JP4168578B2 - Square alkaline storage battery and manufacturing method thereof - Google Patents

Square alkaline storage battery and manufacturing method thereof Download PDF

Info

Publication number
JP4168578B2
JP4168578B2 JP2000250649A JP2000250649A JP4168578B2 JP 4168578 B2 JP4168578 B2 JP 4168578B2 JP 2000250649 A JP2000250649 A JP 2000250649A JP 2000250649 A JP2000250649 A JP 2000250649A JP 4168578 B2 JP4168578 B2 JP 4168578B2
Authority
JP
Japan
Prior art keywords
groove
electrode plate
active material
positive electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000250649A
Other languages
Japanese (ja)
Other versions
JP2002063933A (en
Inventor
真澄 勝本
英樹 笠原
正春 宮久
義廣 坊木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000250649A priority Critical patent/JP4168578B2/en
Publication of JP2002063933A publication Critical patent/JP2002063933A/en
Application granted granted Critical
Publication of JP4168578B2 publication Critical patent/JP4168578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池に代表される角型アルカリ蓄電池に関するものである。
【0002】
【従来の技術】
ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池に代表されるアルカリ蓄電池の正極として用いられるニッケル極は焼結式と非焼結式に大別される。
【0003】
焼結式ニッケル極の製造方法としては、パンチングメタルなどの芯材とニッケル粉末を焼結させて得た多孔度80%程度の多孔質ニッケル焼結基体に、硝酸ニッケル水溶液などのニッケル塩溶液を含浸し、ついでアルカリ水溶液中に浸漬することにより多孔質ニッケル焼結基体中に水酸化ニッケルを生成させて作製する方法が一般的である。
【0004】
この極板は、活物質である水酸化ニッケルを必要量充填するために、上記の含浸・アルカリ浸漬処理を複数回繰り返さなければならないために工程が煩雑となる。また、多孔質基体の多孔度を上げて活物質の充填密度を高めようとしても、多孔度を80%程度よりも大きくすると極板の強度が著しく低下し、活物質が脱落しやすくなるため、活物質充填密度を高めることができないという課題がある。
【0005】
一方、非焼結式ニッケル極の製造方法としては、95%以上の多孔度を有する発泡状ニッケル多孔体を基体に用い、これに水酸化ニッケルを主体とする活物質粉末を水で混練したペーストを充填し、乾燥、プレス工程を経て作製する方法が一般的である。この極板は、焼結式ニッケル極と比較して製造方法が簡易である上に、活物質充填密度が大きいニッケル極が得られ、電池の高容量化が図れるため、通信機器、OA、パワーツールなど現在幅広い分野で使用されている。
【0006】
さらに近年、携帯電話などの電子機器においては小型化・薄型化の進展が目覚ましく、それらの駆動用電源である電池に対しても小型化・薄型化が要望されており、スペースの有効活用の観点から角型形状を有する電池に要望が集まりつつある。
【0007】
角型電池は、円筒型電池と比較して機器収納時のスペース効率が優れている。しかしながら、正極板に非焼結式ニッケル極を用いて角型構造のアルカリ蓄電池を構成する場合には、以下に示すような課題がある。
【0008】
一般的に角型アルカリ蓄電池では、短冊状に切断した複数枚の正極板12及び負極板13をセパレータ14を介して交互に積層した電極体を角型ケース16に収納した構造を有する。この角型アルカリ蓄電池の半裁模式断面図を図9に示す。
【0009】
このように、多数枚の極板のそれぞれにリード端子を溶接し、積層して電極体を構成しなければならない角型アルカリ蓄電池は、一枚の帯状の正極板、負極板をセパレータを介して捲回して構成される円筒型アルカリ蓄電池と比較して著しく生産性が劣る。
【0010】
また、このような積層構造の電極体には極板の位置ずれによる微小短絡不良(以下、リーク不良と述べる。)を防止するためにセパレータ14を袋状に溶着(以下、セパシールと述べる。)して正極板12または負極板13の少なくとも一方を挿入する工程が不可欠であり、角型アルカリ蓄電池の構成をさらに煩雑なものとしている。
【0011】
角型電池の生産性を向上させるための手段としては、角型のリチウム・二次電池で一般的に行われているような捲回構造による構成、すなわち一枚の帯状の正極板と負極板をセパレータを介して相対向するように折り曲げて電極体を作製し、角型ケースに収納させる方法が考えられる。
【0012】
しかしながら、捲回構造の電極体を角型ケースに収納させるためには、極板を図5に示すような長円状、もしくは図6に示すような長方形状に捲回しなければならないため、折り曲げ部分において極板を非常に小さい曲率で屈曲させる必要がある。
【0013】
ところが、非焼結式ニッケル極はもともと曲げに対する変形の自由度が少ない構造材料であり、小さい曲率で折り曲げた場合、折り曲げ部分の外周側において発泡ニッケル芯材の切断やひび割れ、あるいは活物質の脱落が生じやすく、これらが要因となって電池のリーク不良が増大するという課題が発生する。
【0014】
このような非焼結式ニッケル極の曲率の小さい折り曲げ部分の切断やひび割れ、あるいは活物質の脱落を抑制するためには、例えば、正極板の両面にV字状の溝部を形成し、溝の方向を捲回軸と平行にして極板を捲回する技術が、特開昭60−133655号公報に提案されている。
【0015】
さらに、特開平5−41211号公報では、金属多孔体が切れやすいV字状断面の溝に代えて、台形状もしくは半楕円状の断面を有する溝とすることが開示されている。
【0016】
【発明が解決しようとする課題】
しかしながら、これらの処理により正極板は、溝部によって与えられた表面の伸延の自由度と溝の内部における優先的なクラックの発生によって可とう性が改善され、リーク不良はいくらか減少する傾向が見られるが、その効果は充分であるとはいえない。
【0017】
これは、上記のような極板の表面に溝部を形成する構成では、溝部の内部に発生したクラック部のバリが捲回の力で隆起して突出したり、クラックから活物質粒子が溝部を通って極板の外周に流出し、これらが新たな短絡の要因となるためである。
【0018】
すなわち、活物質充填基板の表面に形成された溝部内部はいずれも空洞であるため、溝部内部に発生するクラックのバリの隆起突出やクラック部からの活物質の流出に対して無防備であり、これが信頼性を低下させる原因となる。
【0019】
このように、非焼結式ニッケル極を小さい曲率で折り曲げて、角型アルカリ蓄電池の構成に適した捲回構造の電極体を作製するためには、非焼結式ニッケル極に溝部を形成して極板の可とう性を改善するだけでなく、極板内部で発生するクラック部の隆起突出と活物質粒子の流出を抑制するための適切な極板構造と前記極板構造を作製するための適切な製造方法の開発が必要とされる。
【0020】
以上示したとおり、正極に非焼結式ニッケル極を用いた角型アルカリ蓄電池の製造工程としては生産性とリーク不良の低減が両立できる決定的な手段がないのが現状である。
【0021】
【課題を解決するための手段】
上記課題を解決するために本発明の角型アルカリ蓄電池は、3次元的に連なる空間を有する金属多孔体に水酸化ニッケルを主成分とする活物質粉末を充填した正極板と、負極板とを、セパレータを介して相対向するように積層しこれを少なくとも一回折り曲げて構成した電極体を角型容器内に収納した角型アルカリ蓄電池において、前記正極板は、その一方面に複数本の溝部を有し、前記溝部には活物質充填密度の低い溝部活物質層が形成されており、加圧により形成された活物質充填密度の高い表面層とによって平滑な表面が構成されるとともに、前記溝部活物質層を備える面を外周として、前記溝部の方向と、正極板の捲回軸とが平行になるように折り曲げられているものとした。
【0022】
また上記構成を効果的に形成する製造方法としては、3次元的に連なる空間を有する金属多孔体に水酸化ニッケルを主成分とする活物質粉末を充填して充填基板を形成する活物質充填工程と、充填基板の片面に溝部を形成する工程と、溝部を形成した電極をほぼ平滑に加圧し所望の厚みとする工程と、上記工程を経て得られる正極板を、溝部活物質層を備えた面を外周として前記溝部の方向と、正極板の捲回軸とが平行になるように折り曲げて、セパレータを介して負極板と相対向するように積層して電極体を構成する工程と、電極体を角型容器内に収納し、封口する工程を備えることを特徴とする製造方法とした。
【0023】
これにより、角型アルカリ蓄電池の課題であった生産性の低さを改善した上で、リーク不良の増加を招くことなく、高い歩留まりを達成することができる。
【0024】
【発明の実施の形態】
本発明の請求項1に記載の発明は、3次元的に連なる空間を有する金属多孔体に水酸化ニッケルを主成分とする活物質粉末を充填した正極板と負極板とを、セパレータを介して相対向するように積層した電極体を少なくとも一回折り曲げて角型容器内に収納した角型アルカリ蓄電池において、前記正極板は、その一方面に複数本の溝部を有し、前記溝部は、溝部に垂直な断面形状が、2つの円弧の外形によって形成される形状の壁面と溝部の底部が表面に平行な平坦部から構成された形状であり、前記溝部には活物質充填密度の低い溝部活物質層が形成されており、加圧により形成された活物質充填密度の高い表面層とによって平滑な表面が構成されるとともに、前記溝部活物質層を備える面を外周として、前記溝部の方向と、正極板の捲回軸とが平行になるように折り曲げられ、折り曲げられた正極板には複数の平行に形成された溝部の底部と壁面の交線を起点としてクラックが形成され、前記クラックは溝部活物質層によって押圧されている。
【0025】
また、本発明の角型アルカリ蓄電池を得るための製造方法は、3次元的に連なる空間を有する金属多孔体に水酸化ニッケルを主成分とする活物質粉末を充填して正極板を形成する活物質充填工程と、前記正極板の一方面に溝部を形成する工程であって、前記溝部は、溝部に垂直な断面形状が、2つの円弧の外形によって形成される形状の壁面と溝部の底部が表面に平行な平坦部から構成された形状とする工程と、前記溝部を形成した正極板を、前記溝の方向と垂直な軸を有する一対の平滑ローラで平滑に加圧し所望の厚みとする工程と、前記正極板の溝部を備えた面を外周にして、前記正極板と負極板とをセパレータを介して相対向するように積層して電極体を構成する工程と、前記正極板の溝部を備えた面を外周として前記溝部の方向と前記正極板の捲回軸とが平行になるように前記電極体を少なくとも一回折り曲げる工程であって、折り曲げられた正極板に複数の平行に形成された溝部の底部と壁面の交線を起点とするクラックが形成され、前記クラックは溝部活物質層によって押圧する工程と、前記電極体を角型容器内に収納し、封口する工程を備えるものである。
【0026】
図3に本発明による角型アルカリ蓄電池の正極板を長円状に折り曲げて電極体を構成した模式図を示す。図3において、(a)は電極体における正極板の曲率の小さい折り曲げ部分を拡大して示した図であり、(b)は正極板上に形成された溝部をさらに拡大して示した図である。
【0027】
本発明による角型アルカリ蓄電池の正極板は、表面が平滑化されて溝部が見かけ上消失してはいるが、溝部が複数個平行して形成されているため可とう性の改善効果が得られる。さらに加圧成形された溝部活物質層によって溝部内部に形成されるクラック部位が押し出され、バリの隆起突出や活物質の流出を抑制できる。
【0028】
このような極板を、図3に示すように溝部を備えた面を外周にして溝部に沿うようにして折り曲げることにより、リーク不良の増大を招くことなく、角型アルカリ蓄電池においてもリチウム二次電池と同様な捲回構造の電極体が構成可能となる。
【0029】
したがって、従来のように多数の極板を積層して構成する必要がなくなり、煩雑なセパシール工程も不要となるため極板構成が簡易となり、角型アルカリ蓄電池の生産性向上が図れる。
【0030】
前記金属多孔体としては発泡状金属ニッケルを用いることが好ましい。発泡状金属ニッケルを用いることにより充放電特性や寿命特性が優れた角型アルカリ蓄電池が得られる。
【0031】
負極板としては、パンチングメタル芯材に水素吸蔵合金が塗着されたものを用いることが好ましい。これにより、高容量密度、高信頼性な角型アルカリ蓄電池が得られる。
【0032】
【実施例】
以下に本発明の実施例について詳細な説明を行う。なお、本発明は下記実施例に限定されるものでなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
【0033】
(実施例1)
本発明による角型アルカリ蓄電池用正極板を作製するための装置の一例を図1の模式図に示す。活物質を充填した基板1は凸部を有する溝型付きローラ2と平滑ローラ3の間を通過させることにより、片側に溝部4を有する溝部形成基板5となる。
【0034】
次に前記溝部形成基板5は一対の平滑な加圧ローラ6により加圧されると、溝部には活物質が滲出して、溝部活物質層7が形成され、本発明の電極基板8となる。
【0035】
前記電極基板8は通常、溝方向と垂直に裁断されて本発明による正極板9を得る。
【0036】
図2は本発明の製造過程に従って活物質充填基板が変化してゆく様子を溝方向に垂直な断面の形態で示している。図2において(A)は活物質充填基板、(B)は溝部形成基板、(C)は電極基板である。
【0037】
本発明において3次元多孔体の厚さ、多孔度、孔径、孔形などには特に限定事項はなく、既存の発泡状金属ニッケルなどの3次元多孔体が適用できる。本実施例では多孔度95%の発泡状ニッケル多孔体を用いた。
【0038】
活物質充填基板の作製にはあらかじめ短冊状や平板状に裁断した多孔体を用いる方法と連続した帯状の多孔体を用い、任意の工程において後から極板形状に裁断する方法が用いられている。量産性に関しては後者が優れている。
【0039】
本発明において活物質の充填方法には特別な限定はなく、均等な充填ができる方法であれば、どれでも適用可能である。例えば、活物質の充填には多孔体基板を活物質のペースト槽の中を通過させて活物質を充填する方法、定量吐出ノズルやドクターナイフを用いて片面あるいは両面から活物質を圧入する方法など一般に用いられている既存の方法が適用できる。
【0040】
活物質ペーストには水酸化ニッケルを主体とし、必要な添加物と結着剤を混合した正極用活物質ペーストが用いられる。本実施例では、正極活物質として内部に少量のコバルト及び亜鉛を固溶した球状の水酸化ニッケル粉末を用意し、これに添加剤として水酸化コバルト、酸化亜鉛を水酸化ニッケルに対して重量比でそれぞれ8%、2%となるように混合し、水とCMC(カルボキシメチルセルロース)を加えて活物質ペーストを作製した。
【0041】
次に溝部形成工程について説明を行う。この溝部形成工程によって、断面形状は図2(A)から(B)に変化する。
【0042】
帯状の活物質充填基板1に溝部4を形成するには、ローラの円周上にリング状の凸部を複数本設けた溝型付ローラ2と平滑ローラ3によって行うのが便利である。上記ローラを通過して得られた帯状の溝部形成基板5の片面には、帯状の基板の進行方向に連続する溝部4が幅方向に複数本並んで形成される。
【0043】
上記溝部4を形成する第1の目的は溝部の底部10にストレスを与え、捲回時に折り曲げ部分に前記溝部底部10に優先的にクラック10aを発生させるためであり、第2の目的は多孔体の骨格から滲出させた活物質で溝部に好ましい溝部活物質層7を形成させるための容積を確保することにある。
【0044】
本発明の極板において上記の好ましい効果をもたらす溝部活物質層の状態は、この溝部の形成基板の形態の影響を受ける。例えば、溝部形成基板の厚さに対する溝部深さの比率、溝部形成基板の溝部近傍における多孔体基板の破損状況、溝部の形状などによって影響される。
【0045】
上記溝部の深さ比率が小さすぎると、本発明により期待される極板の可とう性などの改善効果が小さくなる。また溝部内部の活物質層が不足し溝部活物質層が形成できなくなる。
【0046】
一方、大きすぎると、金属多孔体の骨格を破壊しやすくなると共に、溝部内部の活物質が過剰になり、溝部活物質層及びその表面層の密度が大きくなる。
【0047】
次に溝部活物質層形成工程について説明を行う。
【0048】
この工程は溝部形成基板5を、溝部を含めた溝部形成基板5全体がほぼ平滑な表面を形成するように加圧する工程である。平滑加圧は平滑面を備える加圧ローラ6によって行うのが簡単である。このとき断面形状は図2の(B)から(C)に変化する。
【0049】
すなわち、溝部形成基板5の段階で空洞であった溝部4の中に溝部活物質層7が形成され、本発明の電極基板8となる。
【0050】
この工程では、加圧される溝部形成基板5が湿潤状態で加圧すると活物質の流出が増大して制御が困難になる。また加圧装置に活物質が付着し、それが加圧面を不均一にする可能性がある。したがって乾燥状態で加圧するのが好ましい。
【0051】
また、この工程では、加圧を溝方向と垂直な軸を有する加圧ローラで行うのが好ましい。溝部方向と平行な軸を有する加圧ローラで加圧する、すなわち、溝方向と垂直な方向に加圧すると溝部形成基板に伸びや反りを生じ、さらには多孔体基板の強度低下を招く。
【0052】
本発明の電極基板8は、従来の技術で作製される溝部形成基板とは異なり、その表面は溝部形成基板の溝部を加圧することによって形成された溝部活物質層7と溝部以外を加圧することによって形成された緻密な表面層11により、ほぼ平滑な粗密表面となっている。本実施例では、構成する電池の設計に合わせて加圧後の極板の厚さが約0.7mmとなるように調整を行った。
【0053】
次に図1に示すように、極板の所望の幅寸法を帯状の電極基板8の長さ方向から裁断すると、極板の長さ方向に垂直な溝部が複数本平行に形成された本発明の正極板9が得られる。
【0054】
本実施例では構成する電池の設計に合わせて裁断後の極板の寸法を長さ38mm×幅42mmとした。さらに、集電用のニッケルリード9aを溶接し、このリード9aの溶接部に保護テープ9bを貼って、図4に示すような正極板9を作製した。
【0055】
次に負極板13を次のように作製した。合金組成がMmNi3.8Co0.6Al0.3Mn0.3(Mmはミッシュメタルを示す)である水素吸蔵合金粉末に水とCMCとSBR(スチレン−ブタジエン共重合体)と導電剤であるカーボンを加えてペースト状にし、鉄にニッケルメッキを施したパンチングメタル芯材の両面に塗布し、これを乾燥、プレス圧延後、長さ38mm×幅62mmの大きさに切断し、負極板13とした。
【0056】
上述の方法で作製した正極板9と負極板13を、目付重量60g/m2、厚さ0.15mmである親水化処理を施したポリプロピレン製不織布からなるセパレータ14を介して、図5のように長円状に捲回して角型ケース16内に収納した。図3に示すように正極板9は溝部活物質層7を備える面を外周にして溝方向と極板の捲回軸を平行にした状態で捲回されている。
【0057】
さらに、ケース16内に6NのKOHと1NのLiOHからなるアルカリ電解液を注液後、封口を行い、理論容量750mAhの角型ニッケル・水素蓄電池500個を組み立てた。
【0058】
(比較例1)
比較例として、平滑加圧基板の厚さを0.7mmとし、溝部形成工程と溝部活物質層形成工程を行わないで極板形状を裁断した以外は、実施例に示したのと同様の方法で正極板を作製した。この正極板を実施例に示したのと同様に、負極板、セパレータと対向させて捲回し、角型ケースに収納した。実施例と同様にアルカリ電解液を注液後、封口を行い、理論容量750mAhの角型ニッケル・水素蓄電池500個を組み立てた。
【0059】
(比較例2)
比較例として、溝部成型基板の厚さを0.7mmとし、溝部活物質層の形成工程を加えないことと溝部の深さを本発明の正極板9の溝部と同程度にした以外は本発明の実施例と同様の条件で極板を作製した。この正極板9を実施例に示したのと同様に、負極板13、セパレータ14と対向させて捲回し、角型ケースに収納した。実施例と同様にアルカリ電解液を注液後、封口を行い、理論容量750mAhの角型ニッケル・水素蓄電池500個を組み立てた。
【0060】
(比較例3)
比較例として、従来の角型アルカリ蓄電池の構成方法である積層構造による電極体を構成し、電池を組み立てた。実施例に示したのと同様の方法で活物質ペーストを発泡状金属ニッケル基体中に充填し、乾燥後、厚さ約0.7mmになるまで加圧した。その後、長さ38mm×幅14mmの大きさの短冊状に切断し、集電用のニッケルリード12aを溶接し、溶接部に保護テープ12bを貼って、図7に示されるような正極板12を作製した。
【0061】
得られた正極板に対してセパシールを行った。ポリプロピレン製不織布からなるセパレータ14を熱溶着により袋状に成型した内部に正極板12を収納した。
【0062】
また、負極板13についても実施例に示したのと同様の方法にて水素吸蔵合金ペーストをパンチングメタル芯材に塗着し、乾燥、プレス圧延後、長さ38mm×幅14mmの大きさに切断した。負極板についても正極板と同様に集電用のニッケルリード12aを溶接し、保護テープ12bを貼った。
【0063】
得られたセパシール済み正極板12を3枚と負極板を4枚をお互いに対向するように組み合わせて積層して構成し、正極板どうし、負極板どうしがそれぞれ通電するようにリード部分の溶接を行い電極体を作製した。その構成状態を示す断面図を図9に示す。
【0064】
このようにして得られた電極体を角型ケース内に収納し、電解液を注液後、封口を行い、理論容量750mAhの角型ニッケル・水素蓄電池500個を組み立てた。
【0065】
(表1)に実施例及び比較例1,2,3の電池のリーク不良の割合を示す。
【0066】
【表1】

Figure 0004168578
【0067】
(表1)に示されるように実施例電池は比較例1,2と比較してリーク不良の割合が大幅に低減しており、従来の角型アルカリ蓄電池の構成方法による比較例3と同レベルであることがわかる。
【0068】
上記不良電池を解析した結果、溝部を設けなかった比較例1による極板は表面に無差別かつ不規則な位置でクラックが発生して、破損部分がセパレータを貫通したり、活物質粉末がクラック部分から流出して極板とセパレータの間に挟まり微小短絡を発生していることが明らかになった。
【0069】
また、溝部を設けた比較例2による極板は、比較例1のような無差別なクラックではなく、主として溝部内部にクラックが形成されていたが、上記クラックのバリが表面に隆起して突出していたり、クラックから流出した活物質が溝部の空間を通って極板表面に到達し、セパレータにしみ込んだりしてセパレータと極板の間に入り込み、各所で大小の短絡が発生していることがわかった。
【0070】
これに対して本発明による実施例の極板を用いた電池では、溝部の底部10と壁面の交線からクラック10aの発生が見られたが、そのクラック場所は溝部活物質層によって封鎖され、活物質の流出やクラック部におけるバリの隆起突出が抑制されていることがわかった。
【0071】
すなわち、本発明による極板は非焼結式ニッケル極の極板の可とう性の改善、捲回時における短絡の抑制において顕著な効果を示し、そのことにより小さな曲率での折り曲げを行った場合においても高い信頼性を達成することが可能となる。
【0072】
これにより、従来の技術では、リーク不良が著しく増加するために実現することができなかった非焼結式ニッケル極を用いた捲回構造の電極体が構成可能となり、面倒なセパシール工程や複数の極板を積層・溶接する工程が不要となり、工程の簡略化、生産性の向上が図れる。
【0073】
本実施例においては、帯状の正極板、負極板をセパレータを介して長円状に捲回して構成した場合について説明を行ったが、図6に示すように長方形状に捲回して構成した場合についても同様の効果が得られる。
【0074】
以上に示されたように、本発明に基づく、片面に複数の溝部が形成された溝部形成基板層が加圧されてできる溝部活物質層と、緻密な表面層とによってほぼ平滑な表面が構成された非焼結式ニッケル極を、溝部活物質層を備える面を外周として、前記溝部の方向と、正極板の捲回軸とが平行になるように折り曲げて、セパレータを介して負極板と相対向するように積層して角型ケースに収納してなる角型アルカリ蓄電池は、極板構成が簡易であるため生産性に優れ、リーク不良も低減することができる。
【0075】
【発明の効果】
以上のように本発明によれば、角型構造を有する角型アルカリ蓄電池の課題であった生産性の低さを改善した上で、リーク不良の増加を招くことなく、高い歩留まりを達成することができる。
【図面の簡単な説明】
【図1】本発明の製造方法における正極板作製装置を示す模式図
【図2】同活物質充填基板の断面形状の変化を示す模式図
【図3】同角型アルカリ蓄電池の部分断面拡大図
【図4】同実施例と、比較例1及び比較例2における正極板の平面図
【図5】正極板、負極板、セパレータを長円状に捲回した一般的な電極体の断面図
【図6】正極板、負極板、セパレータを長方形状に捲回した一般的な電極体の断面図
【図7】比較例3における正極板の平面図
【図8】比較例3における正極板、負極板、セパレータを積層した電極体の断面図
【図9】従来の角型アルカリ蓄電池の半裁模式断面図
【符号の説明】
1 活物質充填基板
2 溝型付きローラ
3 平滑ローラ
4 溝部
5 溝部形成基板
6 加圧ローラ
7 溝部活物質層
8 電極基板
9 正極板
9a 集電用ニッケルリード
9b リード保護テープ
10 溝部の底部
10a溝部底部のクラック
11 緻密な表面層
12 比較例3の正極板
12a 集電用ニッケルリード
12b リード保護
13 負極板
14 セパレータ
15 電極群
16 金属ケース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a prismatic alkaline storage battery represented by a nickel / hydrogen storage battery and a nickel / cadmium storage battery.
[0002]
[Prior art]
Nickel electrodes used as positive electrodes of alkaline storage batteries represented by nickel / hydrogen storage batteries and nickel / cadmium storage batteries are roughly classified into sintered and non-sintered types.
[0003]
As a method for producing a sintered nickel electrode, a nickel salt solution such as a nickel nitrate aqueous solution is applied to a porous nickel sintered base having a porosity of about 80% obtained by sintering a core material such as punching metal and nickel powder. A general method is to produce nickel hydroxide in a porous nickel sintered base by impregnation and then dipping in an alkaline aqueous solution.
[0004]
Since this electrode plate is filled with a necessary amount of nickel hydroxide as an active material, the above-described impregnation / alkali dipping treatment must be repeated a plurality of times, and the process becomes complicated. In addition, even if the porosity of the porous substrate is increased to increase the packing density of the active material, the strength of the electrode plate is remarkably reduced when the porosity is increased to about 80%, and the active material is likely to fall off. There is a problem that the active material packing density cannot be increased.
[0005]
On the other hand, as a method for producing a non-sintered nickel electrode, a paste in which a foamed nickel porous body having a porosity of 95% or more is used as a base and an active material powder mainly composed of nickel hydroxide is kneaded with water In general, a method is used in which the material is filled through, dried and pressed. This electrode plate has a simpler manufacturing method than a sintered nickel electrode, and a nickel electrode with a high active material packing density can be obtained, so that the capacity of the battery can be increased. Therefore, communication devices, OA, power Currently used in a wide range of fields such as tools.
[0006]
In recent years, electronic devices such as mobile phones have made remarkable progress in miniaturization and thinning, and there has been a demand for miniaturization and thinning of batteries as power sources for driving them. Therefore, there is a growing demand for batteries having a square shape.
[0007]
The square battery is superior in space efficiency when the device is stored as compared with the cylindrical battery. However, when a non-sintered nickel electrode is used for the positive electrode plate to form a prismatic alkaline storage battery, there are the following problems.
[0008]
In general, a prismatic alkaline storage battery has a structure in which a rectangular case 16 accommodates an electrode body in which a plurality of positive plates 12 and negative plates 13 cut into strips are alternately stacked via separators 14. FIG. 9 shows a half-cut schematic cross-sectional view of this rectangular alkaline storage battery.
[0009]
Thus, a prismatic alkaline storage battery that has to be welded with a lead terminal to each of a large number of electrode plates and stacked to form an electrode body is composed of a single strip-like positive electrode plate and negative electrode plate via a separator. Productivity is remarkably inferior compared with a cylindrical alkaline storage battery constituted by winding.
[0010]
In addition, a separator 14 is welded in a bag shape (hereinafter referred to as a separator seal) in order to prevent a minute short-circuit failure (hereinafter referred to as a leakage failure) due to the displacement of the electrode plate on the electrode body having such a laminated structure. to the step of inserting at least one of the positive electrode plate 12 or negative electrode plate 13 is it is essential, and a further complicated ones the configuration of rectangular alkaline蓄 batteries.
[0011]
As a means for improving the productivity of the prismatic battery, a configuration with a winding structure generally used in a prismatic lithium secondary battery, that is, a single strip-like positive electrode plate and negative electrode plate It is conceivable to produce an electrode body by folding the electrodes so as to face each other with a separator interposed between them and store them in a square case.
[0012]
However, in order to accommodate the wound electrode body in the square case, the electrode plate must be wound into an oval shape as shown in FIG. 5 or a rectangular shape as shown in FIG. It is necessary to bend the electrode plate with a very small curvature at the part.
[0013]
However, the non-sintered nickel electrode is originally a structural material with a low degree of freedom of deformation with respect to bending. When it is bent with a small curvature, the nickel core material is cut or cracked on the outer periphery of the bent portion, or the active material is removed. As a result, there is a problem that the leakage failure of the battery increases due to these factors.
[0014]
In order to suppress the cutting or cracking of the bent portion of such a non-sintered nickel electrode with a small curvature or the loss of the active material, for example, V-shaped grooves are formed on both surfaces of the positive electrode plate, Japanese Patent Application Laid-Open No. 60-133655 proposes a technique for winding an electrode plate with its direction parallel to the winding axis.
[0015]
Furthermore, Japanese Patent Laid-Open No. 5-42111 discloses that a groove having a trapezoidal or semi-elliptical cross section is used in place of the groove having a V-shaped cross section in which the metal porous body is easily cut.
[0016]
[Problems to be solved by the invention]
However, with these treatments, the positive electrode plate is improved in flexibility due to the degree of freedom of surface extension given by the groove and the generation of preferential cracks inside the groove, and there is a tendency that the leakage defect is somewhat reduced. However, the effect is not sufficient.
[0017]
This is because, in the configuration in which the groove is formed on the surface of the electrode plate as described above, the burr of the crack generated inside the groove rises and protrudes by the force of winding, or the active material particles pass through the groove from the crack. This is because it flows out to the outer periphery of the electrode plate, and these cause new short circuits.
[0018]
In other words, since the inside of the groove formed on the surface of the active material filled substrate is hollow, it is defenseless against the protruding protrusion of the burr of the crack generated inside the groove and the outflow of the active material from the crack. It becomes a cause of reducing reliability.
[0019]
Thus, in order to bend the non-sintered nickel electrode with a small curvature and produce an electrode body having a wound structure suitable for the configuration of the prismatic alkaline storage battery, a groove is formed in the non-sintered nickel electrode. Not only to improve the flexibility of the electrode plate, but also to produce an appropriate electrode plate structure and the above electrode plate structure to suppress the protruding protrusion of the crack portion and the outflow of active material particles that occur inside the electrode plate Development of an appropriate manufacturing method is required.
[0020]
As described above, there is currently no decisive means for manufacturing a prismatic alkaline storage battery using a non-sintered nickel electrode for the positive electrode, which can achieve both productivity and reduction of leakage defects.
[0021]
[Means for Solving the Problems]
In order to solve the above problems, a prismatic alkaline storage battery according to the present invention comprises a positive electrode plate filled with an active material powder mainly composed of nickel hydroxide in a porous metal body having a three-dimensional space, and a negative electrode plate. In the prismatic alkaline storage battery in which the electrode body formed by laminating and bending at least once through the separator is housed in a square container, the positive electrode plate has a plurality of groove portions on one surface thereof. A groove active material layer having a low active material filling density is formed in the groove, and a smooth surface is constituted by a surface layer having a high active material filling density formed by pressurization, and The surface provided with the groove active material layer is the outer periphery, and the direction of the groove is bent so that the winding axis of the positive electrode plate is parallel.
[0022]
In addition, as a manufacturing method for effectively forming the above-described configuration, an active material filling step of forming a filled substrate by filling a metal porous body having a three-dimensionally continuous space with an active material powder mainly composed of nickel hydroxide. And a step of forming a groove on one side of the filling substrate, a step of pressing the electrode on which the groove is formed almost smoothly to a desired thickness, and a positive electrode plate obtained through the above steps, provided with a groove active material layer A step of forming an electrode body by bending the surface to be an outer periphery and the direction of the groove and the winding axis of the positive electrode plate being parallel to each other and stacking them so as to face the negative electrode plate via a separator; It was set as the manufacturing method characterized by including the process of accommodating a body in a square container, and sealing.
[0023]
Thereby, after improving the low productivity which was the subject of the prismatic alkaline storage battery, a high yield can be achieved without causing an increase in leakage defects.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention, a positive electrode plate and a negative electrode plate, in which a metal porous body having a three-dimensionally connected space is filled with an active material powder mainly composed of nickel hydroxide, are interposed via a separator. In the prismatic alkaline storage battery in which the electrode bodies laminated so as to face each other are bent at least once and accommodated in a rectangular container, the positive electrode plate has a plurality of grooves on one surface thereof, and the grooves are groove portions. The cross-sectional shape perpendicular to the shape is a shape in which the wall surface of the shape formed by the outer shape of two arcs and the bottom portion of the groove portion are constituted by a flat portion parallel to the surface, and the groove portion has a low active material filling density. A material layer is formed, and a smooth surface is constituted by a surface layer having a high active material filling density formed by pressurization, and a surface including the groove active material layer is defined as an outer periphery, and the direction of the groove Winding of positive electrode plate Doo is bent so as to be parallel, cracks are formed in the positive electrode plate, which is bent starting from the bottom and the wall of the intersection line of a groove formed in a plurality of parallel, the cracks are pressed by the groove club material layer It is.
[0025]
The manufacturing method for obtaining the square alkaline storage battery of the present invention, by filling an active material powder mainly composed of nickel hydroxide to the metallic porous body having a space leading to the three-dimensional form a positive electrode plate active a material filling step, a step of forming a groove on one surface of the positive electrode plate, said groove, the cross-sectional shape perpendicular to the groove bottom wall and the groove shape formed by two arcs of outer shape A step of forming a shape composed of a flat portion parallel to the surface, and a step of smoothly pressing the positive electrode plate on which the groove is formed with a pair of smooth rollers having an axis perpendicular to the direction of the groove to obtain a desired thickness. And forming the electrode body by laminating the positive electrode plate and the negative electrode plate so as to face each other through a separator with the surface having the groove portion of the positive electrode plate as the outer periphery, and the groove portion of the positive electrode plate The direction of the groove and the front with the provided surface as the outer periphery Bending the electrode body at least once so that the winding axis of the positive electrode plate is parallel to the bent positive electrode plate, and starting from the intersection of the bottoms of the plurality of parallel grooves formed on the positive electrode plate and the wall surface A crack is formed, and the crack includes a step of pressing with a groove active material layer, and a step of housing and sealing the electrode body in a rectangular container .
[0026]
FIG. 3 shows a schematic diagram of the electrode body formed by bending the positive electrode plate of the prismatic alkaline storage battery according to the present invention into an oval shape. 3A is an enlarged view of a bent portion of the positive electrode plate having a small curvature in the electrode body, and FIG. 3B is an enlarged view of a groove formed on the positive electrode plate. is there.
[0027]
Although the positive electrode plate of the prismatic alkaline storage battery according to the present invention has a smooth surface and the grooves are apparently lost, a plurality of the grooves are formed in parallel, so that the flexibility improvement effect is obtained. . Furthermore, the crack site | part formed in the inside of a groove part is pushed out by the groove part active material layer by which pressure molding was carried out, and the protrusion protrusion of a burr | flash and the outflow of an active material can be suppressed.
[0028]
As shown in FIG. 3, the electrode plate is bent so that the surface provided with the groove portion is the outer periphery, and along the groove portion, so that the lithium secondary battery can be used in the prismatic alkaline storage battery without increasing leakage defects. An electrode body having a wound structure similar to that of a battery can be configured.
[0029]
Therefore, it is not necessary to stack a large number of electrode plates as in the prior art, and a complicated separation seal process is not required, so that the electrode plate configuration is simplified and the productivity of the prismatic alkaline storage battery can be improved.
[0030]
It is preferable to use foamed metallic nickel as the metal porous body. By using foamed metallic nickel, a prismatic alkaline storage battery having excellent charge / discharge characteristics and life characteristics can be obtained.
[0031]
As the negative electrode plate, it is preferable to use a punching metal core material coated with a hydrogen storage alloy. Thereby, a high capacity density and a highly reliable prismatic alkaline storage battery can be obtained.
[0032]
【Example】
Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following Example, In the range which does not change the summary, it can change suitably and can implement.
[0033]
(Example 1)
An example of an apparatus for producing a positive electrode plate for a prismatic alkaline storage battery according to the present invention is shown in the schematic view of FIG. The substrate 1 filled with the active material is passed through between the grooved roller 2 having a convex portion and the smoothing roller 3 to become a groove portion forming substrate 5 having the groove portion 4 on one side.
[0034]
Next, when the groove forming substrate 5 is pressed by a pair of smooth pressure rollers 6, the active material oozes out into the groove to form a groove active material layer 7, thereby forming the electrode substrate 8 of the present invention. .
[0035]
The electrode substrate 8 is usually cut perpendicularly to the groove direction to obtain the positive electrode plate 9 according to the present invention.
[0036]
FIG. 2 shows how the active material-filled substrate changes according to the manufacturing process of the present invention in the form of a cross section perpendicular to the groove direction. 2A is an active material-filled substrate, FIG. 2B is a groove forming substrate, and FIG. 2C is an electrode substrate.
[0037]
In the present invention, there are no particular limitations on the thickness, porosity, pore size, pore shape, etc. of the three-dimensional porous body, and existing three-dimensional porous bodies such as foamed metallic nickel can be applied. In this example, a foamed nickel porous body having a porosity of 95% was used.
[0038]
For the production of the active material-filled substrate, a method of using a porous body cut into a strip shape or a flat plate shape in advance and a method of cutting into a plate shape later in an arbitrary process using a continuous band-shaped porous material are used. . The latter is superior for mass productivity.
[0039]
In the present invention, the filling method of the active material is not particularly limited, and any method can be applied as long as the filling can be performed uniformly. For example, for filling the active material, a method of filling the active material by passing the porous substrate through the paste tank of the active material, a method of press-fitting the active material from one side or both sides using a fixed discharge nozzle or a doctor knife, etc. Commonly used existing methods can be applied.
[0040]
As the active material paste, a positive electrode active material paste mainly composed of nickel hydroxide and mixed with necessary additives and a binder is used. In this example, a spherical nickel hydroxide powder in which a small amount of cobalt and zinc are dissolved as a positive electrode active material is prepared, and cobalt hydroxide and zinc oxide as additives are added to the nickel hydroxide in a weight ratio. Were mixed to 8% and 2%, respectively, and water and CMC (carboxymethylcellulose) were added to prepare an active material paste.
[0041]
Next, the groove forming process will be described. By this groove forming process, the cross-sectional shape changes from FIG.
[0042]
In order to form the groove 4 in the belt-shaped active material-filled substrate 1, it is convenient to use the grooved roller 2 and the smooth roller 3 provided with a plurality of ring-shaped convex portions on the circumference of the roller. On one surface of the belt-shaped groove forming substrate 5 obtained by passing through the roller, a plurality of grooves 4 continuous in the traveling direction of the belt-shaped substrate are formed side by side in the width direction.
[0043]
The first purpose of forming the groove part 4 is to apply stress to the bottom part 10 of the groove part, and to generate cracks 10a preferentially in the bottom part 10 of the groove part at the time of winding, and the second purpose is to form a porous body. It is intended to secure a volume for forming a preferable groove active material layer 7 in the groove with the active material exuded from the skeleton.
[0044]
In the electrode plate of the present invention, the state of the groove active material layer that brings about the above-mentioned preferable effect is affected by the form of the substrate on which the groove is formed. For example, it is influenced by the ratio of the groove depth to the thickness of the groove forming substrate, the damage state of the porous substrate in the vicinity of the groove of the groove forming substrate, the shape of the groove, and the like.
[0045]
When the depth ratio of the groove is too small, the improvement effect such as the flexibility of the electrode plate expected by the present invention becomes small. Further, the active material layer inside the groove is insufficient, and the groove active material layer cannot be formed.
[0046]
On the other hand, when it is too large, the skeleton of the porous metal body is easily broken, and the active material inside the groove becomes excessive, and the density of the groove active material layer and its surface layer increases.
[0047]
Next, the groove active material layer forming step will be described.
[0048]
This step is a step of pressurizing the groove forming substrate 5 so that the entire groove forming substrate 5 including the groove forms a substantially smooth surface. Smooth pressure can be easily performed by a pressure roller 6 having a smooth surface. At this time, the cross-sectional shape changes from (B) to (C) in FIG.
[0049]
That is, the groove active material layer 7 is formed in the groove 4 that was hollow at the stage of the groove forming substrate 5, thereby forming the electrode substrate 8 of the present invention.
[0050]
In this step, if the groove forming substrate 5 to be pressed is pressurized in a wet state, the outflow of the active material increases and it becomes difficult to control. Moreover, an active material adheres to a pressurization apparatus, and it may make a pressurization surface non-uniform | heterogenous. Therefore, it is preferable to apply pressure in a dry state.
[0051]
In this step, it is preferable that the pressure is applied with a pressure roller having an axis perpendicular to the groove direction. When pressure is applied with a pressure roller having an axis parallel to the groove direction, that is, when pressure is applied in a direction perpendicular to the groove direction, the groove-forming substrate is stretched or warped, and further the strength of the porous substrate is reduced.
[0052]
The electrode substrate 8 of the present invention is different from the groove forming substrate manufactured by the conventional technique, and the surface of the electrode substrate 8 pressurizes other than the groove active material layer 7 and the groove formed by pressing the groove of the groove forming substrate. Due to the dense surface layer 11 formed by the above, a substantially smooth and dense surface is obtained. In this example, the thickness of the electrode plate after pressurization was adjusted to about 0.7 mm according to the design of the battery to be configured.
[0053]
Next, as shown in FIG. 1, when the desired width dimension of the electrode plate is cut from the length direction of the strip-shaped electrode substrate 8, a plurality of grooves perpendicular to the length direction of the electrode plate are formed in parallel. The positive electrode plate 9 is obtained.
[0054]
In this example, the dimension of the electrode plate after cutting was set to length 38 mm × width 42 mm in accordance with the design of the battery to be configured. Furthermore, the nickel lead 9a for current collection was welded, and the protective tape 9b was affixed to the welding part of this lead 9a, and the positive electrode plate 9 as shown in FIG. 4 was produced.
[0055]
Next, the negative electrode plate 13 was produced as follows. Water, CMC, SBR (styrene-butadiene copolymer) and carbon as a conductive agent are added to a hydrogen storage alloy powder having an alloy composition of MmNi3.8Co0.6Al0.3Mn0.3 (Mm represents Misch metal) and paste. It was applied to both sides of a punching metal core material in which nickel was plated on iron, and this was dried, press-rolled, and then cut into a size of 38 mm length × 62 mm width to obtain a negative electrode plate 13.
[0056]
As shown in FIG. 5, the positive electrode plate 9 and the negative electrode plate 13 manufactured by the above-described method are passed through a separator 14 made of a polypropylene non-woven fabric subjected to a hydrophilization treatment with a basis weight of 60 g / m 2 and a thickness of 0.15 mm. It was wound in an oval shape and stored in the square case 16. As shown in FIG. 3, the positive electrode plate 9 is wound in a state where the surface including the groove active material layer 7 is an outer periphery and the groove direction is parallel to the winding axis of the electrode plate.
[0057]
Further, an alkaline electrolyte composed of 6N KOH and 1N LiOH was poured into the case 16 and sealed to assemble 500 prismatic nickel-hydrogen storage batteries having a theoretical capacity of 750 mAh.
[0058]
(Comparative Example 1)
As a comparative example, the same method as shown in the examples except that the thickness of the smooth pressure substrate is 0.7 mm and the electrode plate shape is cut without performing the groove forming step and the groove active material layer forming step. A positive electrode plate was produced. In the same manner as shown in the examples, this positive electrode plate was wound so as to face the negative electrode plate and the separator, and stored in a square case. In the same manner as in the example, the alkaline electrolyte was poured and then sealed, and 500 prismatic nickel-hydrogen storage batteries having a theoretical capacity of 750 mAh were assembled.
[0059]
(Comparative Example 2)
As a comparative example, the present invention except that the thickness of the groove molded substrate is 0.7 mm, the step of forming the groove active material layer is not added, and the depth of the groove is the same as the groove of the positive electrode plate 9 of the present invention. An electrode plate was produced under the same conditions as in the Example. The positive electrode plate 9 was wound so as to face the negative electrode plate 13 and the separator 14 in the same manner as shown in the example, and stored in a square case. In the same manner as in the example, the alkaline electrolyte was poured and then sealed, and 500 prismatic nickel-hydrogen storage batteries having a theoretical capacity of 750 mAh were assembled.
[0060]
(Comparative Example 3)
As a comparative example, an electrode body having a laminated structure, which is a conventional method for forming a prismatic alkaline storage battery, was constructed, and the battery was assembled. The active material paste was filled into the foamed metallic nickel substrate in the same manner as shown in the examples, dried and then pressed to a thickness of about 0.7 mm. Then, it cut | disconnects in the length of 38 mm in length x 14 mm in width | variety, the nickel lead 12a for current collection is welded, the protective tape 12b is stuck on a welding part, and the positive electrode plate 12 as shown in FIG. Produced.
[0061]
Sepa-sealing was performed on the obtained positive electrode plate. The positive electrode plate 12 was housed in a separator 14 made of a polypropylene non-woven fabric and formed into a bag shape by heat welding.
[0062]
Also, the negative electrode plate 13 was coated with a hydrogen storage alloy paste on a punching metal core in the same manner as shown in the examples, dried, press-rolled, and then cut into a size of 38 mm length × 14 mm width. did. Similarly to the positive electrode plate, the negative electrode plate was welded with a nickel lead 12a for current collection, and a protective tape 12b was attached.
[0063]
The obtained separator-sealed positive electrode plate 12 and four negative electrode plates are combined and laminated so as to face each other, and the lead portions are welded so that the positive electrode plates and the negative electrode plates are energized respectively. An electrode body was manufactured. A cross-sectional view showing the configuration state is shown in FIG.
[0064]
The electrode body thus obtained was housed in a square case, and after injecting an electrolyte solution, sealing was performed to assemble 500 square nickel-hydrogen storage batteries having a theoretical capacity of 750 mAh.
[0065]
(Table 1) shows the percentage of leakage failures of the batteries of Examples and Comparative Examples 1, 2, and 3.
[0066]
[Table 1]
Figure 0004168578
[0067]
As shown in (Table 1), the battery of the example has a significantly reduced ratio of leakage failure compared to Comparative Examples 1 and 2, and is at the same level as Comparative Example 3 according to the conventional configuration method of the prismatic alkaline storage battery. It can be seen that it is.
[0068]
As a result of analyzing the defective battery, the electrode plate according to Comparative Example 1 in which no groove portion was provided cracked on the surface indiscriminately and irregularly, and the damaged portion penetrated the separator or the active material powder cracked. It was clarified that a minute short-circuit occurred after flowing out from the portion and sandwiched between the electrode plate and the separator.
[0069]
Further, the electrode plate according to Comparative Example 2 provided with the groove portion was not indiscriminately cracked as in Comparative Example 1, but cracks were mainly formed inside the groove portion. However, the crack burr protruded and protruded from the surface. It was found that the active material flowing out from the cracks reached the electrode plate surface through the space of the groove, soaked into the separator and entered between the separator and the electrode plate, and large and small short circuits occurred in various places. .
[0070]
On the other hand, in the battery using the electrode plate of the example according to the present invention, the generation of the crack 10a was seen from the intersection of the bottom 10 of the groove and the wall surface, but the crack location was sealed by the groove active material layer, It was found that the outflow of the active material and the protruding protrusion of the burr at the crack part were suppressed.
[0071]
That is, the electrode plate according to the present invention has a remarkable effect in improving the flexibility of the electrode plate of the non-sintered nickel electrode, and suppressing the short circuit during winding, and thereby, when bending with a small curvature is performed. It is possible to achieve high reliability even in
[0072]
This makes it possible to construct an electrode body with a wound structure using a non-sintered nickel electrode that could not be realized due to a significant increase in leakage defects in the prior art, and a cumbersome separation process or multiple sealing processes. The process of laminating and welding the electrode plates is no longer necessary, simplifying the process and improving productivity.
[0073]
In the present embodiment, the case where the belt-like positive electrode plate and the negative electrode plate are wound in an oval shape through a separator has been described. However, in the case where the belt is wound in a rectangular shape as shown in FIG. The same effect can be obtained for.
[0074]
As described above, a substantially smooth surface is constituted by a groove active material layer formed by pressurizing a groove forming substrate layer having a plurality of grooves formed on one side and a dense surface layer based on the present invention. The non-sintered nickel electrode is bent with the surface provided with the groove active material layer as the outer periphery so that the direction of the groove and the winding axis of the positive electrode plate are parallel to each other, A prismatic alkaline storage battery that is laminated so as to face each other and accommodated in a prismatic case has a simple electrode plate configuration, and thus is excellent in productivity and can reduce leakage defects.
[0075]
【The invention's effect】
As described above, according to the present invention, it is possible to achieve a high yield without causing an increase in leakage defects while improving the low productivity which has been a problem of the prismatic alkaline storage battery having a prismatic structure. Can do.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a positive electrode plate manufacturing apparatus in the manufacturing method of the present invention. FIG. 2 is a schematic view showing a change in cross-sectional shape of the active material-filled substrate. FIG. 4 is a plan view of a positive electrode plate in the same Example and Comparative Examples 1 and 2. FIG. 5 is a cross-sectional view of a general electrode body in which a positive electrode plate, a negative electrode plate, and a separator are wound in an oval shape. 6 is a cross-sectional view of a general electrode body in which a positive electrode plate, a negative electrode plate, and a separator are wound in a rectangular shape. FIG. 7 is a plan view of a positive electrode plate in Comparative Example 3. FIG. Cross-sectional view of electrode body with laminated plates and separators [Fig. 9] Half-cut schematic cross-sectional view of a conventional prismatic alkaline storage battery [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Active material filling board | substrate 2 Grooved roller 3 Smooth roller 4 Groove part 5 Groove part formation board 6 Pressure roller 7 Groove part active material layer 8 Electrode board 9 Positive electrode plate 9a Current collecting nickel lead 9b Lead protective tape 10 Groove bottom part 10a Groove part Crack at the bottom 11 Dense surface layer 12 Positive electrode plate 12a of Comparative Example 3 Current collecting nickel lead 12b Lead protection 13 Negative electrode plate 14 Separator 15 Electrode group 16 Metal case

Claims (8)

3次元的に連なる空間を有する金属多孔体基板に水酸化ニッケルを主成分とする活物質粉末を充填し、加圧された正極板と負極板とを、セパレータを介して相対向するように積層した電極体を少なくとも一回折り曲げて角型容器内に収納したアルカリ蓄電池において、前記正極板は、その一方面に複数本の溝部を有し、前記溝部は、溝部に垂直な断面形状が、2つの円弧の外形によって形成される形状の壁面と溝部の底部が表面に平行な平坦部から構成された形状であり、前記溝部には活物質充填密度の低い溝部活物質層が形成されており、加圧により形成された活物質充填密度の高い表面層とによって平滑な表面が構成されるとともに、前記溝部活物質層を備える面を外周として、前記溝部の方向と、正極板の捲回軸とが平行になるように折り曲げられ、折り曲げられた正極板には複数の平行に形成された溝部の底部と壁面の交線を起点としてクラックが形成され、前記クラックは溝部活物質層によって押圧されている角型アルカリ蓄電池。A porous metal substrate having a three-dimensionally connected space is filled with an active material powder mainly composed of nickel hydroxide, and a pressurized positive electrode plate and negative electrode plate are laminated so as to face each other with a separator interposed therebetween. In the alkaline storage battery in which the electrode body is bent at least once and accommodated in a rectangular container, the positive electrode plate has a plurality of groove portions on one surface thereof , and the groove portion has a cross-sectional shape perpendicular to the groove portion of 2 The wall surface of the shape formed by the outer shape of the two arcs and the bottom portion of the groove portion is a shape composed of a flat portion parallel to the surface, a groove active material layer having a low active material filling density is formed in the groove portion, A smooth surface is constituted by the surface layer having a high active material filling density formed by pressurization, and the surface including the groove active material layer is defined as an outer periphery, the direction of the groove, and the winding axis of the positive electrode plate So that they are parallel Ri bent, cracked the form line of intersection of the positive electrode plate which is bent and the bottom of the groove formed in a plurality of parallel walls starting squareness alkaline storage battery wherein the cracks are pressed by the groove club material layer . 金属多孔体が発泡状金属ニッケルである請求項1記載の角型アルカリ蓄電池。The prismatic alkaline storage battery according to claim 1, wherein the porous metal body is foamed metallic nickel. 負極板がパンチングメタル芯材上に水素吸蔵合金を塗着したものである請求項1記載の角型アルカリ蓄電池。The prismatic alkaline storage battery according to claim 1, wherein the negative electrode plate is a punched metal core coated with a hydrogen storage alloy. 正極板の一方面は、その表面が活物質充填密度の高い表面層と活物質充填密度の低い溝部活物質層とが交互に平行にかつ規則的にくりかえされる請求項1記載の角型アルカリ蓄電池。2. The prismatic alkaline storage battery according to claim 1, wherein one surface of the positive electrode plate has a surface layer having a high active material packing density and a groove active material layer having a low active material packing density alternately and in parallel alternately. . 3次元的に連なる空間を有する金属多孔体に水酸化ニッケルを主成分とする活物質粉末を充填して正極板を形成する活物質充填工程と、
前記正極板の一方面に溝部を形成する工程であって、前記溝部は、溝部に垂直な断面形状が、2つの円弧の外形によって形成される形状の壁面と溝部の底部が表面に平行な平坦部から構成された形状とする工程と、
前記溝部を形成した正極板を、前記溝の方向と垂直な軸を有する一対の平滑ローラで平滑に加圧し所望の厚みとする工程と、
前記正極板の溝部を備えた面を外周にして、前記正極板と負極板とをセパレータを介して相対向するように積層して電極体を構成する工程と、
前記正極板の溝部を備えた面を外周として前記溝部の方向と前記正極板の捲回軸とが平行になるように前記電極体を少なくとも一回折り曲げる工程であって、折り曲げられた正極板に複数の平行に形成された溝部の底部と壁面の交線を起点とするクラックが形成され、
前記クラックは溝部活物質層によって押圧する工程と、
前記電極体を角型容器内に収納し、封口する工程を備えることを特徴とする角型アルカリ蓄電池の製造方法。
An active material filling step of filling a metal porous body having a three-dimensionally connected space with an active material powder mainly composed of nickel hydroxide to form a positive electrode plate;
Forming a groove on one surface of the positive electrode plate , wherein the groove has a cross-sectional shape perpendicular to the groove and is formed by two circular arcs and a flat surface in which the bottom of the groove is parallel to the surface A step of forming a shape composed of parts,
A step of smoothly pressing the positive electrode plate having the groove portion with a pair of smooth rollers having an axis perpendicular to the groove direction to a desired thickness;
A step of forming the positive electrode plate groove in the outer peripheral surface provided with the said positive and negative electrode plates and a and by Uni laminated you opposed via a separator electrode body,
Wherein a step of bending at least once the electrode body so wound and Kaijiku is parallel to the groove to the direction of the groove as the outer peripheral surface provided with the positive electrode plate of the positive electrode plate, a positive electrode plate, which is bent A crack starting from the intersection of the bottom and wall surface of the plurality of grooves formed in parallel is formed,
The crack is pressed by the groove active material layer;
A method for producing a prismatic alkaline storage battery, comprising: storing the electrode body in a rectangular container and sealing the same.
溝部には活物質充填密度の低い溝部活物質層と、活物質充填密度の高い表面層とが交互に平滑な表面を形成する請求項記載の角型アルカリ蓄電池の製造方法。6. The method for producing a prismatic alkaline storage battery according to claim 5, wherein a groove portion active material layer having a low active material filling density and a surface layer having a high active material filling density alternately form a smooth surface in the groove portion. 金属多孔体が発泡状金属ニッケルである請求項記載の角型アルカリ蓄電池の製造方法。The method for producing a prismatic alkaline storage battery according to claim 5 , wherein the porous metal body is foamed metallic nickel. 負極板はパンチングメタル芯材上に水素吸蔵合金を塗着する請求項記載の角型アルカリ蓄電池の製造方法。6. The method for producing a prismatic alkaline storage battery according to claim 5 , wherein the negative electrode plate is formed by coating a hydrogen storage alloy on the punching metal core.
JP2000250649A 2000-08-22 2000-08-22 Square alkaline storage battery and manufacturing method thereof Expired - Fee Related JP4168578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000250649A JP4168578B2 (en) 2000-08-22 2000-08-22 Square alkaline storage battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000250649A JP4168578B2 (en) 2000-08-22 2000-08-22 Square alkaline storage battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002063933A JP2002063933A (en) 2002-02-28
JP4168578B2 true JP4168578B2 (en) 2008-10-22

Family

ID=18740182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000250649A Expired - Fee Related JP4168578B2 (en) 2000-08-22 2000-08-22 Square alkaline storage battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4168578B2 (en)

Also Published As

Publication number Publication date
JP2002063933A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JP5602092B2 (en) Alkaline secondary battery using negative electrode plate for alkaline secondary battery
EP1478037A2 (en) Secondary battery using non-sintered thin electrode and process for same
JP4429569B2 (en) Nickel metal hydride storage battery
JP4342160B2 (en) Storage battery and manufacturing method thereof
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP5096745B2 (en) Method for producing negative electrode for nickel metal hydride storage battery
JP2000077054A (en) Battery and its manufacture
JPH10241725A (en) Alkali secondary battery
JP2002198055A (en) Paste-like thin electrode for battery, its manufacturing method and secondary battery
JP4168578B2 (en) Square alkaline storage battery and manufacturing method thereof
JP3893856B2 (en) Square alkaline storage battery
JP3849478B2 (en) Alkaline storage battery and method of manufacturing the same
CN101150193A (en) Battery electrode substrate, and electrode employing the same
JPH07335209A (en) Coated electrode for battery, and its manufacture
JP4967229B2 (en) A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied.
JP3738125B2 (en) Alkaline storage battery using non-sintered electrode and method for manufacturing the same
JP2006196207A (en) Alkaline storage battery and manufacturing method of its electrode group
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JPH10125332A (en) Manufacture of battery electrode
JP3913395B2 (en) Method for producing alkaline storage battery
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JP5396702B2 (en) battery
JPH1064533A (en) Electrode for secondary battery and manufacture thereof
JP4703154B2 (en) Alkaline storage battery and method of manufacturing the same
JP2002170544A (en) Battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees