JP2002025548A - Square alkaline storage battery - Google Patents

Square alkaline storage battery

Info

Publication number
JP2002025548A
JP2002025548A JP2000208100A JP2000208100A JP2002025548A JP 2002025548 A JP2002025548 A JP 2002025548A JP 2000208100 A JP2000208100 A JP 2000208100A JP 2000208100 A JP2000208100 A JP 2000208100A JP 2002025548 A JP2002025548 A JP 2002025548A
Authority
JP
Japan
Prior art keywords
electrode plate
storage battery
alkaline storage
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000208100A
Other languages
Japanese (ja)
Other versions
JP3893856B2 (en
Inventor
Masumi Katsumoto
真澄 勝本
Hideki Kasahara
英樹 笠原
Masaharu Miyahisa
正春 宮久
Yoshihiro Boki
義廣 坊木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000208100A priority Critical patent/JP3893856B2/en
Publication of JP2002025548A publication Critical patent/JP2002025548A/en
Application granted granted Critical
Publication of JP3893856B2 publication Critical patent/JP3893856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a high yield while improving low productivity which is problem for a square alkaline storage battery. SOLUTION: In the alkaline storage battery in which a positive electrode plate wherein active substance powder having nickel hydroxide as the main component are filled in a metal porous material that has a space 3-dimensionally ranged and a negative electrode plate are folded at least once via a separator and laminated so as to mutually oppose, the active substance is filled up but a rolling treatment is applied in the metal porous material at a folding part of the positive electrode plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、アルカリ蓄電池
に関するものであり、さらに詳しくは正極に非焼結式ニ
ッケル極を用いた、角型構造を有するアルカリ蓄電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery, and more particularly, to an alkaline storage battery having a prismatic structure using a non-sintered nickel electrode as a positive electrode.

【0002】[0002]

【従来の技術】ニッケル・水素蓄電池、ニッケル・カド
ミウム蓄電池に代表されるアルカリ蓄電池の正極として
用いられるニッケル極は焼結式と非焼結式に大別され
る。
2. Description of the Related Art A nickel electrode used as a positive electrode of an alkaline storage battery represented by a nickel-hydrogen storage battery or a nickel-cadmium storage battery is roughly classified into a sintered type and a non-sintered type.

【0003】焼結式ニッケル極の製造方法としては、パ
ンチングメタルなどの芯材とニッケル粉末を焼結させて
得た多孔度80%程度の多孔質ニッケル焼結基体に、硝
酸ニッケル水溶液などのニッケル塩溶液を含浸し、つい
でアルカリ水溶液中に浸漬することにより多孔質ニッケ
ル焼結基体中に水酸化ニッケルを生成させて作製する方
法が一般的である。
[0003] As a method of manufacturing a sintered nickel electrode, a porous nickel sintered substrate having a porosity of about 80% obtained by sintering a core material such as punching metal and nickel powder is coated with a nickel nitrate aqueous solution or the like. Generally, a method of impregnating with a salt solution and then immersing in an aqueous alkaline solution to produce nickel hydroxide in the porous nickel sintered substrate is used.

【0004】この極板は、活物質である水酸化ニッケル
を必要量充填するために、上記の含浸・アルカリ浸漬処
理を複数回繰り返さなければならないために工程が煩雑
となる。また、多孔質基体の多孔度を上げて活物質の充
填密度を高めようとしても、多孔度を80%程度よりも
大きくすると極板の強度が著しく低下し、活物質が脱落
しやすくなるため、活物質充填密度を高めることができ
ないという課題がある。
In order to fill a required amount of nickel hydroxide, which is an active material, with the electrode plate, the above-described impregnation and alkali immersion treatment must be repeated a plurality of times, so that the process becomes complicated. Further, even if it is attempted to increase the packing density of the active material by increasing the porosity of the porous substrate, if the porosity is larger than about 80%, the strength of the electrode plate is significantly reduced, and the active material is easily dropped off. There is a problem that the active material packing density cannot be increased.

【0005】一方、非焼結式ニッケル極の製造方法とし
ては、95%以上の多孔度を有する発泡状ニッケル多孔
体を基体に用い、これに水酸化ニッケルを主体とする活
物質粉末を水で混練したペーストを充填し、乾燥、プレ
ス工程を経て作製する方法が一般的である。この極板
は、焼結式ニッケル極と比較して製造方法が簡易である
上に、活物質充填密度が大きいニッケル極が得られ、電
池の高容量化が図れるため、通信機器、OA、パワーツ
ールなど現在幅広い分野で使用されている。
On the other hand, as a method for producing a non-sintered nickel electrode, a foamed nickel porous body having a porosity of 95% or more is used as a base, and an active material powder mainly composed of nickel hydroxide is mixed with water. A method is generally used in which the kneaded paste is filled, dried, and pressed to produce the paste. This electrode plate has a simpler manufacturing method than a sintered nickel electrode, and a nickel electrode having a high active material filling density can be obtained, thereby increasing the capacity of a battery. Currently used in a wide range of fields such as tools.

【0006】さらに近年、携帯電話などの電子機器にお
いては小型化・薄型化の進展が目覚ましく、それらの駆
動用電源である電池に対しても小型化・薄型化が要望さ
れており、スペースの有効活用の観点から角型形状を有
する電池に要望が集まりつつある。
In recent years, electronic devices such as mobile phones have been remarkably reduced in size and thickness, and batteries used as power sources for driving the devices have been demanded to be smaller and thinner. There is a growing demand for batteries having a rectangular shape from the viewpoint of utilization.

【0007】[0007]

【発明が解決しようとする課題】角型電池は、円筒型電
池と比較して機器収納時のスペース効率が優れている。
しかしながら、正極板に非焼結式ニッケル極を用いて角
型構造のアルカリ蓄電池を構成する場合には、以下に示
すような課題がある。
[0005] A prismatic battery is more space-efficient when storing equipment than a cylindrical battery.
However, when an alkaline storage battery having a rectangular structure is formed by using a non-sintered nickel electrode for the positive electrode plate, there are the following problems.

【0008】従来角型アルカリ蓄電池では、短冊状に切
断した複数枚の正極板6及び負極板8をセパレータ7を
介して交互に積層した電極体を角型ケース4に収納した
構造を有する。この角型アルカリ蓄電池の模式断面図を
図5に示す。
A conventional rectangular alkaline storage battery has a structure in which a plurality of positive electrode plates 6 and a plurality of negative electrode plates 8 cut into strips are alternately stacked via a separator 7 and accommodated in a rectangular case 4. FIG. 5 shows a schematic cross-sectional view of the prismatic alkaline storage battery.

【0009】このように、多数枚の極板のそれぞれにリ
ード端子を溶接し、積層して電極体を構成しなければな
らない角型アルカリ蓄電池は、一枚の帯状の正極板、負
極板をセパレータを介して捲回して構成される円筒型ア
ルカリ蓄電池と比較して著しく生産性が劣る。
As described above, a rectangular alkaline storage battery in which a lead terminal is welded to each of a large number of electrode plates and laminated to form an electrode body is composed of a single strip-shaped positive electrode plate and a strip-shaped negative electrode plate. The productivity is remarkably inferior to that of a cylindrical alkaline storage battery which is formed by being wound through a via hole.

【0010】また、このような積層構造の電極体には極
板の位置ずれによる正極板と負極板の微小短絡不良(以
下、リーク不良と述べる。)を防止するためにセパレー
タ7を袋状に溶着(以下、セパシールと述べる。)して
正極板6または負極板8の少なくとも一方を挿入する工
程が不可欠であり、角型電池の構成をさらに煩雑なもの
としている。
Further, in order to prevent a minute short-circuit failure (hereinafter referred to as a leak failure) between the positive electrode plate and the negative electrode plate due to the displacement of the electrode plate, the separator 7 is formed in a bag shape in the electrode body having such a laminated structure. A step of inserting at least one of the positive electrode plate 6 and the negative electrode plate 8 by welding (hereinafter, referred to as a separator seal) is indispensable, which further complicates the configuration of the prismatic battery.

【0011】角型電池の生産性を向上させるための手段
としては、例えば特開平9−293537号公報等に開
示されている角型のリチウム・二次電池の捲回構造によ
る構成、すなわち一枚の帯状の正極板と負極板をセパレ
ータを介して相対向するように折り曲げて電極体を作製
し、角型ケースに収納させる方法が考えられる。
As a means for improving the productivity of a prismatic battery, for example, a structure of a prismatic lithium secondary battery having a wound structure disclosed in Japanese Patent Application Laid-Open No. 9-293537, etc. It is conceivable to fold the band-shaped positive electrode plate and negative electrode plate so as to face each other with a separator interposed therebetween to produce an electrode body, and store the electrode body in a square case.

【0012】しかしながら、捲回構造の電極体を角型ケ
ースに収納させるためには、極板を図3に示すような長
円状、もしくは図6に示すような長方形状に捲回しなけ
ればならないため、折り曲げ部分において極板を非常に
小さい曲率で屈曲させる必要がある。
However, in order to house the electrode body having the wound structure in the square case, the electrode plate must be wound into an elliptical shape as shown in FIG. 3 or a rectangular shape as shown in FIG. Therefore, it is necessary to bend the electrode plate with a very small curvature at the bent portion.

【0013】非焼結式ニッケル正極は小さい曲率で折り
曲げた場合、折り曲げ部分において発泡ニッケル芯材の
切断やひび割れ、あるいは活物質の剥離離脱が生じやす
く、これらが要因となって電池のリーク不良が増大する
という課題が発生する。
When a non-sintered nickel positive electrode is bent at a small curvature, the nickel foam core material is liable to be cut or cracked at the bent portion, or the active material is separated and separated, which causes a battery leakage defect. The problem of increase occurs.

【0014】以上示したとおり、正極に非焼結式ニッケ
ル極を用いた角型アルカリ蓄電池の製造工程としては生
産性と歩留まりが両立できる決定的な手段がないのが現
状である。
As described above, at present, there is no definitive means for achieving both productivity and yield in the manufacturing process of a prismatic alkaline storage battery using a non-sintered nickel electrode for the positive electrode.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に本発明の角型アルカリ蓄電池は、3次元的に連なる空
間を有する金属多孔体に水酸化ニッケルを主成分とする
活物質粉末を充填した正極板と、負極板とをセパレータ
を介して少なくとも一回折り曲げて、相対向するように
積層した電極体を、角型容器内に収納した角型アルカリ
蓄電池において、正極板の折り曲げ部分の金属多孔体に
は活物質が充填されておらず、かつ圧延処理が施されて
いるものとした。これによって、角型アルカリ蓄電池の
課題である生産性の低さを改善した上で、高い歩留まり
を達成することができる。
In order to solve the above-mentioned problems, a prismatic alkaline storage battery according to the present invention has a three-dimensionally porous metal body filled with an active material powder mainly composed of nickel hydroxide. The positive electrode plate and the negative electrode plate are bent at least once through a separator, and the electrode body laminated so as to face each other is placed in a rectangular container. The porous body was not filled with the active material and had been subjected to a rolling treatment. As a result, a high yield can be achieved while improving low productivity which is a problem of the prismatic alkaline storage battery.

【0016】[0016]

【発明の実施の形態】本発明の請求項1に記載の発明
は、3次元的に連なる空間を有する金属多孔体に水酸化
ニッケルを主成分とする活物質粉末を充填した正極板
と、負極板とを、セパレータを介して少なくとも一回折
り曲げて、相対向するように積層した電極体を角型容器
内に収納した角型アルカリ蓄電池において、正極板の折
り曲げ部分の金属多孔体には活物質が充填されておら
ず、かつ圧延処理が施されていることを特徴としたもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is directed to a positive electrode plate in which an active material powder containing nickel hydroxide as a main component is filled in a porous metal body having a three-dimensionally continuous space; Plate is bent at least once through a separator, and in a prismatic alkaline storage battery in which electrode bodies stacked so as to face each other are housed in a prismatic container, the metal porous body in the bent portion of the positive electrode plate contains an active material. Are not filled and have been subjected to a rolling treatment.

【0017】これにより、非焼結式ニッケル極の折り曲
げ部分からの活物質の脱落が発生せず、さらに金属多孔
体の切断やひび割れが生じにくいように圧延処理が施さ
れているため、リーク不良の増大を招くことなく、アル
カリ蓄電池においてもリチウム二次電池と同様な捲回構
造の電極体が構成可能となる。
As a result, the active material does not fall off from the bent portion of the non-sintered nickel electrode, and the rolling treatment is performed so that the porous metal body is hardly cut or cracked. An electrode body having a wound structure similar to that of a lithium secondary battery can be formed in an alkaline storage battery without increasing the number of electrodes.

【0018】その結果、従来のように多数の極板を積層
して構成する必要がなくなり、煩雑なセパシール工程も
不要となるため極板構成が簡易となり、角型アルカリ蓄
電池の生産性向上が図れる。
As a result, there is no need to stack a large number of electrode plates as in the prior art, and a complicated separator sealing step is not required, thereby simplifying the electrode structure and improving the productivity of the prismatic alkaline storage battery. .

【0019】金属多孔体としては、発泡状金属ニッケル
を用いることが望ましい。発泡状金属ニッケルを用いる
ことにより充放電特性や寿命特性が優れたアルカリ蓄電
池が得られる。
It is desirable to use foamed metallic nickel as the porous metal body. By using foamed nickel metal, an alkaline storage battery having excellent charge / discharge characteristics and life characteristics can be obtained.

【0020】負極板としては、パンチングメタル芯材に
水素吸蔵合金が塗着されたものを用いることが望まし
い。これにより、高容量密度、高信頼性なアルカリ蓄電
池が得られる。
As the negative electrode plate, it is desirable to use a punched metal core material coated with a hydrogen storage alloy. Thereby, a high capacity density and high reliability alkaline storage battery can be obtained.

【0021】また、正極板の折れ曲がった部分の金属多
孔体は圧延処理により多孔度5%以上、20%以下まで
圧縮されていることが望ましい。折り曲げ部分を多孔度
5%未満まで圧縮すると、基体の伸び率の差から、極板
の折り曲げ部分と活物質充填部分の間の部分に亀裂が発
生することが懸念される。また、多孔度20%を越える
圧縮では、折り曲げ時の切断やひび割れを防止する効果
が小さい。
It is desirable that the metal porous body in the bent portion of the positive electrode plate be compressed to a porosity of 5% or more and 20% or less by rolling. When the bent portion is compressed to a porosity of less than 5%, there is a concern that cracks may occur in the portion between the bent portion and the active material-filled portion of the electrode plate due to the difference in elongation of the base. On the other hand, when the porosity exceeds 20%, the effect of preventing cutting and cracking during bending is small.

【0022】[0022]

【実施例】以下、本発明の実施例について詳細な説明を
行う。なお、本発明は下記実施例に限定されるものでな
く、その要旨を変更しない範囲において適宜変更して実
施することが可能なものである。
Embodiments of the present invention will be described below in detail. Note that the present invention is not limited to the following examples, and can be implemented with appropriate changes within the scope of the present invention.

【0023】(実施例)正極板1を次のように作製し
た。正極活物質として内部に少量のコバルト及び亜鉛を
固溶した球状の水酸化ニッケル粉末を用意した。これに
添加剤として水酸化コバルト、酸化亜鉛を水酸化ニッケ
ルに対して重量比でそれぞれ8%、2%となるように混
合し、水と少量のCMC(カルボキシメチルセルロー
ス)を加えてペースト状に混練した。このペーストを多
孔度95%の発泡状金属ニッケル多孔体中に充填し、乾
燥後、厚さ約0.7mmとなるまで加圧し、さらに38m
m×42mmの大きさに切断して極板を作製した。
(Example) A positive electrode plate 1 was produced as follows. As the positive electrode active material, spherical nickel hydroxide powder in which a small amount of cobalt and zinc were dissolved was prepared. To this, cobalt hydroxide and zinc oxide are mixed at a weight ratio of 8% and 2% with respect to nickel hydroxide, respectively, and water and a small amount of CMC (carboxymethylcellulose) are added and kneaded into a paste. did. This paste is filled into a foamed nickel metal porous body having a porosity of 95%, dried, and then pressed to a thickness of about 0.7 mm.
The electrode plate was cut into a size of mx 42 mm.

【0024】その際、図1に示すように、正極板1は、
活物質ペーストを充填した活物質充填部分1aと活物質
の充填されていない部分1bとからなり、この1bは極
板の折り曲げ部分にあたる。この1bは、金属多孔体中
に活物質をあらかじめ充填しないで、この部分をロール
プレスにより圧延処理を行い、多孔度が約10%となる
まで圧縮した。なお、この1bは、金属多孔体中に活物
質を充填した後に超音波処理などにより活物質を金属多
孔体中から剥離してもよい。このように作製した正極板
に集電用のニッケルリード1cを溶接し、このリード1
cの溶接部に保護テープ1dを貼って正極板1とした。
At this time, as shown in FIG. 1, the positive electrode plate 1
It is composed of an active material filled portion 1a filled with the active material paste and a portion 1b not filled with the active material, and this 1b corresponds to a bent portion of the electrode plate. For this 1b, the porous metal was not filled with the active material in advance, but this portion was subjected to a rolling treatment by a roll press, and compressed until the porosity became about 10%. In addition, after filling the active material into the porous metal body, the active material may be separated from the porous metal body by ultrasonic treatment or the like. A nickel lead 1c for current collection was welded to the positive electrode plate thus produced,
The positive electrode plate 1 was obtained by attaching a protective tape 1d to the welded portion c.

【0025】次に負極板2を次のように作製した。合金
組成がMmNi3.8Co0.6Al0.3Mn0.3(Mmはミッ
シュメタルを示す)である水素吸蔵合金粉末に水と少量
のCMCとSBR(スチレン−ブタジエン共重合体)と
導電剤であるカーボンを加えてペースト状にし、鉄にニ
ッケルメッキを施したパンチングメタル芯材の両面に塗
布し、これを乾燥、プレス圧延後、38mm×62mm
の大きさに切断し、負極板2とした。
Next, the negative electrode plate 2 was manufactured as follows. Alloy composition MmNi 3.8 Co 0.6 Al 0.3 Mn 0.3 (Mm is misch shows a metal) hydrogen absorbing alloy powder is water and a small amount of CMC and SBR - added carbon is a conductive agent (styrene butadiene copolymer) Paste, apply to both sides of a punched metal core with nickel plating on iron, dry, press roll, 38mm x 62mm
To obtain a negative electrode plate 2.

【0026】上述の方法で作製した正極板1と負極板2
を、目付重量60g/m2、厚さ0.15mmである親
水化処理を施したポリプロピレン製不織布からなるセパ
レータ3を介して捲回して電極体を構成し、これを角型
ケース内に収納した。この電極体の構成状態の模式図を
図2に示す。正極板は、活物質が存在せず、かつ圧延処
理が施されている折り曲げ部分で折れ曲がるように構成
した。
The positive electrode plate 1 and the negative electrode plate 2 produced by the above method
Was wound through a separator 3 made of a nonwoven fabric made of polypropylene and having a hydrophilization treatment having a basis weight of 60 g / m 2 and a thickness of 0.15 mm to form an electrode body, which was housed in a square case. . FIG. 2 shows a schematic diagram of the configuration of this electrode body. The positive electrode plate had no active material and was configured to bend at a bent portion where the rolling process was performed.

【0027】さらに、ケース4内に6NのKOHと1N
のLiOHからなるアルカリ電解液を注液後、封口を行
い、理論容量750mAhの角型ニッケル・水素蓄電池
500個を組み立てた。
Further, 6N KOH and 1N
After pouring an alkaline electrolyte solution made of LiOH, 500 ml of square nickel-metal hydride storage batteries having a theoretical capacity of 750 mAh were assembled.

【0028】(比較例1)また比較例1として、正極板
1の折り曲げ部分にあたる基体中にも他の部分と同様に
活物質を充填したこと以外は実施例と同様の方法で比較
例の正極板5を作製した。この正極板5を実施例と同様
に、負極板2、セパレータ3と対向させて捲回して電極
体を構成し、これを角型ケース4に収納した。この電極
体の構成状態の模式図を図3に示す。実施例と同様にア
ルカリ電解液を注液後、封口を行い、理論容量750m
Ahの角型ニッケル・水素蓄電池500個を組み立て
た。
(Comparative Example 1) As Comparative Example 1, the positive electrode of Comparative Example was prepared in the same manner as in Example except that the base material corresponding to the bent portion of the positive electrode plate 1 was filled with the active material in the same manner as the other portions. Plate 5 was produced. The positive electrode plate 5 was wound facing the negative electrode plate 2 and the separator 3 in the same manner as in the example to form an electrode body, which was housed in the square case 4. FIG. 3 shows a schematic diagram of the configuration of this electrode body. After pouring the alkaline electrolyte in the same manner as in the example, sealing was performed, and the theoretical capacity was 750 m.
500 Ah nickel-metal hydride storage batteries were assembled.

【0029】(比較例2)比較例2として、従来の角型
アルカリ蓄電池の構成方法である積層構造による電極体
を構成し、電池を組み立てた。実施例に示したのと同様
の方法で活物質ペーストを発泡状金属ニッケル基体中に
充填し、乾燥後、厚さ約0.7mmになるまで加圧し
た。その後、38mm×14mmの大きさの短冊状に切
断し、集電用のニッケルリード6aを溶接し、この上に
保護テープ6bを貼って図4に示されるような正極板6
を作製した。
(Comparative Example 2) As Comparative Example 2, a battery was assembled by forming an electrode body having a laminated structure which is a conventional method of forming a square alkaline storage battery. The active material paste was filled in a foamed metallic nickel substrate in the same manner as described in Examples, dried, and then pressed to a thickness of about 0.7 mm. After that, it is cut into a strip having a size of 38 mm × 14 mm, a nickel lead 6 a for current collection is welded, a protective tape 6 b is stuck thereon, and a positive electrode plate 6 as shown in FIG.
Was prepared.

【0030】得られた正極板6に対してセパシールを行
った。ポリプロピレン製不織布からなるセパレータ7を
熱溶着により袋状に成型した内部に正極板6を収納し
た。
Sepa sealing was performed on the obtained positive electrode plate 6. The positive electrode plate 6 was housed inside a bag 7 made of a polypropylene nonwoven fabric separator 7 formed by heat welding.

【0031】また、負極板8についても実施例に示した
のと同様の方法にて水素吸蔵合金ペーストをパンチング
メタル芯材に塗着し、乾燥、プレス圧延後、38mm×
14mmの大きさに切断した。負極板8についても正極
板6と同様に集電用のニッケルリード6aを溶接して保
護テープ6bを貼った。
The negative electrode plate 8 was also coated with a hydrogen storage alloy paste on a punched metal core material in the same manner as described in the embodiment, dried, press-rolled, and then cut to a size of 38 mm ×
It was cut to a size of 14 mm. Similarly to the positive electrode plate 6, the negative electrode plate 8 was welded with the nickel lead 6a for current collection, and the protective tape 6b was applied.

【0032】得られたセパシール済み正極板6を3枚と
負極板8を4枚、互いに対向するように組み合わせて積
層して構成し、正極板6同士、負極板8同士がそれぞれ
通電するようにリード部分の溶接を行い電極体を作製し
た。
The obtained three separator-sealed positive electrode plates 6 and four negative electrode plates 8 are combined and laminated so as to be opposed to each other, so that the positive electrode plates 6 and the negative electrode plates 8 are respectively energized. The lead portion was welded to produce an electrode body.

【0033】このようにして得られた電極体を角型ケー
ス4内に収納し、電解液を注液後、封口を行い、理論容
量750mAhの角型ニッケル・水素蓄電池500個を
組み立てた。(表1)に実施例及び比較例1,2の電池
のリーク不良の割合を示す。
The electrode body thus obtained was housed in a rectangular case 4, and after the electrolyte was injected, the container was sealed and 500 square nickel-hydrogen storage batteries having a theoretical capacity of 750 mAh were assembled. Table 1 shows the percentage of leak failure of the batteries of Example and Comparative Examples 1 and 2.

【0034】[0034]

【表1】 [Table 1]

【0035】(表1)に示されるように実施例電池は比
較例1と比較してリーク不良の割合が大幅に低減してお
り、従来の構成方法による比較例2と同レベルであるこ
とがわかる。しかも実施例では比較例と異なり、面倒な
セパシール工程や複数の極板を積層・溶接する工程が不
要であり、工程の簡略化、生産性の向上が図れる。
As shown in (Table 1), the rate of the leak failure of the battery of the present invention is significantly reduced as compared with the battery of the comparative example 1, and the same level as that of the comparative example 2 according to the conventional configuration method. Understand. Further, unlike the comparative example, the embodiment does not require a troublesome separation step or a step of laminating and welding a plurality of electrode plates, thereby simplifying the steps and improving the productivity.

【0036】なお、本実施例においては、帯状の正極
板、負極板をセパレータを介して長円状に捲回して構成
したが、長方形状に捲回して構成した場合についても同
様の効果が得られる。
In the present embodiment, the belt-shaped positive and negative plates are wound in an elliptical shape with a separator interposed therebetween. However, the same effect can be obtained when the belt is wound in a rectangular shape. Can be

【0037】以上に示されたように、本発明に基づく折
り曲げ部分の金属多孔体には活物質が充填されておら
ず、かつ圧延処理が施されていることを特徴とする非焼
結式ニッケル極と、負極とセパレータを捲回して角型ケ
ースに収納してなるアルカリ蓄電池は極板構成が簡易で
あるため生産性に優れ、リーク不良も低減することがで
きる。
As described above, the non-sintered nickel is characterized in that the metal porous body in the bent portion according to the present invention is not filled with an active material and is subjected to a rolling treatment. An alkaline storage battery in which a pole, a negative electrode, and a separator are wound and housed in a rectangular case has a simple electrode plate configuration, and thus has excellent productivity and can reduce leak defects.

【0038】[0038]

【発明の効果】以上のように本発明の角型アルカリ蓄電
池によれば、角型構造を有するアルカリ蓄電池の課題で
あった生産性の低さを改善した上で、高い歩留まりを達
成することができる。
As described above, according to the prismatic alkaline storage battery of the present invention, it is possible to achieve a high yield while improving the low productivity which has been a problem of the alkaline storage battery having the rectangular structure. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における正極板の平面図FIG. 1 is a plan view of a positive electrode plate according to an embodiment of the present invention.

【図2】同長円状に捲回した電極体の断面図FIG. 2 is a cross-sectional view of an electrode body wound in the same oval shape.

【図3】比較例1における長円状に捲回した電極体の断
面図
FIG. 3 is a cross-sectional view of an electrode body wound in an oval shape in Comparative Example 1.

【図4】比較例2における正極板の平面図FIG. 4 is a plan view of a positive electrode plate in Comparative Example 2.

【図5】従来の角型アルカリ蓄電池の模式断面図FIG. 5 is a schematic sectional view of a conventional prismatic alkaline storage battery.

【図6】従来の長方形状に捲回した電極体の断面図FIG. 6 is a sectional view of a conventional rectangularly wound electrode body.

【符号の説明】[Explanation of symbols]

1 正極板 1a 活物質充填部分 1b 活物質未充填部 1c 集電用リード 1d リード保護テープ 2 負極板 3 セパレータ 4 ケース 5 比較例1の正極板 6 比較例2の正極板 6a 集電用ニッケルリード 6b リード保護テープ 7 セパレータ 8 負極板 REFERENCE SIGNS LIST 1 positive electrode plate 1a active material-filled portion 1b active material-unfilled portion 1c current collecting lead 1d lead protection tape 2 negative electrode plate 3 separator 4 case 5 positive electrode plate of comparative example 1 6 positive electrode plate of comparative example 6 6a nickel lead for current collecting 6b Lead protection tape 7 Separator 8 Negative electrode plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮久 正春 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 坊木 義廣 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H017 AA02 AS10 BB06 CC05 CC28 DD01 EE04 HH02 HH05 5H028 AA05 CC02 CC15 5H050 AA19 BA14 CA03 CB17 DA02 DA03 DA04 DA06 EA08 EA12 EA23 EA28 FA06 FA09 FA10 FA17 GA03 GA22 GA23 HA09 HA12  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaharu Miyahisa 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. F term (for reference) 5H017 AA02 AS10 BB06 CC05 CC28 DD01 EE04 HH02 HH05 5H028 AA05 CC02 CC15 5H050 AA19 BA14 CA03 CB17 DA02 DA03 DA04 DA06 EA08 EA12 EA23 EA28 FA06 FA09 FA10 FA17 GA03 GA22 GA23 HA09 HA12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】3次元的に連なる空間を有する金属多孔体
に水酸化ニッケルを主成分とする活物質粉末を充填した
正極板と、負極板とを、セパレータを介して少なくとも
一回折り曲げて、相対向するように積層した電極体を角
型容器内に収納したアルカリ蓄電池において、前記正極
板の折り曲げ部分の金属多孔体には活物質が充填されて
おらず、かつ圧延処理が施されていることを特徴とする
角型アルカリ蓄電池。
1. A positive electrode plate in which a porous metal body having a three-dimensionally continuous space filled with an active material powder containing nickel hydroxide as a main component, and a negative electrode plate are bent at least once through a separator, In an alkaline storage battery in which electrode bodies stacked so as to face each other are housed in a rectangular container, the metal porous body in a bent portion of the positive electrode plate is not filled with an active material, and is subjected to a rolling treatment. A prismatic alkaline storage battery characterized by the above-mentioned.
【請求項2】金属多孔体が発泡状金属ニッケルである請
求項1記載の角型アルカリ蓄電池。
2. The prismatic alkaline storage battery according to claim 1, wherein the porous metal body is foamed metallic nickel.
【請求項3】負極板がパンチングメタル芯材上に水素吸
蔵合金を塗着したものである請求項1記載の角型アルカ
リ蓄電池。
3. The rectangular alkaline storage battery according to claim 1, wherein the negative electrode plate is formed by coating a hydrogen storage alloy on a punched metal core material.
【請求項4】正極板の折り曲げ部分の金属多孔体は、そ
の多孔度が5〜20%である請求項1記載の角型アルカ
リ蓄電池。
4. The prismatic alkaline storage battery according to claim 1, wherein the porous portion of the bent portion of the positive electrode plate has a porosity of 5 to 20%.
JP2000208100A 2000-07-10 2000-07-10 Square alkaline storage battery Expired - Fee Related JP3893856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000208100A JP3893856B2 (en) 2000-07-10 2000-07-10 Square alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208100A JP3893856B2 (en) 2000-07-10 2000-07-10 Square alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2002025548A true JP2002025548A (en) 2002-01-25
JP3893856B2 JP3893856B2 (en) 2007-03-14

Family

ID=18704741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208100A Expired - Fee Related JP3893856B2 (en) 2000-07-10 2000-07-10 Square alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3893856B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342519A (en) * 2003-05-16 2004-12-02 M & G Eco Battery Institute Co Ltd Battery using paste type thin electrode and its manufacturing method
JP2008041523A (en) * 2006-08-09 2008-02-21 Kawasaki Heavy Ind Ltd Battery
JP2009059508A (en) * 2007-08-30 2009-03-19 Panasonic Ev Energy Co Ltd Washing method of core material of electrode plate, and manufacturing method of alkaline storage battery using it
JP2021128889A (en) * 2020-02-14 2021-09-02 本田技研工業株式会社 Electrode for lithium-ion secondary battery and lithium-ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342519A (en) * 2003-05-16 2004-12-02 M & G Eco Battery Institute Co Ltd Battery using paste type thin electrode and its manufacturing method
JP2008041523A (en) * 2006-08-09 2008-02-21 Kawasaki Heavy Ind Ltd Battery
JP2009059508A (en) * 2007-08-30 2009-03-19 Panasonic Ev Energy Co Ltd Washing method of core material of electrode plate, and manufacturing method of alkaline storage battery using it
JP2021128889A (en) * 2020-02-14 2021-09-02 本田技研工業株式会社 Electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP7140789B2 (en) 2020-02-14 2022-09-21 本田技研工業株式会社 Electrodes for lithium-ion secondary batteries, and lithium-ion secondary batteries

Also Published As

Publication number Publication date
JP3893856B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
JP2011165680A (en) Alkaline secondary battery applying alkaline secondary battery anode plate
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
US20050287438A1 (en) Alkaline electrochemical cell with improved lifetime
JP2002298906A (en) Nickel-hydrogen secondary battery
JP2014139880A (en) Separator for alkaline electrolyte secondary battery, alkaline electrolyte secondary battery, and method for manufacturing alkaline electrolyte secondary battery
JP3893856B2 (en) Square alkaline storage battery
JP2002025604A (en) Alkaline secondary battery
JP2001325957A (en) Alkaline secondary cell
JP3209071B2 (en) Alkaline storage battery
KR20000076959A (en) Rectangular battery
JP4967229B2 (en) A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied.
JP2002289170A (en) Alkali secondary battery
JP2001118597A (en) Alkaline secondary cell
JP2003109587A (en) Alkali storage battery and manufacturing method of the same
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3625731B2 (en) Square battery
JP2003173815A (en) Sealed square alkaline storage battery
JP2000200612A (en) Rectangular alkaline secondary battery
JP4168578B2 (en) Square alkaline storage battery and manufacturing method thereof
JP2001202969A (en) Alkaline secondary battery
JP2001351673A (en) Alkali storage battery
JP3952489B2 (en) Alkaline storage battery
JP3568316B2 (en) Prismatic alkaline storage battery
JP2006019083A (en) Cylindrical alkaline battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees