JP2002367607A - Non-sintered electrode for alkali storage battery, and alkali storage battery using the same - Google Patents

Non-sintered electrode for alkali storage battery, and alkali storage battery using the same

Info

Publication number
JP2002367607A
JP2002367607A JP2001169614A JP2001169614A JP2002367607A JP 2002367607 A JP2002367607 A JP 2002367607A JP 2001169614 A JP2001169614 A JP 2001169614A JP 2001169614 A JP2001169614 A JP 2001169614A JP 2002367607 A JP2002367607 A JP 2002367607A
Authority
JP
Japan
Prior art keywords
storage battery
electrode
active material
negative electrode
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001169614A
Other languages
Japanese (ja)
Inventor
Toshihiro Nakai
敏浩 中井
Mitsuhiro Kishimi
光浩 岸見
Hiroshi Fukunaga
浩 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001169614A priority Critical patent/JP2002367607A/en
Publication of JP2002367607A publication Critical patent/JP2002367607A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an non-sintered electrode for an alkali storage battery from which, activator does not fall off, with excellent productivity and low production cost, with long life, suitable for large current charging, and to provide an alkali storage battery using the above electrode. SOLUTION: A boundary part 4 between an activator painted part 2 and an exposed part 3 to which, activator is not painted, is coated by a coating material 5 made by resin and the like. By the above, the generation of short circuit, caused by the fall-off of activator adjacent to the exposed part, is prevented, and the alkali storage battery with long life and low cost, suitable for large current discharging, can be provided with a good yield.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属多孔体基板に
活物質を充填してなるアルカリ蓄電池用非焼結式電極
と、これを用いたアルカリ蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-sintered electrode for an alkaline storage battery formed by filling a porous metal substrate with an active material, and an alkaline storage battery using the same.

【0002】[0002]

【従来の技術】ポータブル電源等に汎用されているアル
カリ蓄電池には、本発明に係る図2に示すごとく、シー
ト状の正極10および負極11をこれらの間にセパレー
タ12を配置した状態で渦巻状に捲回してなる捲回体電
極群を電極体として用いたものがある。この種のアルカ
リ蓄電池では、捲回体電極群の上下端部の一部を集電端
子23・24と接続して電流を取り出しているが、例え
ば電動工具に用いられるアルカリ蓄電池においては10
A以上、場合によっては50A程度の大電流で使用され
ることがあるため、その内部抵抗を小さくする必要があ
る。
2. Description of the Related Art As shown in FIG. 2 according to the present invention, an alkaline storage battery generally used for a portable power supply or the like has a sheet-like positive electrode 10 and a negative electrode 11 in a spiral shape with a separator 12 interposed therebetween. In which a wound body electrode group formed by winding the above is used as an electrode body. In this type of alkaline storage battery, a part of the upper and lower ends of the wound body electrode group is connected to the current collecting terminals 23 and 24 to extract current. For example, in an alkaline storage battery used for a power tool, 10
A or more, and sometimes a large current of about 50 A is used, so that its internal resistance needs to be reduced.

【0003】そこで、Ni−Cd電池などでは、内部抵
抗を小さくするために、捲回体電極群を構成している正
極10および負極11の各所定の端部に集電端子23・
24を5点以上の多数点で溶接する方法が採用されてい
る。これは、電極10・11の捲回方向に対して電流の
取り出し部位を多く設けることにより、電極各部の抵抗
が比較的均一になるからである。このNi−Cd電池や
ニッケル水素蓄電池の負極は、パンチングメタル等の金
属板や金属箔を基材とし、この基材に活物質とバインダ
ー樹脂とを含んだペーストを塗布して作製されている。
Therefore, in Ni-Cd batteries and the like, in order to reduce the internal resistance, the current collecting terminals 23 and 23 are provided at predetermined ends of the positive electrode 10 and the negative electrode 11 constituting the wound electrode group.
24 is welded at five or more points. This is because the resistance of each part of the electrode becomes relatively uniform by providing a large number of current extraction sites in the winding direction of the electrodes 10 and 11. The negative electrode of this Ni-Cd battery or nickel-metal hydride storage battery is produced by applying a paste containing an active material and a binder resin to a metal plate or a metal foil such as a punching metal as a base material.

【0004】従来のNi−Cd電池やニッケル水素蓄電
池の負極の集電端子との結合部を図3に示す。そこで
は、金属板や金属箔などの基材1の両面上に、少なくと
もその下端部を除いて負極活物質とバインダー樹脂とを
含む負極合剤含有ペーストを塗布して、負極合剤層2を
形成している。下端部においては、負極合剤層2を形成
せずに基材1を露出させて露出部3としたのは、集電端
子24を溶接する際にスパークが発生するのを防ぐため
である。この露出部3の形成は、一旦基材1の全面に負
極合剤含有ペーストを塗布して負極合剤層2を形成した
後、基材1の下端部の負極合剤層2を除去することによ
って行われる。この負極合剤層2の除去は、ブラシで負
極合剤含有ペーストをこすり落としたり、金属刃によっ
て負極合剤含有ペーストを削ぎ落としたりするなどの方
法で行われる。
[0004] Fig. 3 shows a joint of a negative electrode of a conventional Ni-Cd battery or nickel-metal hydride battery with a current collecting terminal. There, a negative electrode mixture-containing paste containing a negative electrode active material and a binder resin is applied on both surfaces of a base material 1 such as a metal plate or a metal foil, except for at least the lower end thereof, to form a negative electrode mixture layer 2. Has formed. The reason why the base material 1 is exposed at the lower end portion without forming the negative electrode mixture layer 2 to form the exposed portion 3 is to prevent generation of a spark when the current collecting terminal 24 is welded. The formation of the exposed portion 3 is performed by first applying a negative electrode mixture-containing paste to the entire surface of the substrate 1 to form the negative electrode mixture layer 2, and then removing the negative electrode mixture layer 2 at the lower end of the substrate 1. Done by The removal of the negative electrode mixture layer 2 is performed by a method such as rubbing off the negative electrode mixture-containing paste with a brush or scraping off the negative electrode mixture-containing paste with a metal blade.

【0005】[0005]

【発明が解決しようとする課題】上述のような方法で負
極合剤層2を除去すると、露出部3に隣接する負極合剤
層2には物理的に大きな力が働くため、この部分2aの
負極合剤層2と基材1との接着強度が低下し、負極合剤
層2の一部が脱落しやすい。負極合剤層2すなわち活物
質が脱落すると、脱落した活物質が電池内でセパレータ
(図2参照)を貫通して電池の短絡を引き起こす。
When the negative electrode mixture layer 2 is removed by the above-described method, a large force is physically applied to the negative electrode mixture layer 2 adjacent to the exposed portion 3. The adhesive strength between the negative electrode mixture layer 2 and the substrate 1 is reduced, and a part of the negative electrode mixture layer 2 is likely to fall off. When the negative electrode mixture layer 2, that is, the active material falls off, the dropped active material penetrates through the separator (see FIG. 2) in the battery and causes a short circuit of the battery.

【0006】本発明は、上記問題を解決するためになさ
れたものであり、活物質の脱落がなく、製造コストと生
産性に優れ、長寿命で大電流充放電に適したアルカリ蓄
電池用非焼結式電極、およびこの電極を用いたアルカリ
蓄電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has no loss of active material, is excellent in manufacturing cost and productivity, has a long life, and is suitable for non-sintering of alkaline storage batteries suitable for large current charging and discharging. An object of the present invention is to provide a combined electrode and an alkaline storage battery using the electrode.

【0007】[0007]

【課題を解決するための手段】本発明者らは、露出部と
隣接する負極合剤層部分を、樹脂でコーティングすれ
ば、上記課題を解決できることを見出して本発明をする
に至った。
Means for Solving the Problems The present inventors have found that the above problems can be solved by coating the negative electrode mixture layer portion adjacent to the exposed portion with a resin, and have accomplished the present invention.

【0008】すなわち本発明は、図1に示すごとく、基
材1である金属板又は金属箔の少なくとも一方の面上
に、活物質が塗布されている活物質塗布部2と、活物質
が塗布されていない露出部3とが形成されているアルカ
リ蓄電池用非焼結式電極11を対象とする。そして、前
記活物質塗布部2と露出部3との境界部4が、融点が5
0〜160℃である樹脂でコーティングされていること
を特徴とする。
That is, according to the present invention, as shown in FIG. 1, an active material application section 2 on which an active material is applied is provided on at least one surface of a metal plate or a metal foil serving as a base material 1. The non-sintered electrode 11 for an alkaline storage battery in which the exposed portion 3 not formed is formed. The boundary portion 4 between the active material application portion 2 and the exposed portion 3 has a melting point of 5
It is characterized by being coated with a resin at 0 to 160 ° C.

【0009】このように活物質塗布部2と露出部3との
境界部4を樹脂のコーティング材5でコーティングすれ
ば、活物質塗布部2と基材1との接着性が向上するの
で、露出部3に隣接する活物質の脱落に起因する短絡を
防ぐことができる。コーティング材5である樹脂の融点
を50℃以上、160℃以下としたのは、50℃未満で
は電池使用中に溶出するおそれがあり、160℃を超え
るとコーディング処理時に活物質が分解あるいは酸化す
るおそれがあることに拠る。
If the boundary portion 4 between the active material application portion 2 and the exposed portion 3 is coated with the resin coating material 5 as described above, the adhesiveness between the active material application portion 2 and the base material 1 is improved. It is possible to prevent a short circuit due to the fall of the active material adjacent to the portion 3. The reason why the melting point of the resin as the coating material 5 is set to 50 ° C. or higher and 160 ° C. or lower is that if the temperature is lower than 50 ° C., the resin may be eluted during use of the battery. It depends on the fear.

【0010】前記樹脂は、耐アルカリ性を有する熱可塑
性樹脂であって、ポリオレフィン樹脂、ポリアミド樹脂
などを用いることができる。要は耐アルカリ性であり、
融点が50〜160℃の範囲内の樹脂であればよい。
The resin is a thermoplastic resin having alkali resistance, such as a polyolefin resin or a polyamide resin. The point is alkali resistance,
Any resin having a melting point in the range of 50 to 160 ° C may be used.

【0011】また本発明は、図2に示すごとく、正・負
極10・11をセパレータ12を介して渦巻状に捲回し
た渦巻状電極体が、電解液13とともに電池ケース14
内に収容されているアルカリ蓄電池を対象とする。そこ
では、前記渦巻状電極体の正極10の上端部は、正極集
電端子23に溶接接続されており、前記渦巻状電極体の
負極11の下端部は、負極集電端子24に溶接接続され
ている。そして、前記正極10および負極11の少なく
とも一方を、上記いずれかの請求項記載のアルカリ蓄電
池用非焼結式電極としている。
In addition, as shown in FIG. 2, the present invention provides a spirally wound electrode body in which positive and negative electrodes 10 and 11 are spirally wound via a separator 12 together with an electrolyte 13 and a battery case 14.
It is intended for alkaline storage batteries housed inside. There, the upper end of the positive electrode 10 of the spiral electrode body is welded to a positive current collecting terminal 23, and the lower end of the negative electrode 11 of the spiral electrode body is welded to a negative current collecting terminal 24. ing. Then, at least one of the positive electrode 10 and the negative electrode 11 is a non-sintered electrode for an alkaline storage battery according to any one of the above claims.

【0012】[0012]

【発明の実施の形態】基材の幅方向(上下方向)の全範
囲にわたって活物質が塗布されていると(すなわち、合
剤層が形成されていると)、集電端子と電極とを溶接す
る際にスパークが生じるおそれがある。このため、図1
に示すごとく、電極11の幅方向端部には、活物質が塗
布されずに基材1自身が露出した露出部3を形成する必
要がある。本発明では、活物質を塗布してなる活物質塗
布部2と活物質が除去された露出部3との境界部4を、
融点が50〜160℃である樹脂を素材とするコーティ
ング材5でコーティングしてあることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION When an active material is applied over the entire width (vertical direction) of a base material (ie, when a mixture layer is formed), a current collecting terminal and an electrode are welded. There is a possibility that a spark will be generated when performing the operation. Therefore, FIG.
As shown in (1), it is necessary to form an exposed portion 3 in which the active material is not applied and the substrate 1 itself is exposed at the widthwise end of the electrode 11. In the present invention, the boundary 4 between the active material application portion 2 formed by applying the active material and the exposed portion 3 from which the active material has been removed,
It is characterized by being coated with a coating material 5 made of a resin having a melting point of 50 to 160 ° C.

【0013】融点が50℃未満では、電池の使用中に溶
出するおそれがあり、本発明の効果が期待できない。1
60℃を超えると、コーティングした際に活物質の分解
あるいは酸化が生じるおそれがある。また電池の化成条
件によっては、環境温度を70℃にすることがあるた
め、上記コーティング材の融点は、70℃以上であるこ
とが好ましい。電池活物質の酸化などの変性を完全に防
ぐためには、120℃以下であることが好ましい。
If the melting point is less than 50 ° C., the battery may be eluted during use of the battery, and the effects of the present invention cannot be expected. 1
If the temperature exceeds 60 ° C., the active material may be decomposed or oxidized when coated. Further, the ambient temperature may be set to 70 ° C. depending on the formation conditions of the battery, so that the melting point of the coating material is preferably 70 ° C. or higher. In order to completely prevent denaturation such as oxidation of the battery active material, the temperature is preferably 120 ° C. or lower.

【0014】コーティング材として樹脂を用いる場合に
は、例えば、ポリオレフィン樹脂、ポリアミド樹脂など
を用いることができる。
When a resin is used as the coating material, for example, a polyolefin resin, a polyamide resin or the like can be used.

【0015】上記コーティング材5は、図1に示すごと
く、露出部3に隣接する活物質塗布部2を1mm以上、2
mm以下の幅で覆うように塗着させることが望ましい。こ
れは1mm未満の幅では、脱落しやすくなっている活物質
全体をコーティングすることができず、2mmを超えると
活物質を覆う面積が多くなり、塗着されたコーティング
材5によって電池反応が阻害され、電池容量、寿命等の
低下を招くことに拠る。また、コーティング材5は、電
極幅方向(図1では上下方向)端部0.5mm以内には塗布
しないようにした。これは、電極幅方向端部までコーテ
ィング材5を塗着すると、捲回体電極群を作製して集電
端子24(図2参照)を溶接する際、塗着されたコーテ
ィング材により、接触抵抗が増加してスパークを生じセ
パレータが溶解して短絡が発生しやすくなるためであ
る。
As shown in FIG. 1, the coating material 5 covers the active material coated portion 2 adjacent to the exposed portion 3 by 1 mm or more.
It is desirable to apply so as to cover with a width of not more than mm. This is because when the width is less than 1 mm, the entire active material that is easily dropped cannot be coated. When the width exceeds 2 mm, the area covering the active material increases, and the applied coating material 5 inhibits the battery reaction. This leads to a reduction in battery capacity and life. Also, the coating material 5 was not applied within 0.5 mm of the end in the electrode width direction (vertical direction in FIG. 1). This is because, when the coating material 5 is applied to the end in the electrode width direction, when the wound electrode group is formed and the current collecting terminal 24 (see FIG. 2) is welded, the contact resistance is increased by the applied coating material. Is increased, sparks are generated, the separator is dissolved, and a short circuit is likely to occur.

【0016】《アルカリ蓄電池の構造》本発明は、例え
ば図2に示すような二次電池に適用される。この二次電
池は、上面が開口する筒形の電池ケース14と、電池ケ
ース14内に装填した、正・負の電極10・11と、電
池ケース1の開口を封止する封口構造とからなる。正極
10と負極11は、セパレータ12を介して渦巻状に捲
回された渦巻状捲回構造の電極体として電解液13とと
もに電池ケース14内に収容されている。この電池で
は、正極10として水酸化ニッケル正極を用いており、
負極11としては図1に示したような本発明のアルカリ
蓄電池用非焼結式電極を渦巻状に捲回したものを用いて
いる。なお、正・負極10・11の両方に、本発明に係
るアルカリ蓄電池用非焼結式電極を適用することも勿論
可能である。
<< Structure of Alkaline Storage Battery >> The present invention is applied to, for example, a secondary battery as shown in FIG. The secondary battery includes a cylindrical battery case 14 having an open upper surface, positive and negative electrodes 10 and 11 loaded in the battery case 14, and a sealing structure for sealing the opening of the battery case 1. . The positive electrode 10 and the negative electrode 11 are housed in a battery case 14 together with an electrolyte 13 as an electrode body having a spirally wound structure wound spirally via a separator 12. In this battery, a nickel hydroxide positive electrode is used as the positive electrode 10,
As the negative electrode 11, a non-sintered electrode for an alkaline storage battery according to the present invention as shown in FIG. 1 which is spirally wound is used. In addition, it is of course possible to apply the non-sintered electrode for an alkaline storage battery according to the present invention to both the positive and negative electrodes 10 and 11.

【0017】封口構造は、外面に露出する端子板19
と、端子板19の下部にあって中央にガス通口25を有
する封口板16と、封口板16および端子板19の周縁
に被さる環状ガスケット21とからなる。電池ケースの
先端には、一段窪んだ溝部20が形成されており、環状
ガスケット21は溝部20から先の部分を内方に締め付
けることによって狭圧されている。端子板19は圧延鋼
製で表面にニッケルメッキが施され、周縁部が鍔状にな
った断面ハット状をしており、その周面二箇所にスリッ
ト19aが形成されている。封口板16は表面にニッケ
ルメッキが施された圧延鋼を素材とし、環状ガスケット
21はナイロンを素材とする。尚、符号26は、封口板
16と、渦巻電極体との間に設けられた絶縁体を示す。
The sealing structure includes a terminal plate 19 exposed on the outer surface.
And a sealing plate 16 below the terminal plate 19 and having a gas passage 25 in the center, and an annular gasket 21 covering the peripheral edges of the sealing plate 16 and the terminal plate 19. At the end of the battery case, a groove 20 is formed, which is recessed one step. The annular gasket 21 is narrowed by tightening the portion ahead of the groove 20 inward. The terminal plate 19 is made of rolled steel, nickel-plated on the surface, has a hat-shaped cross section with a peripheral edge formed in a flange shape, and has slits 19a formed at two locations on the peripheral surface. The sealing plate 16 is made of rolled steel whose surface is plated with nickel, and the annular gasket 21 is made of nylon. Reference numeral 26 denotes an insulator provided between the sealing plate 16 and the spiral electrode body.

【0018】端子板19と封口板16との間には、ガス
通口25を密閉するゴム弁体18が配置されている。ゴ
ム弁体18は、圧縮変形された状態で端子板19と封口
板16との間に配置されて、通常時はその下面が封口板
16と密着している。そして、電池ケース14の内圧が
所定値を超えると、封口板16から押し上げられてガス
通口25を開放し、端子板19のスリット19aからガ
スを放出する。
Between the terminal plate 19 and the sealing plate 16, a rubber valve body 18 that seals the gas passage 25 is arranged. The rubber valve element 18 is arranged between the terminal plate 19 and the sealing plate 16 in a compressed and deformed state, and the lower surface thereof is normally in close contact with the sealing plate 16. When the internal pressure of the battery case 14 exceeds a predetermined value, the battery case 14 is pushed up from the sealing plate 16 to open the gas passage 25 and discharge gas from the slit 19 a of the terminal plate 19.

【0019】リード体22はニッケルまたは表面にニッ
ケルメッキが施された圧延鋼製で、前記封口板16と正
極10とを集電端子(正極集電端子)23を介して接続
する。負極11と電池ケース14の底部とはニッケル製
の集電端子(負極集電端子)24で接続されている。
The lead body 22 is made of nickel or rolled steel having a surface plated with nickel, and connects the sealing plate 16 and the positive electrode 10 via a current collecting terminal (positive current collecting terminal) 23. The negative electrode 11 and the bottom of the battery case 14 are connected by a nickel current collecting terminal (negative current collecting terminal) 24.

【0020】[0020]

【実施例】以下、本発明の実施例を記載して、より具体
的に説明する。ただし、本発明は、これらの実施例のみ
に限定されるものではなく、本発明の思想を逸脱しない
範囲内で適宜変更可能であることはいうまでもない。な
お、以下の実施例において、部とあるのは重量部を意味
し、また、濃度や固溶量などを示す%は、特にその単位
を付記しないかぎり重量%である。
EXAMPLES Examples of the present invention will be described below in more detail. However, it is needless to say that the present invention is not limited to only these examples, and can be appropriately changed without departing from the spirit of the present invention. In the following examples, “parts” means “parts by weight”, and “%” indicating the concentration or the amount of solid solution is “% by weight” unless otherwise specified.

【0021】(実施例1) <負極の作製>負極は以下のようにして作製した。市販
のMm(La、Ce、Nd、Prを含有する)、Ni、
Co、Mn、Al(いずれも純度99重量%以上)の各
試料を、MmNi3.9 Co0.6 Mn0.35Al0.25の組成
になるように高周波溶解炉によって加熱溶解して水素吸
蔵合金を得た。この水素吸蔵合金を機械的に粉砕するこ
とにより、平均粒子径が35μmの水素吸蔵合金粉末を
得た。この水素吸蔵合金粉末100部に、カルボニルニ
ッケル粉末1部、5%ポリ−N−ビニルアセトアミド水
溶液10部および40%スチレン−2−エチルヘキシル
アクリレート共重合体1.7部を添加し混合して、負極合
剤含有ペーストを調製した。この負極合剤含有ペースト
をパンチングメタル基材に塗布、充填し、乾燥して負極
合剤層を形成した後、厚み0.35mmになるよう加圧成形
し、355mm×52mmに裁断してシート状の負極を作製
した。
Example 1 <Preparation of Negative Electrode> A negative electrode was prepared as follows. Commercially available Mm (containing La, Ce, Nd, Pr), Ni,
Each sample of Co, Mn, and Al (all with a purity of 99% by weight or more) was heated and melted by a high-frequency melting furnace so as to have a composition of MmNi 3.9 Co 0.6 Mn 0.35 Al 0.25 to obtain a hydrogen storage alloy. The hydrogen storage alloy was mechanically pulverized to obtain a hydrogen storage alloy powder having an average particle diameter of 35 μm. To 100 parts of this hydrogen storage alloy powder, 1 part of carbonyl nickel powder, 10 parts of a 5% poly-N-vinylacetamide aqueous solution and 1.7 parts of 40% styrene-2-ethylhexyl acrylate copolymer were added and mixed. A mixture-containing paste was prepared. This negative electrode mixture-containing paste is applied to a punched metal substrate, filled and dried to form a negative electrode mixture layer, and then pressure-molded to a thickness of 0.35 mm, and cut into a sheet of 355 mm × 52 mm. Was produced.

【0022】露出部は、金属製の刃で電極幅方向の端部
の一方に幅2mmの部分の負極合剤層をそぎ落とすことに
より形成した。その後、本発明のポリオレフィン樹脂を
バット中に、100℃に加熱して溶解させ、上記露出部
の電極幅方向端部0.5mmを覆うこと無く、且つ負極合剤
層を1mm幅で覆うように塗布した。この電極を常温まで
冷却し、アルカリ蓄電池用非焼結式負極とした。
The exposed portion was formed by scraping off a 2 mm wide portion of the negative electrode mixture layer to one of the ends in the electrode width direction with a metal blade. Thereafter, the polyolefin resin of the present invention is heated and melted at 100 ° C. in a vat so as not to cover the end portion 0.5 mm in the electrode width direction of the exposed portion, and to cover the negative electrode mixture layer with a width of 1 mm. Applied. This electrode was cooled to room temperature to obtain a non-sintered negative electrode for an alkaline storage battery.

【0023】<正極の作製>正極は以下のようにして作
製した。水酸化ニッケル粉末100部に、水酸化コバル
ト粉末1部、カルボキシメチルセルロース粉末0.2部お
よび60%ポリテトラフルオロエチレン1部を添加し混
合して、正極用ペーストを調製した。
<Preparation of Positive Electrode> The positive electrode was prepared as follows. To 100 parts of nickel hydroxide powder, 1 part of cobalt hydroxide powder, 0.2 part of carboxymethylcellulose powder and 1 part of 60% polytetrafluoroethylene were added and mixed to prepare a positive electrode paste.

【0024】金属多孔体基板として、厚さが1.30mm、
幅が120mm、長さが300mmの三次元多孔性発泡ニッ
ケル材を用意し、幅方向端部の端から3mm幅を200μ
mに圧縮し、圧縮部に、幅1.5mm、厚さ150μmのF
e−Niメッキリボンを抵抗溶接した。
The porous metal substrate has a thickness of 1.30 mm,
Prepare a three-dimensional porous nickel foam material having a width of 120 mm and a length of 300 mm.
m, and a 1.5 mm wide, 150 μm thick F
The e-Ni plated ribbon was resistance welded.

【0025】この基材上に上記正極用ペ―ストを塗布
し、85℃で乾燥したのち、総厚が0.62mmとなるよう
にプレスして、シ―ト状物とした後、幅52mmに裁断し
た。また、リボン溶接部の余分な活物質については、圧
縮エアーで除去し、この電極をアルカリ蓄電池用非焼結
式正極とした。
The above-mentioned paste for a positive electrode was applied on this substrate, dried at 85 ° C., pressed to a total thickness of 0.62 mm to form a sheet, and then 52 mm in width. Cut into pieces. Excess active material in the ribbon weld was removed with compressed air, and this electrode was used as a non-sintered positive electrode for alkaline storage batteries.

【0026】<アルカリ蓄電池の作製>前記の正極と負
極をナイロン不織布からなるセパレータを介して捲回
し、得られた捲回体電極群の正極端面及び負極端面に集
電端子ニッケル板(集電端子)を抵抗溶接し、捲回体を
得た。この捲回体を電極缶に入れ、これにアルカリ電解
液(30重量%の水酸化カリウム水溶液1リツトルにL
iOHを17gと酸化亜鉛33gを溶解させた水溶液)
を注入したのち、密封し、40℃で6時間保存し、72
mAで6時間充電した後、720mAで6時間充電し、
720mAで放電した。次に720mAで6時間充電
し、720mAで放電した。この充放電サイクルを放電
容量が一定になるまで繰り返して、ニッケル水素蓄電池
を作製した。
<Preparation of Alkaline Storage Battery> The positive electrode and the negative electrode were wound through a separator made of a non-woven fabric of nylon, and a current-collecting terminal nickel plate (current collector) was placed on the positive and negative electrode end faces of the obtained wound electrode group. The terminal was subjected to resistance welding to obtain a wound body. The wound body was placed in an electrode can, and an alkaline electrolyte (1 liter of a 30% by weight aqueous potassium hydroxide solution) was added thereto.
An aqueous solution in which 17 g of iOH and 33 g of zinc oxide are dissolved)
, Sealed and stored at 40 ° C. for 6 hours.
After charging at mA for 6 hours, charging at 720 mA for 6 hours,
Discharged at 720 mA. Next, the battery was charged at 720 mA for 6 hours and discharged at 720 mA. This charge / discharge cycle was repeated until the discharge capacity became constant, thereby producing a nickel-metal hydride storage battery.

【0027】(比較例1)樹脂の塗着を行わなかった以
外は実施例1と同様にして、ニッケル水素蓄電池を作製
した。
Comparative Example 1 A nickel-metal hydride battery was produced in the same manner as in Example 1 except that no resin was applied.

【0028】(比較例2)樹脂を電極幅方向端部まで覆
うように塗着した以外は、実施例1と同様にして、ニッ
ケル水素蓄電池を作製した。
Comparative Example 2 A nickel-metal hydride storage battery was produced in the same manner as in Example 1 except that the resin was applied so as to cover the end in the electrode width direction.

【0029】(比較例3)露出部に隣接する活物質が、
樹脂により0.5mmだけ覆われるようにした以外は、実施
例1と同様にして、ニッケル水素蓄電池を作製した。
(Comparative Example 3) The active material adjacent to the exposed portion was
A nickel-metal hydride storage battery was produced in the same manner as in Example 1, except that the resin was covered by 0.5 mm.

【0030】(評価)上記の実施例1及び比較例1,2
のニッケル水素蓄電池を1,000個作製した際の各工
程での不良率は表1に示されるとおりであった。
(Evaluation) Example 1 and Comparative Examples 1 and 2
Table 1 shows the percentage defective in each step when 1,000 nickel hydrogen storage batteries were manufactured.

【0031】[0031]

【表1】 [Table 1]

【0032】実施例1では、不良は発生しなかった。比
較例1では、捲回時および集電端子溶接時には短絡は生
じていなかったが、化成時において短絡が生じていた。
これは、コーティング処理を行わなかったために活物質
が脱落し、電極の膨潤により電極間距離が近づいたとき
に、脱落していた活物質が電極に押されてセパレータを
貫通したことに拠ると思われる。比較例2では、コーテ
ィング材を塗着したため、捲回時の活物質の脱落が低減
され短絡はなくなったが、電極幅方向端部までコーティ
ング材を塗着したため、集電端子溶接時に発生したスパ
ークによりセパレータが溶解し、短絡が生じた。化成時
にも、セパレータの溶解部分で短絡が生じていた。比較
例3では活物質部に塗着したコーティング材の幅が少な
すぎたため、捲回時、集電端子溶接時、および化成時に
短絡が生じていた。
In Example 1, no failure occurred. In Comparative Example 1, no short circuit occurred during winding and current collector terminal welding, but a short circuit occurred during chemical formation.
This seems to be due to the fact that the active material was dropped because the coating process was not performed, and when the distance between the electrodes was reduced due to swelling of the electrodes, the dropped active material was pushed by the electrodes and penetrated the separator. It is. In Comparative Example 2, since the coating material was applied, the fall of the active material at the time of winding was reduced and the short circuit was eliminated. However, since the coating material was applied to the end in the electrode width direction, the spark generated at the time of welding of the current collecting terminal was applied. As a result, the separator was dissolved, and a short circuit occurred. Also during the formation, a short circuit occurred in the dissolving portion of the separator. In Comparative Example 3, since the width of the coating material applied to the active material portion was too small, a short circuit occurred during winding, current collecting terminal welding, and formation.

【0033】以上より、樹脂で露出部と塗布部の境界を
コーティングすれば、活物質の脱落を防ぎ得ることがわ
かる。また、未塗布の端部0.5mm以内に樹脂を塗布しな
ければ、集電端子溶接時のスパークによる不良も起こら
ないことがわかる。
From the above, it can be seen that if the boundary between the exposed portion and the coated portion is coated with the resin, the active material can be prevented from falling off. Further, it can be seen that, unless the resin is applied within 0.5 mm of the uncoated end, no failure occurs due to sparks during welding of the current collecting terminal.

【0034】[0034]

【発明の効果】以上のように、本発明のごとく、露出部
とそれに隣接した活物質塗布部の境界部を、樹脂でコー
ティングすれば、露出部に隣接した活物質の脱落に起因
する短絡の発生を防ぎ、長寿命で安価な大電流充放電に
適したアルカリ蓄電池を歩留まりよく提供することがで
きる。
As described above, according to the present invention, if the boundary between the exposed portion and the active material application portion adjacent to the exposed portion is coated with the resin, the short-circuit caused by the fall of the active material adjacent to the exposed portion is prevented. It is possible to provide a high-yield alkaline storage battery that prevents generation and is suitable for large-current charging and discharging with a long life and low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るアルカリ蓄電池用非焼結式電極の
部分拡大図である。
FIG. 1 is a partially enlarged view of a non-sintered electrode for an alkaline storage battery according to the present invention.

【図2】本発明に係るアルカリ蓄電池の一例を模式的に
示す断面図である。
FIG. 2 is a sectional view schematically showing an example of the alkaline storage battery according to the present invention.

【図3】従来のアルカリ蓄電池用非焼結式電極の部分拡
大図である。
FIG. 3 is a partially enlarged view of a conventional non-sintered electrode for an alkaline storage battery.

【符号の説明】[Explanation of symbols]

1 基材 2 活物質塗布部 3 露出部 4 境界部 5 コーティング材 10 正極 11 負極 12 セパレータ 13 電解液 14 電池ケース 23 正極集電端子(集電端子) 24 負極集電端子(集電端子) DESCRIPTION OF SYMBOLS 1 Base material 2 Active material application part 3 Exposed part 4 Boundary part 5 Coating material 10 Positive electrode 11 Negative electrode 12 Separator 13 Electrolyte 14 Battery case 23 Positive current collecting terminal (current collecting terminal) 24 Negative current collecting terminal (current collecting terminal)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福永 浩 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H028 AA01 BB03 BB05 BB07 CC05 CC12 HH08 5H050 AA02 AA07 AA12 AA14 AA19 BA11 CA03 CB11 DA20 FA05 GA02 GA07 GA09 GA22 HA14 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Fukunaga 1-1-88 Ushitora, Ibaraki-shi, Osaka F-term within Hitachi Maxell, Ltd. (Reference) 5H028 AA01 BB03 BB05 BB07 CC05 CC12 HH08 5H050 AA02 AA07 AA12 AA14 AA19 BA11 CA03 CB11 DA20 FA05 GA02 GA07 GA09 GA22 HA14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基材である金属板又は金属箔の少なくと
も一方の面上に、活物質が塗布されている活物質塗布部
と、活物質が塗布されていない露出部とが形成されてい
るアルカリ蓄電池用非焼結式電極であって、 前記活物質塗布部と露出部との境界部が、融点が50〜
160℃の樹脂でコーティングされていることを特徴と
するアルカリ蓄電池用非焼結式電極。
At least one surface of a metal plate or a metal foil as a base material is provided with an active material applied portion on which the active material is applied and an exposed portion on which the active material is not applied. A non-sintered electrode for an alkaline storage battery, wherein a boundary portion between the active material application portion and the exposed portion has a melting point of 50 to
A non-sintered electrode for an alkaline storage battery, which is coated with a resin at 160 ° C.
【請求項2】 正・負極をセパレータを介して渦巻状に
捲回した渦巻状電極体が、電解液とともに電池ケース内
に収容されているアルカリ蓄電池であって、 前記渦巻状電極体の正極の上端部は、正極集電端子に溶
接接続されており、 前記渦巻状電極体の負極の下端部は、負極集電端子に溶
接接続されており、 前記正極および負極の少なくとも一方が、請求項1に記
載のアルカリ蓄電池用非焼結式電極であることを特徴と
するアルカリ蓄電池。
2. An alkaline storage battery in which a positive electrode and a negative electrode are spirally wound with a separator interposed therebetween in a battery case together with an electrolytic solution, wherein a positive electrode of the spiral electrode body is An upper end portion is welded to a positive electrode current collecting terminal, a lower end portion of the negative electrode of the spiral electrode body is welded to a negative electrode current collecting terminal, and at least one of the positive electrode and the negative electrode is formed. An alkaline storage battery, characterized by being a non-sintered electrode for an alkaline storage battery according to (1).
JP2001169614A 2001-06-05 2001-06-05 Non-sintered electrode for alkali storage battery, and alkali storage battery using the same Withdrawn JP2002367607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169614A JP2002367607A (en) 2001-06-05 2001-06-05 Non-sintered electrode for alkali storage battery, and alkali storage battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169614A JP2002367607A (en) 2001-06-05 2001-06-05 Non-sintered electrode for alkali storage battery, and alkali storage battery using the same

Publications (1)

Publication Number Publication Date
JP2002367607A true JP2002367607A (en) 2002-12-20

Family

ID=19011664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169614A Withdrawn JP2002367607A (en) 2001-06-05 2001-06-05 Non-sintered electrode for alkali storage battery, and alkali storage battery using the same

Country Status (1)

Country Link
JP (1) JP2002367607A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059071A (en) * 2005-08-22 2007-03-08 Gs Yuasa Corporation:Kk Sealed alkaline storage battery and battery pack formed with plurality of same batteries
JP2008204920A (en) * 2007-02-22 2008-09-04 Sony Corp Nonaqueous electrolyte secondary battery, and manufacturing method of nonaqueous electrolyte secondary battery
JP2009252392A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Wound-around battery and method of manufacturing the same
JP2012178252A (en) * 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery and its positive electrode
CN102959789A (en) * 2010-05-18 2013-03-06 丰田自动车株式会社 Nonaqueous electrolyte secondary battery, vehicle, and device using battery
US10090526B2 (en) 2013-06-24 2018-10-02 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and method for producing the same
JP2018537823A (en) * 2015-12-09 2018-12-20 ナノスケール コンポーネンツ,インコーポレイテッド Method for alkalizing a roll negative electrode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059071A (en) * 2005-08-22 2007-03-08 Gs Yuasa Corporation:Kk Sealed alkaline storage battery and battery pack formed with plurality of same batteries
JP2008204920A (en) * 2007-02-22 2008-09-04 Sony Corp Nonaqueous electrolyte secondary battery, and manufacturing method of nonaqueous electrolyte secondary battery
JP2009252392A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Wound-around battery and method of manufacturing the same
CN102959789A (en) * 2010-05-18 2013-03-06 丰田自动车株式会社 Nonaqueous electrolyte secondary battery, vehicle, and device using battery
CN102959789B (en) * 2010-05-18 2015-04-01 丰田自动车株式会社 Nonaqueous electrolyte secondary battery, vehicle, and device using battery
US9368837B2 (en) 2010-05-18 2016-06-14 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery, vehicle, and device using battery
JP2012178252A (en) * 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery and its positive electrode
US10090526B2 (en) 2013-06-24 2018-10-02 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and method for producing the same
JP2018537823A (en) * 2015-12-09 2018-12-20 ナノスケール コンポーネンツ,インコーポレイテッド Method for alkalizing a roll negative electrode
JP7045314B2 (en) 2015-12-09 2022-03-31 ナノスケール コンポーネンツ,インコーポレイテッド Method for alkalizing the roll negative electrode
US11916217B2 (en) 2015-12-09 2024-02-27 Nanoscale Components, Inc. Methods for alkaliating roll anodes

Similar Documents

Publication Publication Date Title
JP5018087B2 (en) An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
US20110039139A1 (en) Method of manufacturing nickel zinc batteries
WO2006059733A1 (en) Sealed cell, manufacturing method thereof, and battery formed by a plurality of sealed cells
JP4342160B2 (en) Storage battery and manufacturing method thereof
JP2002367607A (en) Non-sintered electrode for alkali storage battery, and alkali storage battery using the same
JP5016236B2 (en) battery
JPH09283133A (en) Nickel electrodefor alkaline storage battery and manufacture thereof
JP2002298906A (en) Nickel-hydrogen secondary battery
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
JP2002260628A (en) Positive electrode for alkaline secondary battery, manufacturing method of positive electrode for the alkaline secondary battery, and the alkaline secondary battery
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JP3764912B2 (en) Non-sintered electrode for alkaline storage battery, and alkaline storage battery using this electrode
JP2002025604A (en) Alkaline secondary battery
JP2000251871A (en) Alkaline secondary battery
JP2002289170A (en) Alkali secondary battery
JP3869540B2 (en) Cylindrical battery with spiral electrode body and method for manufacturing the same
JP7283854B1 (en) zinc battery
JP2000030699A (en) Nickel-hydrogen secondary battery
JP2005071964A (en) Alkaline accumulator
JP2000200612A (en) Rectangular alkaline secondary battery
JP2002025548A (en) Square alkaline storage battery
JP2001202944A (en) Alkaline battery
JP2002280057A (en) Alkaline secondary battery
JP5258375B2 (en) Cylindrical alkaline secondary battery
JPS61259454A (en) Manufacture of battery plate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070711

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805