JP2008041523A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2008041523A
JP2008041523A JP2006216643A JP2006216643A JP2008041523A JP 2008041523 A JP2008041523 A JP 2008041523A JP 2006216643 A JP2006216643 A JP 2006216643A JP 2006216643 A JP2006216643 A JP 2006216643A JP 2008041523 A JP2008041523 A JP 2008041523A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
positive electrode
electrode active
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006216643A
Other languages
Japanese (ja)
Other versions
JP5016866B2 (en
JP2008041523A5 (en
Inventor
Kazuo Tsutsumi
香津雄 堤
Kazuya Nishimura
和也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2006216643A priority Critical patent/JP5016866B2/en
Publication of JP2008041523A publication Critical patent/JP2008041523A/en
Publication of JP2008041523A5 publication Critical patent/JP2008041523A5/ja
Application granted granted Critical
Publication of JP5016866B2 publication Critical patent/JP5016866B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery which has no risk of short circuiting, even if the thickness of separator is made smaller, and that can attain high power output. <P>SOLUTION: The battery has a lamination of a cathode current collector 1, a cathode side cell 5 having an electrolyte solution, a separator 4 of an approximate bellows shape, an anode side cell 6 having an electrolyte solution and an anode current collector, laminated, in this order. In the cathode side cell 5, there are arranged a nonwoven polypropylene fabric 7 of a substantially bellows shape containing a cathode active substance contacting with the separator 4 and a nickel foam 8 of a substantially bellow shape, containing a cathode substance contacting with the nonwoven fabric, laminated, in this order, and in the anode side cell 6, there are arranged a nonwoven polypropylene fabric 9 of a substantially bellows shape, containing an anode active substance contacting the separator 4 and a nickel foam 10 of a substantially bellows shape containing the anode active substance that contacts the nonwoven fabric 9, laminated, in this order. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は電池に関し、特に、高い出力を達成することができる電池に関する。   The present invention relates to a battery, and more particularly to a battery capable of achieving a high output.

従来から、電池の正極と負極とを分離して短絡を防止するとともに電解質溶液を保持して電池反応を円滑に行わせるために、正極と負極との間には、正極活物質と負極活物質が反対側の電極へ移動することがないようにこれら正極と負極を完全に分離し、電池の内部短絡を防止することができるイオン透過性の良好なセパレータが設置されている。近年、電子機器の小形軽量化に伴って、電池の占めるスペースも狭くなっているにも関わらず、電池には従来以上の性能を要求されることがあるため、電池の高出力化が必要である。   Conventionally, a positive electrode active material and a negative electrode active material are interposed between the positive electrode and the negative electrode in order to separate the positive electrode and the negative electrode of the battery to prevent a short circuit and hold the electrolyte solution to smoothly perform the battery reaction. A separator with good ion permeability that can completely separate the positive electrode and the negative electrode and prevent an internal short circuit of the battery is installed so as not to move to the opposite electrode. In recent years, along with the reduction in size and weight of electronic devices, the space occupied by batteries has become smaller. is there.

そのためには、電極の活物質量を増やす必要がある。理論的には1グラム当量の活物質は96500クーロンまたは26.8Ahの電気量を発生する(グラム当量とは、反応に1モル量の電子が関与する際の活物質原子または分子の重量である)。電気化学反応に関与する電極活物質に基づく電池の理論容量は、反応物質の当量によって算出でき、例えば、Zn/Cl2電池の理論容量は、次式で示される。 For this purpose, it is necessary to increase the amount of the active material of the electrode. Theoretically, 1 gram equivalent of active material generates 96500 coulombs or 26.8 Ah of electricity (gram equivalent is the weight of the active material atom or molecule when 1 mole of electrons are involved in the reaction). ). The theoretical capacity of the battery based on the electrode active material involved in the electrochemical reaction can be calculated by the equivalent amount of the reactant. For example, the theoretical capacity of a Zn / Cl 2 battery is represented by the following equation.

Zn(1.22g/Ah)+Cl2(1.32g/Ah) → ZnCl2(2.54g/Ah)
従って、電極活物質量を増やすことは電池の出力を増加する上において好ましいことである。また、厚みの薄いセパレータを使用すると、イオンの拡散距離が短くなり、良好なイオン拡散を達成して出力を増加することができる点で好ましい。しかし、これらの方法には次のような問題がある。
Zn (1.22g / Ah) + Cl 2 (1.32g / Ah) → ZnCl 2 (2.54g / Ah)
Therefore, increasing the amount of the electrode active material is preferable for increasing the output of the battery. In addition, the use of a thin separator is preferable in that the ion diffusion distance is shortened, and good ion diffusion can be achieved to increase the output. However, these methods have the following problems.

すなわち、活物質の充填量を一定以上に増加させることにより活物質が過密充填状態になると、所定量の電解質溶液を注入することができず、イオンの拡散抵抗が大きくなり、電池反応を円滑に行うことができなくなる。そこで、むやみに活物質の充填量を増やすことはできない。   That is, if the active material is overfilled by increasing the filling amount of the active material to a certain level, a predetermined amount of electrolyte solution cannot be injected, and the diffusion resistance of ions increases and the battery reaction is smoothly performed. It becomes impossible to do. Therefore, the amount of active material filling cannot be increased unnecessarily.

一方、セパレータは電気化学反応に寄与しない電池材料であるという観点から、現実には、ポリオレフィン不織布が用いられることが多い(例えば、特許文献1参照)。また、ニッケル水素電池の場合、負極としては集電体のパンチングメタルの表面に水素吸蔵合金粉末のメッキ層を有するものが用いられることが多く、正極としては集電体の発泡状多孔体(ニッケルフォーム)に水酸化ニッケルを含浸させたものが用いられることが多い。しかし、不織布のような構造のセパレータは薄くすると強度が低下するので、パンチングメタルからなる負極とニッケルフォームからなる正極の間にセパレータを介装して三次元電池とすれば、成形工程においてパンチングメタルやニッケルフォームの表面に形成された突起などによってセパレータが切断され、あるいはセパレータを突き破るなどして正・負極間で短絡する危険性がある。
特開2005−71788号公報
On the other hand, from the viewpoint that the separator is a battery material that does not contribute to the electrochemical reaction, in practice, a polyolefin nonwoven fabric is often used (see, for example, Patent Document 1). In the case of a nickel metal hydride battery, a negative electrode is often used that has a plated layer of hydrogen storage alloy powder on the surface of the punching metal of the current collector, and the positive electrode has a foamed porous body (nickel) of the current collector. In many cases, foam is impregnated with nickel hydroxide. However, since the strength of a separator having a structure like a non-woven fabric decreases when it is thinned, if a separator is interposed between a negative electrode made of punching metal and a positive electrode made of nickel foam to form a three-dimensional battery, punching metal in the molding process There is a risk that the separator may be cut by a protrusion formed on the surface of the nickel foam or the surface of the nickel foam, or the separator may be broken or short-circuited between the positive electrode and the negative electrode.
Japanese Patent Laid-Open No. 2005-71788

以上のように、活物質の充填量には一定の限界がある。また、電池の容量を向上する上においてセパレータの厚みを薄くすることは好ましいことであるが、短絡を避けるために、比較的厚いセパレータが使用されていた。そのため、セパレータを透過するイオンの拡散距離が長くなって、イオンと活物質との反応が効率的に行われなくなり、高出力が得られないという不都合があった。   As described above, the filling amount of the active material has a certain limit. Further, in order to improve the capacity of the battery, it is preferable to reduce the thickness of the separator. However, in order to avoid a short circuit, a relatively thick separator has been used. As a result, the diffusion distance of ions that pass through the separator becomes longer, the reaction between the ions and the active material is not performed efficiently, and a high output cannot be obtained.

本発明は従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、セパレータの厚みを薄くしても短絡の危険性がなく、高い出力を達成することができる電池を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object thereof is to achieve a high output without the risk of a short circuit even if the thickness of the separator is reduced. To provide a battery.

上記目的を達成するために本発明は、正極集電体と、電解質溶液を有する正極側セルと、略蛇腹状のセパレータと、電解質溶液を有する負極側セルと、負極集電体とをこの順序で配置してなる電池において、正極側セル内に、上記セパレータに接する正極活物質を含有する略蛇腹状の不織布とこの不織布に接する正極活物質を含有する略蛇腹状の成形体とをこの順序で配置し、負極側セル内に、上記セパレータに接する負極活物質を含有する略蛇腹状の不織布とこの不織布に接する負極活物質を含有する略蛇腹状の成形体とをこの順序で配置したことを特徴としている。   To achieve the above object, the present invention provides a positive electrode current collector, a positive electrode side cell having an electrolyte solution, a substantially bellows-shaped separator, a negative electrode side cell having an electrolyte solution, and a negative electrode current collector in this order. In this order, in the positive electrode side cell, a substantially bellows-like non-woven fabric containing a positive electrode active material in contact with the separator and a substantially bellows-like shaped product containing a positive electrode active material in contact with the non-woven fabric in this order. In the negative electrode side cell, a substantially bellows-like non-woven fabric containing a negative electrode active material in contact with the separator and a substantially bellows-like molded product containing a negative electrode active material in contact with the non-woven fabric were arranged in this order. It is characterized by.

本発明の電池は、正極活物質を含有する成形体とセパレータの間に活物質を含有する不織布を配するとともに負極活物質を含有する成形体とセパレータの間に活物質を含有する不織布を配したので、繊維をふんわりと重ねたような状態である不織布の緩衝作用によって、成形体上の異物(成形時に形成される突起など)がセパレータを切断・破損して正・負極間で短絡する危険性を抑えることができる。従って、セパレータの厚みを薄くすることが可能である。しかも、その不織布は活物質を含有しているので、電池の容量を大きくすることができ、出力が増加する。さらに、電池の外形は従前と同じものを使用することができるので、電池の製造コストを低減することができる。   In the battery of the present invention, a non-woven fabric containing an active material is disposed between a molded body containing a positive electrode active material and a separator, and a non-woven fabric containing an active material is placed between a molded body containing a negative electrode active material and a separator. Therefore, there is a risk that foreign matter (projections formed during molding) on the molded body will cut and break the separator and short-circuit between the positive and negative electrodes due to the cushioning action of the nonwoven fabric in a state where fibers are gently piled Sex can be suppressed. Therefore, it is possible to reduce the thickness of the separator. And since the nonwoven fabric contains the active material, the capacity | capacitance of a battery can be enlarged and an output increases. Furthermore, since the same external shape of the battery can be used, the manufacturing cost of the battery can be reduced.

その上、本発明の電池は、正極活物質を含有する成形体と不織布とセパレータ並びに負極活物質を含有する成形体と不織布とセパレータが互いに略蛇腹状の反応界面で接触しているので、反応サイトが増大され、増大された反応サイトを通して正極から負極へ、あるいは負極から正極へ多量のイオンが移動し、次に説明するように充電または放電を行い、高出力を達成することができる。   In addition, the battery of the present invention has a molded body containing a positive electrode active material, a nonwoven fabric and a separator, and a molded body containing a negative electrode active material, a nonwoven fabric and a separator are in contact with each other at a substantially bellows-like reaction interface. Sites are increased, and a large amount of ions move from the positive electrode to the negative electrode or from the negative electrode to the positive electrode through the increased reaction sites, and can be charged or discharged as described below to achieve high output.

例えば、充電時には、電池が発電手段と接続されると、発電手段から負極集電体を通して負極側に電子が供給され、負極活物質が電子を受容することによって発生した陰イオンはセパレータを通過して正極活物質と反応して電子を放出する。この電子は正極集電体に移動して発電手段に供給される。   For example, at the time of charging, when the battery is connected to the power generation means, electrons are supplied from the power generation means to the negative electrode side through the negative electrode current collector, and the negative ions generated when the negative electrode active material accepts the electrons pass through the separator. Reacts with the positive electrode active material to emit electrons. The electrons move to the positive electrode current collector and are supplied to the power generation means.

一方、放電時には、電池が負荷手段と接続されると、負荷手段から正極集電体を通して正極側に電子が供給され、正極活物質が電子を受容することによって発生した陰イオンはセパレータを通過して負極活物質と反応して電子を放出する。この電子は負極集電体に移動して負荷手段に供給される。   On the other hand, at the time of discharging, when the battery is connected to the load means, electrons are supplied from the load means to the positive electrode side through the positive electrode current collector, and the negative ions generated when the positive electrode active material accepts the electrons pass through the separator. Reacts with the negative electrode active material to emit electrons. The electrons move to the negative electrode current collector and are supplied to the load means.

そして、本発明の電池は、正極活物質を含有する成形体と不織布とセパレータ並びに負極活物質を含有する成形体と不織布とセパレータが互いに略蛇腹状の反応界面で接触しているので、反応サイトが増大し且つイオン拡散距離が短くなって良好なイオン拡散が得られるとともに多量に電子が放出されることによって高出力が得られるのである。   In the battery of the present invention, the molded body containing the positive electrode active material, the nonwoven fabric, and the separator, and the molded body containing the negative electrode active material, the nonwoven fabric, and the separator are in contact with each other at a substantially bellows-like reaction interface. The ion diffusion distance is shortened and good ion diffusion is obtained, and a large amount of electrons are emitted, so that a high output can be obtained.

本発明は、セパレータの厚みを薄くしても短絡の危険性がない巧みな手段を採用することにより、高い出力を達成することができる電池を提供しうる。   The present invention can provide a battery capable of achieving a high output by employing a skillful means that does not cause a short circuit even if the thickness of the separator is reduced.

以下に本発明の実施形態について説明するが、本発明は下記実施形態に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲において適宜変更して実施することが可能である。   Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be appropriately modified and implemented without departing from the technical scope of the present invention.

図1は、本発明の電池の一実施形態の概略構成を示す断面図である。1は正極集電体、2は負極集電体、3は絶縁体である。これらで囲まれたセル内には電解質溶液(KOH、NaOH、LiOHなど)が満たされ、そのセルはイオン透過性の略蛇腹状のセパレータ4によって正極側セル5と負極側セル6に2分割されている。正極側セル5内には、セパレータ4に全面的に接する正極活物質を含有する略蛇腹状のポリプロピレン繊維の不織布7が配され、さらに、不織布7に全面的に接するとともに正極集電体1に部分的に接する正極活物質を含有する略蛇腹状のニッケルフォームからなる成形体8が配されている。負極側セル6内には、セパレータ4に全面的に接する負極活物質を含有する略蛇腹状のポリプロピレン繊維の不織布9が配され、さらに、不織布9に全面的に接するとともに負極集電体2に部分的に接する負極活物質を含有する略蛇腹状のニッケルフォームからなる成形体10が配されている。11は負荷手段(電池が放電の場合)または発電手段(電池が充電の場合)であり、正極集電体1と配線12により接続され、負極集電体2と配線13により接続されている。   FIG. 1 is a cross-sectional view showing a schematic configuration of one embodiment of a battery of the present invention. 1 is a positive electrode current collector, 2 is a negative electrode current collector, and 3 is an insulator. The cell surrounded by these is filled with an electrolyte solution (KOH, NaOH, LiOH, etc.), and the cell is divided into a positive electrode cell 5 and a negative electrode cell 6 by an ion permeable substantially bellows-shaped separator 4. ing. A non-woven fabric 7 of substantially bellows-like polypropylene fiber containing a positive electrode active material that is in contact with the separator 4 is disposed in the positive electrode side cell 5, and is further in contact with the non-woven fabric 7 and is connected to the positive electrode current collector 1. A molded body 8 made of a substantially bellows-like nickel foam containing a positive electrode active material that is partially in contact is disposed. In the negative electrode side cell 6, a non-woven fabric 9 made of a substantially bellows-like polypropylene fiber containing a negative electrode active material that is in full contact with the separator 4 is arranged. Further, the non-woven fabric 9 is in full contact with the negative electrode current collector 2. A molded body 10 made of a substantially bellows-like nickel foam containing a negative electrode active material that is partially in contact is disposed. Reference numeral 11 denotes load means (when the battery is discharged) or power generation means (when the battery is charged), which is connected to the positive electrode current collector 1 by the wiring 12 and connected by the negative electrode current collector 2 to the wiring 13.

本発明において、略蛇腹状の不織布および略蛇腹状の成形体とは、ひだ(折り目)を有する不織布および成形体をいい、図1に示す形状のものに限定されない。   In the present invention, the substantially bellows-like non-woven fabric and the substantially bellows-like shaped product refer to a non-woven fabric and a shaped product having folds (folds), and are not limited to the shape shown in FIG.

正極集電体1および負極集電体2としては、アルカリ電解液中で腐食など変質せず、イオンが通過しなくて電気伝導性があるもの、例えば、ニッケル金属板、ニッケル金属箔、炭素板、鉄やステンレス鋼にニッケルメッキした鋼板、炭素板にニッケルメッキしたものなどが使用可能である。   As the positive electrode current collector 1 and the negative electrode current collector 2, those that do not change in corrosion or the like in an alkaline electrolyte and do not pass ions and have electrical conductivity, such as a nickel metal plate, a nickel metal foil, and a carbon plate A steel plate nickel-plated on iron or stainless steel, a nickel-plated carbon plate, or the like can be used.

セパレータ4としては、アルカリ電解液中で腐食など変質せず、電気的絶縁が可能で、イオンが通過するもの、例えば、四フッ化エチレン樹脂、ポリエチレン、ポルプロピレン、ナイロンなどの織物や不織布またはメンブレンフィルターなどが使用可能である。   As the separator 4, a material that does not change in corrosion or the like in an alkaline electrolyte, can be electrically insulated, and allows ions to pass through, for example, a woven fabric, nonwoven fabric, or membrane such as tetrafluoroethylene resin, polyethylene, porpropylene, and nylon Filters can be used.

活物質の材料としては、電池の種類や正極・負極を問わず、すべての活物質材料を使用することができる。一例として、ニッケル水素二次電池の正極活物質である水酸化ニッケル、同電池の負極活物質である水素吸蔵合金などを用いることができる。水素吸蔵合金の一例としては、La0.8(Ce、Nd)0.15Zr0.05Ni3.8Co0.8Al0.5を用いることができる。
(1)正極活物質を含有する略蛇腹状の不織布7と負極活物質を含有する略蛇腹状の不織布9の製造
正極活物質を含有する略蛇腹状のポリプロピレン繊維の不織布7と負極活物質を含有する略蛇腹状のポリプロピレン繊維の不織布9は、例えば、以下のようにして製造することができる。
(a)抄紙法
紙を作る場合と同じように、ポリプロピレン短繊維(6mm以下)と正極または負極活物質を水中に懸濁し、ネットで漉き上げてウェブを作り、このウェブを脱水し加熱ドラムで乾燥させた後、熱または接着樹脂で結合することにより活物質含有不織布を得、さらに、その不織布を適切なプリーツ加工機でプリーツ状に加工することにより、図1に示すような正極活物質を含有する略蛇腹状のポリプロピレン繊維の不織布7または負極活物質を含有する略蛇腹状のポリプロピレン繊維の不織布9を得ることができる。蛇腹状の不織布を得るために、不織布にプリーツ加工を施すのは下記の不織布製造方法に共通である。
(b)スパンボンド法
ポリプロピレンのチップを加熱溶融し、ノズルからポリプロピレンの溶融樹脂流を噴出するときに正極または負極活物質を添加し、溶出したエンドレスのポリプロピレン長繊維をベルトコンベヤの上で何本も重ね合わせることによりウェブを作り、このウェブを熱ロールで溶着することにより活物質含有不織布を得、さらに、その不織布にプリーツ加工を施す。
(c)スパンレース法(水流絡合法)
ポリプロピレン繊維と正極または負極活物質を含有する懸濁液をネットで漉き上げてウェブを作り、高圧水流をそのウェブに当てて繊維同士を交絡することにより活物質含有不織布を得、さらに、その不織布にプリーツ加工を施す。
(d)その他ニードルパンチ法等の公知の不織布製造方法を利用して、正極活物質または負極活物質を含有する略蛇腹状の不織布を得ることができる。
As the material of the active material, any active material can be used regardless of the type of the battery, the positive electrode or the negative electrode. As an example, nickel hydroxide which is a positive electrode active material of a nickel metal hydride secondary battery, a hydrogen storage alloy which is a negative electrode active material of the battery, or the like can be used. As an example of the hydrogen storage alloy, La 0.8 (Ce, Nd) 0.15 Zr 0.05 Ni 3.8 Co 0.8 Al 0.5 can be used.
(1) Production of a substantially bellows-like nonwoven fabric 7 containing a positive electrode active material and a substantially bellows-like nonwoven fabric 9 containing a negative electrode active material A substantially bellows-like nonwoven fabric 7 containing a positive electrode active material and a negative electrode active material The non-woven fabric 9 of the substantially bellows-like polypropylene fiber contained can be manufactured as follows, for example.
(A) Papermaking method In the same way as when making paper, polypropylene short fibers (6 mm or less) and positive or negative electrode active material are suspended in water and sprinkled with a net to make a web. After drying, the active material-containing non-woven fabric is obtained by bonding with heat or an adhesive resin, and further, the non-woven fabric is processed into a pleated shape by an appropriate pleating machine to obtain a positive electrode active material as shown in FIG. The substantially accordion-like polypropylene fiber nonwoven fabric 7 or the substantially accordion-like polypropylene fiber nonwoven fabric 9 containing the negative electrode active material can be obtained. In order to obtain a bellows-like non-woven fabric, the non-woven fabric is pleated in common with the following non-woven fabric manufacturing method.
(B) Spunbond method A polypropylene chip is heated and melted, and a positive or negative electrode active material is added when a polypropylene molten resin stream is ejected from a nozzle. Also, a web is formed by superimposing, and the web is welded with a hot roll to obtain an active material-containing nonwoven fabric, and the nonwoven fabric is pleated.
(C) Spunlace method (water entanglement method)
A web containing a polypropylene fiber and a suspension containing a positive electrode or a negative electrode active material is squeezed with a net, and an active material-containing non-woven fabric is obtained by entangling the fibers by applying a high-pressure water stream to the web. Apply pleating.
(D) In addition, a substantially accordion-shaped nonwoven fabric containing a positive electrode active material or a negative electrode active material can be obtained using a known nonwoven fabric manufacturing method such as a needle punch method.

不織布の素材としては、ポリプロピレン繊維の他にポリエステル繊維やポリアミド繊維などの化学繊維や羊毛や綿などの天然繊維を用いることができる。また、これらの不織布に活物質を含浸させてプレスして製造することもできる。
(2)正極活物質を含有
する略蛇腹状の成形体8と負極活物質を含有する略蛇腹状の成形体10の製造
正極活物質を含有する略蛇腹状のニッケルフォームからなる成形体8と負極活物質を含有する略蛇腹状のニッケルフォームからなる成形体10は次のようにして製造することができる。
(イ)ウレタン発泡体(ウレタンフォーム)へのニッケルメッキ
まず、ウレタンフォームを公知の製法に従って製造し、そのウレタンフォームにパラジウムを付着し、さらに、そのパラジウムを付着したウレタンフォームに電解ニッケルメッキを施すと、ニッケルメッキウレタンフォームが得られる。
(ロ)ニッケルの発泡体(ニッケルフォーム)の製造
そして、そのニッケルメッキウレタンフォームを焼成すると、ウレタンを構成する有機物である炭素と水素はCO2とH2Oに熱分解されるので、ニッケルの発泡体(ニッケルフォーム)が得られる。そのニッケルフォームをさらに水素で還元すると、約90〜95%の気孔率の多孔ニッケルフォームが得られる。
(ハ)活物質の含浸
正極活物質を含有する略蛇腹状の成形体8を得る場合であれば、水酸化ニッケル粉末を含有するスラリーに多孔ニッケルフォームを浸漬することにより、多孔ニッケルフォームに水酸化ニッケルを含浸させることができる。また、負極活物質を含有する略蛇腹状の成形体10を得る場合であれば、水素吸蔵合金粉末を含有するスラリーに多孔ニッケルフォームを浸漬することにより、多孔ニッケルフォームに水素吸蔵合金を含浸させることができる。
(ニ)ロール状ニッケルフォームの製造
さらに、水酸化ニッケルまたは水素吸蔵合金を含浸したニッケルフォームを乾燥させ、次いで、乾燥後のニッケルフォームを上下2段のロールから構成される圧延機などにより圧延した後にロール状に巻き取って、ロール状ニッケルフォームを得る。
(ホ)プリーツ加工
ロール状ニッケルフォームを適切なプリーツ加工機でプリーツ状に加工することにより、図1に示すような正極活物質を含有する略蛇腹状のニッケルフォームからなる成形体8または負極活物質を含有する略蛇腹状のニッケルフォームからなる成形体10を得ることができる。
As the material for the nonwoven fabric, in addition to polypropylene fibers, chemical fibers such as polyester fibers and polyamide fibers, and natural fibers such as wool and cotton can be used. Further, these non-woven fabrics can be produced by impregnating an active material and pressing them.
(2) Production of a substantially bellows-shaped molded body 8 containing a positive electrode active material and a substantially bellows-shaped molded body 10 containing a negative electrode active material, and a molded body 8 made of a substantially bellows-shaped nickel foam containing a positive electrode active material; The molded body 10 made of a substantially bellows-like nickel foam containing a negative electrode active material can be produced as follows.
(B) Nickel plating on urethane foam (urethane foam) First, urethane foam is produced according to a known production method, palladium is adhered to the urethane foam, and electrolytic nickel plating is applied to the urethane foam to which the palladium is adhered. A nickel-plated urethane foam is obtained.
(B) Manufacture of nickel foam (nickel foam) And, when the nickel-plated urethane foam is baked, carbon and hydrogen, which are organic substances constituting urethane, are thermally decomposed into CO 2 and H 2 O. A foam (nickel foam) is obtained. When the nickel foam is further reduced with hydrogen, a porous nickel foam with a porosity of about 90-95% is obtained.
(C) Impregnation of active material When obtaining a substantially bellows-shaped molded body 8 containing a positive electrode active material, water is added to the porous nickel foam by immersing the porous nickel foam in a slurry containing nickel hydroxide powder. Nickel oxide can be impregnated. Further, in the case of obtaining a substantially bellows-shaped molded body 10 containing a negative electrode active material, the porous nickel foam is impregnated with the hydrogen storage alloy by immersing the porous nickel foam in the slurry containing the hydrogen storage alloy powder. be able to.
(D) Manufacture of roll-shaped nickel foam Furthermore, the nickel foam impregnated with nickel hydroxide or a hydrogen storage alloy was dried, and then the dried nickel foam was rolled by a rolling mill composed of two upper and lower rolls. Later, it is wound into a roll to obtain a rolled nickel foam.
(E) Pleat processing By processing a roll-shaped nickel foam into a pleat shape with an appropriate pleating machine, a compact 8 or negative electrode active material comprising a substantially bellows-like nickel foam containing a positive electrode active material as shown in FIG. The molded object 10 which consists of a substantially bellows-like nickel foam containing a substance can be obtained.

負極活物質を含有する略蛇腹状の成形体10をパンチングメタル(孔あき鋼板)を素材として製造する場合、公知の製法により得たパンチングメタルに水素吸蔵合金粉末を含有するニッケルメッキ液による電解メッキを施すことにより、水素吸蔵合金含有ニッケルメッキ層をパンチングメタルの表面に形成し、次いで、そのパンチングメタルを適切なプリーツ加工機でプリーツ状に加工することにより、図1に示すような負極活物質を含有する略蛇腹状のパンチングメタルからなる成形体10を得ることができる。
(3)充電および放電
以上のように構成される電池について、充電および放電の機構を説明する。
(充電)
充電時には、図1において、発電手段11から配線13を経て負極集電体2に電子が供給される。電子は、負極集電体2から直接負極活物質を含有する成形体10および不織布9に移動するか、または負極側セル6の電解質溶液を経由して負極活物質を含有する成形体10および不織布9に移動する。成形体10および不織布9の負極活物質が電子を受容することによって発生した陰イオンは略蛇腹状のセパレータ4を通過して正極活物質を含有する不織布7および成形体8に移動して正極活物質と反応して電子を放出する。この電子は直接正極集電体1に移動するか、または正極側セル5の電解質溶液を経由して正極集電体1に移動する。この電子は配線12を経由して発電手段11に供給される。
(放電)
放電時には、図1において、負荷手段11から配線12を経て正極集電体1に電子が供給される。電子は、正極集電体1から直接正極活物質を含有する成形体8および不織布7に移動するか、または正極側セル5の電解質溶液を経由して正極活物質を含有する成形体8および不織布7に移動する。成形体8および不織布7の正極活物質が電子を受容することによって発生した陰イオンは略蛇腹状のセパレータ4を通過して負極活物質を含有する不織布9および成形体10に移動して負極活物質と反応して電子を放出する。この電子は直接負極集電体2に移動するか、または負極側セル6の電解質溶液を経由して負極集電体2に移動する。この電子は配線13を経由して負荷手段11に供給される。
When the substantially bellows-shaped formed body 10 containing the negative electrode active material is manufactured using a punching metal (perforated steel plate) as a raw material, electrolytic plating using a nickel plating solution containing hydrogen storage alloy powder on the punching metal obtained by a known manufacturing method. To form a hydrogen-absorbing alloy-containing nickel plating layer on the surface of the punching metal, and then processing the punching metal into a pleated shape with an appropriate pleating machine, thereby producing a negative electrode active material as shown in FIG. The molded object 10 which consists of a substantially bellows-like punching metal containing this can be obtained.
(3) Charging and Discharging Regarding the battery configured as described above, a charging and discharging mechanism will be described.
(charging)
At the time of charging, electrons are supplied from the power generation means 11 to the negative electrode current collector 2 through the wiring 13 in FIG. Electrons move directly from the negative electrode current collector 2 to the molded body 10 and the nonwoven fabric 9 containing the negative electrode active material, or via the electrolyte solution of the negative electrode side cell 6, the molded body 10 and the nonwoven fabric containing the negative electrode active material. Move to 9. The anion generated when the negative electrode active material of the molded body 10 and the nonwoven fabric 9 accepts electrons passes through the substantially bellows-shaped separator 4 and moves to the nonwoven fabric 7 and the molded body 8 containing the positive electrode active material, thereby positive electrode active. It reacts with the substance and emits electrons. The electrons move directly to the positive electrode current collector 1 or move to the positive electrode current collector 1 via the electrolyte solution in the positive electrode side cell 5. The electrons are supplied to the power generation means 11 via the wiring 12.
(Discharge)
At the time of discharging, electrons are supplied from the load means 11 to the positive electrode current collector 1 through the wiring 12 in FIG. The electrons move directly from the positive electrode current collector 1 to the molded body 8 and the nonwoven fabric 7 containing the positive electrode active material, or the molded body 8 and the nonwoven fabric containing the positive electrode active material via the electrolyte solution of the positive electrode side cell 5. Move to 7. The anion generated when the positive electrode active material of the molded body 8 and the nonwoven fabric 7 accepts electrons passes through the substantially bellows-shaped separator 4 and moves to the nonwoven fabric 9 and the molded body 10 containing the negative electrode active material, thereby negative electrode active. It reacts with the substance and emits electrons. The electrons move directly to the negative electrode current collector 2 or move to the negative electrode current collector 2 via the electrolyte solution of the negative electrode side cell 6. The electrons are supplied to the load means 11 via the wiring 13.

以上で明かなように、正極活物質を含有する成形体8と不織布7とセパレータ4ならびに負極活物質を含有する成形体10と不織布9とセパレータ4が略蛇腹状の反応界面で接触しているので、反応サイトが増大し且つイオン拡散距離が短くなって良好なイオン拡散が得られるとともに多量に電子が放出されることによって高出力が得られる。
(4)寸法と電池容量の比較
図2は、寸法および電池容量を本発明の電池と比較するための従来の電池の概略構成を示す断面図である。図2に示すように、この従来の電池は、図1に示す電池から不織布7と不織布9を取り除き、正極集電体1と負極集電体2と絶縁体3で囲まれたセル内には電解質溶液を満たすとともに、そのセルはイオン透過性の略蛇腹状のセパレータ4aによって正極側セル5aと負極側セル6aに2分割され、正極側セル5a内には、セパレータ4aに全面的に接するともに正極集電体1に部分的に接する正極活物質を含有する略蛇腹状のニッケルフォームからなる成形体8aが配され、負極側セル6a内には、セパレータ4aに全面的に接するとともに負極集電体2に部分的に接する負極活物質を含有する略蛇腹状のニッケルフォームからなる成形体10aが配されている。
(イ)電池構成要素の寸法の比較
上記した充電および放電が不都合なく行われることを確認した図1に示す本発明の電池の試作物の寸法は、正極活物質を含有する略蛇腹状のニッケルフォームからなる成形体8の厚さは0.65mm、正極活物質を含有する略蛇腹状のポリプロピレン繊維の不織布7の厚さは0.125mm、略蛇腹状のセパレータ4の厚さは0.20mm、負極活物質を含有する略蛇腹状のポリプロピレン繊維の不織布9の厚さは0.125mm、負極活物質を含有する略蛇腹状のニッケルフォームからなる成形体10の厚さは0.33mmであった。
As is apparent from the above, the molded body 8 containing the positive electrode active material, the nonwoven fabric 7 and the separator 4 and the molded body 10 containing the negative electrode active material, the nonwoven fabric 9 and the separator 4 are in contact with each other at a substantially bellows-like reaction interface. Therefore, the reaction site is increased and the ion diffusion distance is shortened to obtain good ion diffusion and a high output is obtained by emitting a large amount of electrons.
(4) Comparison of Dimensions and Battery Capacity FIG. 2 is a cross-sectional view showing a schematic configuration of a conventional battery for comparing dimensions and battery capacity with the battery of the present invention. As shown in FIG. 2, this conventional battery removes the nonwoven fabric 7 and the nonwoven fabric 9 from the battery shown in FIG. 1, and has a cell surrounded by the positive electrode current collector 1, the negative electrode current collector 2, and the insulator 3. The electrolyte solution is filled, and the cell is divided into a positive electrode side cell 5a and a negative electrode side cell 6a by an ion-permeable substantially bellows-like separator 4a, and the positive electrode side cell 5a is entirely in contact with the separator 4a. A molded body 8a made of a substantially bellows-like nickel foam containing a positive electrode active material partially in contact with the positive electrode current collector 1 is disposed, and the negative electrode side cell 6a is in total contact with the separator 4a and has a negative electrode current collector. A molded body 10a made of a substantially bellows-like nickel foam containing a negative electrode active material partially in contact with the body 2 is disposed.
(A) Comparison of dimensions of battery components The dimensions of the prototype of the battery of the present invention shown in FIG. 1 confirmed that the above-described charging and discharging are performed without inconvenience are substantially bellows-like nickel containing a positive electrode active material. The thickness of the molded body 8 made of foam is 0.65 mm, the thickness of the substantially bellows-like polypropylene fiber nonwoven fabric 7 containing the positive electrode active material is 0.125 mm, and the thickness of the substantially bellows-like separator 4 is 0.20 mm. The non-woven fabric 9 of the substantially bellows-like polypropylene fiber containing the negative electrode active material has a thickness of 0.125 mm, and the molded body 10 made of the substantially bellows-like nickel foam containing the negative electrode active material has a thickness of 0.33 mm. It was.

また、不織布が存在しない点を除けば、上記した充電および放電と同じような電池反応が行われることを確認した図2に示す従来の電池の試作物の寸法は、正極活物質を含有する略蛇腹状のニッケルフォームからなる成形体8aの厚さは0.65mm、略蛇腹状のセパレータ4aの厚さは0.45mm、負極活物質を含有する略蛇腹状のニッケルフォームからなる成形体10aの厚さは0.33mmであった。   Moreover, the dimension of the prototype of the conventional battery shown in FIG. 2 that confirms that the battery reaction similar to the above-described charging and discharging is performed, except that the non-woven fabric is not present, is an abbreviation containing the positive electrode active material. The formed body 8a made of a bellows-like nickel foam has a thickness of 0.65 mm, the substantially bellows-like separator 4a has a thickness of 0.45 mm, and the formed body 10a made of a substantially bellows-like nickel foam containing a negative electrode active material. The thickness was 0.33 mm.

以上のように、本発明によれば、セパレータと活物質含有成形体との間に不織布を介在させることによって、セパレータの厚みを不織布を有しない従来の電池の半分以下にすることができる。
(ロ)電池容量の比較
この実験における正極活物質の理論容量は170Ah/kg、負極活物質の理論容量は240Ah/kgであった。この場合、図2に示す従来の電池の負極容量は900mAh、正極容量は1300mAhであった。一方、図1に示す本発明の電池は、不織布7が正極活物質を含有し、不織布9が負極活物質を含有しているので、負極容量は1000mAh、正極容量は1400mAhであり、負極、正極ともに従来の電池より容量が増加した。
As described above, according to the present invention, the thickness of the separator can be reduced to half or less that of a conventional battery having no nonwoven fabric by interposing the nonwoven fabric between the separator and the active material-containing molded body.
(B) Comparison of battery capacities The theoretical capacity of the positive electrode active material in this experiment was 170 Ah / kg, and the theoretical capacity of the negative electrode active material was 240 Ah / kg. In this case, the conventional battery shown in FIG. 2 had a negative electrode capacity of 900 mAh and a positive electrode capacity of 1300 mAh. On the other hand, in the battery of the present invention shown in FIG. 1, since the nonwoven fabric 7 contains a positive electrode active material and the nonwoven fabric 9 contains a negative electrode active material, the negative electrode capacity is 1000 mAh and the positive electrode capacity is 1400 mAh. Both of them have increased capacity compared to conventional batteries.

本発明は簡単な構造にして、高い出力を達成することができる電池であるから、工具、玩具、電灯、カメラ、ラジオ、パソコン、ビデオ、携帯電話などの電源として利用することができる。  Since the present invention is a battery that has a simple structure and can achieve high output, it can be used as a power source for tools, toys, lights, cameras, radios, personal computers, videos, mobile phones, and the like.

本発明の電池の一実施形態の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of one Embodiment of the battery of this invention. 従来の電池の概略構成を示す断面図であるIt is sectional drawing which shows schematic structure of the conventional battery.

符号の説明Explanation of symbols

1 正極集電体
2 負極集電体
3 絶縁体
4 セパレータ
5 正極側セル
6 負極側セル
7 正極活物質を含有する略蛇腹状のポリプロピレン繊維の不織布
8 正極活物質を含有する略蛇腹状のニッケルフォーム
9 負極活物質を含有する略蛇腹状のポリプロピレン繊維の不織布
10 負極活物質を含有する略蛇腹状のニッケルフォーム
11 負荷手段(電池が放電の場合)又は発電手段(電池が充電の場合)
12 配線
13 配線
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Negative electrode collector 3 Insulator 4 Separator 5 Positive electrode side cell 6 Negative electrode side cell 7 The nonwoven fabric of the substantially bellows-like polypropylene fiber containing a positive electrode active material 8. The substantially bellows-like nickel containing a positive electrode active material Form 9 Non-woven fabric of substantially bellows-like polypropylene fiber containing negative electrode active material 10 Substantially bellows-like nickel foam containing negative electrode active material 11 Load means (when battery is discharged) or power generation means (when battery is charged)
12 Wiring 13 Wiring

Claims (2)

正極集電体と、電解質溶液を有する正極側セルと、略蛇腹状のセパレータと、電解質溶液を有する負極側セルと、負極集電体とをこの順序で配置してなる電池において、
正極側セル内に、上記セパレータに接する正極活物質を含有する略蛇腹状の不織布とこの不織布に接する正極活物質を含有する略蛇腹状の成形体とをこの順序で配置し、
負極側セル内に、上記セパレータに接する負極活物質を含有する略蛇腹状の不織布とこの不織布に接する負極活物質を含有する略蛇腹状の成形体とをこの順序で配置したことを特徴とする電池。
In a battery comprising a positive electrode current collector, a positive electrode side cell having an electrolyte solution, a substantially bellows-shaped separator, a negative electrode side cell having an electrolyte solution, and a negative electrode current collector arranged in this order,
In the positive electrode side cell, a substantially bellows-shaped non-woven fabric containing a positive electrode active material in contact with the separator and a substantially bellows-shaped molded body containing a positive electrode active material in contact with the non-woven fabric are arranged in this order,
A substantially bellows-like nonwoven fabric containing a negative electrode active material in contact with the separator and a substantially bellows-like molded product containing a negative electrode active material in contact with the nonwoven fabric are arranged in this order in the negative electrode side cell. battery.
正極活物質を含有する略蛇腹状の成形体がニッケルフォームからなり、負極活物質を含有する略蛇腹状の成形体がニッケルフォームまたはパンチングメタルからなる請求項1記載の電池。   2. The battery according to claim 1, wherein the substantially bellows-shaped formed body containing the positive electrode active material is made of nickel foam, and the substantially bellows-shaped formed body containing the negative electrode active material is made of nickel foam or punching metal.
JP2006216643A 2006-08-09 2006-08-09 battery Expired - Fee Related JP5016866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216643A JP5016866B2 (en) 2006-08-09 2006-08-09 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216643A JP5016866B2 (en) 2006-08-09 2006-08-09 battery

Publications (3)

Publication Number Publication Date
JP2008041523A true JP2008041523A (en) 2008-02-21
JP2008041523A5 JP2008041523A5 (en) 2010-02-25
JP5016866B2 JP5016866B2 (en) 2012-09-05

Family

ID=39176298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216643A Expired - Fee Related JP5016866B2 (en) 2006-08-09 2006-08-09 battery

Country Status (1)

Country Link
JP (1) JP5016866B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129360A (en) * 2008-11-27 2010-06-10 Kawasaki Heavy Ind Ltd Square battery
WO2010087992A1 (en) * 2009-01-27 2010-08-05 G4 Synergetics, Inc. Electrode folds for energy storage devices
CN102593532A (en) * 2012-02-07 2012-07-18 杭州中亿科技有限公司 Folding lead-acid storage battery
US8632901B2 (en) 2007-10-26 2014-01-21 G4 Synergetics, Inc. Dish shaped and pressure equalizing electrodes for electrochemical batteries
JP2015069027A (en) * 2013-09-30 2015-04-13 ブラザー工業株式会社 Fixing device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371232A (en) * 1976-12-06 1978-06-24 Matsushita Electric Ind Co Ltd Enclosed type zinc alkali storage battery
JPS5784568A (en) * 1980-11-14 1982-05-26 Japan Storage Battery Co Ltd Nickel plate for alkaline storage battery
JPH02170357A (en) * 1988-12-23 1990-07-02 Toshiba Battery Co Ltd Cylindrical battery with nonaqueous electrolyte
JPH05101830A (en) * 1991-10-11 1993-04-23 Asahi Chem Ind Co Ltd Battery
JPH10340740A (en) * 1997-06-09 1998-12-22 Yuasa Corp Lithium battery
JPH11250892A (en) * 1998-02-26 1999-09-17 Yuasa Corp Battery
JP2002025548A (en) * 2000-07-10 2002-01-25 Matsushita Electric Ind Co Ltd Square alkaline storage battery
JP2003272593A (en) * 2002-03-13 2003-09-26 Kawasaki Heavy Ind Ltd Battery using pleated separator, pleated separator for battery, and its manufacturing method
JP2003272594A (en) * 2002-03-13 2003-09-26 Kawasaki Heavy Ind Ltd Battery using bag-shaped separator, bag-shaped separator for battery, and its manufacturing method
JP2004535047A (en) * 2001-07-10 2004-11-18 株式会社アトラスビーエックス Electrode for lead storage battery and method of manufacturing the same
JP2005071788A (en) * 2003-08-25 2005-03-17 Yuasa Corp Alkaline battery
JP2005149891A (en) * 2003-11-14 2005-06-09 Nissan Motor Co Ltd Bipolar battery and packed battery using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371232A (en) * 1976-12-06 1978-06-24 Matsushita Electric Ind Co Ltd Enclosed type zinc alkali storage battery
JPS5784568A (en) * 1980-11-14 1982-05-26 Japan Storage Battery Co Ltd Nickel plate for alkaline storage battery
JPH02170357A (en) * 1988-12-23 1990-07-02 Toshiba Battery Co Ltd Cylindrical battery with nonaqueous electrolyte
JPH05101830A (en) * 1991-10-11 1993-04-23 Asahi Chem Ind Co Ltd Battery
JPH10340740A (en) * 1997-06-09 1998-12-22 Yuasa Corp Lithium battery
JPH11250892A (en) * 1998-02-26 1999-09-17 Yuasa Corp Battery
JP2002025548A (en) * 2000-07-10 2002-01-25 Matsushita Electric Ind Co Ltd Square alkaline storage battery
JP2004535047A (en) * 2001-07-10 2004-11-18 株式会社アトラスビーエックス Electrode for lead storage battery and method of manufacturing the same
JP2003272593A (en) * 2002-03-13 2003-09-26 Kawasaki Heavy Ind Ltd Battery using pleated separator, pleated separator for battery, and its manufacturing method
JP2003272594A (en) * 2002-03-13 2003-09-26 Kawasaki Heavy Ind Ltd Battery using bag-shaped separator, bag-shaped separator for battery, and its manufacturing method
JP2005071788A (en) * 2003-08-25 2005-03-17 Yuasa Corp Alkaline battery
JP2005149891A (en) * 2003-11-14 2005-06-09 Nissan Motor Co Ltd Bipolar battery and packed battery using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8632901B2 (en) 2007-10-26 2014-01-21 G4 Synergetics, Inc. Dish shaped and pressure equalizing electrodes for electrochemical batteries
JP2010129360A (en) * 2008-11-27 2010-06-10 Kawasaki Heavy Ind Ltd Square battery
WO2010087992A1 (en) * 2009-01-27 2010-08-05 G4 Synergetics, Inc. Electrode folds for energy storage devices
CN102341949A (en) * 2009-01-27 2012-02-01 G4协同学公司 Variable volume containment for energy storage devices
JP2012516542A (en) * 2009-01-27 2012-07-19 ジー4 シナジェティクス, インコーポレイテッド Electrode folds for energy storage devices
US8859132B2 (en) 2009-01-27 2014-10-14 G4 Synergetics, Inc. Variable volume containment for energy storage devices
CN102593532A (en) * 2012-02-07 2012-07-18 杭州中亿科技有限公司 Folding lead-acid storage battery
JP2015069027A (en) * 2013-09-30 2015-04-13 ブラザー工業株式会社 Fixing device

Also Published As

Publication number Publication date
JP5016866B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
US7598001B2 (en) Alkaline battery, current collector, electrode, and method of manufacturing electrode
JP4788560B2 (en) Power storage device
JPH06187998A (en) Rectangular battery and manufacture thereof
KR20060048062A (en) Secondary battery
JP5016866B2 (en) battery
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP4903959B2 (en) Battery current collector and battery using the same
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
CN1180940A (en) Battery
JP2008066145A (en) Electrode substrate for battery, electrode for battery, and alkaline secondary battery using it
JP2002319410A (en) Alkaline secondary battery electrode and alkaline secondary battery using the same
JP5110889B2 (en) Nickel metal hydride secondary battery
JP3849478B2 (en) Alkaline storage battery and method of manufacturing the same
EP1022790A2 (en) Alkaline storage battery and manufacturing method of the same
JP7105525B2 (en) zinc battery
JP2004319606A (en) Electric double layer capacitor
JP2004303678A (en) Energy storage element and combined energy storage element
JP2010061892A (en) Secondary battery with spirally-rolled electrode group
JP2008159497A (en) Current collector material for electrochemical element and electrochemical element
JP2006196207A (en) Alkaline storage battery and manufacturing method of its electrode group
JP6523658B2 (en) Intermediate layer material composition for capacitor air battery, electrode having intermediate layer containing the material composition, and capacitor air battery provided with the electrode
JP5023645B2 (en) Alkaline storage battery
JP2008041522A (en) Battery
JP3710755B2 (en) Battery using bag-shaped separator
JPH07134979A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees