JPH10125332A - Manufacture of battery electrode - Google Patents
Manufacture of battery electrodeInfo
- Publication number
- JPH10125332A JPH10125332A JP8278471A JP27847196A JPH10125332A JP H10125332 A JPH10125332 A JP H10125332A JP 8278471 A JP8278471 A JP 8278471A JP 27847196 A JP27847196 A JP 27847196A JP H10125332 A JPH10125332 A JP H10125332A
- Authority
- JP
- Japan
- Prior art keywords
- porous body
- dimensional porous
- active material
- battery
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、発泡状金属や不織
布状金属等の三次元多孔体に活物質を担持させた電池電
極の製造方法に関する。The present invention relates to a method for producing a battery electrode in which an active material is supported on a three-dimensional porous body such as a foamed metal or a nonwoven metal.
【0002】[0002]
【従来の技術】電池の電極には、活物質充填密度を向上
させて電池容量の増大を図るために、発泡状金属や不織
布状金属等の三次元多孔体を用いる場合がある。例えば
ニッケル水素二次電池の正極には、発泡ニッケル(発泡
状金属)やニッケル繊維フェルト(不織布状金属)等が
用いられる。発泡ニッケルは、カーボンを含有させて導
電性を持たせたウレタンフォームにニッケルメッキを行
った後に、これを焼成してウレタンやカーボンの成分を
飛ばし発泡状の金属ニッケルのみを残したもの等であ
り、多数のニッケルの骨格が互いに三次元的にネットワ
ーク状(網状)に結合した多孔度の極めて大きい三次元
多孔体を構成する。また、ニッケル繊維フェルトは、び
びり振動等によって製造したニッケルの細い繊維をフェ
ルト状(不織布状)に焼き固めたもの等であり、この場
合にも多数のニッケルの繊維片が互いに三次元的にネッ
トワーク状に結合した多孔度の極めて大きい三次元多孔
体を構成する。従って、これらの三次元多孔体に、例え
ば活物質である水酸化ニッケルの粉末(不溶性)を水等
の分散媒に分散して塗布し乾燥させれば、ネットワーク
状に結合した多数の骨格や繊維の隙間に大量の活物質を
確実に担持させて活物質充填密度を向上させることがで
きるので、電池容量が大幅に増大する。2. Description of the Related Art In some cases, a three-dimensional porous body such as a foamed metal or a non-woven metal is used as an electrode of a battery in order to increase the density of an active material and increase the battery capacity. For example, foamed nickel (foamed metal), nickel fiber felt (non-woven metal), or the like is used for the positive electrode of a nickel-hydrogen secondary battery. Nickel foam is nickel foam that is made conductive by adding carbon and then baked to remove urethane and carbon components, leaving only foamed metallic nickel. A large number of nickel skeletons are three-dimensionally connected to each other in a network (network) to form a three-dimensional porous body having extremely large porosity. Nickel fiber felt is made by thinning nickel fine fibers produced by chatter vibration or the like into a felt shape (nonwoven fabric shape). In this case, too, a large number of nickel fiber pieces are three-dimensionally networked with each other. A three-dimensional porous body having an extremely large porosity is formed. Therefore, if a powder (insoluble) of, for example, nickel hydroxide, which is an active material, is dispersed in a dispersion medium such as water and applied to these three-dimensional porous bodies and dried, a large number of skeletons and fibers bonded in a network form can be obtained. Since a large amount of the active material can be reliably carried in the gaps, and the active material filling density can be improved, the battery capacity is greatly increased.
【0003】ところで、上記三次元多孔体は、電池の端
子に接続するために、金属板等からなる集電体を介して
集電を行う必要がある。しかし、活物質を担持させた三
次元多孔体に直接集電体を溶接して接続することは、こ
の活物質が溶着を妨げることや、三次元多孔体の骨格や
繊維の機械的強度が低いために困難である。Meanwhile, in order to connect the three-dimensional porous body to a terminal of a battery, it is necessary to collect power through a current collector formed of a metal plate or the like. However, welding and connecting the current collector directly to the three-dimensional porous body carrying the active material may prevent the active material from welding, or reduce the mechanical strength of the skeleton or fibers of the three-dimensional porous body. Difficult for.
【0004】そこで、従来は、三次元多孔体の一部を予
めプレスしてから活物質を担持させ、このプレス部分に
集電体を溶接したり圧着していた。即ち、三次元多孔体
をプレスすれば、このプレス部分の骨格や繊維が押圧さ
れて金属板状となるので、活物質がほとんど付着しな
い。従って、この三次元多孔体に活物質を担持させた後
にも、プレス部分には、集電体を溶接することが可能に
なり、確実な接続を行うこともできる。また、三次元多
孔体に一旦活物質を担持させてから、この三次元多孔体
の一部に超音波振動を加えて活物質を除去し、この除去
部分に集電体を溶接する場合もあった。[0004] Therefore, conventionally, a part of the three-dimensional porous body is pressed in advance and then the active material is supported, and a current collector is welded or crimped to the pressed part. That is, when the three-dimensional porous body is pressed, the skeleton or the fiber of the pressed portion is pressed to form a metal plate, so that the active material hardly adheres. Therefore, even after the active material is supported on the three-dimensional porous body, the current collector can be welded to the pressed portion, and reliable connection can be performed. Further, there is a case where the active material is once carried on the three-dimensional porous body, and then the active material is removed by applying ultrasonic vibration to a part of the three-dimensional porous body, and the current collector is welded to the removed part. Was.
【0005】さらに、活物質を担持させた三次元多孔体
の全面に集電体となる帯鋼等を圧接させる場合もあっ
た。[0005] In some cases, a steel strip or the like serving as a current collector is pressed against the entire surface of the three-dimensional porous body supporting the active material.
【0006】[0006]
【発明が解決しようとする課題】ところが、従来は、上
記のように三次元多孔体の一部を予備プレスしたり活物
質を除去して集電体を溶接したり圧着しなければなら
ず、しかも、電極1枚ごとにこれらの工程が必要となる
ので、電池の生産性が低下するという問題があった。However, conventionally, as described above, the current collector must be welded or pressed by pre-pressing a part of the three-dimensional porous body or removing the active material. In addition, since these steps are required for each electrode, there is a problem that the productivity of the battery is reduced.
【0007】また、三次元多孔体は、わずかな押圧力を
加えるだけで骨格が潰れたりや繊維同士が密接し、わず
かな引っ張り力を加えるだけでネットワーク部分が引き
伸ばされて全体が薄くなるので、活物質を十分に担持で
きなくなる。しかも、この引っ張り力を強くすると、容
易に裂けて使用できなくなる。このため、三次元多孔体
に活物質を担持させる工程や、その他の処理を行う工
程、及び、巻回型の発電素子の場合にはこの三次元多孔
体を巻回する工程等で慎重な取り扱いが必要となり、こ
の三次元多孔体をラインにより連続的に搬送して加工す
る等の方法により電極の製造の生産性を向上させること
が困難になるという問題もあった。しかも、特に三次元
多孔体の一部に集電体を溶接したり圧着する場合には、
電池の組み立て作業中等にこの集電体に力が加わると、
三次元多孔体が溶接部や圧着部で簡単に裂けて切断され
易くなるという問題も生じる。さらに、このように集電
体が三次元多孔体の一部に取り付けられると、集電体と
三次元多孔体との接触面積が狭いために、集電の電気抵
抗が大きくなるという問題もあった。In addition, the three-dimensional porous body is such that the skeleton is collapsed or fibers are brought into close contact with each other only by applying a slight pressing force, and the network portion is stretched and thinned as a whole by applying a slight tensile force. The active material cannot be sufficiently supported. In addition, if this pulling force is increased, it is easily torn and cannot be used. For this reason, careful handling is performed in the step of supporting the active material on the three-dimensional porous body, the step of performing other processing, and, in the case of a winding type power generation element, the step of winding the three-dimensional porous body. There is also a problem that it is difficult to improve the productivity of electrode production by a method of continuously transporting and processing the three-dimensional porous body through a line. Moreover, especially when the current collector is welded or crimped to a part of the three-dimensional porous body,
If force is applied to this current collector during battery assembly work, etc.,
There is also a problem that the three-dimensional porous body is easily torn at the welded portion or the crimped portion and is easily cut. Further, when the current collector is attached to a part of the three-dimensional porous body in this way, there is also a problem that the electric resistance of the current collection increases because the contact area between the current collector and the three-dimensional porous body is small. Was.
【0008】また、活物質を担持させた三次元多孔体に
直接帯鋼等を圧接させる場合には、活物質によって帯鋼
等との接触抵抗が不安定になり、必ずしも確実な電気的
接続を得ることができるとは限らないという問題もあっ
た。When a steel strip or the like is directly pressed into contact with a three-dimensional porous body supporting an active material, the contact resistance with the steel strip or the like becomes unstable due to the active material, and a reliable electric connection is not always ensured. There was also a problem that it could not always be obtained.
【0009】本発明は、かかる事情に鑑みてなされたも
のであり、導電性薄板に三次元多孔体を焼結させた後に
活物質を担持させることにより、電極の生産性を向上さ
せて三次元多孔体の取り扱いも容易にし導電性薄板を介
した集電を確実にすることができる電池電極の製造方法
を提供することを目的としている。The present invention has been made in view of the above circumstances, and has been proposed to improve the productivity of electrodes by sintering a three-dimensional porous body on a conductive thin plate and then supporting an active material. It is an object of the present invention to provide a method of manufacturing a battery electrode that can easily handle a porous body and reliably collect electricity through a conductive thin plate.
【0010】[0010]
【課題を解決するための手段】即ち、本発明は、上記課
題を解決するために、多数の開口孔を備えた導電性薄
板の表面に、シート状の三次元多孔体を張り合わせて焼
結させる三次元多孔体焼結工程と、この三次元多孔体焼
結工程により導電性薄板に焼結された三次元多孔体に活
物質を担持させる活物質担持工程とを有することを特徴
とする。That is, in order to solve the above-mentioned problems, the present invention is to bond a sheet-shaped three-dimensional porous body to the surface of a conductive thin plate having a large number of openings and sinter the sheet. It is characterized by including a three-dimensional porous body sintering step and an active material supporting step of supporting an active material on the three-dimensional porous body sintered on the conductive thin plate by the three-dimensional porous body sintering step.
【0011】の手段によれば、活物質を担持させる前
の三次元多孔体を導電性薄板に焼結させるので、この三
次元多孔体の接触面で極めて多数の繊維片や骨格が導電
性薄板の表面に接合され、確実な電気的接続を得ること
ができる。また、この三次元多孔体は、導電性薄板に焼
結接合された状態で活物質を担持させるので、この導電
性薄板を支持体として搬送や巻回等での取り扱いが容易
となる。しかも、電極1枚ごとに三次元多孔体の一部を
予備プレスしたり活物質を除去して巻回等を行う前に集
電体を溶接する工程を省略することができるので、電池
の生産性を向上させることができる。According to the means, since the three-dimensional porous body before supporting the active material is sintered into a conductive thin plate, a very large number of fiber pieces and skeletons are formed on the conductive surface at the contact surface of the three-dimensional porous body. And a reliable electrical connection can be obtained. In addition, since the three-dimensional porous body carries the active material in a state of being sintered and bonded to the conductive thin plate, the conductive thin plate is used as a support to facilitate handling such as transport and winding. Moreover, the step of pre-pressing a part of the three-dimensional porous body for each electrode or removing the active material and welding the current collector before performing winding or the like can be omitted, so that the production of the battery can be omitted. Performance can be improved.
【0012】また、前記の三次元多孔体焼結工程
が、多数の開口孔を備えた導電性薄板の表裏両面に、そ
れぞれシート状の三次元多孔体を張り合わせて焼結させ
るものであることを特徴とする。[0012] Further, the three-dimensional porous body sintering step is to bond a sheet-shaped three-dimensional porous body to both the front and back surfaces of a conductive thin plate having a large number of openings, and to sinter the three-dimensional porous body. Features.
【0013】の手段によれば、導電性薄板の両面に三
次元多孔体を焼結接合させるので、この導電性薄板の裏
面側でも電解液が三次元多孔体に容易に接触できるよう
になる。しかも、特に不織布状の三次元多孔体を用いる
場合には、表裏の三次元多孔体の繊維片が導電性薄板の
開口孔を介して絡み合うので、これらの三次元多孔体の
接合強度が高まる。According to the means, since the three-dimensional porous body is bonded to both sides of the conductive thin plate by sintering, the electrolyte can easily contact the three-dimensional porous body also on the back side of the conductive thin plate. In addition, in the case of using a nonwoven fabric-shaped three-dimensional porous body, the fiber pieces of the front and back three-dimensional porous bodies are entangled through the openings of the conductive thin plate, so that the bonding strength of these three-dimensional porous bodies is increased.
【0014】さらに、前記の三次元多孔体焼結工
程により導電性薄板に焼結された三次元多孔体の一部を
導電性薄板側にプレスするプレス工程を有し、前記活物
質担持工程が、導電性薄板に焼結されてこのプレス工程
で一部をプレスされた三次元多孔体に活物質を担持させ
るものであり、この活物質担持工程により活物質を担持
させた三次元多孔体をプレス部分で導電性薄板と共に切
断する切断工程を有するものであることを特徴とする。Further, the method further comprises a pressing step of pressing a part of the three-dimensional porous body sintered on the conductive thin plate in the three-dimensional porous body sintering step to the conductive thin plate side. The active material is supported on the three-dimensional porous body which has been sintered into a conductive thin plate and partially pressed in this pressing step. It is characterized by having a cutting step of cutting together with the conductive thin plate at the pressed portion.
【0015】の手段によれば、プレス工程により三次
元多孔体の一部がプレスされると、このプレス部分が金
属板状となり活物質が担持されなくなる。従って、複数
枚の電極を一括して製造し切断工程により三次元多孔体
のプレス部分で切り分けると、各切片のプレス部分に集
電体等を溶接等により容易に接続することができる。According to the means, when a part of the three-dimensional porous body is pressed in the pressing step, the pressed part becomes a metal plate and no active material is supported. Therefore, when a plurality of electrodes are manufactured in a lump and cut at the pressed portion of the three-dimensional porous body by a cutting process, a current collector or the like can be easily connected to the pressed portion of each slice by welding or the like.
【0016】[0016]
【発明の実施の形態】以下、本発明の実施形態について
図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0017】図1〜図7は本発明の一実施形態を示すも
のであって、図1は正極の製造方法を示す斜視図、図2
はニッケル水素二次電池の構造を示す縦断面図、図3は
正極の構成を示す斜視図、図4は負極の構成を示す斜視
図、図5は発電素子の製造方法を示す斜視図、図6は正
極の他の製造方法を示す斜視図、図7は放電率と放電中
間電圧の関係を示す図である。1 to 7 show an embodiment of the present invention. FIG. 1 is a perspective view showing a method for manufacturing a positive electrode.
Is a longitudinal sectional view showing the structure of the nickel-metal hydride secondary battery, FIG. 3 is a perspective view showing the structure of the positive electrode, FIG. 4 is a perspective view showing the structure of the negative electrode, FIG. 6 is a perspective view showing another manufacturing method of the positive electrode, and FIG. 7 is a view showing a relationship between a discharge rate and a discharge intermediate voltage.
【0018】本実施形態は、ニッケル水素二次電池の巻
回型の発電素子に用いられる正極の製造方法について説
明する。このニッケル水素二次電池は、図2に示すよう
に、電池缶1内に発電素子2を収納し電解液を充填し
て、絶縁体を介した電池蓋3により内部を密閉したもの
である。発電素子2は、帯状の正極4と負極5を帯状の
セパレータ6を介して巻回することにより構成される。
これらの正極4とセパレータ6と負極5は、それぞれ少
しずつ上下にずらした状態で巻回することにより、発電
素子2の上端側に正極4の上縁部のみを突出させ、下端
側には負極5の下縁部のみを突出させるようにしてい
る。また、この発電素子2の上端側に突出した正極4の
上縁部には上部集電板7が溶接接続され、下端側に突出
した負極5の下縁部には下部集電板8が溶接接続されて
いる。そして、これらの集電板7,8がそれぞれリード
片等を介して電池蓋3の裏面と電池缶1の内側底面に接
続されることにより、この電池蓋3の中央の突起が正極
端子となり、電池缶1の底面が負極端子となる。なお、
電池蓋3には、ガス抜きのためのゴム弁体3aが取り付
けられている。In this embodiment, a method for manufacturing a positive electrode used for a wound-type power generating element of a nickel-metal hydride secondary battery will be described. As shown in FIG. 2, the nickel-hydrogen secondary battery is one in which a power generation element 2 is housed in a battery can 1, filled with an electrolytic solution, and the inside is sealed with a battery lid 3 via an insulator. The power generating element 2 is configured by winding a strip-shaped positive electrode 4 and a strip-shaped negative electrode 5 via a strip-shaped separator 6.
The positive electrode 4, the separator 6 and the negative electrode 5 are wound while being slightly shifted up and down, so that only the upper edge of the positive electrode 4 protrudes toward the upper end of the power generating element 2, and the negative electrode 5, only the lower edge is projected. An upper current collector 7 is welded to the upper edge of the positive electrode 4 projecting toward the upper end of the power generating element 2, and a lower current collector 8 is welded to the lower edge of the negative electrode 5 projecting to the lower end of the power generator 2. It is connected. The current collector plates 7 and 8 are connected to the back surface of the battery cover 3 and the inner bottom surface of the battery can 1 via lead pieces or the like, so that the central projection of the battery cover 3 serves as a positive electrode terminal. The bottom surface of the battery can 1 serves as a negative electrode terminal. In addition,
A rubber valve body 3a for venting gas is attached to the battery cover 3.
【0019】上記正極4は、図3に示すように、帯状の
パンチングメタル9の表面に接合した帯状のニッケル繊
維フェルト10に水酸化ニッケルを主体とした正極活物
質11を担持させたものである。また、負極5は、図4
に示すように、パンチングメタル12に水素吸蔵合金を
主体とした負極活物質13を担持させたものである。こ
れらのパンチングメタル9,12は、いずれもニッケル
の薄板にプレス加工により多数の開口孔9a(図3では
ニッケル繊維フェルト10の陰になって見えない)又は
開口孔12a(図4では負極活物質13の窪みとなって
見える)を穿設したものである。そして、セパレータ6
は、電解液を通す絶縁性の不織布等であり、電解液は、
苛性アルカリ水溶液を用いる。As shown in FIG. 3, the positive electrode 4 has a belt-shaped punched metal 9 and a belt-shaped nickel fiber felt 10 bonded to the surface thereof, and a cathode active material 11 mainly composed of nickel hydroxide supported thereon. . Further, the negative electrode 5 is shown in FIG.
As shown in FIG. 2, a punching metal 12 carries a negative electrode active material 13 mainly composed of a hydrogen storage alloy. Each of these punching metals 9 and 12 is formed by pressing a nickel thin plate into a large number of opening holes 9a (not visible behind the nickel fiber felt 10 in FIG. 3) or opening holes 12a (negative electrode active material in FIG. 4). Thirteen depressions). And the separator 6
Is an insulating nonwoven fabric or the like through which the electrolyte passes, and the electrolyte is
Use caustic aqueous solution.
【0020】上記負極5は、水素吸蔵合金の粉末とバイ
ンダーを混練してペースト状としたものをパンチングメ
タル12の表裏両面に塗布し乾燥させることにより、図
4に示したように、このパンチングメタル12の両面を
覆い開口孔12aを塞ぐようにして厚い膜状に負極活物
質13を付着させて担持させる。ただし、この負極活物
質13は、パンチングメタル12の帯状の下縁部には付
着しないようにして、発電素子2の下端側からは、負極
5のこのパンチングメタル12の下縁部を突出させる。
従って、上記下部集電板8は、この負極活物質13が付
着していないパンチングメタル12の下縁部に容易に溶
接することができる。The negative electrode 5 is prepared by kneading a powder of a hydrogen storage alloy and a binder to form a paste and applying the paste on both the front and back surfaces of a punching metal 12 and drying the same, as shown in FIG. The negative electrode active material 13 is adhered and supported in a thick film shape so as to cover both surfaces of the negative electrode 12 and close the opening hole 12a. However, the negative electrode active material 13 does not adhere to the lower edge of the strip of the punching metal 12, and the lower edge of the punching metal 12 of the negative electrode 5 projects from the lower end of the power generating element 2.
Therefore, the lower current collecting plate 8 can be easily welded to the lower edge of the punching metal 12 to which the negative electrode active material 13 is not attached.
【0021】上記正極4の製造方法を詳細に説明する。
図1に示すように、まず帯状のパンチングメタル9の表
面に、帯状のニッケル繊維フェルト10を張り合わせて
焼結させる(三次元多孔体焼結工程)。即ち、パンチン
グメタル9の表面にニッケル繊維フェルト10を張り合
わせて軽く圧接させておき、850〜1000°C程度
に加熱する。すると、ニッケル繊維フェルト10の接触
面で極めて多数の繊維片がニッケルの表面拡散や部分的
な溶融によりパンチングメタル9の表面や開口孔9aの
開口縁等に付着するので、図3に示したように、このニ
ッケル繊維フェルト10がパンチングメタル9に焼結接
合されて容易には外れないようになる。この際、ニッケ
ル繊維フェルト10は、パンチングメタル9の幅よりも
わずかに狭いもの用いることにより、このパンチングメ
タル9の少なくとも上縁部にある程度の隙間を開けて接
合される。このようにしてニッケル繊維フェルト10を
パンチングメタル9に接合すると、このパンチングメタ
ル9を支持体として搬送や巻回等の取り扱いが容易とな
り、以降の工程の作業中にニッケル繊維フェルト10に
無理な力が加わって引き伸ばされたり裂けるようなおそ
れがなくなる。The method for manufacturing the positive electrode 4 will be described in detail.
As shown in FIG. 1, first, a strip-shaped nickel fiber felt 10 is bonded to the surface of the strip-shaped punching metal 9 and sintered (three-dimensional porous body sintering step). That is, the nickel fiber felt 10 is stuck to the surface of the punching metal 9 and pressed lightly, and heated to about 850 to 1000 ° C. Then, an extremely large number of fiber pieces adhere to the surface of the punching metal 9 and the opening edge of the opening 9a due to the surface diffusion and partial melting of nickel on the contact surface of the nickel fiber felt 10, as shown in FIG. Then, the nickel fiber felt 10 is sintered and joined to the punching metal 9 so that it does not come off easily. At this time, by using the nickel fiber felt 10 having a width slightly smaller than the width of the punching metal 9, the nickel fiber felt 10 is joined to the punching metal 9 at least at an upper edge thereof with a certain gap. When the nickel fiber felt 10 is joined to the punching metal 9 in this manner, handling such as transporting and winding is facilitated by using the punching metal 9 as a support, and excessive force is applied to the nickel fiber felt 10 during the operation of the subsequent steps. The risk of stretching or tearing due to the addition of
【0022】上記三次元多孔体焼結工程によりニッケル
繊維フェルト10がパンチングメタル9の表面に焼結接
合されると、このニッケル繊維フェルト10に水酸化ニ
ッケルを主体とする粉末を水で溶いて塗布し乾燥させる
ことにより正極活物質11を担持させる(活物質担持工
程)。即ち、ニッケル繊維フェルト10の多数の繊維片
の隙間に、水酸化ニッケルを主体とする正極活物質11
が大量に付着して担持される。ただし、この場合、正極
活物質11は、ニッケル薄板であるパンチングメタル9
にはほとんど付着しない。なお、この活物質担持工程で
は、上記のようにパンチングメタル9を支持体としてニ
ッケル繊維フェルト10に加工を施すことができるの
で、このニッケル繊維フェルト10が引き伸ばされて厚
さが薄くなり正極活物質11の担持量が減少するような
こともなくなる。When the nickel fiber felt 10 is sintered and joined to the surface of the punching metal 9 by the three-dimensional porous material sintering step, a powder mainly composed of nickel hydroxide is dissolved and applied to the nickel fiber felt 10 with water. Then, the positive electrode active material 11 is supported by drying (active material supporting step). That is, a positive electrode active material 11 mainly composed of nickel hydroxide is provided in a gap between many fiber pieces of the nickel fiber felt 10.
Are adhered and carried in large quantities. However, in this case, the positive electrode active material 11 is made of a punched metal 9 which is a nickel thin plate.
Hardly adheres to In this active material supporting step, the nickel fiber felt 10 can be processed by using the punching metal 9 as a support as described above. No decrease in the amount of 11 carried will occur.
【0023】上記方法により製造された正極4は、図5
に示すように、負極5と共にセパレータ6を介して巻回
されて、巻回型の発電素子2となる。また、この発電素
子2の上端側から突出する正極4の上縁部は、ニッケル
繊維フェルト10が接合されず正極活物質11が付着し
ないパンチングメタル9の上縁部となるので、上記上部
集電板7が容易に溶接される。The positive electrode 4 manufactured by the above method is shown in FIG.
As shown in FIG. 7, the wound power generating element 2 is wound together with the negative electrode 5 via the separator 6. The upper edge of the positive electrode 4 protruding from the upper end of the power generating element 2 is the upper edge of the punching metal 9 to which the nickel fiber felt 10 is not bonded and the positive electrode active material 11 is not attached. The plate 7 is easily welded.
【0024】以上のように、本実施形態のニッケル水素
二次電池における正極4の製造方法によれば、正極活物
質11を担持させる前のニッケル繊維フェルト10をパ
ンチングメタル9に焼結接合させるので、このニッケル
繊維フェルト10とパンチングメタル9との間を確実に
電気的に接続することができる。従って、ニッケル繊維
フェルト10に正極活物質11を担持させると、この正
極活物質11からニッケル繊維フェルト10を介してパ
ンチングメタル9により安定した集電を行うことができ
るようになる。また、このパンチングメタル9は、ニッ
ケル繊維フェルト10と異なり正極活物質11が付着し
ないので、発電素子2の上端側に突出した上縁部に上部
集電板7を容易に溶接接続でき、正極端子となる電池蓋
3との接続も容易となる。しかも、この正極4は、パン
チングメタル9を支持体として活物質担持工程や発電素
子2の巻回工程等の作業を行うので、単独では取り扱い
が厄介なニッケル繊維フェルト10に無理な力を加える
ことなく搬送等が可能となり、作業性を向上させること
ができる。As described above, according to the method of manufacturing the positive electrode 4 in the nickel-metal hydride secondary battery of the present embodiment, the nickel fiber felt 10 before supporting the positive electrode active material 11 is sintered and bonded to the punching metal 9. Thus, the nickel fiber felt 10 and the punching metal 9 can be reliably electrically connected. Therefore, when the positive electrode active material 11 is supported on the nickel fiber felt 10, stable current collection can be performed from the positive electrode active material 11 by the punching metal 9 via the nickel fiber felt 10. Also, unlike the nickel fiber felt 10, the positive electrode active material 11 does not adhere to the punched metal 9, so that the upper current collector 7 can be easily connected to the upper edge protruding toward the upper end of the power generating element 2 by welding. Connection with the battery cover 3 becomes easy. In addition, since the positive electrode 4 performs operations such as an active material supporting step and a winding step of the power generating element 2 using the punching metal 9 as a support, excessive force is applied to the nickel fiber felt 10 which is difficult to handle by itself. Transport and the like can be performed without any problems, and workability can be improved.
【0025】上記正極4は、ロールから帯状のパンチン
グメタル9とニッケル繊維フェルト10を順次供給する
ライン加工により、連続的に三次元多孔体焼結工程と活
物質担持工程とを実施してから適宜の長さに切断するこ
とによって製造することもできる。また、この際、幅広
のパンチングメタル9に幅広のニッケル繊維フェルト1
0を供給して複数枚の正極4を並行して製造することも
できる。即ち、幅広のパンチングメタル9に幅広のニッ
ケル繊維フェルト10を焼結接合させて三次元多孔体焼
結工程を実施した後に、図6に示すように、ニッケル繊
維フェルト10の一部を長手方向に沿ってパンチングメ
タル9側にプレスし(プレス工程)、このプレス部分1
0aによってニッケル繊維フェルト10を複数トラック
に分割する(図6では3分割する)。そして、このニッ
ケル繊維フェルト10に正極活物質11を担持させる活
物質担持工程を実施してから、プレス部分10aに沿っ
て(図6の1点鎖線の沿って)パンチングメタル9とニ
ッケル繊維フェルト10をトラックごとに切断すれば
(切断工程)、複数枚の正極4を並行して効率よく製造
できる。ただし、パンチングメタル9の切断部では、ニ
ッケル繊維フェルト10のプレス部分10aがこの切断
部の縁まで隙間なく焼結接合される。しかし、このプレ
ス部分10aは、多数の繊維片が押し潰されてニッケル
板状となり、活物質担持工程でも正極活物質11がほと
んど付着しないので、この切断部が発電素子2の上端側
から突出する上縁部となった場合にも、上部集電板7を
容易に溶接することができる。The positive electrode 4 is appropriately processed after a three-dimensional porous material sintering step and an active material supporting step are continuously performed by a line processing for sequentially supplying a band-shaped punching metal 9 and a nickel fiber felt 10 from a roll. It can also be manufactured by cutting to length. At this time, a wide nickel fiber felt 1 is attached to a wide punching metal 9.
0 may be supplied to manufacture a plurality of positive electrodes 4 in parallel. That is, after performing the three-dimensional porous body sintering step by sintering the wide nickel fiber felt 10 to the wide punching metal 9 and performing a three-dimensional porous body sintering process, as shown in FIG. Along the punching metal 9 side (pressing process)
The nickel fiber felt 10 is divided into a plurality of tracks by 0a (in FIG. 6, it is divided into three). Then, after performing an active material supporting step of supporting the positive electrode active material 11 on the nickel fiber felt 10, the punching metal 9 and the nickel fiber felt 10 are pressed along the pressed portion 10a (along the dashed line in FIG. 6). Is cut for each track (cutting step), a plurality of positive electrodes 4 can be efficiently manufactured in parallel. However, at the cut portion of the punched metal 9, the pressed portion 10a of the nickel fiber felt 10 is sintered and joined to the edge of the cut portion without any gap. However, in the pressed portion 10a, a large number of fiber pieces are crushed into a nickel plate shape, and the positive electrode active material 11 hardly adheres even in the active material supporting step, so that the cut portion protrudes from the upper end side of the power generation element 2. Even in the case of the upper edge portion, the upper current collecting plate 7 can be easily welded.
【0026】なお、本発明は、上記実施形態における正
極4以外の構成は特に限定しない。即ち、負極5の構成
や、これら正極4と負極5を集電板7,8を介して電池
蓋3の正極端子と電池缶1の負極端子に接続する構成
も、本実施形態のものに限定されず任意である。The configuration of the present invention is not particularly limited except for the positive electrode 4 in the above embodiment. That is, the configuration of the negative electrode 5 and the configuration in which the positive electrode 4 and the negative electrode 5 are connected to the positive terminal of the battery lid 3 and the negative terminal of the battery can 1 via the current collector plates 7 and 8 are also limited to those of the present embodiment. Not optional.
【0027】また、上記実施形態では、正極4のパンチ
ングメタル9の表面にのみニッケル繊維フェルト10を
焼結させたが、このパンチングメタル9の表裏両面にそ
れぞれニッケル繊維フェルト10,10を焼結させるこ
ともできる。この場合、パンチングメタル9の裏面側で
も電解液がニッケル繊維フェルト10に担持された正極
活物質11に容易に接触できるようになる。しかも、表
裏のニッケル繊維フェルト10,10の繊維片がパンチ
ングメタル9の開口孔9aを介して互いに絡み合うの
で、これらのニッケル繊維フェルト10,10の接合強
度を高めることができる。Further, in the above embodiment, the nickel fiber felt 10 is sintered only on the surface of the punching metal 9 of the positive electrode 4, but the nickel fiber felt 10, 10 is sintered on both the front and back surfaces of the punching metal 9. You can also. In this case, the electrolyte can be easily brought into contact with the positive electrode active material 11 supported on the nickel fiber felt 10 also on the back side of the punching metal 9. Moreover, since the fiber pieces of the front and back nickel fiber felts 10 and 10 are entangled with each other via the opening 9a of the punching metal 9, the bonding strength of these nickel fiber felts 10 and 10 can be increased.
【0028】さらに、上記実施形態では、ニッケル水素
二次電池について説明したが、本発明は、三次元多孔体
を電極に利用できる電池であれば、いずれにも同様に実
施することができる。Further, in the above embodiment, a nickel-hydrogen secondary battery has been described. However, the present invention can be similarly applied to any battery that can use a three-dimensional porous body as an electrode.
【0029】さらに、上記実施形態では、三次元多孔体
としてニッケル繊維フェルト10を用いたが、三次元的
に多孔性の導電体であればこれに限らず、例えば発泡ニ
ッケル等を用いることもできる。しかも、導電体の種類
も、このようなニッケルに限らず、電池や電極の種類に
応じて任意に選択することができる。Further, in the above embodiment, the nickel fiber felt 10 is used as the three-dimensional porous body. However, the present invention is not limited to this as long as it is a three-dimensionally porous conductor. For example, foamed nickel or the like can be used. . Moreover, the type of the conductor is not limited to such nickel, but can be arbitrarily selected according to the type of the battery or the electrode.
【0030】さらに、上記実施形態では、導電性薄板と
してニッケルの薄板によるパンチングメタル9を用いた
が、任意形状及び任意の大きさの多数の開口孔を備えた
導電性の薄板であればどのようなものでもよく、例えば
エキスパンドメタルや金網等のようにマクロの大きな開
口孔を備えたものや、発泡状金属又は不織布状金属を金
属板状に圧縮したミクロの微細な開口孔を備えたもの等
を用いることもできる。しかも、導電体の種類も、この
ようなニッケルに限らず、電池や電極の種類に応じて任
意に選択することができる。Further, in the above-described embodiment, the punching metal 9 made of a nickel thin plate is used as the conductive thin plate. However, any conductive thin plate having a large number of openings having an arbitrary shape and an arbitrary size can be used. Such as expanded metal or wire mesh, or those with microscopic fine holes formed by compressing foamed metal or non-woven metal into a metal plate. Can also be used. Moreover, the type of the conductor is not limited to such nickel, but can be arbitrarily selected according to the type of the battery or the electrode.
【0031】さらに、上記実施形態では、円筒型電池に
用いる巻回型の発電素子2を示したが、本発明は角柱型
電池に用いる積層型の発電素子2等にも同様に実施する
ことができる。積層型とする場合、パンチングメタル9
やニッケル繊維フェルト10は、帯状(長尺なシート
状)ではなく平板状(短いシート状)のものを用いる。Further, in the above embodiment, the wound power generating element 2 used for a cylindrical battery is shown, but the present invention can be similarly applied to a stacked power generating element 2 used for a prismatic battery. it can. When using a laminated type, punching metal 9
For the nickel fiber felt 10, a flat plate (short sheet) instead of a band (long sheet) is used.
【0032】[0032]
【実施例】以下に示す実施例と比較例の電池を作成し比
較した。EXAMPLES The batteries of the following examples and comparative examples were prepared and compared.
【0033】〔実施例と比較例〕 ○実施例 ・SC型Ni−MH電池 ・正極板寸法:188mm(長さ)×31.5mm(幅)×
0.80mm(厚さ) ・負極板寸法:235mm(長さ)×31.5mm(幅)×
0.43mm(厚さ) ・電解液:水酸化リチウム(LiOH)を30g/l溶
解させた水酸化カリウムの31wt%(重量%)水溶液 ・公称容量:2.5AhExamples and Comparative Examples Examples: SC type Ni-MH battery Positive electrode dimensions: 188 mm (length) x 31.5 mm (width) x
0.80mm (thickness)-Negative electrode plate dimensions: 235mm (length) x 31.5mm (width) x
0.43 mm (thickness) ・ Electrolyte: 31 wt% (wt%) aqueous solution of potassium hydroxide in which lithium hydroxide (LiOH) is dissolved at 30 g / l ・ Nominal capacity: 2.5 Ah
【0034】○比較例1 ・正極板寸法:188mm(長さ)×31.5mm(幅)×
0.76mm(厚さ)(活物質を除去し、集電端子を超音
波溶接した) ・他の項目は実施例と同じComparative Example 1 Positive electrode dimensions: 188 mm (length) x 31.5 mm (width) x
0.76mm (thickness) (active material was removed and current collecting terminals were ultrasonically welded) ・ Other items are the same as in the example
【0035】○比較例2 ・正極板寸法:188mm(長さ)×31.5mm(幅)×
0.73mm(厚さ) ・導電性薄板:188mm(長さ)×34mm(幅)×0.
06mm(厚さ)(正極と共に巻回した) ・他の項目は実施例1と同じComparative Example 2 Positive electrode dimensions: 188 mm (length) x 31.5 mm (width) x
0.73 mm (thickness)-Conductive thin plate: 188 mm (length) x 34 mm (width) x 0.
06mm (thickness) (wound with the positive electrode) ・ Other items are the same as in Example 1.
【0036】〔比較結果〕従来の製造方法により比較例
1の電池を作成すると、5セル/分(1分間に5セル分
の電池)しか製造できなかったが、実施例の電池は、電
極1枚ごとの活物質の除去と集電端子の溶接工程を省略
できるので、いずれも12セル/分の製造が可能とな
り、生産性が向上した。[Comparative Results] When the battery of Comparative Example 1 was manufactured by the conventional manufacturing method, only 5 cells / min (battery for 5 cells per minute) could be manufactured. Since the step of removing the active material for each sheet and the step of welding the current collecting terminals can be omitted, the production of 12 cells / min can be performed in each case, and the productivity is improved.
【0037】また、実施例と比較例2の電池について、
それぞれ放電率を変えて放電中間電圧を測定した結果を
図7に示す。電池の放電率が高くなると、電池の内部抵
抗による電圧降下が大きくなるので、放電中間電圧は低
下する。そして、実施例では正極の三次元多孔体が導電
性薄板に焼結されるのに対して、比較例2では三次元多
孔体が導電性薄板に接触しているだけなので、この接触
抵抗が大きくなる。従って、実施例の電池は、比較例2
の電池に比べ、放電率が高くなっても放電中間電圧の低
下の割合が少なくなり、高い集電性を得ることができ
た。The batteries of Example and Comparative Example 2 were:
FIG. 7 shows the results of measuring the discharge intermediate voltage while changing the discharge rate. When the discharge rate of the battery increases, the voltage drop due to the internal resistance of the battery increases, so that the discharge intermediate voltage decreases. In the embodiment, the three-dimensional porous body of the positive electrode is sintered on the conductive thin plate, whereas in the comparative example 2, the three-dimensional porous body is only in contact with the conductive thin plate. Become. Therefore, the battery of the example is the same as that of the comparative example 2.
As compared with the battery of Example 1, even if the discharge rate was increased, the rate of decrease in the discharge intermediate voltage was reduced, and high current collecting properties could be obtained.
【0038】[0038]
【発明の効果】以上の説明から明らかなように、本発明
の電池電極の製造方法によれば、三次元多孔体を導電性
薄板に焼結させて確実な電気的接続を得ることができる
ので、この導電性薄板を介して安定した集電を行うこと
ができる。しかも、電極1枚ごとに三次元多孔体の一部
を予備プレスしたり活物質を除去して巻回等を行う前に
集電体を溶接する工程を省略することができ、導電性薄
板を支持体として搬送等を行うことにより三次元多孔体
が引き伸ばされたり切断されることなく活物質担持工程
等を実行することができるので、電極の生産性を向上さ
せることもできる。As is apparent from the above description, according to the battery electrode manufacturing method of the present invention, a three-dimensional porous body can be sintered into a conductive thin plate to obtain a reliable electrical connection. Through this conductive thin plate, stable current collection can be performed. Moreover, the step of pre-pressing a part of the three-dimensional porous body for each electrode or removing the active material and welding the current collector before performing winding or the like can be omitted, and the conductive thin plate can be formed. Since the three-dimensional porous body can be subjected to an active material supporting step or the like without being stretched or cut by performing transport or the like as a support, productivity of the electrode can be improved.
【0039】また、三次元多孔体を導電性薄板の両面に
焼結接合すれば、電極面の裏面側の利用率も高めること
ができる。しかも、特に不織布状の三次元多孔体を用い
る場合には、導電性薄板の開口孔を介して繊維同士が絡
み合うので接合強度が高まる。When the three-dimensional porous body is sintered and bonded to both sides of the conductive thin plate, the utilization factor of the back side of the electrode surface can be increased. In addition, when a nonwoven fabric-shaped three-dimensional porous body is used, the fibers are entangled with each other through the openings of the conductive thin plate, so that the bonding strength is increased.
【0040】さらに、活物質を担持する前に三次元多孔
体をプレスすれば、このプレス部分に集電体等を容易に
接続できるので、複数枚の電極を一括して製造し切り分
けることが可能となり、ライン加工等により効率良く製
造することができる。Furthermore, if the three-dimensional porous body is pressed before the active material is supported, a current collector or the like can be easily connected to the pressed portion, so that a plurality of electrodes can be manufactured and cut at once. , And can be efficiently manufactured by line processing or the like.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の一実施形態を示すものであって、正極
の製造方法を示す斜視図である。FIG. 1, showing an embodiment of the present invention, is a perspective view illustrating a method for manufacturing a positive electrode.
【図2】本発明の一実施形態を示すものであって、ニッ
ケル水素二次電池の構造を示す縦断面図である。FIG. 2, showing one embodiment of the present invention, is a longitudinal sectional view illustrating a structure of a nickel-metal hydride secondary battery.
【図3】本発明の一実施形態を示すものであって、正極
の構成を示す斜視図である。FIG. 3, showing one embodiment of the present invention, is a perspective view illustrating a configuration of a positive electrode.
【図4】本発明の一実施形態を示すものであって、負極
の構成を示す斜視図である。FIG. 4 illustrates one embodiment of the present invention, and is a perspective view illustrating a configuration of a negative electrode.
【図5】本発明の一実施形態を示すものであって、発電
素子の製造方法を示す斜視図である。FIG. 5, showing an embodiment of the present invention, is a perspective view illustrating a method for manufacturing a power generating element.
【図6】本発明の一実施形態を示すものであって、正極
の他の製造方法を示す斜視図である。FIG. 6, showing an embodiment of the present invention, is a perspective view illustrating another method for manufacturing a positive electrode.
【図7】本発明の実施例と比較例の比較結果を示すもの
であって、放電率と放電中間電圧の関係を示す図であ
る。FIG. 7 is a diagram showing a comparison result between an example of the present invention and a comparative example, and is a diagram showing a relationship between a discharge rate and a discharge intermediate voltage.
4 正極 9 パンチングメタル 9a 開口孔 10 ニッケル繊維フェルト 11 正極活物質 4 Positive electrode 9 Punching metal 9a Opening hole 10 Nickel fiber felt 11 Positive electrode active material
Claims (3)
に、シート状の三次元多孔体を張り合わせて焼結させる
三次元多孔体焼結工程と、 この三次元多孔体焼結工程により導電性薄板に焼結され
た三次元多孔体に活物質を担持させる活物質担持工程と
を有することを特徴とする電池電極の製造方法。1. A three-dimensional porous body sintering step of laminating and sintering a sheet-like three-dimensional porous body on the surface of a conductive thin plate having a large number of openings, and the three-dimensional porous body sintering step. An active material supporting step of supporting an active material on a three-dimensional porous body sintered on a conductive thin plate.
口孔を備えた導電性薄板の表裏両面に、それぞれシート
状の三次元多孔体を張り合わせて焼結させるものである
ことを特徴とする請求項1に記載の電池電極の製造方
法。2. The three-dimensional porous body sintering step is characterized in that a sheet-like three-dimensional porous body is bonded and sintered on both front and back surfaces of a conductive thin plate having a large number of openings. The method for producing a battery electrode according to claim 1.
薄板に焼結された三次元多孔体の一部を導電性薄板側に
プレスするプレス工程を有し、 前記活物質担持工程が、導電性薄板に焼結されてこのプ
レス工程で一部をプレスされた三次元多孔体に活物質を
担持させるものであり、 この活物質担持工程により活物質を担持させた三次元多
孔体をプレス部分で導電性薄板と共に切断する切断工程
を有するものであることを特徴とする請求項1又は請求
項2に記載の電池電極の製造方法。3. A pressing step of pressing a part of the three-dimensional porous body sintered on the conductive thin plate in the three-dimensional porous body sintering step toward the conductive thin plate side, wherein the active material supporting step includes: The three-dimensional porous body sintered on a conductive thin plate and partially pressed in this pressing step carries the active material. The three-dimensional porous body carrying the active material in the active material supporting step is pressed. The method for producing a battery electrode according to claim 1 or 2, further comprising a cutting step of cutting the portion together with the conductive thin plate.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27847196A JP4016214B2 (en) | 1996-10-21 | 1996-10-21 | Battery electrode manufacturing method |
CNB97119047XA CN1204636C (en) | 1996-10-21 | 1997-10-21 | Battery electrode and manufacture method thereof |
US08/954,824 US6025095A (en) | 1996-10-21 | 1997-10-21 | Battery electrode and manufacturing method thereof |
DE69719911T DE69719911T2 (en) | 1996-10-21 | 1997-10-21 | Method of manufacturing a battery electrode |
EP97118275A EP0840387B1 (en) | 1996-10-21 | 1997-10-21 | Method for manufacturing a battery electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27847196A JP4016214B2 (en) | 1996-10-21 | 1996-10-21 | Battery electrode manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10125332A true JPH10125332A (en) | 1998-05-15 |
JP4016214B2 JP4016214B2 (en) | 2007-12-05 |
Family
ID=17597801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27847196A Expired - Fee Related JP4016214B2 (en) | 1996-10-21 | 1996-10-21 | Battery electrode manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4016214B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999065095A1 (en) * | 1998-06-08 | 1999-12-16 | Toshiba Battery Co., Ltd. | Nickel-hydrogen secondary cell |
JP2011113667A (en) * | 2009-11-24 | 2011-06-09 | Sharp Corp | Non-aqueous electrolyte secondary battery |
JP2013543231A (en) * | 2010-10-16 | 2013-11-28 | シャイン カンパニー リミテッド | Battery having electrode structure including long metal fiber and method for manufacturing the same |
JP2016519841A (en) * | 2013-06-07 | 2016-07-07 | ジェナックス インコーポレイテッド | Electrode, manufacturing method thereof, and battery using the same |
CN109013859A (en) * | 2018-08-14 | 2018-12-18 | 赣州市中金高能电池材料有限公司 | A kind of production technology of rechargeable battery nickel plated steel strip |
JP2021061202A (en) * | 2019-10-08 | 2021-04-15 | イビデン株式会社 | Electrode and battery |
EP4368384A1 (en) * | 2022-11-11 | 2024-05-15 | batene GmbH | Composite network structure |
-
1996
- 1996-10-21 JP JP27847196A patent/JP4016214B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999065095A1 (en) * | 1998-06-08 | 1999-12-16 | Toshiba Battery Co., Ltd. | Nickel-hydrogen secondary cell |
US6440607B1 (en) | 1998-06-08 | 2002-08-27 | Toshiba Battery Co., Ltd. | Nickel-hydrogen secondary cell |
JP2011113667A (en) * | 2009-11-24 | 2011-06-09 | Sharp Corp | Non-aqueous electrolyte secondary battery |
JP2013543231A (en) * | 2010-10-16 | 2013-11-28 | シャイン カンパニー リミテッド | Battery having electrode structure including long metal fiber and method for manufacturing the same |
US9680147B2 (en) | 2010-10-16 | 2017-06-13 | Jenax Inc. | Battery having an electrode structure comprising long metal fibers and a production method therefor |
JP2016519841A (en) * | 2013-06-07 | 2016-07-07 | ジェナックス インコーポレイテッド | Electrode, manufacturing method thereof, and battery using the same |
CN109013859A (en) * | 2018-08-14 | 2018-12-18 | 赣州市中金高能电池材料有限公司 | A kind of production technology of rechargeable battery nickel plated steel strip |
JP2021061202A (en) * | 2019-10-08 | 2021-04-15 | イビデン株式会社 | Electrode and battery |
EP4368384A1 (en) * | 2022-11-11 | 2024-05-15 | batene GmbH | Composite network structure |
WO2024100262A1 (en) * | 2022-11-11 | 2024-05-16 | Batene Gmbh | Composite network structure |
Also Published As
Publication number | Publication date |
---|---|
JP4016214B2 (en) | 2007-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3831525B2 (en) | battery | |
US6025095A (en) | Battery electrode and manufacturing method thereof | |
KR20070116045A (en) | Method of manufacturing nickel zinc batteries | |
US6132898A (en) | Battery with a conductive plate | |
US20040185332A1 (en) | Tabs for electrochemical cells | |
JP3527586B2 (en) | Manufacturing method of nickel electrode for alkaline storage battery | |
JP4016214B2 (en) | Battery electrode manufacturing method | |
JP3649909B2 (en) | battery | |
JP2004342591A (en) | Alkaline storage battery and its manufacturing method | |
JP3849478B2 (en) | Alkaline storage battery and method of manufacturing the same | |
JP3893856B2 (en) | Square alkaline storage battery | |
JP4349042B2 (en) | Alkaline storage battery | |
JPH09199117A (en) | Positive plate and its manufacture | |
JP2002175833A (en) | Alkali secondary battery | |
JPH11233107A (en) | Alkaline storage battery using nonsintred type electrode, and its manufacture | |
JPH0513064A (en) | Manufacture of electrode plate for alkaline storage battery | |
JPH11162447A (en) | Cylindrical battery with spiral electrode body and its manufacture | |
JP4025929B2 (en) | Battery electrode | |
JP2002170544A (en) | Battery | |
JP2984816B2 (en) | How to attach tab to positive plate | |
JPH0713176Y2 (en) | Electrode plate for alkaline batteries | |
JP4168578B2 (en) | Square alkaline storage battery and manufacturing method thereof | |
JP2000223128A (en) | Spiral electrode with three-dimensional support | |
JPH11250893A (en) | Electrode, and battery using it | |
JPH11144739A (en) | Manufacture of paste type plate for alkaline storage batery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050701 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20060119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060307 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060508 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070904 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |