode body in which a nickel positive electrode plate and a negative electrode plate made of a hydrogen storage alloy are wound in a spiral shape are welded, and then housed in a metal cylindrical outer can. It is a figure which shows the state which welded each electrical power collector to the electrode body, FIG. 3 (a) is sectional drawing, FIG.3 (b) is a top view before sealing a sealing body. FIG. 4 shows a case where a positive electrode current collector is welded to an electrode body in which a nickel positive electrode plate and a negative electrode plate made of a hydrogen storage alloy are wound in a spiral shape and accommodated in a metal cylindrical outer can, and then a positive electrode current collector tab and a positive electrode It is a figure which shows the state which welded the electrical power collector, and is a figure which shows the cross section.
[0019]
1. Production of nickel positive electrode plate
(1) Sintered electrode
A thickener such as carboxymethyl cellulose and water are kneaded with nickel powder to prepare a slurry, and this slurry is applied to a conductive core made of a nickel porous body. When the slurry is applied to the conductive core, the slurry is applied so as to form an uncoated portion in a strip shape at the center of the conductive core. In addition, this strip-shaped uncoated part becomes an electric current derivation | leading-out part, and becomes a welding part with a positive electrode electrical power collector in a next process.
[0020]
Thereafter, the conductive core coated with the slurry is sintered in a reducing atmosphere to produce a sintered substrate 11 having a porosity of 80%. The sintered substrate 11 thus prepared is immersed in a nickel nitrate solution, and the sintered substrate 11 is impregnated with nickel nitrate. Thereafter, it is immersed in an aqueous sodium hydroxide solution to replace nickel nitrate with nickel hydroxide. By repeating such an impregnation step of nickel nitrate and a substitution step with nickel hydroxide, an active material filling operation in which nickel nitrate is made into a nickel hydroxide active material is performed to produce a long sintered nickel positive electrode plate. To do.
[0021]
While cutting the long sintered nickel positive electrode plate thus produced at the center of the uncoated portion (conductive core) 11a of the core formed in a band shape at the center in the length direction, The sintered nickel positive electrode plate 10 (sintered nickel positive electrode plate a) is produced by cutting so as to have a length of 210 mm. Next, a tongue-shaped current collecting tab 12 prepared by cutting a nickel metal plate having a thickness of 0.10 mm so as to have a width of 3.0 mm is prepared, and the tongue-shaped current collecting tab 12 is sintered. A sintered nickel positive electrode plate a1 is manufactured by welding to the position of the end of the nickel positive electrode plate 10 (winding end when wound spirally, x = 0 mm).
[0022]
Similarly, the current collector tab 12 is welded to a position 25 mm (x = 25 mm) from the winding end when the coil is wound in a spiral shape, and the sintered nickel positive electrode plate a2 is positioned at a position 33 mm (x = 33 mm). The current collector tab 12 is welded to the sintered nickel positive electrode plate a3, and the current collector tab 12 is welded to the position of 50 mm (x = 50 mm) and the sintered nickel positive electrode plate a4 is 66 mm (x = 66 mm). The current collector tab 12 is welded to the position of the sintered nickel positive electrode plate a5, and the current collector tab 12 is welded to the position of 75 mm (x = 75 mm) to sinter the sintered nickel positive electrode plate a6 to 100 mm (x = The current collecting tab 12 is welded to a position of 100 mm) to produce sintered nickel positive electrode plates a7.
[0023]
(2) Non-sintered electrode
90 parts by weight of nickel hydroxide, 5 parts by weight of metallic cobalt powder and 5 parts by weight of cobalt hydroxide powder are mixed and kneaded with 20 parts by weight of a 1% by weight aqueous solution of methylcellulose to produce a paste-like active material. . The pasty active material thus prepared has a basis weight of 600 g / m. 2 (The basis weight of the substrate is 400 to 700 g / m. 2 The nickel foam (nickel sponge) 11 having a thickness of 1.5 mm is filled. Next, after drying the nickel foam 11 filled with the paste-like active material, it is rolled until the thickness becomes about 0.7 mm.
[0024]
Next, an ultrasonic horn is pressed against the upper side portion of the nickel foam 11 filled with the paste-like active material in this way, and ultrasonic vibration is applied to the upper side portion in the vertical direction, so that the active material filled in the upper side portion is obtained. The peeling part is formed by dropping from the nickel foam 11. At this time, by applying ultrasonic vibration by pressing the ultrasonic horn, the upper side portion is compressed into a thin portion. On the other hand, a strip metal thin plate 11a made of nickel metal having a thickness of 0.06 mm is prepared. The strip metal thin plate 11a is placed on the peeled portion of the nickel foam 11, and resistance welding is performed at intervals of 2 mm using a welding rod. A non-sintered nickel positive electrode plate is prepared.
[0025]
The non-sintered nickel positive electrode plate 10 thus prepared is cut to a length of 210 mm to produce a non-sintered nickel positive electrode plate 10 (non-sintered nickel positive electrode plate b). Next, a tongue-shaped current collecting tab 12 prepared by cutting a nickel metal plate having a thickness of 0.10 mm so as to have a width of 3.0 mm is prepared, and the tongue-shaped current collecting tab 12 is non-fired. The non-sintered nickel positive electrode plate b1 is manufactured by welding at the position of the end of the strip-shaped metal thin plate 11a of the bonded nickel positive electrode plate 10 (winding end when wound spirally, x = 0 mm).
[0026]
Similarly, the current collector tab 12 is welded to a position of 25 mm (x = 25 mm) from the winding end when it is wound in a spiral shape, and the non-sintered nickel positive electrode plate b2 is 33 mm (x = 33 mm). ) At the position of the current collector tab 12 to weld the non-sintered nickel positive electrode plate b3, and at the position of 50 mm (x = 50 mm) to weld the current collector tab 12 to the non-sintered nickel positive electrode plate b4 to 66 mm. The current collecting tab 12 is welded to the position of (x = 66 mm) and the non-sintered nickel positive electrode plate b5 is welded, and the current collecting tab 12 is welded to the position of 75 mm (x = 75 mm) to be the non-sintered nickel positive electrode plate. The current collecting tab 12 is welded to the position of b6 at a position of 100 mm (x = 100 mm) to produce a non-sintered nickel positive electrode plate b7.
[0027]
2. Preparation of nickel-hydrogen storage battery
(1) Nickel / hydrogen storage battery using sintered nickel positive electrode plate
a. Examples 1-7
Next, a production example of the nickel / hydrogen storage batteries of Examples 1 to 7 using the sintered nickel positive plates a1, a2, a3, a4, a5, a6, and a7 produced as described above is shown in FIG. explain.
Each sintered nickel positive electrode plate a 1, a 2, a 3, a 4, a 5, a 6, a 7 prepared as described above, and the negative electrode plate 20 in which a hydrogen storage alloy is applied to a punching metal (core body) 21 are made of polypropylene, respectively. A spiral electrode body A is produced as shown in FIG. 2A by winding it in a spiral manner with the outermost periphery being the negative electrode plate 20 via a separator 30 made of nonwoven fabric. At this time, the uncoated portion 11 a of the core of each sintered nickel positive electrode plate a 1, a 2, a 3, a 4, a 5, a 6, a 7 protrudes from the separator 30, and the core 21 of the negative electrode plate 20 corresponds to the separator 30. Wind so that it protrudes more. The diameter of the spiral electrode body A wound in a spiral shape was about 22 mm.
[0028]
On the other hand, the positive electrode current collector 40 is made of nickel metal. As shown in FIG. 2B, the positive electrode current collector 40 includes a substantially disk-shaped current collector portion 41 and a lead-out portion 42 having a diameter of 18 mm. The disk-shaped current collector 41 has a large number of openings 43 having protrusions at the bottom, and an electrolyte injection hole 44 is provided at the center. The negative electrode current collector 50 is formed by forming nickel metal into a disk shape having a diameter of 21 mm. And while resistance welding the negative electrode current collector 50 of the core body 21 of the negative electrode plate 20 of the spiral electrode body A created as described above, each sintered nickel positive electrode plate a1, a2, a3, a4, Resistance welding of the uncoated portion 11a of the cores a5, a6, and a7 and the current collector 41 of the positive electrode current collector 40 is performed.
[0029]
In this welding process, the uncoated portion 11a of the core of each sintered nickel positive electrode plate a1, a2, a3, a4, a5, a6, a7 is not welded to the current collector 41 of the positive electrode current collector 40. A part (up to 100 mm from the end of winding) will be generated. Therefore, the current collecting tab 12 formed on each sintered nickel positive electrode plate a 1, a 2, a 3, a 4, a 5, a 6, a 7 is bent toward the current collecting portion 41 side of the positive electrode current collector 40, and then the current collecting tab 12 A pair of welding electrodes (not shown) is arranged on the upper part of the electrode, and resistance welding is performed by passing a welding current between the pair of welding electrodes. In addition, the virtual line (two-dot chain line) of the code | symbol 12 of Fig.1 (a) has shown typically the state by which the current collection tab 12 was welded to the positive electrode current collector 40. FIG.
[0030]
Thus, when the current collector tab 12 is welded to the upper end portion of the positive electrode plate 10 that is not welded to the positive electrode current collector 40 and the current collector tab 12 and the positive electrode current collector 40 are welded, the positive electrode current collector is obtained. Since the current distribution in the positive electrode plate 10 at a portion not connected to 40 is also uniform, the voltage drop is reduced and the high rate discharge characteristics are improved.
[0031]
Next, a cylindrical metal outer can 70 having a bottom is prepared, and the spiral electrode body A in which the current collectors 40 and 50 are welded as described above is inserted into the metal outer can 70, and electrolysis of the current collector 40 is performed. One welding electrode is inserted from the liquid injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collector 50 and the metal outer can 70 are brought into contact. Spot-weld the bottom.
[0032]
On the other hand, a sealing body 60 composed of a positive electrode cap and a lid (a pressure valve is disposed between the positive electrode cap and the lid) is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is sealed. The lid bottom part and the lead-out part 42 are welded and connected to contact with the lid bottom part of 60. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel-hydrogen storage batteries of Examples 1 to 7 having a nominal capacity of 2000 mAH are respectively produced.
[0033]
b. Example 8
Next, a production example of the nickel-hydrogen storage battery of Example 8 using the sintered nickel positive electrode plate a3 produced as described above will be described with reference to FIG.
Sintered nickel positive electrode plate a3 produced as described above (current collecting tab 12 is welded in advance at a position 33 mm (x = 33 mm) from the end of winding when wound in a spiral shape), hydrogen A negative electrode plate 20 in which an occlusion alloy is applied to a punching metal (core body) 21 and a separator 30 made of polypropylene non-woven fabric are wound in a spiral shape so that the outermost periphery becomes the negative electrode plate 20. B is prepared. At this time, winding is performed so that the uncoated portion 11 a of the core of the sintered nickel positive electrode plate a <b> 3 protrudes from the separator 30 and the core 21 of the negative electrode plate 20 protrudes from the separator 50. The diameter of the spiral electrode body B thus wound in a spiral shape was about 22 mm.
[0034]
Next, the current collecting tab 12 formed on the sintered nickel positive electrode plate a3 and the current collecting portion 41 of the positive electrode current collector 40 formed in the same manner as in Examples 1 to 7 described above are resistance-welded, and then the spiral electrode The core 21 of the negative electrode plate 20 of the body B and the negative electrode current collector 50 formed in the same manner as in Examples 1 to 7 are resistance-welded. Thereafter, the positive electrode current collector 40 to which the current collecting tab 12 formed on the sintered nickel positive electrode plate a3 is welded is placed on the spiral electrode body B, and the core of the sintered nickel positive electrode plate a3 is placed. The uncoated portion 11a and the current collector 41 of the positive electrode current collector 40 are resistance welded.
[0035]
In this welding process, the uncoated portion 11a of the core body from the winding end of the sintered nickel positive electrode plate a3 to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40, but the spiral A current collecting tab 12 welded in advance is welded to the lower surface of the current collecting portion 41 of the positive electrode current collector 40 at a position of 33 mm (x = 33 mm) from the winding end when the wire is wound into a shape. Thus, when the current collector tab 12 is welded to the upper end portion of the positive electrode plate 10 that is not welded to the positive electrode current collector 40 and the current collector tab 12 and the positive electrode current collector 40 are welded, the positive electrode current collector is obtained. Since the current distribution in the positive electrode plate 10 at a portion not connected to 40 is also uniform, the voltage drop is reduced and the high rate discharge characteristics are improved.
[0036]
Next, a bottomed cylindrical metal outer can 70 is prepared, and the spiral electrode body B, to which the current collectors 40 and 50 are welded as described above, is inserted into the metal outer can 70, and the current collector 40 is electrolyzed. One welding electrode is inserted from the liquid injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collector 50 and the metal outer can 70 are brought into contact. Spot-weld the bottom.
[0037]
On the other hand, a sealing body 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is brought into contact with the bottom of the lid body of the sealing body 60 so that the lid bottom portion and the lead-out portion 42 are connected. Weld and connect. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel-hydrogen storage battery of Example 8 having a nominal capacity of 2000 mAH is manufactured.
[0038]
c. Example 9
Next, a production example of the nickel-hydrogen storage battery of Example 9 using the sintered nickel positive electrode plate a3 produced as described above will be described with reference to FIG.
Sintered nickel positive electrode plate a3 produced as described above (current collecting tab 12 is welded in advance at a position 33 mm (x = 33 mm) from the end of winding when wound in a spiral shape), hydrogen A negative electrode plate 20 in which an occlusion alloy is applied to a punching metal (core body) 21 and a separator 30 made of polypropylene non-woven fabric are wound in a spiral shape so that the outermost periphery becomes the negative electrode plate 20. C is prepared. At this time, the core 11a of the sintered nickel positive electrode plate a3 is wound so as to protrude from the separator 30. The diameter of the spiral electrode body C wound in a spiral shape was about 22 mm. A negative electrode current collecting tab 21 a is provided on a part of the core body 21 of the negative electrode plate 20.
[0039]
Subsequently, the uncoated portion 11a of the core of the sintered nickel positive electrode plate a3, the current collector 41 of the positive electrode current collector 40 formed in the same manner as in the above-described Examples 1 to 7, and the above-described Examples 1 to 7 Resistance welding as in In this welding process, the core exposed portion from the winding end of the sintered nickel positive electrode plate a3 to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40. For this reason, the current collecting tab 12 welded in advance to a position 33 mm (x = 33 mm) from the winding end when wound in a spiral shape is bent toward the current collecting portion 41 side of the positive electrode current collector 40, and then collected. A pair of welding electrodes (not shown) is disposed on the top of the electric tab 12, and resistance welding is performed by flowing a welding current between the pair of welding electrodes.
[0040]
Next, a bottomed cylindrical metal outer can 70 is prepared, and the spiral electrode body C welded with the current collector 40 as described above is inserted into the metal outer can 70, and an electrolyte solution injection of the current collector 40 is performed. One welding electrode is inserted through the hole 44 and brought into contact with the negative electrode current collecting tab 21a, and the other welding electrode is brought into contact with the bottom of the metal outer can 70 so that the negative electrode current collecting tab 21a and the metal outer can 70 are Spot weld the bottom.
[0041]
On the other hand, a sealing body 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is brought into contact with the bottom of the lid body of the sealing body 60 so that the lid bottom portion and the lead-out portion 42 are connected. Weld and connect. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel-hydrogen storage battery of Example 9 having a nominal capacity of 2000 mAH is manufactured.
[0042]
d. Comparative Example 1
Next, a production example of the nickel-hydrogen storage battery of Comparative Example 1 using the sintered nickel positive electrode plate a produced as described above will be described with reference to FIG. FIG. 5 is a view showing a state in which a positive electrode current collector and a negative electrode current collector are welded to a spiral electrode body in which positive and negative electrode plates are wound in a spiral shape, and then housed in a metal cylindrical outer can. 5A is a cross-sectional view, and FIG. 5B is a top view before the sealing body is sealed.
[0043]
The outermost outer periphery of the sintered nickel positive electrode plate a prepared as described above and the negative electrode plate 20 in which a hydrogen storage alloy is applied to the punching metal (core body) 21 are separated by a separator 30 made of polypropylene nonwoven fabric. The spiral electrode body D is produced by winding it into a spiral shape so that the thickness becomes 20. At this time, winding is performed so that the uncoated portion 11 a of the core of the sintered nickel positive electrode plate a protrudes from the separator 30 and the core 21 of the negative electrode plate 20 protrudes from the separator 30. The diameter of the spiral electrode body D wound in a spiral shape was about 22 mm.
[0044]
And the core body 21 of the negative electrode plate 20 of the spiral electrode body D produced as described above and the negative electrode current collector 50 similar to the above-described Examples 1 to 7 are the same as in the above-described Examples 1 to 7. In addition to resistance welding, the uncoated portion 11a of the core of the sintered nickel positive electrode plate a and the current collector 41 of the positive electrode current collector 40 similar to those of the above-described Examples 1 to 7 are connected to the above-described Examples 1 to 3. Resistance welding is performed in the same manner as in No.7. In this welding step, the uncoated portion 11 a of the core from the winding end of the sintered nickel positive electrode plate a to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40.
[0045]
Next, a bottomed cylindrical metal outer can 70 is prepared, and the spiral electrode body D welded to the current collectors 40 and 50 as described above is inserted into the metal outer can 70, and electrolysis of the current collector 40 is performed. One welding electrode is inserted from the liquid injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collector 50 and the metal outer can 70 are brought into contact. Spot-weld the bottom.
[0046]
On the other hand, a sealing body 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is brought into contact with the bottom of the lid body of the sealing body 60 so that the lid bottom portion and the lead-out portion 42 are connected. Weld and connect. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel-hydrogen storage battery of Comparative Example 1 having a nominal capacity of 2000 mAH is manufactured.
[0047]
e. Comparative Example 2
Next, a production example of the nickel-hydrogen storage battery of Comparative Example 2 using the sintered nickel positive electrode plate a produced as described above will be described with reference to FIG. In FIG. 6, the positive electrode current collector is welded to a spiral electrode body in which positive and negative electrode plates are wound in a spiral shape, and the positive electrode current collector tab is stored in a metal cylindrical outer can. It is a figure which shows the state which welded the exterior can, FIG. 6 (a) is sectional drawing, FIG.6 (b) is a top view before sealing a sealing body.
[0048]
The outermost outer periphery of the sintered nickel positive electrode plate a prepared as described above and the negative electrode plate 20 in which a hydrogen storage alloy is applied to the punching metal (core body) 21 are separated by a separator 30 made of polypropylene nonwoven fabric. The spiral electrode body E is produced by winding it into a spiral shape so that the number of the spiral electrode body E becomes 20. At this time, winding is performed so that the core 11 a of the sintered nickel positive electrode plate a protrudes from the separator 30. The diameter of the spiral electrode body E wound in a spiral shape was about 22 mm. The core 21 of the negative electrode plate 20 is provided with a negative electrode current collecting tab 21a.
[0049]
Next, the uncoated portion 11a of the core of the sintered nickel positive electrode plate a and the current collector 41 of the positive electrode current collector 40 similar to those of the above-described Examples 1 to 7 are combined with the above-described Examples 1 to 7. Similarly, resistance welding is performed. In this welding step, the uncoated portion 11 a of the core from the winding end of the sintered nickel positive electrode plate a to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40.
[0050]
Next, a bottomed cylindrical metal outer can 70 is prepared, and the spiral electrode body E with the current collector 40 welded as described above is inserted into the metal outer can 70, and an electrolytic solution injection of the current collector 40 is performed. One welding electrode is inserted through the hole 44 and brought into contact with the negative electrode current collecting tab 21a, and the other welding electrode is brought into contact with the bottom of the metal outer can 70 so that the negative electrode current collecting tab 21a and the metal outer can 70 are Spot weld the bottom.
[0051]
On the other hand, a sealing body 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is brought into contact with the bottom of the lid body of the sealing body 60 so that the lid bottom portion and the lead-out portion 42 are connected. Weld and connect. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel-hydrogen storage battery of Comparative Example 2 having a nominal capacity of 2000 mAH is manufactured.
[0052]
f. Comparative Example 3
Next, a production example of the nickel-hydrogen storage battery of Comparative Example 3 using the sintered nickel positive electrode plate a produced as described above will be described with reference to FIG. In addition, it is a figure which shows the state which accommodated the spiral electrode body which wound the positive / negative electrode board provided with the current collection tab spirally in the metal cylindrical outer can, The cross section is shown.
[0053]
The outermost outer periphery of the sintered nickel positive electrode plate a prepared as described above and the negative electrode plate 20 in which a hydrogen storage alloy is applied to the punching metal (core body) 21 are separated by a separator 30 made of polypropylene nonwoven fabric. A spiral electrode body F is produced by winding it into a spiral shape so that it becomes 20. At this time, it winds so that the core 21 of the negative electrode plate 20 may protrude from the separator 30. Thus, the diameter of the spiral electrode body F wound in a spiral shape was about 22 mm. A positive current collecting tab 11b is formed on the uncoated portion 11a of the core of the sintered nickel positive electrode plate a.
[0054]
Next, the core body 21 of the negative electrode plate 20 of the spiral electrode body F prepared as described above and the negative electrode current collector 50 similar to those of the above-described Examples 1 to 7 are the same as those of the above-described Examples 1 to 7. Weld resistance. Next, a bottomed cylindrical metal outer can 70 is prepared, and the spiral electrode body F with the negative electrode current collector 50 welded as described above is inserted into the metal outer can 70, and the central portion of the spiral electrode body F is inserted. One welding electrode is inserted into the gap of the negative electrode current collector 50 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collector 50 and the bottom of the metal outer can 70 are Spot welding.
[0055]
On the other hand, a sealing body 60 similar to that in the above-described Examples 1 to 7 is prepared, and the positive electrode current collecting tab 11b is brought into contact with the lid body bottom part of the sealing body 60 so that the lid body bottom part and the positive electrode current collecting tab 11b are Weld and connect. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel-hydrogen storage battery of Comparative Example 3 having a nominal capacity of 2000 mAH is manufactured.
[0056]
(2) Nickel / hydrogen storage battery using non-sintered electrode
a. Examples 10-16
Next, a production example of the nickel-hydrogen storage batteries of Examples 10 to 16 using the non-sintered nickel positive electrode plates b1, b2, b3, b4, b5, b6, and b7 produced as described above is based on FIG. I will explain.
Each of the non-sintered nickel positive electrode plates b1, b2, b3, b4, b5, b6, and b7 produced as described above and the negative electrode plate 20 in which the hydrogen storage alloy is applied to the punching metal (core body) 21 are respectively polypropylene. A spiral electrode body A is produced by winding it in a spiral shape with the outermost periphery being the negative electrode plate 20 via a separator 30 made of a non-woven fabric. At this time, the strip-shaped metal thin plate 11 a of each non-sintered nickel positive electrode plate b 1, b 2, b 3, b 4, b 5, b 6, b 7 protrudes from the separator 30, and the core 21 of the negative electrode plate 20 protrudes from the separator 30. Wind like so. The diameter of the spiral electrode body A wound in a spiral shape was about 22 mm.
[0057]
Subsequently, the core 21 of the negative electrode plate 20 of the spiral electrode body A produced as described above and the negative electrode current collector 50 having a diameter of 21 mm similar to those of the above-described Examples 1 to 7 are resistance-welded. A non-sintered nickel positive electrode plate b1, b2, b3, b4, b5, b6, b7 strip-shaped metal thin plate 11a and a current collector 41 of a positive electrode current collector 40 having a diameter of 18 mm similar to those of Examples 1 to 7 described above. Are resistance welded in the same manner as in Examples 1 to 7 described above. Thereafter, the current collecting tab 12 formed on each non-sintered nickel positive electrode plate b1, b2, b3, b4, b5, b6, b7 is bent to the current collector 41 side of the positive electrode current collector 40, and then resistance welding is performed. To do.
[0058]
Next, a cylindrical metal outer can 70 having a bottom is prepared, and the spiral electrode body A in which the current collectors 40 and 50 are welded as described above is inserted into the metal outer can 70, and electrolysis of the current collector 40 is performed. One welding electrode is inserted from the liquid injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collector 50 and the metal outer can 70 are brought into contact. Spot-weld the bottom.
[0059]
On the other hand, a sealing body 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is brought into contact with the bottom of the lid body of the sealing body 60 so that the lid bottom portion and the lead-out portion 42 are connected. Weld and connect. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel and hydrogen storage batteries of Examples 10 to 16 having a nominal capacity of 2000 mAH are respectively produced.
[0060]
b. Example 17
Next, a production example of the nickel-hydrogen storage battery of Example 17 using the non-sintered nickel positive electrode plate b3 produced as described above will be described with reference to FIG.
The non-sintered nickel positive electrode plate b3 produced as described above and the negative electrode plate 20 in which a hydrogen storage alloy is applied to a punching metal (core body) 21 are interposed through a separator 30 made of polypropylene nonwoven fabric, and the outermost periphery is a negative electrode. A spiral electrode body B is produced by winding in a spiral shape so as to form the plate 20. At this time, the non-sintered nickel positive electrode plate b <b> 3 is wound so that the upper end portion protrudes from the separator 50 and the lower end portion of the negative electrode plate 40 protrudes from the separator 50. The diameter of the spiral electrode body B thus wound in a spiral shape was about 22 mm.
[0061]
Subsequently, the current collecting tab 12 welded to the strip-shaped metal thin plate 11a of the non-sintered nickel positive electrode plate b3 and the current collecting portion 41 of the positive electrode current collector 40 formed in the same manner as in the first to seventh embodiments are resistance welded. After that, resistance welding is performed on the end 21 of the negative electrode plate 20 of the spiral electrode body A and the negative electrode current collector 50 formed in the same manner as in Examples 1 to 7 described above. Thereafter, the positive electrode current collector 40 welded to the current collecting tab 12 of the non-sintered nickel positive electrode plate b3 is placed on the spiral electrode body B, and the strip-shaped metal thin plate of the non-sintered nickel positive electrode plate b3 is placed. The end of 11a and the current collector 41 of the positive electrode current collector 40 are resistance welded.
[0062]
In this welding process, the strip-shaped metal thin plate 11a from the winding end of the non-sintered nickel positive electrode plate b3 to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40. The current collecting tab 12 formed on the nickel positive electrode plate b3 is welded to the lower surface of the current collecting portion 41 of the positive electrode current collector 40 in advance.
[0063]
Next, a bottomed cylindrical metal outer can 70 is prepared, and the spiral electrode body B, to which the current collectors 40 and 50 are welded as described above, is inserted into the metal outer can 70, and the current collector 40 is electrolyzed. One welding electrode is inserted from the liquid injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collector 50 and the metal outer can 70 are brought into contact. Spot-weld the bottom.
[0064]
On the other hand, a sealing body 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is brought into contact with the bottom of the lid body of the sealing body 60 so that the lid bottom portion and the lead-out portion 42 are connected. Weld and connect. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel-hydrogen storage battery of Example 17 having a nominal capacity of 2000 mAH is manufactured.
[0065]
c. Example 18
Next, a production example of the nickel-hydrogen storage battery of Example 18 using the non-sintered nickel positive electrode plate b3 produced as described above will be described with reference to FIG.
The non-sintered nickel positive electrode plate b3 produced as described above and the negative electrode plate 20 in which a hydrogen storage alloy is applied to a punching metal (core body) 21 are interposed through a separator 30 made of polypropylene nonwoven fabric, and the outermost periphery is a negative electrode. A spiral electrode body C is produced by winding it into a spiral so as to form the plate 20. At this time, it winds so that the strip | belt-shaped metal thin plate 11a of the non-sintered nickel positive electrode plate b3 may protrude from the separator 30. FIG. The diameter of the spiral electrode body C wound in a spiral shape was about 22 mm. A negative electrode current collecting tab 21 a is provided at the lower end of the negative electrode plate 20.
[0066]
Next, the end portion of the strip-shaped metal thin plate 11a of the non-sintered nickel positive electrode plate b3 and the current collecting portion 41 of the positive electrode current collector 40 formed in the same manner as in the first to seventh embodiments are used. Resistance welding is performed in the same manner as in No.7. In this welding process, the strip-shaped metal thin plate 11a from the winding end of the non-sintered nickel positive electrode plate b3 to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40. Therefore, after the current collecting tab 12 formed on the non-sintered nickel positive electrode plate b3 is bent toward the current collecting portion 41 side of the positive electrode current collector 40, a pair of welding electrodes (not shown) is formed on the upper side of the current collecting tab 12. And performing resistance welding by flowing a welding current between the pair of welding electrodes.
[0067]
Next, a bottomed cylindrical metal outer can 70 is prepared, and the spiral electrode body C welded with the current collector 40 as described above is inserted into the metal outer can 70, and an electrolyte solution injection of the current collector 40 is performed. One welding electrode is inserted through the hole 44 and brought into contact with the negative electrode current collecting tab 21a, and the other welding electrode is brought into contact with the bottom of the metal outer can 70 so that the negative electrode current collecting tab 21a and the metal outer can 70 are Spot weld the bottom.
[0068]
On the other hand, a sealing body 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is brought into contact with the bottom of the lid body of the sealing body 60 so that the lid bottom portion and the lead-out portion 42 are connected. Weld and connect. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel-hydrogen storage battery of Example 18 having a nominal capacity of 2000 mAH is manufactured.
[0069]
d. Comparative Example 4
Next, a production example of the nickel-hydrogen storage battery of Comparative Example 4 using the non-sintered nickel positive electrode plate b produced as described above will be described with reference to FIG.
A non-sintered nickel positive electrode plate b produced as described above and a negative electrode plate 20 in which a hydrogen storage alloy is applied to a punching metal (core body) 21 are interposed through a separator 30 made of polypropylene nonwoven fabric, and the outermost periphery is a negative electrode. A spiral electrode body D is produced by winding it into a spiral so as to form the plate 20. At this time, winding is performed so that the upper end portion of the strip-shaped metal thin plate 11 a of the non-sintered nickel positive electrode plate b protrudes from the separator 30 and the lower end portion of the core body 21 of the negative electrode plate 20 protrudes from the separator 30. The diameter of the spiral electrode body D wound in a spiral shape was about 22 mm.
[0070]
And the lower end part 21 of the core 21 of the negative electrode plate 20 of the spiral electrode body D produced as described above and the negative electrode current collector 50 formed in the same manner as in the above-described Examples 1 to 7 are used in the above-described example. Resistance welding is performed in the same manner as in Nos. 1 to 7, and the end of the strip-shaped metal thin plate 11 a of the non-sintered nickel positive electrode plate b and the current collector 41 of the positive electrode current collector 40 are resistance welded. In this welding process, the strip-shaped metal thin plate 11a from the end of winding of the non-sintered nickel positive electrode plate b to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40.
[0071]
Next, a bottomed cylindrical metal outer can 70 is prepared, and the spiral electrode body D welded to the current collectors 40 and 50 as described above is inserted into the metal outer can 70, and electrolysis of the current collector 40 is performed. One welding electrode is inserted from the liquid injection hole 44 and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collector 50 and the metal outer can 70 are brought into contact. Spot-weld the bottom.
[0072]
On the other hand, a sealing body 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is brought into contact with the bottom of the lid body of the sealing body 60 so that the lid bottom portion and the lead-out portion 42 are connected. Weld and connect. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel-hydrogen storage battery of Comparative Example 4 having a nominal capacity of 2000 mAH is manufactured.
[0073]
e. Comparative Example 5
Next, a production example of the nickel-hydrogen storage battery of Comparative Example 5 using the non-sintered nickel positive electrode plate b produced as described above will be described with reference to FIG.
A non-sintered nickel positive electrode plate b produced as described above and a negative electrode plate 20 in which a hydrogen storage alloy is applied to a punching metal (core body) 21 are interposed through a separator 30 made of polypropylene nonwoven fabric, and the outermost periphery is a negative electrode. A spiral electrode body E is produced by winding in a spiral shape so as to form the plate 20. At this time, it winds so that the upper end part of the strip | belt-shaped metal thin plate 11a of the non-sintering-type nickel positive electrode plate b may protrude from the separator 30. FIG. The diameter of the spiral electrode body E wound in a spiral shape was about 22 mm. The core 21 of the negative electrode plate 20 is provided with a negative electrode current collecting tab 21a.
[0074]
Next, the upper end portion of the strip-shaped metal thin plate 11a of the non-sintered nickel positive electrode plate b and the current collecting portion 41 of the positive electrode current collector 40 formed in the same manner as in the first to seventh embodiments are used. Resistance welding is performed in the same manner as in No.7. In this welding process, the strip-shaped metal thin plate 11a from the end of winding of the non-sintered nickel positive electrode plate b to 100 mm is not welded to the current collector 41 of the positive electrode current collector 40.
[0075]
Next, a bottomed cylindrical metal outer can 70 is prepared, and the spiral electrode body E with the current collector 40 welded as described above is inserted into the metal outer can 70, and an electrolytic solution injection of the current collector 40 is performed. One welding electrode is inserted through the hole 44 and brought into contact with the negative electrode current collecting tab 21a, and the other welding electrode is brought into contact with the bottom of the metal outer can 70 so that the negative electrode current collecting tab 21a and the metal outer can 70 are Spot weld the bottom.
[0076]
On the other hand, a sealing body 60 similar to that of the above-described Examples 1 to 7 is prepared, and the lead-out portion 42 of the positive electrode current collector 40 is brought into contact with the bottom of the lid body of the sealing body 60 so that the lid bottom portion and the lead-out portion 42 are connected. Weld and connect. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel-hydrogen storage battery of Comparative Example 5 having a nominal capacity of 2000 mAH is manufactured.
[0077]
f. Comparative Example 6
Next, a production example of the nickel-hydrogen storage battery of Comparative Example 6 using the non-sintered nickel positive electrode plate b produced as described above will be described with reference to FIG.
A non-sintered nickel positive electrode plate b produced as described above and a negative electrode plate 20 in which a hydrogen storage alloy is applied to a punching metal (core body) 21 are interposed through a separator 30 made of polypropylene nonwoven fabric, and the outermost periphery is a negative electrode. A spiral electrode body F is produced by winding it into a spiral so as to form the plate 20. At this time, it winds so that the lower end part of the strip | belt-shaped metal thin plate 11a of the negative electrode plate 20 may protrude from the separator 30. FIG. Thus, the diameter of the spiral electrode body F wound in a spiral shape was about 22 mm. A positive electrode current collecting tab 11b is welded to the strip-shaped metal thin plate 11a of the non-sintered nickel positive electrode plate b.
[0078]
Next, the negative electrode current collector 50 formed in the same manner as the above-described Examples 1 to 7 and the core 21 of the negative electrode plate 20 of the spiral electrode body F produced as described above, and the above-described Examples 1 to 7 and Similarly, resistance welding is performed. Next, a bottomed cylindrical metal outer can 70 is prepared, and the spiral electrode body F with the current collector 50 welded as described above is inserted into the metal outer can 70, and the central portion of the spiral electrode body F is inserted. One welding electrode is inserted into the gap and brought into contact with the negative electrode current collector 50, and the other welding electrode is brought into contact with the bottom of the metal outer can 70, so that the negative electrode current collector 50 and the bottom of the metal outer can 70 are brought into contact with each other. Spot weld.
[0079]
On the other hand, the sealing body 60 of Examples 1-7 described above is prepared, the current collector tab 11b for positive electrode is brought into contact with the bottom of the lid body of the sealing body 60, and the bottom of the lid body and the current collector tab 11b for positive electrode are welded. Connect. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the metal outer can 70, and the sealing body 60 is placed on the opening 71 of the outer can 70 via the sealing gasket 61. At the same time, the opening 71 is crimped to the sealing body 60 side to seal it. Thereby, the cylindrical nickel-hydrogen storage battery of Comparative Example 6 having a nominal capacity of 2000 mAH is manufactured.
[0080]
3. Activation of nickel-hydrogen storage battery
The 24 types of nickel-hydrogen storage batteries of Examples 1 to 18 and Comparative Examples 1 to 6 manufactured as described above were charged for 16 hours with a charging current of 200 mA (0.1 C), and then rested for 1 hour. Thereafter, the battery is discharged at a discharge current of 400 mA (0.2 C) until the final voltage becomes 1.0 V, and then rested for 1 hour. This charge / discharge is repeated at room temperature for 3 cycles to activate the 24 types of nickel-hydrogen storage batteries of Examples 1 to 18 and Comparative Examples 1 to 6.
[0081]
4). High rate discharge test
The 12 types of nickel-hydrogen storage batteries of Examples 1 to 9 and Comparative Examples 1 to 3 manufactured as described above were charged with a charging current of 200 mA (0.1 C) for 16 hours, and then rested for 1 hour. After that, discharging at a discharge current of 10A (5C) until the final voltage becomes 0.5V to perform high rate discharge, and measuring the voltage (working voltage) when the discharge capacity is 50%, The results shown in Table 1 were obtained.
[0082]
[Table 1]
Figure 0003869540
[0083]
As is clear from Table 1 above, when the nickel-hydrogen storage battery of Examples 1-8 using the negative electrode current collector 50 and the nickel-hydrogen storage battery of Comparative Examples 1 and 3 were compared, the nickel of Examples 1-8 -It turns out that the operating voltage of a hydrogen storage battery improves. Further, when the nickel / hydrogen storage battery of Example 9 using the negative electrode current collector tab 21a without using the negative electrode current collector 50 and the nickel / hydrogen storage battery of Comparative Example 2 were compared, the nickel / hydrogen storage battery of Example 9 was compared. It can be seen that the operating voltage is improved. As described above, when the current collecting tab 12 is welded to the unconnected portion 11a (see FIG. 1A) of the positive electrode plate 10 with the positive electrode current collector 40, as shown in FIG. Since the current distribution at is uniform, the voltage drop is reduced and the operating voltage during high rate discharge is improved.
[0084]
Further, the nickel-hydrogen storage battery of Example 3 using the nickel positive electrode plate a3 and using the negative electrode current collector 50, and using the negative electrode tab 21a without using the negative electrode current collector 50 while using the nickel positive electrode plate a3. When compared with the nickel-hydrogen storage battery of Example 9, it can be seen that the operating voltage of the nickel-hydrogen storage battery of Example 3 is improved. From this, it can be seen that the operating voltage is improved when the negative electrode current collector 50 is used.
[0085]
The operating voltage of the nickel-hydrogen storage battery of Example 3 using the nickel positive electrode plate a3 is 1.25 V, and the operating voltage of the nickel-hydrogen storage battery of Example 8 using the nickel positive electrode plate a3 is also equal to 1.25 V. . Therefore, after welding the positive electrode current collector 40 to the unfilled portion 11a of the electrode body A, the current collecting tab 12 is welded onto the current collecting portion 41 of the positive electrode current collector 40 (Example 3). Alternatively, after the current collecting tab 12 is welded to the current collecting portion 41 of the positive electrode current collector 40, the positive electrode current collector 40 is welded to the unfilled portion 11a of the electrode body A (Example 8). It turns out that it may be adopted.
[0086]
Furthermore, the operating voltage of the nickel-hydrogen storage batteries of Examples 3 and 8 in which the current collecting tab 12 was welded at a position 33 mm (x = 33 mm) from the winding end when the coil was wound in a spiral shape was the highest ( 1.25V), but it can be seen that the operating voltage decreases as the position of the current collecting tab 12 is shifted to both sides. Accordingly, when the current collecting tab 12 is provided in a position of 0 to 50 mm from the winding end when the current collecting tab 12 is wound in a spiral shape, a high operating voltage is obtained. It is preferable to make it within 1/2 of the end of winding.
[0087]
Similarly, 12 types of nickel-hydrogen storage batteries of Examples 10 to 18 and Comparative Examples 4 to 6 manufactured as described above were charged for 16 hours at a charging current of 200 mA (0.1 C), and then rested for 1 hour. Let After that, discharging at a discharge current of 10A (5C) until the final voltage becomes 0.5V to perform high rate discharge, and measuring the voltage (working voltage) when the discharge capacity is 50%, The results shown in Table 2 were obtained.
[0088]
[Table 2]
Figure 0003869540
[0089]
As is clear from Table 2 above, when the nickel-hydrogen storage battery of Examples 10-17 using the negative electrode current collector 50 and the nickel-hydrogen storage batteries of Comparative Examples 4 and 6 were compared, the nickel of Examples 10-17 -It turns out that the operating voltage of a hydrogen storage battery improves. Further, when the nickel-hydrogen storage battery of Example 18 and the nickel-hydrogen storage battery of Comparative Example 5 using the negative electrode current collector tab 21a without using the negative electrode current collector 50 were compared, the nickel-hydrogen storage battery of Example 18 was compared. It can be seen that the operating voltage is improved. As described above, when the current collecting tab 12 is welded to the strip-shaped metal thin plate 11b (see FIG. 1A) of the positive electrode current collector 40 of the positive electrode plate 10, as shown in FIG. Therefore, the voltage drop is reduced and the operating voltage during high rate discharge is improved.
[0090]
Further, the nickel-hydrogen storage battery of Example 12 using the nickel positive electrode plate b3 and using the negative electrode current collector 50, and the implementation using the negative electrode tab 21a without using the negative electrode current collector 50 while using the nickel positive electrode plate b3. When compared with the nickel-hydrogen storage battery of Example 18, it can be seen that the operating voltage of the nickel-hydrogen storage battery of Example 12 is improved. From this, it can be seen that the operating voltage is improved when the negative electrode current collector 50 is used.
[0091]
In addition, the operating voltage of the nickel-hydrogen storage battery of Example 12 using the nickel positive electrode plate a3 is 1.25 V, and the operating voltage of the nickel-hydrogen storage battery of Example 17 using the nickel positive electrode plate a3 is 1.26 V, which is almost equal. equal. From this, after welding the positive electrode current collector 40 to the strip-shaped metal thin plate 11a of the electrode body A, the current collecting tab 12 is welded onto the current collecting part 41 of the positive electrode current collector 40 (Example 3). Alternatively, after the current collecting tab 12 is welded to the current collecting portion 41 of the positive electrode current collector 40, the positive electrode current collector 40 is welded to the strip metal thin plate 11a of the electrode body A (Example 8). It turns out that it may be adopted.
[0092]
In addition, the operating voltage of the nickel-hydrogen storage battery of Example 17 in which the current collecting tab 12 was welded at a position 33 mm (x = 33 mm) from the winding end when wound in a spiral shape was the highest (1.26 V). However, it can be seen that the operating voltage decreases as the position of the current collecting tab 12 is shifted to both sides. Accordingly, when the current collecting tab 12 is provided in a position of 0 to 50 mm from the winding end when the current collecting tab 12 is wound in a spiral shape, a high operating voltage is obtained. It is preferable to make it within 1/2 of the end of winding.
[0093]
Further, when the nickel-hydrogen storage batteries of Examples 1 to 9 in Table 1 and the nickel-hydrogen storage batteries of Examples 10 to 18 in Table 2 are compared, the operating voltage is not particularly different, but Table 1 When the nickel / hydrogen storage batteries of Comparative Examples 1 to 3 and the nickel / hydrogen storage batteries of Comparative Examples 4 to 6 in Table 2 are compared, the operating voltage of the nickel / hydrogen storage batteries of Comparative Examples 4 to 6 is reduced. I understand. From this, it can be seen that the nickel / hydrogen storage battery of Examples 10 to 18, that is, the nickel / hydrogen storage battery using the non-sintered nickel positive electrode plate is more effective.
[0094]
In the embodiment described above, an example in which the present invention is applied to a nickel-hydrogen storage battery has been described. However, the present invention is not limited thereto, and positive / negative plates such as a nickel-cadmium storage battery, a nickel-zinc storage battery, and a lithium ion battery are used. The same effect can be obtained with any battery as long as it is a cylindrical battery provided with a spiral electrode body wound spirally through a separator.
[Brief description of the drawings]
FIG. 1 is a view showing a nickel positive electrode plate of the present invention.
FIG. 2 shows a positive electrode current collector tab in which a positive electrode current collector and a negative electrode current collector are welded to an electrode body obtained by winding the positive and negative electrode plates of the battery of the present invention in a spiral shape, and then stored in a metal outer can. It is a figure which shows the state which welded the positive electrode electrical power collector.
FIG. 3 welds a positive electrode current collector tab and a positive electrode current collector of a spiral electrode body in which the positive and negative electrode plates of the battery of the present invention are wound in a spiral shape, and the positive electrode current collector and the negative electrode current collector are welded to the electrode body. It is a figure which shows the state accommodated in the metal exterior can after welding a body.
FIG. 4 shows a cathode current collector welded to a spiral electrode body in which the positive and negative electrode plates of the battery of the present invention are wound in a spiral shape and housed in a metal cylindrical outer can; It is a figure which shows the state which welded the positive electrode electrical power collector.
FIG. 5 shows a metal cylindrical outer can after a positive electrode current collector and a negative electrode current collector are welded to a spiral electrode body in which positive and negative electrode plates of a conventional battery (comparative example battery) are spirally wound. It is a figure which shows the state accommodated in the inside.
FIG. 6 shows a conventional battery (comparative battery), a positive electrode current collector welded to a spiral electrode body obtained by spirally winding positive and negative electrode plates, and housed in a metal cylindrical outer can; It is a figure which shows the state which welded the negative electrode current collection tab and metal cylindrical outer cans.
FIG. 7 is a view showing a state in which a spiral electrode body obtained by spirally winding positive and negative electrode plates having current collecting tabs of a conventional battery (comparative battery) is housed in a metal cylindrical outer can. It is.
FIG. 8 is a view showing a conventional nickel positive electrode plate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Nickel positive electrode plate, 11 ... Active material holding body (sintered substrate or foam nickel), 11a ... Active material unfilled part or strip-shaped metal thin plate, 11b ... Positive electrode current collection tab, 12 ... Current collection tab, 20 ... Negative electrode plate 21a ... negative electrode current collector tab, 30 ... separator, 40 ... positive electrode current collector, 41 ... current collector, 42 ... lead-out part, 50 ... negative electrode current collector, 60 ... sealing body, 70 ... metal cylindrical outer can , 71 ... opening

Claims (11)

正・負極板をセパレータを介して渦巻状に巻回した渦巻状電極体を負極端子を兼ねる金属製円筒状外装缶内に備えた円筒状電池であって、
前記渦巻状電極体の前記正極板上端部はその一部を除いて正極端子を兼ねる封口体に接続される正極集電体に接続され、かつこの正極集電体に接続されない正極板上端部に集電タブを備え、
前記渦巻状電極体の前記負極板下端部は前記負極端子を兼ねる金属製円筒状外装缶に電気的に接続され、
前記集電タブは前記正極集電体に接続されたことを特徴とする渦巻状電極体を備えた円筒状電池。
A cylindrical battery provided with a spiral electrode body in which a positive and negative electrode plate is spirally wound through a separator in a metal cylindrical outer can also serving as a negative electrode terminal,
The upper end portion of the positive electrode plate of the spiral electrode body is connected to a positive electrode current collector connected to a sealing body which also serves as a positive electrode terminal except for a part thereof, and is connected to an upper end portion of the positive electrode plate which is not connected to the positive electrode current collector. With a current collector tab,
The lower end of the negative electrode plate of the spiral electrode body is electrically connected to a metal cylindrical outer can that also serves as the negative electrode terminal,
A cylindrical battery having a spiral electrode body, wherein the current collecting tab is connected to the positive electrode current collector.
前記渦巻状電極体の前記負極板下端部に負極集電体を備え、この負極集電体は同負極板下端部に接続されるとともに前記負極端子を兼ねる金属製円筒状外装缶に接続されたことを特徴とする請求項1に記載の渦巻状電極体を備えた円筒状電池。A negative electrode current collector is provided at the lower end portion of the negative electrode plate of the spiral electrode body, and the negative electrode current collector is connected to the lower end portion of the negative electrode plate and to a metal cylindrical outer can that also serves as the negative electrode terminal. A cylindrical battery comprising the spiral electrode body according to claim 1. 前記集電タブは前記正極集電体に接続されない部分の前記渦巻状に巻回した巻終わり端部から1/2以内の位置としたことを特徴とする請求項1または請求項2に記載の渦巻状電極体を備えた円筒状電池。The said current collection tab was made into the position within 1/2 from the winding end end part wound in the said spiral shape of the part which is not connected to the said positive electrode electrical power collector. A cylindrical battery provided with a spiral electrode body. 前記円筒状電池はアルカリ蓄電池であることを特徴とする請求項1から請求項3のいずかに記載の渦巻状電極体を備えた円筒状電池。The cylindrical battery having a spiral electrode body according to any one of claims 1 to 3, wherein the cylindrical battery is an alkaline storage battery. 前記正極板は非焼結ニッケル正極板であることを特徴とする請求項4に記載の渦巻状電極体を備えた円筒状電池。The cylindrical battery with a spiral electrode body according to claim 4, wherein the positive electrode plate is a non-sintered nickel positive electrode plate. 正・負極板をセパレータを介して渦巻状に巻回した渦巻状電極体を負極端子を兼ねる金属製円筒状外装缶内に挿入して製造する円筒状電池の製造方法であって、
前記正極板上端部の前記渦巻状電極体としたときに正極端子を兼ねる封口体に接続される正極集電体に接続されない部位に集電タブを溶接する集電タブ溶接工程と、
前記渦巻状電極体の前記正極板上端部をその一部を除いて前記正極集電体に溶接する正極集電体溶接工程と、
前記正極板上端部に溶接された集電タブを前記正極集電体に溶接する集電タブ−正極集電体溶接工程と、
前記正極集電体が溶接された渦巻状電極体を前記負極端子を兼ねる金属製円筒状外装缶内に挿入する電極体挿入工程と、
前記渦巻状電極体の前記負極板下端部を前記金属製円筒状外装缶の底部に電気的に接続する接続工程と、
前記正極集電体を正極端子を兼ねる封口体に溶接する封口体溶接工程とを備えたことを特徴とする渦巻状電極体を備えた円筒状電池の製造方法。
A method of manufacturing a cylindrical battery, which is manufactured by inserting a spiral electrode body in which a positive and negative electrode plate is spirally wound through a separator into a metal cylindrical outer can also serving as a negative electrode terminal,
A current collecting tab welding step of welding a current collecting tab to a portion not connected to a positive electrode current collector connected to a sealing body that also serves as a positive electrode terminal when the spiral electrode body is formed on the upper end portion of the positive electrode plate;
A positive electrode current collector welding step of welding the positive electrode plate upper end of the spiral electrode body to the positive electrode current collector excluding a part thereof;
Current collector tab-positive electrode current collector welding step for welding the current collector tab welded to the upper end of the positive electrode plate to the positive electrode current collector;
An electrode body insertion step of inserting the spiral electrode body to which the positive electrode current collector is welded into a metal cylindrical outer can also serving as the negative electrode terminal;
A connecting step of electrically connecting the lower end of the negative electrode plate of the spiral electrode body to the bottom of the metal cylindrical outer can;
A sealing body welding step of welding the positive electrode current collector to a sealing body that also serves as a positive electrode terminal. A method for producing a cylindrical battery having a spiral electrode body.
正・負極板をセパレータを介して渦巻状に巻回した渦巻状電極体を負極端子を兼ねる金属製円筒状外装缶内に挿入して製造する円筒状電池の製造方法であって、
前記正極板上端部の前記渦巻状電極体としたときに正極端子を兼ねる封口体に接続される正極集電体に接続されない部位に集電タブを溶接する集電タブ溶接工程と、
前記正極板上端部に溶接された集電タブを前記正極集電体に溶接する集電タブ−正極集電体溶接工程と
前記渦巻状電極体の前記正極板上端部を前記集電タブが溶接された正極集電体に溶接する正極集電体溶接工程と、
前記正極集電体をその上端部に溶接した渦巻状電極体を前記負極端子を兼ねる金属製円筒状外装缶内に挿入する電極体挿入工程と、
前記正極集電体の集電部を正極端子を兼ねる封口体に溶接する封口体溶接工程とを備えたことを特徴とする渦巻状電極体を備えた円筒状電池の製造方法。
A method of manufacturing a cylindrical battery, which is manufactured by inserting a spiral electrode body in which a positive and negative electrode plate is spirally wound through a separator into a metal cylindrical outer can also serving as a negative electrode terminal,
A current collecting tab welding step of welding a current collecting tab to a portion not connected to a positive electrode current collector connected to a sealing body that also serves as a positive electrode terminal when the spiral electrode body is formed on the upper end portion of the positive electrode plate;
Current collector tab for welding current collector tab welded to upper end of positive electrode plate to positive electrode current collector-Positive electrode current collector welding process, and current collector tab welds upper end of positive electrode plate of spiral electrode body A positive electrode current collector welding step of welding to the positive electrode current collector,
An electrode body insertion step of inserting a spiral electrode body welded to the upper end portion of the positive electrode current collector into a metal cylindrical outer can that also serves as the negative electrode terminal;
A sealing body welding step of welding a current collecting portion of the positive electrode current collector to a sealing body that also serves as a positive electrode terminal. A method for producing a cylindrical battery having a spiral electrode body.
前記電極体挿入工程前に、前記渦巻状電極体の前記負極板下端部を負極集電体に溶接する負極集電体溶接工程とを備えるとともに、
前記電極体挿入工程後に、前記負極集電体を前記金属製円筒状外装缶の底部に溶接する外装缶溶接工程とを備えたことを特徴とする請求項6または請求項7に記載の渦巻状電極体を備えた円筒状電池の製造方法。
A negative electrode current collector welding step of welding the lower end of the negative electrode plate of the spiral electrode body to a negative electrode current collector before the electrode body insertion step;
The spiral can according to claim 6 or 7, further comprising an outer can welding step of welding the negative electrode current collector to a bottom portion of the metal cylindrical outer can after the electrode body inserting step. A method for producing a cylindrical battery provided with an electrode body.
前記集電タブは前記正極集電体に接続されない部分の前記渦巻状に巻回した巻終わり端から1/2以内の位置としたことを特徴とする請求項6から請求項8のいずれかに記載の渦巻状電極体を備えた円筒状電池の製造方法。The said current collection tab was made into the position within 1/2 from the winding end end wound in the said spiral shape of the part which is not connected to the said positive electrode electrical power collector. The manufacturing method of the cylindrical battery provided with the spiral electrode body of description. 前記円筒状電池はアルカリ蓄電池であることを特徴とする請求項6から請求項9のいずかに記載の渦巻状電極体を備えた円筒状電池の製造方法。The method for manufacturing a cylindrical battery having a spiral electrode body according to any one of claims 6 to 9, wherein the cylindrical battery is an alkaline storage battery. 前記正極板は非焼結ニッケル正極板であることを特徴とする請求項10に記載の渦巻状電極体を備えた円筒状電池の製造方法。The method of manufacturing a cylindrical battery having a spiral electrode body according to claim 10, wherein the positive electrode plate is a non-sintered nickel positive electrode plate.
JP32913597A 1997-11-28 1997-11-28 Cylindrical battery with spiral electrode body and method for manufacturing the same Expired - Fee Related JP3869540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32913597A JP3869540B2 (en) 1997-11-28 1997-11-28 Cylindrical battery with spiral electrode body and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32913597A JP3869540B2 (en) 1997-11-28 1997-11-28 Cylindrical battery with spiral electrode body and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11162447A JPH11162447A (en) 1999-06-18
JP3869540B2 true JP3869540B2 (en) 2007-01-17

Family

ID=18218029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32913597A Expired - Fee Related JP3869540B2 (en) 1997-11-28 1997-11-28 Cylindrical battery with spiral electrode body and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3869540B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649698B2 (en) * 2000-02-15 2011-03-16 パナソニック株式会社 Secondary battery
JP4606079B2 (en) * 2004-07-21 2011-01-05 三洋電機株式会社 battery
JP4610395B2 (en) * 2005-03-31 2011-01-12 三洋電機株式会社 battery
JP2010055865A (en) * 2008-08-27 2010-03-11 Sanyo Electric Co Ltd Cylindrical secondary battery

Also Published As

Publication number Publication date
JPH11162447A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
JP3819570B2 (en) Cylindrical alkaline storage battery using non-sintered electrodes
US4929519A (en) Wound electrode assembly for an electrochemical cell
JP5018087B2 (en) An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
WO2006059733A1 (en) Sealed cell, manufacturing method thereof, and battery formed by a plurality of sealed cells
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP3695978B2 (en) Alkaline storage battery with spiral electrode body
JPH10125348A (en) Battery
JP5016236B2 (en) battery
JP3869540B2 (en) Cylindrical battery with spiral electrode body and method for manufacturing the same
JP2002298906A (en) Nickel-hydrogen secondary battery
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
JP2000323117A (en) Cylindrical storage battery
JP3649909B2 (en) battery
JP3738125B2 (en) Alkaline storage battery using non-sintered electrode and method for manufacturing the same
EP2159861A1 (en) Secondary battery with a spirally-rolled electrode group
JP2000251871A (en) Alkaline secondary battery
JP2002367607A (en) Non-sintered electrode for alkali storage battery, and alkali storage battery using the same
JP3913384B2 (en) Alkaline storage battery
JP2002289170A (en) Alkali secondary battery
JP2009245771A (en) Alkaline storage battery and method of manufacturing the same
JP2000260416A (en) Manufacture of battery
JP2011008930A (en) Cylindrical type alkaline storage battery
JP2000113901A (en) Alkaline secondary battery
JP2001126710A (en) Alkaline storage battery and method of manufacturing the same
JPS61259454A (en) Manufacture of battery plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees