JP2002198055A - Paste-like thin electrode for battery, its manufacturing method and secondary battery - Google Patents

Paste-like thin electrode for battery, its manufacturing method and secondary battery

Info

Publication number
JP2002198055A
JP2002198055A JP2001159319A JP2001159319A JP2002198055A JP 2002198055 A JP2002198055 A JP 2002198055A JP 2001159319 A JP2001159319 A JP 2001159319A JP 2001159319 A JP2001159319 A JP 2001159319A JP 2002198055 A JP2002198055 A JP 2002198055A
Authority
JP
Japan
Prior art keywords
electrode
electrode substrate
conductive electrode
paste
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001159319A
Other languages
Japanese (ja)
Other versions
JP4536289B2 (en
Inventor
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui and Co Ltd
Original Assignee
Mitsui and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui and Co Ltd filed Critical Mitsui and Co Ltd
Priority to JP2001159319A priority Critical patent/JP4536289B2/en
Publication of JP2002198055A publication Critical patent/JP2002198055A/en
Application granted granted Critical
Publication of JP4536289B2 publication Critical patent/JP4536289B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode of light weight and low cost and its manufacturing method, equivalent to an electrode of which sustainability and collectivity of powder of active substance or the like is sintered type or 3DM type, and further, to provide a light-weight secondary battery using the electrode. SOLUTION: A three-dimensional electrode base body 9 is made with a nickel foil by mechanically processing its rugged part, to which active material 10 is filled and, after that, the rugged part is pressurized so that it is slanted to one direction, to make up an electrode 1, using which, the secondary battery is structured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低コスト化と高率
放電特性およびサイクル寿命が向上された二次電池用ペ
ースト式薄型電極とこれを用いた二次電池用に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste type thin electrode for a secondary battery, which has a low cost, a high rate discharge characteristic and an improved cycle life, and a secondary battery using the same.

【0002】[0002]

【従来の技術】現在、電池用電極、とくに二次電池用電
極として、主に工業化されている電極のタイプは、大別
すると、二次元的な芯材の両側に金属粉末を焼結した高
多孔度の三次元の電極基体中に活物質などを充填する焼
結式電極と、焼結基体を使用しないで各種の二次元的芯
材や金属の袋や筒に、活物質などの粉末を塗着または充
填して一体化する非焼結式電極とに分類される。
2. Description of the Related Art At present, electrode types mainly industrialized as battery electrodes, particularly secondary battery electrodes, are roughly classified into two-dimensional core materials in which metal powder is sintered on both sides thereof. A sintered electrode in which a porous three-dimensional electrode substrate is filled with an active material and the like, and powders of the active material and the like in various two-dimensional core materials or metal bags or cylinders without using a sintered substrate. It is classified into a non-sintered electrode which is integrated by coating or filling.

【0003】一般的に、前者は、焼結基体に用いる金属
量が多いことから、電子伝導性(高率充放電特性)に優
れ、機械的な強度と活物質の保持性にも優れて長寿命で
ある反面、電極基体への活物質の充填量が電極基体の体
積が大きいために小さいのでエネルギー密度が小さく、
電極が重いという欠点をも併せ持っている。
[0003] Generally, the former is excellent in electron conductivity (high-rate charge / discharge characteristics) and excellent in mechanical strength and active material retention because of the large amount of metal used for the sintered substrate. On the other hand, the energy density is small because the filling amount of the active material in the electrode substrate is small because the volume of the electrode substrate is large,
It also has the disadvantage of heavy electrodes.

【0004】これに対して、代表的な非焼結式電極は、
安価で製造の簡単な芯材に活物質粉末などを電極基体に
塗着又は直接含浸させているだけなので、安価であっ
て、電極のエネルギー密度が大きく且つ軽量である反
面、電極全体の集電能力に劣り、機械的強度と活物質な
どの保持性にも劣る問題を有している。
On the other hand, typical non-sintered electrodes are:
The active material powder or the like is simply applied or directly impregnated onto the electrode substrate on a core material that is inexpensive and easy to manufacture, so it is inexpensive, has a large energy density of the electrode, and is lightweight. In addition, it has a problem in that it is inferior in ability and inferior in mechanical strength and retention of active materials.

【0005】これらの問題は、充放電を何回も繰り返す
二次電池では大きな問題であり、電池系により種々の工
夫がなされている。したがって、非焼結式は、これらの
問題を改善するために考え出された方式が多く存在し、
活物質粉末などを導電材や結着剤と溶液とで練合して得
られたペーストやスラリーを種々の形状のニ次元的な芯
材に塗着する方式であるペースト式もしくは塗着式、又
は、電気化学的反応のために設けられた無数の微孔を有
する金属の袋や筒に活物質粉末などを詰め込む方式であ
るポケット式もしくはクラッド式に代表される。
[0005] These problems are serious problems in a secondary battery that repeatedly charges and discharges many times, and various measures are taken depending on the battery system. Therefore, there are many non-sintering methods that have been devised to improve these problems.
Paste or coating, which is a method of applying pastes or slurries obtained by kneading active material powders with a conductive material or a binder and a solution to a two-dimensional core material of various shapes, Alternatively, it is represented by a pocket type or a clad type in which an active material powder or the like is packed in a metal bag or cylinder provided with an infinite number of pores provided for an electrochemical reaction.

【0006】前者の方式である非焼結式電極の例として
は、アルカリ蓄電池のカドミウム負極、金属水素化物負
極、リチウムイオン電池の正負極、さらに鉛電池の正負
極が挙げられる。後者の方式である非焼結式電極は、例
として、アルカリ蓄電池のニッケル正極の一部やある種
の鉛電池に使用されている。なお、ここに記載した電極
の芯材には、パンチングメタル、金属のスクリーン、エ
クスパンデッドメタル及び金属の格子などが、電池系や
目的に応じて使い分けられている。
Examples of the former non-sintered type electrode include a cadmium negative electrode of an alkaline storage battery, a metal hydride negative electrode, a positive and negative electrode of a lithium ion battery, and a positive and negative electrode of a lead battery. The latter type of non-sintered electrode is used, for example, in a part of a nickel positive electrode of an alkaline storage battery or in some lead batteries. As the core material of the electrode described here, a punching metal, a metal screen, an expanded metal, a metal grid, and the like are properly used depending on a battery system and purpose.

【0007】しかし、最近は、分類上さらに別の新しい
方式の非焼結式に属するものとして、USP4,251,
603に提案されているような三次元的な広がりを持つ
発泡状ニッケル多孔基体やニッケル繊維基体に活物質粉
末などのペーストを高密度に充填する電極(以下、3D
M式と略称する)が使用され始めた。しかし、このタイ
プの電極は、高容量、高信頼性を有し、基体に使用する
体積当たりの金属量が少ないことから、焼結式と比較す
ると高容量化と軽量化がはかれる反面、機械的強度が弱
く、電極基体内の孔径が大きいことから電極全体の電子
伝導度が劣るという技術課題を有し、さらに、電極基体
のコストが高くつくという課題も有している。
[0007] However, recently, as a new type of non-sintering type, USP 4,251,
An electrode (hereinafter referred to as 3D) for filling a paste such as an active material powder into a foamed nickel porous substrate or nickel fiber substrate having a three-dimensional spread proposed in US Pat.
M). However, this type of electrode has high capacity and high reliability, and the amount of metal per volume used for the substrate is small. There is a technical problem that the strength is weak and the electron conductivity of the entire electrode is inferior due to a large pore size in the electrode substrate, and further, there is a problem that the cost of the electrode substrate is high.

【0008】ここで、本願発明は、上記3DM方式、現
在は特にアルカリ二次電池に用いる電極の三次元的な電
極基体の改良に関するものであるため、具体的な従来技
術の説明の都合上、上記のほぼすべての電極方式が用途
により使い分けられているアルカリ蓄電池用ニッケル正
極について、その応用例である小型の円筒密閉形ニッケ
ル・水素蓄電池を採り上げて説明する。
Here, the present invention relates to the above-mentioned 3DM method, and particularly to the improvement of a three-dimensional electrode base of an electrode used in an alkaline secondary battery at present. The nickel positive electrode for an alkaline storage battery, in which almost all of the above electrode systems are properly used depending on the application, will be described taking a small cylindrical sealed nickel-metal hydride storage battery as an application example thereof.

【0009】アルカリ蓄電池用ニッケル正極は、第二次
世界大戦時にドイツで開発された焼結式電極が高性能を
有し堅牢でもあることから、それまでの非焼結式電極、
すなわちポケット式電極などに代わり、高性能および高
信頼性を要望される角形のNi/Cd電池に焼結式電極
が用いられ始めた。負極においても、同様な焼結式への
変化が起きた。ついで開発された円筒密閉形Ni/Cd
電池の電極としては、薄い電極への加工が容易なことも
あって、焼結式の正・負電極が主流を占めるに至った。
このニカド電池(Ni/Cd電池)で代表された小型の
円筒密閉式電池は、1980年代の始めから我国で著し
い成長を遂げるカムコーダやCD等のポータブル小型電
子機器用電源として、飛躍的な成長を遂げた。しかし、
1990年代に入ってからは、新型のニッケル・水素蓄
電池(Ni/MH電池)とリチウムイオン電池が、相次
いで実用化され、二カド電池の市場に参入し始めた。ま
た、新しい市場としてみると、最近は、電動工具などの
パワーツールの電源、移動用電源つまり電気自動車(E
V)、ハイブリッド車(HEV)や電動アシスト自転車
等の用途が新たに成長し始めたが、それらの電源とし
て、主にNi/MH電池が用いられ始めている。上記
の、Ni/Cd電池と、最近、成長の著しいNi/MH
電池の正極にはニッケル正極が使用され、焼結式と3D
M式の両者が、用途別に使い分けられているのが現状で
ある。
[0009] The nickel positive electrode for alkaline storage batteries is a sintered electrode developed in Germany during the Second World War and has high performance and robustness.
That is, a sintered electrode has begun to be used in a square Ni / Cd battery, which is required to have high performance and high reliability, instead of a pocket electrode or the like. A similar change to the sintering method occurred in the negative electrode. Cylindrical sealed Ni / Cd developed
Sintering type positive / negative electrodes have become the mainstream of battery electrodes, because they can be easily processed into thin electrodes.
Small cylindrical sealed batteries typified by this NiCd battery (Ni / Cd battery) have shown tremendous growth as power supplies for portable small electronic devices such as camcorders and CDs, which have grown remarkably in Japan since the early 1980s. I did it. But,
Since the 1990s, new nickel-metal hydride batteries (Ni / MH batteries) and lithium-ion batteries have been put into practical use one after another, and have begun to enter the two-cell battery market. Looking at new markets, recently, power tools for power tools such as electric tools, power supplies for transportation, that is, electric vehicles (E
V), hybrid vehicles (HEV), electrically assisted bicycles, and other applications have begun to grow, and Ni / MH batteries have mainly been used as power sources for these applications. The above-mentioned Ni / Cd battery and the recently growing Ni / MH
A nickel positive electrode is used for the positive electrode of the battery.
At present, both types of the M type are used for different purposes.

【0010】量産型ニッケル正極の構造においては、非
焼結式電極では機械的安定性のためポケット式電極に限
られてしまい、その構造は先に述べたように活物質粉末
が脱落しにくい程度の微細孔を無数に設けた耐液性の金
属製袋に活物質粉末などを詰め込んだ構造である。これ
に対し、焼結式電極では、ニッケルの微粉末を芯材と共
に高温で焼結してニッケル粒塊を繋げた状態の焼結基体
の空間部に、活物質の塩溶液を含浸させ、ついで活物質
に転化させる工程により、活物質が電極基体内の空間部
に充填された構造を採っている。当然、この場合の活物
質は粉末状ではない。
[0010] In the structure of the mass-produced nickel positive electrode, the non-sintered electrode is limited to the pocket electrode due to mechanical stability, and the structure is such that the active material powder is hard to fall off as described above. It has a structure in which active material powder and the like are packed in a liquid-resistant metal bag provided with countless micropores. On the other hand, in the sintered electrode, the nickel fine powder is sintered at a high temperature together with the core material to impregnate the space of the sintered base in a state where the nickel granules are connected with the salt solution of the active material. A structure in which the active material is filled in the space inside the electrode substrate by the step of converting into the active material is adopted. Naturally, the active material in this case is not in a powder form.

【0011】また、1981年になり、ポケット式と異
なる別の非焼結の3DM式が、1981年のECS Fal
l Meeting(Detroit) Abstract No.10 に発泡状ニッケル
を使用したニッケル正極として報告された。この電極
は、高多孔度で孔径の大きい発泡状ニッケル多孔体を基
体とし、その中に活物質粉末等を充填した構造である。
In 1981, another non-sintered 3DM type different from the pocket type was used in the 1981 ECS Fal
l Meeting (Detroit) Abstract No.10 reported as a nickel positive electrode using foamed nickel. This electrode has a structure in which a foamed nickel porous body having a high porosity and a large pore diameter is used as a base, and an active material powder or the like is filled therein.

【0012】この発泡状ニッケルを基体に使用すること
により、高容量で軽量のニッケル正極が実現されたが、
高率放電用途に対しては、内部の球状である空間の径が
小さいものでも約450μmと大きいことから活物質全
体の反応性に劣り、また高価格であるという問題点を有
している。そのため、高率放電特性に優れる焼結式ニッ
ケル正極を用いる電池が、ハイパワーを要望する用途に
は、依然として主流を占めている。
By using this foamed nickel for the base, a high-capacity and lightweight nickel positive electrode has been realized.
For high-rate discharge applications, even if the inner spherical space has a small diameter, it is as large as about 450 μm, so that the overall active material is inferior in reactivity and expensive. Therefore, batteries using a sintered nickel positive electrode having excellent high-rate discharge characteristics are still mainstream for applications requiring high power.

【0013】ところが、このハイパワーが要求される用
途においても焼結式電極の短所、エネルギー密度が小さ
く、且つ重いこと、および非焼結式では起こらない製造
過程での硝酸イオンの混入により自己放電が大きいこと
などが、用途の広がりに応じて実用上の問題となりつつ
あり、ペースト式(または塗着式)電極の導入が望まれ
ている。なお、この用途では高率放電を必要とするの
で、一般に、電極は対向面積を増加させた薄型電極が使
用されるが、電極における芯材や基体の使用面積が増大
する。したがって、低コストの二次元的芯材や三次元的
基体がとくに必要とされ、また、ハイパワー用途等とし
てはハイブリッド車(HEV)等に使われることから軽
量であることも前提条件である。
However, even in applications requiring high power, self-discharge occurs due to the disadvantages of the sintered electrode, the low energy density and heavy weight, and the incorporation of nitrate ions during the manufacturing process, which does not occur in the non-sintered electrode. Is becoming a practical problem in accordance with the spread of applications, and it is desired to introduce a paste type (or a coating type) electrode. Since high-rate discharge is required in this application, generally, a thin electrode having an increased facing area is used as an electrode, but the area of use of a core material or a base in the electrode increases. Therefore, a low-cost two-dimensional core material and a three-dimensional base are particularly required. In addition, as a high-power application and the like, they are used in a hybrid vehicle (HEV) or the like, and are prerequisites to be lightweight.

【0014】そこで、ペースト式の一種である3DM式
などの高価な発泡ニッケルなどに変わる新しい構成方法
または三次元的な芯材または電極基体として、 (1) パンチングメタルやエキスパデッドメタルなど
の孔あき芯材に、活物質粉末などを塗着させた極めて薄
い電極を、複数枚重ね合わせて一枚の電極とする。 (2) パンチングメタルや金属箔などの孔あき芯材
に、無数の毛状や細長い針状の金属をつける。(USP
5,840,444) (3) 金属板に、板面の厚さ方向へ多数のバリを設け
る。(USP5,543,250) (4) 金属板を波形に加工し三次元化する。必要に応
じて、波形の凹凸の先端にバリつきの孔を設け、立体化
を補足する。(USP5,824,435) などが、提案されている。
Therefore, as a new construction method to replace expensive foamed nickel such as 3DM type, which is a kind of paste type, or as a three-dimensional core material or electrode base, (1) punching metal or expanded metal or the like; A plurality of extremely thin electrodes obtained by applying active material powder or the like to the core material are stacked to form one electrode. (2) A myriad of hair-like or elongated needle-like metals are attached to a perforated core material such as punching metal or metal foil. (USP
(5,840,444) (3) A large number of burrs are provided on the metal plate in the thickness direction of the plate surface. (USP 5,543,250) (4) The metal plate is processed into a corrugated shape to make it three-dimensional. If necessary, holes with burrs are provided at the tips of the corrugations to supplement the three-dimensional structure. (USP 5,824,435) and the like have been proposed.

【0015】しかしながら、上記の(1)から(4)の
構成方法または電極基体により、問題がすべて解決した
わけではない。(1)においては、充放電による活物質
の膨張収縮に起因して一体化された薄い電極が各々の間
から剥離することを基本的には防止できない問題点が残
る。(2)においては、毛状や細長い針状の金属繊維と
ベースの金属板との結合強度不足や芯材自体が均一な孔
を持たないことから充填されたペーストの厚さに均一性
がない等の特性的な問題点の他に、コストが従来の基体
よりかえって高くつくという問題点がある。(3)にお
いては、基本的に電極基体の三次元化が不足するため、
活物質粉末などの脱落に対する保持性および充放電特性
に問題点を有する。(4)おいては、これらの問題点が
かなり改善され、また低コストも期待できるが、通常の
量産時に用いられるロール加圧工程を採用すると、ロー
ル加圧によって波形方向に電極が伸張して所望の三次元
的な電極基体の形状が保ちにくいこと、および、スパイ
ラル状の電極に捲回する際や充放電の繰り返しにおいて
活物質が電極基体から剥離しやすいという課題が残され
ている。
However, not all of the problems have been solved by the above-described constitutional methods (1) to (4) or the electrode substrate. In (1), there remains a problem that the integrated thin electrodes cannot be basically prevented from being separated from each other due to expansion and contraction of the active material due to charge and discharge. In (2), the thickness of the filled paste is not uniform because the bonding strength between the hairy or elongated needle-like metal fibers and the base metal plate is insufficient and the core material itself does not have uniform holes. In addition to the characteristic problems such as the above, there is a problem that the cost is higher than that of the conventional substrate. In (3), three-dimensionalization of the electrode base is basically insufficient.
There is a problem in retention and charge / discharge characteristics of the active material powder or the like against falling off. In (4), these problems are considerably improved, and low cost can be expected. However, if a roll pressing process used in normal mass production is adopted, the electrode is stretched in the waveform direction by the roll pressing. Problems remain in that it is difficult to maintain a desired three-dimensional shape of the electrode substrate, and that the active material is easily peeled from the electrode substrate when being wound around a spiral electrode or during repeated charge and discharge.

【0016】また、新しいアルカリ蓄電池の市場におけ
る用途においては、電動工具などのパワーツール用の電
源では、パワーツールの使用方法に由来して高率放電特
性が望まれ、電気自動車(EV)、ハイブリッド車(H
EV)や電動アシスト自転車等の移動体を用途とする電
源は、高率放電特性の向上並びにその用途である移動体
の車内空間の確保と燃費の改良のために小型化、軽量
化、すなわち体積エネルギー密度(Wh/l)と重量エ
ネルギー密度(Wh/kg)の向上が特に望まれてい
る。
Further, in the application of a new alkaline storage battery in the market, a power supply for a power tool such as an electric tool requires a high rate discharge characteristic due to a method of using the power tool. Car (H
Power supplies for mobile objects such as EVs and electric assist bicycles are reduced in size and weight, that is, reduced in volume, in order to improve the high-rate discharge characteristics and secure the space inside the vehicle and improve fuel efficiency, which are the applications. Improvements in energy density (Wh / l) and weight energy density (Wh / kg) are particularly desired.

【0017】[0017]

【発明が解決しようとする課題】本発明は、電極におい
て上記の課題である高率放電特性を改善するものであ
り、さらに、優れた高率放電特性に加えて活物質等の粉
末の保持性及び集電性が焼結式及び3DM式の電極と同
等であって、サイクル寿命に優れ、且つ、軽量で低コス
トである電極とその製造法を提供し、さらにその電極を
用いることによる軽量な二次電池を提供することを目的
とするものである。
SUMMARY OF THE INVENTION The present invention is intended to improve the high-rate discharge characteristics, which is an object of the present invention, in an electrode. In addition, the present invention provides an electrode having a current collection property equivalent to that of a sintered type electrode and a 3DM type electrode, having an excellent cycle life, and being lightweight and inexpensive, and a method for producing the same. An object is to provide a secondary battery.

【0018】[0018]

【課題を解決するための手段】本発明者は、アルカリ蓄
電池などの電極において、(a)中空で無数の凹凸部を
備えた基体を導電性電極基体とてし、(b)上記の導電
性電極基体が電極厚さとほぼ同等の厚さになるように
し、(c)活物質などのペーストを充填した後のロール
加圧操作による上記導電性電極基体の一部または全体の
二次元化を抑制すると共に、電極全体の集電能力を維持
するため、上記の導電性電極基体の凹凸部をほぼ交互に
配し、(d)電極のスパイラル状の捲回操作やその後の
充放電の繰り返しによる活物質粉末等の導電性電極基体
からの剥離を抑制し、活物質粉末等の保持性を高めるた
めに、中空の凹凸部の壁を電極厚さ方向に歪曲させると
共に上記凹凸部とくに先端附近を一方向に傾斜させた形
状にすること、により上記の課題を解決したものであ
る。また、導電性電極基体から最も遠い活物質粉末粒子
でも、その導電性電極基体までの最短距離を150μm
以内に保持することにより、活物質粉末の充放電反応、
とくに高率放電反応をより高めることが可能であり、ま
た円筒状の電池ケースを側壁の厚さ(t)に対する底
部の厚さ(t)の比(t/t)が1.5以上であ
る電池ケース、つまり側壁面を薄くしたケースを用いる
ことにより、二次電池として更なる軽量化及び高容量化
したものである。
Means for Solving the Problems The present inventor has determined that, in an electrode of an alkaline storage battery or the like, (a) a substrate having a hollow and innumerable irregularities is used as a conductive electrode substrate; The electrode base is made to have a thickness substantially equal to the electrode thickness, and (c) a part or the whole of the conductive electrode base is suppressed from being made two-dimensional by a roll pressing operation after filling the paste such as an active material. In addition, in order to maintain the current collecting ability of the entire electrode, the irregularities of the conductive electrode substrate are almost alternately arranged, and (d) active by repeating the spiral winding operation of the electrode and subsequent charge / discharge. In order to suppress the exfoliation of the material powder and the like from the conductive electrode substrate and enhance the retention of the active material powder and the like, the wall of the hollow uneven portion is distorted in the electrode thickness direction, and the uneven portion is particularly close to the tip. In a shape inclined in the direction It is obtained by solving the above problems. Further, even with the active material powder particles farthest from the conductive electrode substrate, the shortest distance to the conductive electrode substrate is 150 μm.
By holding within, charge and discharge reaction of the active material powder,
In particular, the high-rate discharge reaction can be further enhanced, and the ratio (t 2 / t 1 ) of the bottom thickness (t 2 ) to the side wall thickness (t 1 ) of the cylindrical battery case is 1. By using a battery case of 5 or more, that is, a case in which the side wall surface is thinned, the secondary battery is further reduced in weight and capacity.

【0019】本発明は、特にニッケル正極に限定される
ものではないが、アルカリ蓄電池用のニッケル正極、と
くに電極厚さが500μm以下の薄型のニッケル正極に
用いた場合には、焼結やメッキを施すことなしに、機械
的な操作だけで加工できる安価な、軽量の導電性電極基
体を用いた電極が得られ、充放電特性にも優れ、活物質
粉末などの保持性にも優れることから、安価且つ軽量
で、高率放電特性に優れ、長寿命の円筒密閉形および角
形ニッケル・水素蓄電池(Ni/MH電池)を得ること
ができる。
The present invention is not particularly limited to a nickel positive electrode. However, when the present invention is used for a nickel positive electrode for an alkaline storage battery, and particularly for a thin nickel positive electrode having an electrode thickness of 500 μm or less, sintering and plating can be performed. Without applying, an electrode using an inexpensive, lightweight conductive electrode substrate that can be processed only by mechanical operation is obtained, and has excellent charge / discharge characteristics and excellent retention of active material powder, etc. It is possible to obtain an inexpensive and lightweight nickel-metal hydride storage battery (Ni / MH battery) having a closed cylindrical shape and a rectangular shape which is excellent in high-rate discharge characteristics and has a long life.

【0020】[0020]

【発明の実施の形態】以下、図を参照しながら実施の形
態について、水酸化ニッケル粉末が主材料である電極厚
さ500μm以下のニッケル正極1と、水素吸蔵合金粉
末が主材料であり、正極より遥かに薄い電極厚さである
合金負極2とを、ポリオレフィン系合成樹脂繊維の不織
布よりなるセパレータ3を介して捲回して得られる電極
群を、円筒の金属ケースに挿入し、ついでアルカリ電解
液を注液後封口した円筒密閉形ニッケル・水素蓄電池を
例示として説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Referring to the drawings, a nickel positive electrode 1 having a thickness of 500 μm or less, mainly composed of nickel hydroxide powder, and a hydrogen storage alloy powder as a main material. An electrode group obtained by winding an alloy negative electrode 2 having a much thinner electrode thickness through a separator 3 made of a nonwoven fabric of a polyolefin-based synthetic resin fiber is inserted into a cylindrical metal case, and then an alkaline electrolyte Will be described as an example of a cylindrical sealed nickel-metal hydride storage battery in which is sealed after injection.

【0021】ここで、正極には、肉厚20〜50μmの
ニッケル製フォイルを上下の金型とも無数の凹凸をほぼ
交互に設け且つ噛み合せが可能な金型間で加圧加工して
三次元化した導電性電極基体9に、主材料を練合して得
られたペースト10を充填し、乾燥後に加圧して得られ
た電極を採用した。なお、導電性電極基体の厚さが20μ
mにほぼ等しい場合には、安価であることと製造の容易
さから上記導電性電極基体は電解金属析出法により得る
こともできる。例えば、硫酸ニッケルを主に含むpH
2.0の水溶液が保持されている通常の電解槽中で、カ
ソードにおいて表面に無数の凹凸部を備えた厚さ20μ
mのニッケル基体を電解析出により得ることができる
が、このニッケル基体は、カソードに凹凸を表面に備え
たロータリードラムを用いることによって、表面に無数
の凹凸を有する長い連続箔として得ることもできる。ま
た、通常では上記ニッケル基体は、機械的強度を得るた
めに約850℃で焼鈍しをした後に電極基体として得る
のが通常である。
Here, the positive electrode is made of a nickel foil having a thickness of 20 to 50 μm, and the upper and lower molds are provided with innumerable irregularities substantially alternately, and are pressed between the molds which can be engaged to form a three-dimensional structure. A paste 10 obtained by kneading the main material was filled in the conductive electrode substrate 9 thus obtained, and an electrode obtained by pressing after drying was adopted. The thickness of the conductive electrode substrate is 20μ.
When it is approximately equal to m, the conductive electrode substrate can be obtained by an electrolytic metal deposition method because of its low cost and ease of manufacture. For example, pH mainly containing nickel sulfate
In a normal electrolytic cell holding an aqueous solution of 2.0, a thickness of 20 μm with countless irregularities on the surface of the cathode was provided.
m can be obtained by electrolytic deposition, and this nickel substrate can also be obtained as a long continuous foil having countless irregularities on the surface by using a rotary drum having irregularities on the surface of the cathode. . Usually, the nickel substrate is usually obtained as an electrode substrate after annealing at about 850 ° C. in order to obtain mechanical strength.

【0022】ほぼ電極の厚さにまで立体化した上記導電
性電極基体の三次元構造は、とくに中空である凹凸部の
先端部に至るにつれ強く一方向に折れ曲がり、空間部を
包むようにした構造であることにより、集電性に優れ且
つ活物質等の粉末の保持性が焼結式や3DM式に劣らな
い構造であり、その結果として充放電特性に優れる長寿
命の電極を得ることができた。また、三次元構造をした
上記導電性電極基体は凹凸状にかみ合う金型間を通すだ
けで作製できるので製造が容易なために安価であり、ス
パイラルに電極を捲回する際にも電極が折れることもな
かった。その結果として、加工が簡単で、高性能で安価
な信頼性の高いNi/MH電池が得られた。
The three-dimensional structure of the conductive electrode substrate, which is three-dimensionally formed to substantially the thickness of the electrode, has a structure in which it is bent strongly in one direction as it reaches the tip of the hollow concavo-convex portion, and wraps the space. By virtue of this, it is possible to obtain a long-life electrode with excellent current collecting properties and a retention property of powders such as an active material, which is not inferior to that of a sintering type or a 3DM type. . In addition, since the above-mentioned conductive electrode substrate having a three-dimensional structure can be manufactured simply by passing between the molds that engage in an uneven shape, it is easy to manufacture, so it is inexpensive, and the electrode breaks even when the electrode is spirally wound. There was nothing. As a result, a Ni / MH battery that is easy to process, has high performance, is inexpensive and has high reliability is obtained.

【0023】なお、合金負極は、正極の約1/2の厚さ
のため集電性能が改善されているので、ある程度の高率
放電に耐えるので20C程度の放電では問題がないが、
一層の高率放電が必要な場合は、導電性電極基体である
合金負極にも本願の三次元的ニッケル製電極基体を採用
することが好ましい。
The alloy anode has improved current collecting performance because it is about half the thickness of the cathode, and thus withstands a certain high-rate discharge.
When a higher discharge rate is required, it is preferable to use the three-dimensional nickel electrode substrate of the present invention also for the alloy negative electrode serving as the conductive electrode substrate.

【0024】また、ここでは、先に述べたように、説明
の都合上Ni/MH電池について説明をしているが、高
率放電を必要とするNi/Cd電池やLi二次電池の電
極にも、本願は同様に適応できる。
Although the Ni / MH battery is described here for convenience of explanation as described above, the Ni / MH battery requires a high-rate discharge. The present application can be similarly applied.

【0025】図1に、本発明のニッケル正極1の図2に
おけるA−A断面図を示す。図中の9は三次元のニッケ
ル製電極基体を構成するニッケル金属部、10はこの導
電性電極基体に充填された水酸化ニッケル粉末を主とす
る混合粉末、11は空間部である。ニッケル箔を加工し
た三次元基体の凸部Bと凹部Cの壁は、歪曲を有しなが
ら一方向に傾斜し、凸部Bと凹部Cの壁の先端部はニッ
ケルの肉厚が薄くなっており且つ一層強く一方向に傾斜
されている。この歪曲と先端の傾斜は、活物質粉末など
の充填物が導電性電極基体から剥離することを抑制する
ものである。また、先端部の傾斜は、電極の髭となって
対極と微小短絡を起こすことがなく、ニッケル基体であ
る導電性電極基体から最も遠い活物質粉末粒子(図中の
M附近)についての導電性電極基体までの最短距離を曲
げない場合(M’附近)の最短距離より短くする効果、
つまり電極全体の集電能力を高める効果も併せ持ってい
る。
FIG. 1 is a cross-sectional view of the nickel positive electrode 1 of the present invention taken along line AA in FIG. In the figure, reference numeral 9 denotes a nickel metal part constituting a three-dimensional nickel electrode base, 10 denotes a mixed powder mainly composed of nickel hydroxide powder filled in the conductive electrode base, and 11 denotes a space part. The walls of the convex portions B and the concave portions C of the three-dimensional substrate formed by processing the nickel foil are inclined in one direction while having distortion, and the tips of the walls of the convex portions B and the concave portions C have a thin nickel thickness. And more strongly inclined in one direction. The distortion and the inclination of the tip suppress the separation of the filler such as the active material powder from the conductive electrode substrate. In addition, the inclination of the tip does not cause a short-circuit with the counter electrode due to the beard of the electrode, and the conductivity of the active material powder particles (near M in the figure) farthest from the conductive electrode substrate, which is a nickel substrate. The effect of shortening the shortest distance to the electrode base when it is not bent (near M '),
That is, it also has the effect of increasing the current collecting capability of the entire electrode.

【0026】ニッケル正極の場合においては、汎用の活
物質粉末などを用いると導電性電極基体との距離が15
0μmより離れると高率放電時の電圧及び活物質利用率
の若干の低下をきたしてしまうので、導電性電極基体が
中空で無数の凹凸部により三次元化された薄膜状の耐電
解液性金属板であって、ほとんどの活物質について活物
質から導電性電極基体までの最短距離が150μm以内
であることが好ましい。また、電極基体が導電性である
のに対して、活物質粉末は、Ni(OH)を主材料と
するために導電性がほとんど無いことから、集電性を高
めるために導電性粉末またはコバルト酸化物を活物質粉
末ペースト中に約5重量%混入させておくことが好まし
い。さらに、電池として一層のハイパワーが求められる
ことにより高率放電特性の更なる向上を求められる場合
には、凹凸形状により三次元化された導電性電極基体に
塗着されたペースト中の活物質において、ほとんどの活
物質について活物質から導電性電極基体までの最短距離
が150μm以内であることが好ましい。これは、集電
性を高めるために活物質粉末中に混入させた導電性粉末
又はコバルト酸化物の含有量を増加するとペースト中に
おける活物質の含有量が低下してしまうからである。図
により具体的説明すると、図1中の上記M’と最近接す
る導電性電極基体の距離は150μm以内になるように
凹凸部の大きさとそのピッチが決定されることが好まし
い。
In the case of a nickel positive electrode, when a general-purpose active material powder or the like is used, the distance from the conductive electrode substrate is reduced to 15%.
When the distance is more than 0 μm, the voltage and the active material utilization rate at the time of high-rate discharge slightly decrease, so that the conductive electrode substrate is hollow and has a three-dimensional thin film-like electrolyte-resistant metal formed by countless irregularities. It is a plate, and it is preferable that the shortest distance from the active material to the conductive electrode substrate is within 150 μm for most of the active material. Further, while the electrode substrate is conductive, the active material powder has almost no conductivity since Ni (OH) 2 is used as a main material. It is preferable that about 5% by weight of the cobalt oxide is mixed in the active material powder paste. Further, in the case where further improvement in high-rate discharge characteristics is required due to the demand for higher power as a battery, the active material in the paste applied to the conductive electrode substrate three-dimensionally formed by the uneven shape is required. In the above, it is preferable that the shortest distance from the active material to the conductive electrode substrate is within 150 μm for most active materials. This is because if the content of the conductive powder or the cobalt oxide mixed in the active material powder to increase the current collecting property is increased, the content of the active material in the paste is reduced. More specifically, it is preferable that the size of the uneven portion and the pitch thereof are determined so that the distance between the conductive electrode substrate closest to M ′ in FIG. 1 is within 150 μm.

【0027】図2は、図1のような構造を有するニッケ
ル正極1の全体図で、厚さは500μm以下の薄型ニッ
ケル正極である。
FIG. 2 is an overall view of the nickel positive electrode 1 having the structure as shown in FIG. 1, and is a thin nickel positive electrode having a thickness of 500 μm or less.

【0028】図3は、図2の薄型ニッケル正極と、従来
と同様なパンチングメタルにMmNi5系の水素吸蔵合
金粉末を塗着した薄型合金負極とを組み合わせた、AA
サイズの円筒密閉形Ni/MH電池の概略図である。電
極以外の各電池構成部品に関しては、基本的に、従来の
電池構造と同様である。
FIG. 3 shows an AA in which the thin nickel positive electrode of FIG. 2 is combined with a thin alloy negative electrode obtained by applying an MmNi5-based hydrogen storage alloy powder to a punching metal as in the prior art.
1 is a schematic view of a cylindrical sealed Ni / MH battery of a size. The battery components other than the electrodes are basically the same as the conventional battery structure.

【0029】また、本発明における導電性電極基体は、
導電性を有し、凹凸とその壁についての歪曲及び傾斜の
加工が活物質粉末の充填後に可能であれば良く、特に限
定されるものではないが、現在各種の電池用電極に使用
されているニッケル、銅、アルミニウム、鉛及びこれら
を主成分とする合金からなる群から選ばれた少なくとも
一種類以上のものを導電性電極基体の材料としたものが
好適に用いられる。特にアルカリ蓄電池用のニッケル製
電極基体においては、少なくともその大部分の表面にコ
バルト、カルシウム、チタン、銀、ホウ素、イットリウ
ム、ランタニド、炭素及び/又はそれらの酸化物からな
る群より選ばれた少なくとも一種以上の物質が配された
ものが加工性の容易性からより好適に用いられる。
Further, the conductive electrode substrate of the present invention comprises:
It is only necessary to have conductivity, and it is possible to process the distortion and inclination of the irregularities and the walls thereof after filling the active material powder, and it is not particularly limited, but is currently used for various battery electrodes. As the material of the conductive electrode substrate, at least one selected from the group consisting of nickel, copper, aluminum, lead and alloys containing these as main components is preferably used. Particularly, in a nickel electrode substrate for an alkaline storage battery, at least a surface of at least most of the surface is at least one selected from the group consisting of cobalt, calcium, titanium, silver, boron, yttrium, lanthanide, carbon and / or oxides thereof. Those in which the above-mentioned substances are arranged are more preferably used from the viewpoint of workability.

【0030】本発明における導電性電極基体の凹凸部に
より三次元化された導電性電極基体の厚さは、活物質粉
末もしくは準活物質粉末を主とする粉末が充填または塗
着された後に加圧加工された電極である最終電極にほぼ
近い厚さであり、具体的には上記の導電性電極基体の厚
さが、最終電極の厚さに対して0.5〜2.0倍である
ことが好ましい。上記の導電性電極基体の厚さは最終電
極の厚さに対して0.5倍以下である場合には、高率放
電特性が若干低下し、活物質粉末や準活物質粉末と導電
性電極基体との接触面積が低下するために活物質粉末な
どが脱落しやすくなるために好ましくない。また、上記
の導電性電極基体の厚さが最終電極の厚さに対して2.
0倍以上である場合には、金属箔の凹凸加工がし難くな
るために好ましくない。特に、本発明をニッケル正極に
用いる場合には、導電性電極基体の厚さは最終電極の厚
さに対して1.0〜2.0倍であることが好ましい。
The thickness of the conductive electrode substrate three-dimensionally formed by the irregularities of the conductive electrode substrate according to the present invention may be adjusted after the powder mainly containing the active material powder or the quasi-active material powder is filled or applied. The thickness of the conductive electrode substrate is approximately 0.5 to 2.0 times the thickness of the final electrode. Is preferred. When the thickness of the conductive electrode substrate is less than 0.5 times the thickness of the final electrode, the high-rate discharge characteristics slightly decrease, and the active material powder or the quasi-active material powder and the conductive electrode It is not preferable because the active material powder and the like easily fall off due to a decrease in the contact area with the substrate. In addition, the thickness of the conductive electrode substrate is set to 2.
If it is 0 times or more, it is not preferable because unevenness of the metal foil becomes difficult. In particular, when the present invention is used for a nickel positive electrode, the thickness of the conductive electrode substrate is preferably 1.0 to 2.0 times the thickness of the final electrode.

【0031】本発明における導電性電極基体の中空で無
数の凹凸部は、凹部及び凸部の1つをそれぞれ3次元形
状体と見た場合に、凹部形状体及び凸部形状体が導電性
電極基体を構成する材料で充填されておらず、内壁面を
有する形状である凹部及び凸部を表すものである。
In the present invention, the infinite number of hollow irregularities of the conductive electrode substrate are such that when one of the concave and convex portions is regarded as a three-dimensional shape, the concave and convex shapes are the conductive electrodes. It represents a concave portion and a convex portion which are not filled with the material constituting the base and have a shape having an inner wall surface.

【0032】本発明における準活物質とは、Li(リチ
ウム)やH(水素)などの活物質を吸収及び放出する物
質である。吸収及び放出される活物質は、結果的に活物
質として放出されれば良く、準活物質中に活物質として
含まれても、活物質と他の物質の化合物として含まれて
も良い。
The quasi-active material in the present invention is a material that absorbs and releases an active material such as Li (lithium) and H (hydrogen). The absorbed and released active material only needs to be released as an active material as a result, and may be included as an active material in the quasi-active material or as a compound of the active material and another material.

【0033】本発明における活物質粉末もしくは準活物
質粉末を主材料とする粉末の充填又は塗着は、特に限定
されるものではないが、公知の方法により充填又は塗着
することができる。
The filling or coating of the powder containing the active material powder or the quasi-active material powder as a main material in the present invention is not particularly limited, but it can be filled or coated by a known method.

【0034】本発明の導電性電極基体における凹凸部の
凹部及び凸部は、特に限定されるものではないが、中空
の円錐状をしていてもよく、中空の三角錐、四角錐や六
角錐形状などの多角錐形状であっても良い。凹部と凸部
のそれぞれの先端は孔が開いていても、閉じていても良
いが、孔があいていたほうが活物質を含む塗着層につい
ての電極基体からの機械的(物理的)な剥離に対する強
度が得られやすく、また導電性電極基体の表裏両面にお
ける活物質を含む層で起こる電極反応の均一化も得られ
やすいために好ましい。
The concave and convex portions of the concave and convex portions in the conductive electrode substrate of the present invention are not particularly limited, but may have a hollow conical shape, a hollow triangular pyramid, a quadrangular pyramid or a hexagonal pyramid. The shape may be a polygonal pyramid. The respective ends of the concave portion and the convex portion may be open or closed, but the holes are more likely to cause mechanical (physical) peeling of the coating layer containing the active material from the electrode substrate. This is preferable because it is easy to obtain strength against the electrode and uniformity of the electrode reaction occurring in the layer containing the active material on both the front and back surfaces of the conductive electrode substrate can be easily obtained.

【0035】本発明における上記導電性電極基体は、大
部分の表面に微細な凹凸を無数に有する基体であること
が上記導電性電極基体と活物質又は準活物質との電気的
な導通をさらに強固にするのでサイクル寿命及び高率充
放電特性の向上のために好ましい。
The above-mentioned conductive electrode substrate in the present invention is a substrate having innumerable fine irregularities on most of its surface, which further provides electrical continuity between the conductive electrode substrate and an active material or a quasi-active material. It is preferable to improve the cycle life and the high rate charge / discharge characteristics because it is strengthened.

【0036】本発明における上記導電性電極基体の殆ど
の凹凸部の配置パターンは、電極の長さ方向に対して3
0〜60度の範囲の角度に、多数の凹部または凹部群の
列と多数の凸部または凸部群の列とが、ほぼ平行して、
交互に設けられている好ましい。上記の多数の凹部また
は凹部群の列と多数の凸部または凸部群の列とが、ほぼ
平行して、交互に設けられていることにより、凸部(凹
部)と凸部(凹部)の距離が一定に保ちやすく、活物質
粉末などの保持性や導電性が電極全体に均一に備わって
いるからである。
In the present invention, the arrangement pattern of most of the concavo-convex portions of the conductive electrode substrate is 3 to 3 in the longitudinal direction of the electrode.
At an angle in the range of 0 to 60 degrees, a row of a large number of concave portions or groups of concave portions and a row of a large number of convex portions or groups of convex portions are almost parallel to each other,
Preferably, they are provided alternately. Since the row of the large number of concave portions or the group of concave portions and the row of the large number of convex portions or the group of convex portions are provided alternately and substantially in parallel, the convex portions (concave portions) and the convex portions (concave portions) are provided. This is because the distance is easily kept constant, and the retention and conductivity of the active material powder and the like are uniformly provided throughout the electrode.

【0037】本発明における導電性電極基体の一つの上
記凸部もしくは上記凸部群(凹部もしくは凹部群)に最
近接する凹凸部または凹凸部群は、半数以上が凹部また
は凹部群(凸部または凸部群)である。これとともに先
に述べたように30度〜60度の範囲の角度に、多数の
凹部または凹部群の列と多数の凸部または凸部群の列を
設けることによって、電極の加圧加工時における導電性
電極基体の過度の伸長及び不均一な伸長を抑制し、電極
内で均一な三次元形状を形成するためである。
In the conductive electrode substrate according to the present invention, half or more of the concavo-convex portions or the concavo-convex portion groups which are closest to one of the protruding portions or the protruding portion group (concave portions or concave portion groups) of the conductive electrode substrate are formed. Group). At the same time, by providing a large number of rows of concave portions or groups of concave portions and a large number of rows of convex portions or groups of convex portions at an angle in the range of 30 degrees to 60 degrees as described above, the electrode can be formed at the time of pressure processing. This is because the conductive electrode base is prevented from being excessively stretched and unevenly stretched, and a uniform three-dimensional shape is formed in the electrode.

【0038】本発明の導電性電極基体における凹凸部の
壁の歪曲及び傾斜は、小径の2対のローラーによる予備
加圧と大径の2対のローラーによる最終電極形成のため
の加圧とからなる圧延ロール加工により形成することが
できる。この圧延ロール加工が活物質もしくは準活物質
が充填または塗着された導電性電極基体に施されること
により、凹凸部の壁が導電性電極基体の厚さ方向に歪曲
し、先端に至るにつれ強く一方向に傾斜される。活物質
粉末などの充填前に導電性電極基体の厚さを十分厚く
し、図7の部分拡大図に示したように、活物質粉末など
を導電性電極基体の凹凸部の先端が露出するように充填
した場合には、予め導電性電極基体だけの両表面を軽く
一方向に曲がるように潰しておいてもよい。また、上記
圧延ロール加工において、予備加圧として、活物質また
は準滑物質が充填された導電性電極基体をドクターナイ
フまたはゴム製ヘラを備えたスリット間に通すことや、
回転ブラシで導電性電極基体上の活物質を含む層を擦る
ことを行ってもよく、導電性電極基体の立体化が大きい
場合には予備加圧を省略して、大径ロールによるロール
加圧だけを行っても図1のD部に示すような一方向への
凹凸部の傾斜特に先端部の強い傾斜が構成できる。
The distortion and inclination of the wall of the uneven portion in the conductive electrode substrate of the present invention are determined by the pre-pressing with two pairs of small-diameter rollers and the pressing for forming the final electrode with two pairs of large-diameter rollers. It can be formed by rolling mill processing. This rolling process is performed on the conductive electrode substrate filled or coated with the active material or the quasi-active material, so that the wall of the uneven portion is distorted in the thickness direction of the conductive electrode substrate and reaches the tip. Strongly tilted in one direction. Before the filling of the active material powder or the like, the thickness of the conductive electrode substrate is made sufficiently thick, and as shown in the partially enlarged view of FIG. In the case of filling, both surfaces of only the conductive electrode base may be crushed in advance so as to bend slightly in one direction. Further, in the above-mentioned rolling process, as a preliminary pressurization, passing a conductive electrode substrate filled with an active material or a semi-smooth material between slits provided with a doctor knife or a rubber spatula,
The layer containing the active material on the conductive electrode substrate may be rubbed with a rotating brush. If the conductive electrode substrate has a large three-dimensional structure, the preliminary pressing is omitted, and the roll pressing by a large-diameter roll is performed. By performing only the above, it is possible to configure the inclination of the uneven portion in one direction, particularly the strong inclination of the front end portion, as shown in the portion D of FIG.

【0039】最終電極は、電極加工後にフッ素樹脂製微
粉末などで被覆することが好ましい。これは、活物質粉
末などをより脱落し難くするためのほかに、導電性電極
基体の凹凸部の先端が髭のように電極からはみ出してセ
パレーターを突き破ることを防ぐためである。したがっ
て、電極の被覆に用いられる合成樹脂の種類としては、
フッ素樹脂に限らず、ポリスルフォン樹脂もしくはこれ
らを主材料とする共重合体などの耐電解液性を有し且つ
結着性を有する樹脂が適用できる。
The final electrode is preferably coated with a fine powder made of fluororesin after the electrode is processed. This is to make it more difficult for the active material powder or the like to fall off, and also to prevent the tips of the concave and convex portions of the conductive electrode base from protruding from the electrode like a beard and breaking through the separator. Therefore, as the type of synthetic resin used for coating the electrode,
Not only a fluororesin but also a resin having an electrolytic solution resistance and a binding property such as a polysulfone resin or a copolymer containing these as a main material can be applied.

【0040】なお、本発明における電池用ペースト式薄
型電極が渦巻状電極に加工された場合は、導電性電極基
体の凹凸部の先端が充放電の繰り返しによる電極伸長の
ために髭となることを防ぐため、捲回方向と垂直方向に
傾斜していることが好ましい。
When the paste-type thin electrode for a battery according to the present invention is processed into a spiral electrode, the tip of the concave and convex portion of the conductive electrode substrate becomes a mustache due to electrode extension due to repeated charging and discharging. In order to prevent this, it is preferable to be inclined in the direction perpendicular to the winding direction.

【0041】また、本発明の二次電池は、上記の電極を
電池ケースに挿入し、正極リードと封口板をスポット溶
接等の方法により接続したのち封口板を電池ケースの開
口部でカシメて封口された二次電池である。
Further, in the secondary battery of the present invention, the above-mentioned electrode is inserted into the battery case, the positive electrode lead and the sealing plate are connected by spot welding or the like, and then the sealing plate is swaged at the opening of the battery case. Secondary battery.

【0042】本発明の二次電池は、本発明の上記電極が
D、C、AA、AAA、AAAAなどの所望の外径サイ
ズの電池ケースの容器内に挿入されて封口されることに
より得ることができる。
The secondary battery of the present invention is obtained by inserting the above-mentioned electrode of the present invention into a container of a battery case having a desired outer diameter such as D, C, AA, AAA, AAAA and sealing the battery. Can be.

【0043】本発明の二次電池における電池ケースは、
本発明の二次電池をHEV用電池等の高容量化及び軽量
化が望まれる用途に用いる場合には、側壁面の厚さ(t
)に対する底部の厚さ(t)の比(t/t)が
1.5以上である軽量電池ケースを用いることが好まし
く、さらに容器の側壁の電池内圧に対する耐圧強度に余
裕があること及び底部へのスポット溶接で発生する亀裂
防止をより確実にすることについての観点から側壁面の
厚さ(t)に対する底部の厚さ(t)の比(t
)が約2.0であることがより好ましい。本発明の
二次電池がHEV用電池等に用いられる場合には、使用
態様により二次電池の電池ケース底部に隣接する他の二
次電池の正極端子が溶接により直接もしくは金属製のコ
ネクターを介して接続されることから、電池ケース底部
には変形または溶解することがなく、上記のセル間接続
のコネクターとのスポット溶接に耐え得る厚さが必要と
なる。したがって上記電池ケースは、電池ケースにおけ
る側壁面の厚さ(t)に対する底部の厚さ(t)の
比(t/t)を1.5以上とすることにより、電池
ケースの側壁面の厚さと底部の厚さがほぼ同一である通
常の電池ケースに比べて、底部の厚さをスポット溶接に
耐え得る厚さとして確保し、かつ側壁面を薄くすること
によって電池ケースを材質の変更なしに約30%軽量化
することが可能であり、同時に内容積が増加するので二
次電池の高容量化が可能である。なお、上記溶接は、公
知の溶接方法であり、スポット溶接部の溶接温度が10
00〜3000℃の範囲内で行われるものである。
The battery case of the secondary battery according to the present invention comprises:
When the secondary battery of the present invention is used for applications where high capacity and light weight are desired, such as batteries for HEV, the thickness of the side wall surface (t
It is preferable that the thickness of the bottom (the ratio of t 2) (t 2 / t 1) is used the weight battery case is 1.5 or more with respect to 1), there is room in the withstand voltage strength further to the battery internal pressure of the side wall of the container From the standpoint of ensuring that cracks generated by spot welding to the bottom are more reliable, the ratio of the thickness of the bottom (t 2 ) to the thickness of the side wall surface (t 1 ) (t 2 /
More preferably, t 1 ) is about 2.0. When the secondary battery of the present invention is used for an HEV battery or the like, the positive electrode terminal of another secondary battery adjacent to the bottom of the battery case of the secondary battery is directly or through a metal connector by welding depending on the use mode. Therefore, the battery case needs to have a thickness that does not deform or melt at the bottom of the battery case and that can withstand the spot welding with the connector for connection between cells. Therefore, in the battery case, the ratio (t 2 / t 1 ) of the thickness of the bottom portion (t 2 ) to the thickness (t 1 ) of the side wall surface of the battery case is set to 1.5 or more, so that the side of the battery case is Compared to a normal battery case where the wall thickness and the bottom thickness are almost the same, the thickness of the bottom is ensured as a thickness that can withstand spot welding and the thickness of the side wall is reduced to make the battery case It is possible to reduce the weight by about 30% without any change, and at the same time, increase the internal volume, so that the capacity of the secondary battery can be increased. The above welding is a known welding method, and the welding temperature of the spot
It is performed within the range of 00 to 3000 ° C.

【0044】本発明における二次電池において、側壁面
の厚さ(t)に対する底部の厚さ(t)の比(t
/t)が1.5以上であるAAAAサイズの電池ケー
スに使用する場合において、底部の厚さが約0.2mm
であり側壁面の厚さが0.11mmである電池ケース
(t/t=1.82)を用いた場合には、同一材質
であって、底部の厚さが約0.2mmであり側壁面の厚
さが0.2mmである電池ケース(t/t=1)を
用いた場合に比べて約5%の電池容量の向上が可能とな
る。
In the secondary battery according to the present invention, the ratio (t 2 ) of the thickness (t 2 ) of the bottom portion to the thickness (t 1 ) of the side wall surface.
/ T 1 ) is at least 1.5 mm when used in an AAAA-size battery case having a thickness of about 0.2 mm or more.
By and when the thickness of the side wall surfaces using a battery case (t 2 / t 1 = 1.82 ) is 0.11mm is a same material, the thickness of the bottom be about 0.2mm The battery capacity can be improved by about 5% as compared with the case where a battery case (t 2 / t 1 = 1) having a side wall surface thickness of 0.2 mm is used.

【0045】本発明の二次電池における電池ケースの材
質は、特に限定されるものではないが、アルカリ蓄電池
においては耐電解液性の点で鉄にニッケルメッキを施し
たもの、リチウム二次電池においては鉄の他に軽量化の
ためにアルミニウム又はアルミニウム合金を用いること
が好ましい。
The material of the battery case in the secondary battery of the present invention is not particularly limited. However, in the case of an alkaline storage battery, nickel-plated iron is used in terms of electrolytic solution resistance. It is preferable to use aluminum or aluminum alloy in addition to iron for weight reduction.

【0046】上記電池ケースは、深絞り加工等の公知の
方法で製造することができるが、側壁面を薄くして、側
壁面の厚さ(t)に対する底部の厚さ(t)の比
(t/t)が1.5以上に形成するためにしごき−
絞り加工により製造することが好ましい。電池ケースを
何回にもわけて所望の電池ケース形状に近づけてゆく深
絞り加工で製造する場合には、一般には底部と側壁面の
厚さがほぼ等しくなるが、しごき−絞り加工は、図10
に示すように、金属板材を一回のスピンドル13による
押し出し加圧により有底円筒容器14を形成する方法で
あることから、スピンドルと金型15との間隔を調整す
ることによって上記電池ケースを所望の側壁面の厚さを
有する電池ケースに容易に形成することができる。
The above-mentioned battery case can be manufactured by a known method such as deep drawing. However, the thickness of the side wall is reduced and the thickness of the bottom (t 2 ) with respect to the thickness (t 1 ) of the side wall is reduced. Ironing to form a ratio (t 2 / t 1 ) of 1.5 or more
It is preferable to manufacture by drawing. When the battery case is manufactured by deep drawing in which the desired shape of the battery case is approached in a number of times, the thickness of the bottom portion and the side wall surface are generally almost equal. 10
As shown in FIG. 5, since the bottomed cylindrical container 14 is formed by extruding and pressing a metal plate material once with the spindle 13, the battery case is desired by adjusting the interval between the spindle and the mold 15. The battery case having the thickness of the side wall surface can be easily formed.

【0047】本発明における二次電池の電池ケースにお
いて、電池ケース内側には、機械的強度を確保するため
に、電池ケースの側壁面と底部との境界に沿って肉厚部
が設けられていることが好ましい。上記肉厚部は、図1
1中Rに示す部で、電池ケース作成時に用いるスピンド
ルの先端部の外周を面取り加工しておくことによって対
応する電池ケースの肉厚部を容易に設けられる。わずか
な面取り加工されたスピンドルを用いても効果は認めら
れるが、AAサイズの電池ケースでは1C面取りであれ
ば電池容量の低下をきたさず適切である。
In the battery case of the secondary battery according to the present invention, a thick portion is provided inside the battery case along a boundary between the side wall surface and the bottom portion of the battery case in order to secure mechanical strength. Is preferred. The thick part is shown in FIG.
In the portion indicated by R in FIG. 1, the outer periphery of the tip end portion of the spindle used when creating the battery case is chamfered, so that the corresponding thick portion of the battery case can be easily provided. Although the effect is recognized even if a slightly chamfered spindle is used, 1A chamfering in an AA size battery case is appropriate without reducing the battery capacity.

【0048】本発明における二次電池は、上記電極を用
いることにより電池の軽量化を図ることができが、側壁
面が極めて薄く、底部の厚さ(t)に対する側壁面の
厚さ(t)の比(t/t)が1.5以上である電
池ケースを用いることにより,より一層の軽量な二次電
池を提供することができる。
In the secondary battery of the present invention, the weight of the battery can be reduced by using the above electrodes. However, the side wall surface is extremely thin, and the thickness (t 1 ) of the side wall surface with respect to the thickness (t 1 ) of the bottom portion. by a ratio of 2) (t 2 / t 1 ) is used the battery case is 1.5 or more, it is possible to provide a more lightweight rechargeable battery.

【0049】[0049]

【実施例】次に、本発明の具体例について説明する。Next, specific examples of the present invention will be described.

【0050】(製造例)図10に示すように、円形に打
ち抜いた厚さ0.3mmのニッケルメッキ鋼板(メッキ
厚1μm)を公知のスピンドル13による1回のしごき
−絞り加工により形成した有底円筒容器14を得た。具
体的には、有底円筒容器の寸法は外径14mm、側面厚
0.16mm底部、厚0.25mmである。なお、側面
と底部との境界部の物理的強度低下を抑制するために上
記境界の内側に肉厚部Rを設けることが好ましい。
(Production Example) As shown in FIG. 10, a 0.3 mm thick nickel-plated steel plate (plated thickness: 1 μm) punched in a circular shape was formed by a single ironing-drawing process using a known spindle 13. A cylindrical container 14 was obtained. Specifically, the dimensions of the bottomed cylindrical container are an outer diameter of 14 mm, a side thickness of 0.16 mm, a bottom, and a thickness of 0.25 mm. In order to suppress a decrease in physical strength at the boundary between the side surface and the bottom, a thick portion R is preferably provided inside the boundary.

【0051】(実施例1)厚さ30μmのフープ状ニッ
ケル箔を、円錐状の凹凸を設けた金型間(ローラー間で
も良い)を通すことにより加圧し、第4図のニッケル製
電極基体9に無数の微小な中空の煙突状凹凸を設けた三
次元の導電性電極基体を作製した。図4におけるニッケ
ル製電極基体9の凹凸部のパターンの種類として可能な
ものとして、ニッケル製電極基体の部分拡大図である図
5(a)、(b)の2例を例示すが、図5中のBとCは
それぞれ凸部と凹部を示すものである。図5の(a)に
おける凸部(凹部)に最近接するのは全て凹部(凸部)
であり、(b)では凸部(凹部)と最近接する6個の内
4個が凹部(凸部)である。本実施例では図5(a)の
パターンを採用した。(a)における凸部(凹部)に最
近接するのは全て凹部(凸部)であり、凹部(凸部)の
中空略円錐の直径は根元で60〜80μm、先端は35
〜45μmであり、凹凸を設けた上下2枚の平板金型で
強く加工して後者の肉厚を薄くし、大半の最先端は孔が
開いている状態にした。その凹凸部により立体化された
導電性電極基体の厚さは500μmとし最終電極厚さよ
り100μm程度厚くした。凸凸間のピッチ(または凹
凹間のピッチ)は、フープの長尺方向およびその直角方
向とも150〜250μmとした。導電性電極基体の長
尺方向に対する凸部(凹部)の列の角度(m)は約45
度である。また、図4における12は、この様な凹凸加
工を施さない部分であり、一部を電極リードに使用し
た。無加工部12はプレス時の電極伸張による活物質な
どの存在部分との歪を緩和する目的で設けられたもので
あり、無加工部12に導電性電極基体の長尺方向にわず
かに波型加工を施した。
(Example 1) A hoop-shaped nickel foil having a thickness of 30 µm was pressed by being passed between molds provided with conical irregularities (or between rollers) to thereby apply pressure to the nickel electrode base 9 shown in FIG. A three-dimensional conductive electrode substrate provided with countless minute hollow chimney-shaped irregularities was manufactured. 5A and 5B, which are partial enlarged views of the nickel electrode substrate, are shown as examples of possible types of the pattern of the concave and convex portions of the nickel electrode substrate 9 in FIG. B and C in the figure indicate a convex portion and a concave portion, respectively. In FIG. 5 (a), all of the protrusions (concave portions) closest to the convex portions (concave portions) are concave portions (convex portions).
In (b), four of the six closest to the convex portion (concave portion) are concave portions (convex portions). In the present embodiment, the pattern shown in FIG. In (a), all of the protrusions (recesses) closest to the protrusions (recesses) are the recesses (convexities), and the diameter of the hollow substantially conical portion of the recess (convexity) is 60 to 80 μm at the root and 35 at the tip.
The thickness of the latter was reduced by strongly processing with two upper and lower flat plate dies having irregularities to make the latter most thin with holes. The thickness of the conductive electrode substrate three-dimensionally formed by the concave and convex portions was 500 μm, which was about 100 μm thicker than the final electrode thickness. The pitch between the convex and concave (or the pitch between the concave and convex) was 150 to 250 μm in both the longitudinal direction of the hoop and the direction perpendicular thereto. The angle (m) of the row of the protrusions (recesses) with respect to the longitudinal direction of the conductive electrode base is about 45.
Degrees. In FIG. 4, reference numeral 12 denotes a portion not subjected to such concavo-convex processing, a part of which is used for an electrode lead. The non-processed portion 12 is provided for the purpose of relieving the distortion of the active material and the like due to the electrode extension at the time of pressing, and the non-processed portion 12 is slightly corrugated in the longitudinal direction of the conductive electrode base. Processed.

【0052】図5(a)のパターンとなるように無数の
微小な中空の煙突状凹凸が設けられたニッケル製電極基
体9に活物質粉末のペーストを充填した。活物質は、水
酸化ニッケルが主であるが、ニッケル水酸化物に対して
コバルトが約1wt%、亜鉛が約3wt%を固溶させ
た、粒子の直径が約10μmである球状粉末の活物質粉
末を使用した。この活物質粉末を、カルボキシメチルセ
ルローズ約1wt%、ポリビニールアルコール約0.1
wt%を溶解した溶液とペーストにし、さらに酸化コバ
ルト(CoO)と酸化亜鉛(ZnO)とを水酸化ニッケ
ルに対してそれぞれ約3wt%と約2wt%添加して、
最終のペーストとした。この活物質の混合粉末ペースト
をニッケル製電極基体9に充填し、ついでほぼ乾燥した
状態を、図5の部分拡大図に示す。
A paste of active material powder was filled in a nickel electrode substrate 9 provided with countless minute hollow chimney-like irregularities so as to form the pattern shown in FIG. 5A. The active material is mainly nickel hydroxide, but is a spherical powder having a particle diameter of about 10 μm in which about 1 wt% of cobalt and about 3 wt% of zinc are dissolved in nickel hydroxide. Powder was used. This active material powder was mixed with about 1% by weight of carboxymethyl cellulose and about 0.1% of polyvinyl alcohol.
wt% into a solution and paste, and about 3 wt% and about 2 wt% of cobalt oxide (CoO) and zinc oxide (ZnO) are added to nickel hydroxide, respectively.
The final paste was used. FIG. 5 is a partially enlarged view showing a state where the mixed powder paste of the active material is filled in the nickel electrode substrate 9 and then substantially dried.

【0053】次に、活物質の混合粉末ペーストが充填さ
れ、乾燥したニッケル製電極基体を比較的高速回転をし
ている図6のS、S’に示す直径約30mmの2対のロ
ーラー間に通して、表面を擦りながら、回転数が10回
転/秒で軽く加圧した後、N、N’に示す直径約450
mmのローラー間で回転速度が50〜100mm/秒で
強く加圧して厚さ400μmまで加圧した。このニッケ
ル正極中にニッケル製電極基体が占める割合はわずか3
vol%を占めるだけで、通常の3DM式の正極での導
電性電極基体が占める割合が6〜9vol%であるのに
比べると半分程度の金属量になっていることから、従来
の最も軽量な3DM式より一層の軽量の薄型電極となっ
た。
Next, between the two pairs of rollers having a diameter of about 30 mm shown in S and S 'in FIG. 6 which are filled with the mixed powder paste of the active material and rotate the dried nickel electrode substrate at a relatively high speed. And gently pressurized at a rotation speed of 10 rotations / sec while rubbing the surface, and then the diameter indicated by N and N 'was about 450.
The roller was strongly pressed at a rotation speed of 50 to 100 mm / sec between rollers having a thickness of 400 mm to a thickness of 400 μm. The nickel electrode substrate occupies only 3 parts of the nickel positive electrode.
vol%, the amount of the metal is about half that of the 6-9 vol% of the conductive electrode substrate in the normal 3DM type positive electrode, so the conventional lightest weight It became a lighter and thinner electrode than the 3DM type.

【0054】この薄型電極を幅40mm、長さ150m
mに切断した後、濃度約3wt%のフッ素樹脂微粉末の
懸濁液に浸漬後乾燥してニッケル正極とし、厚さ220
μm、幅40mm、長さ210mmの通常のMmNi5
系の水素吸蔵合金負極と組み合わせて製造例で得たAA
サイズの電池ケースに挿入し、図3における公知の正極
端子を兼ねた封口板6とガスケット5により封口するこ
とより、正極の理論容量1550mAhのAAサイズの
円筒密閉形Ni/MH電池を作成した。また、セパレー
タには、厚さ120μmのスルホン化ポリオレフィン樹
脂繊維の不織布を採用し、電解液は約30wt%のKO
H水溶液を用いた。
This thin electrode is 40 mm wide and 150 m long.
m, and then immersed in a suspension of a fluororesin fine powder having a concentration of about 3 wt%, and then dried to form a nickel positive electrode.
Normal MmNi5 μm, width 40 mm, length 210 mm
AA obtained in the production example in combination with a hydrogen storage alloy negative electrode
The battery was inserted into a battery case having a size, and sealed with a gasket 5 and a sealing plate 6 also serving as a known positive electrode terminal in FIG. 3, thereby producing an AA-size cylindrical sealed Ni / MH battery having a theoretical capacity of 1550 mAh for the positive electrode. In addition, a non-woven fabric of sulfonated polyolefin resin fiber having a thickness of 120 μm is used for the separator, and the electrolyte is about 30 wt% KO.
H aqueous solution was used.

【0055】なお、本実施例における二次電池の円筒密
閉形Ni/MH電池であるは、とくにニッケル正極の特
性を明らかにする目的のため、つまり負極の特性に規制
されることをできるだけ避けるため、通常の正負極の設
計上の容量バランスを若干変えて、正極の理論容量に対
して負極の理論容量を1.8倍と多くしたものを標準と
した。因みに、汎用の電池のそれは1.3〜1.6倍で
ある。
The cylindrical sealed Ni / MH battery of the secondary battery in the present embodiment is used especially for the purpose of clarifying the characteristics of the nickel positive electrode, that is, in order to avoid being restricted by the characteristics of the negative electrode as much as possible. The designed capacity balance of the normal positive and negative electrodes was slightly changed, and the theoretical capacity of the negative electrode was 1.8 times larger than the theoretical capacity of the positive electrode. Incidentally, that of a general-purpose battery is 1.3 to 1.6 times.

【0056】図8に、この電池10セルの高率放電特性
の平均値を、qで示した。縦軸に示す放電電圧は、理論
容量の50%放電時点での電圧を示した。
FIG. 8 shows the average value of the high-rate discharge characteristics of 10 cells of this battery by q. The discharge voltage shown on the vertical axis is the voltage at the time of 50% discharge of the theoretical capacity.

【0057】(比較例1〜3)比較例1として、通常の
平板間で加圧加工した導電性電極基体、つまり本願発明
のようにとくに凹凸部の先端を一方向に曲げる操作を施
さない導電性電極基体を用いた以外は実施例1の場合と
同様に、二次電池を作成して高率放電特性を調べた結果
を図8のpで示した。
(Comparative Examples 1 to 3) As Comparative Example 1, a conductive electrode substrate pressed between ordinary flat plates, that is, a conductive electrode which is not subjected to an operation of bending the tip of the uneven portion in one direction as in the present invention. The results of examining the high-rate discharge characteristics of a secondary battery and examining the high-rate discharge characteristics in the same manner as in Example 1 except that the negative electrode substrate was used are shown by p in FIG.

【0058】比較例2として、通常の発泡状ニッケル多
孔体(商品名:セルメット、住友電工社製)を導電性電
極基体に用いた以外は実施例1と同様にして作成した電
極である3DM式のニッケル正極を用いた以外は実施例
1の場合と同様に、二次電池を作成した場合の高率放電
特性を調べた結果を図8のoで示した。
As Comparative Example 2, a 3DM type electrode was prepared in the same manner as in Example 1 except that a normal foamed nickel porous body (trade name: Celmet, manufactured by Sumitomo Electric Industries, Ltd.) was used for the conductive electrode substrate. The result of examining the high-rate discharge characteristics when a secondary battery was prepared in the same manner as in Example 1 except that the nickel positive electrode was used was shown by o in FIG.

【0059】比較例3として、凸部の列と次の凸部の列
の間のピッチが実施例1の約2倍の400μmである導
電性電極基体を用いたこと以外は実施例1の場合と同様
にして、二次電池を作成して高率放電特性を調べた結果
を図8のnで示した。
Comparative Example 3 In the case of Example 1 except that a conductive electrode substrate in which the pitch between one row of convex portions and the next row of convex portions was 400 μm, which was about twice that of Example 1, was used. The results of examining the high-rate discharge characteristics of a secondary battery in the same manner as described above are shown by n in FIG.

【0060】(実施例1及び比較例1〜3の評価、検
討)この実施例1及び比較例1〜3の結果、本実施例の
場合は、10C放電においても電圧が1V近くを有し最
も優れていた。とくに、近接する凸凸間の距離、つまり
凸部の列と次の凸部の列の間の距離を200μmにした
効果が大きい。すなわち、この場合は、図1のM‘に示
した最も遠い活物質粉末粒子と導電性電極基体との距離
が70〜100μmの範囲にあてはまっている。比較例
1の二次電池であるpの電池も優秀な高率放電特性を示
したが、図9に示したように、1C放電と1C充電(放
電容量の110%充電)を20℃で繰り返すサイクル寿
命試験では、本願の二次電池が700サイクルでも容量
低下が少ないのに対し、500サイクルで大きく容量劣
化を示した。この場合は、実施例1と比較例1との両電
池とも10セルで試験したが、図9には、そのうちの上
下の特性を示した2セルづつを除去し、残りの中間特性
を示した6セルの平均値を用いた。因みに、pにおける
電池は、10セルのうち2セルが100サイクル前後で
短絡を起こした。凹凸先端部の曲がりによる効果が極め
て大きい。
(Evaluation and Examination of Example 1 and Comparative Examples 1 to 3) As a result of Example 1 and Comparative Examples 1 to 3, in the case of this example, the voltage was almost It was excellent. In particular, the effect of setting the distance between adjacent convex and convex portions, that is, the distance between the row of convex portions and the next row of convex portions to 200 μm is great. That is, in this case, the distance between the farthest active material powder particles and the conductive electrode substrate shown by M ′ in FIG. 1 falls within the range of 70 to 100 μm. The secondary battery p of Comparative Example 1 also exhibited excellent high-rate discharge characteristics, but as shown in FIG. 9, 1C discharge and 1C charge (110% charge of discharge capacity) were repeated at 20 ° C. In the cycle life test, the secondary battery of the present invention showed a small capacity reduction even at 700 cycles, but showed a large capacity deterioration at 500 cycles. In this case, both of the batteries of Example 1 and Comparative Example 1 were tested with 10 cells. FIG. 9 shows two intermediate cells each showing the upper and lower characteristics, and the remaining intermediate characteristics were shown. The average value of 6 cells was used. By the way, in the battery at p, two out of ten cells short-circuited at around 100 cycles. The effect due to the bending of the tip of the unevenness is extremely large.

【0061】すなわち、本願による導電性電極基体の構
造を採用すれば、優れた高率放電特性が得られ、活物質
などの粉末の保持性が改良されるため、サイクル寿命に
優れ、微小短絡などが生じにくい(信頼性が高い)。
That is, when the structure of the conductive electrode substrate according to the present invention is employed, excellent high-rate discharge characteristics can be obtained, and the retention of powders such as active materials is improved. Is less likely to occur (high reliability).

【0062】また、本実施例の二次電池における合金負
極の芯材も、本願のニッケル製電極基体を採用すれば、
図8および図9におけるqの特性は若干向上した。すな
わち、薄型の合金負極にも同様な効果を有することがわ
かった。さらに、高率放電が要求されるLi二次電池に
も同様な原理から、高率放電特性、活物質の保持性やサ
イクル寿命などに同様な効果が期待できる。
Further, the core material of the alloy negative electrode in the secondary battery of this embodiment can be obtained by adopting the nickel electrode substrate of the present invention.
The characteristics of q in FIGS. 8 and 9 are slightly improved. That is, it was found that a thin alloy negative electrode had the same effect. Further, the same effect can be expected for a Li secondary battery requiring high-rate discharge, based on the same principle, for high-rate discharge characteristics, retention of active material, cycle life, and the like.

【0063】(実施例2)ニッケル箔の凹凸加工のパタ
ーンとして図4の部分拡大図(b)のパターンの加工を
ニッケル箔に施したものを導電性電極基体として用いた
以外は、実施例1の場合と同様にして、円筒密閉形Ni
/MH電池を作成し、高率放電特性およびサイクル寿命
を調べた。この場合も凹部を超えて隣接する凸凸間もし
くは凸部を超えて隣接する凹凹間のピッチは200μm
とした。凹部の列もしくは凸部の列と電極の長さ方向と
の角度m’は30度であった。
Example 2 Example 1 was the same as Example 1 except that the nickel foil was subjected to the pattern processing of the partially enlarged view (b) of FIG. In the same manner as in the case of
/ MH battery was prepared, and high-rate discharge characteristics and cycle life were examined. Also in this case, the pitch between the convex and convex portions adjacent beyond the concave portion or between the concave portions and concave portions adjacent beyond the convex portion is 200 μm.
And The angle m 'between the row of concave portions or the row of convex portions and the length direction of the electrode was 30 degrees.

【0064】(実施例2の評価、検討)本実施例の場合
も、高率放電特性およびサイクル寿命に優れ、実施例1
と同様な特性が得られた。
(Evaluation and Examination of Example 2) Also in the case of this example, the high rate discharge characteristics and the cycle life were excellent, and
The same characteristics as described above were obtained.

【0065】なお、同様なニッケル箔を電極基体の長尺
方向又は長尺方向に対する直角方向に波型加工した基体
(この場合はm’に相当する角度は、90度または0度
である)を導電性電極基体として用いたニッケル極は、
渦巻状加工時に活物質粉末などが剥離し、殆どが初期か
ら活物質利用率が著しく低下した。
A similar nickel foil was formed by corrugating the electrode substrate in the longitudinal direction or in the direction perpendicular to the longitudinal direction (in this case, the angle corresponding to m ′ was 90 ° or 0 °). The nickel electrode used as the conductive electrode substrate
During the spiral processing, the active material powder and the like were peeled off, and the active material utilization rate significantly decreased from the initial stage.

【0066】本実施例より、凸部もしくは凹部の列は、
少なくとも長尺方向と30〜60度にすればロール加圧
時の圧縮でもニッケル製電極基体の部分的または全体の
過度な二次元化が防止でき、電極全体にニッケル基体が
配されたままであることから集電性に優れるためと考え
られる。
According to this embodiment, the row of the convex portions or the concave portions is
At least 30 to 60 degrees with respect to the longitudinal direction, it is possible to prevent the nickel electrode base from being partially or entirely made excessively two-dimensional even in the compression at the time of roll pressing, and the nickel base remains disposed on the entire electrode This is considered to be due to its excellent current collecting properties.

【0067】(実施例3)導電性電極基体として、ニッ
ケルを加工する際に加工前の厚いニッケル板の表裏両面
にコバルト箔を貼り付けながら全体として圧延してニッ
ケル箔への加工を施したものを導電性電極基体に用いた
以外は、実施例1の場合と同様にして、円筒密閉形Ni
/MH電池を作成し、高率放電特性を調べた。なお、コ
バルト量はニッケルに対し0.5wt%とした。本実施
例においては導電性電極基体表面で生ずるコバルト酸化
物の電子伝導性がニッケルの電子伝導性より優れるた
め、実施例1に比べ、ほんの僅かであるが高率放電特性
が改良された。
(Example 3) As a conductive electrode substrate, when processing nickel, a thick nickel plate before processing was coated with cobalt foil on both the front and back surfaces and rolled as a whole to be processed into nickel foil. Was used in the same manner as in Example 1 except that Ni was used for the conductive electrode substrate.
/ MH battery was prepared, and high rate discharge characteristics were examined. In addition, the amount of cobalt was set to 0.5 wt% with respect to nickel. In this embodiment, the electron conductivity of cobalt oxide generated on the surface of the conductive electrode substrate is superior to that of nickel, so that the high-rate discharge characteristics are slightly improved compared to Example 1.

【0068】(実施例4〜9)実施例4として、ニッケ
ル箔の表面に貼り付けられるコバルト箔の替わりにカル
シウム箔を貼り付けた以外は実施例3と同様にして円筒
密閉形Ni/MH電池を作成した。また、実施例3にお
けるコバルト箔の替わりにチタン、銀、イットリウム、
ランタニドまたは炭素の箔を用いた以外は実施例3と同
様にして円筒密閉形Ni/MH電池を作成し、それぞれ
実施例5〜9とした。各実施例における円筒密閉形Ni
/MH電池のサイクル寿命と高率放電特性を実施例1の
場合と同様にして調べたところ、サイクル寿命の改善や
高率放電特性の改良に、若干の効果が認められた。な
お、いずれの場合も更に微量のホウ素が存在するとサイ
クル寿命のバラツキ改善に効果が認められた。
(Examples 4 to 9) As Example 4, a cylindrical sealed Ni / MH battery was manufactured in the same manner as in Example 3 except that a calcium foil was attached instead of a cobalt foil attached to the surface of a nickel foil. It was created. Also, instead of the cobalt foil in Example 3, titanium, silver, yttrium,
Cylindrical sealed Ni / MH batteries were prepared in the same manner as in Example 3 except that a lanthanide or carbon foil was used. Cylindrical sealed Ni in each embodiment
When the cycle life and high-rate discharge characteristics of the / MH battery were examined in the same manner as in Example 1, it was found that the cycle life and the high-rate discharge characteristics were slightly improved. In each case, the effect of improving the variation in cycle life was recognized when a further small amount of boron was present.

【0069】(実施例10)実施例1のニッケル箔表面
を微細な凹凸を無数に有する粗面としたこと以外は実施
例1の場合と同様に、円筒密閉形Ni/MH電池を作成
し、サイクル寿命と高率放電特性を調べたところ実施例
3に近いサイクル寿命や高率放電特性の向上が認められ
た。
Example 10 A cylindrical sealed Ni / MH battery was prepared in the same manner as in Example 1, except that the surface of the nickel foil of Example 1 was roughened with countless fine irregularities. When the cycle life and high-rate discharge characteristics were examined, improvements in cycle life and high-rate discharge characteristics close to those of Example 3 were recognized.

【0070】(実施例11)厚さ30μmのフープ状ニ
ッケル箔を、円錐状の凹凸を設けた金型間(ローラー間
でも良い)を通すことにより加圧し、第4図のニッケル
製電極基体9に無数の中空で円錐状の凹凸を図5(a)
のパターンに設けた三次元の導電性電極基体を作製し
た。凹凸部により立体化された導電性電極基体の厚さを
140μmとし、凸凹間のピッチ(または凹凸間のピッ
チ)は、フープの長尺方向およびその直角方向とも14
0μmとした。この電極基体にニッケル水酸化物に対し
てコバルトが約1wt%、亜鉛が約3wt%を固溶させ
た直径が約10μmである球状粒子粉末の活物質粉末
を、カルボキシメチルセルローズ約1wt%、ポリビニ
ールアルコール約0.1wt%を溶解した溶液とペース
トにし、さらに酸化コバルト(CoO)と酸化亜鉛(Z
nO)とを水酸化ニッケルに対してそれぞれ約3wt%
と約2wt%添加することにより得られたペーストを充
填し、次いで乾燥させて導電性電極基体と同じ厚さの最
終電極である薄型電極を得た。なお、この最終電極にお
いては導電性電極基体より最も離れた活物質から導電性
電極基体までの距離を100μmとなるように凹凸パタ
ーンを配した。
Example 11 A hoop-shaped nickel foil having a thickness of 30 μm was pressurized by being passed between molds having conical concavities and convexities (or between rollers) to form a nickel electrode base 9 shown in FIG. Fig. 5 (a) shows countless hollow and conical irregularities
A three-dimensional conductive electrode substrate provided in the above pattern was produced. The thickness of the conductive electrode substrate three-dimensionally formed by the concavo-convex portions is 140 μm, and the pitch between the concavities and convexities (or the pitch between the concavities and convexities) is 14 in both the longitudinal direction of the hoop and the direction perpendicular thereto.
It was set to 0 μm. About 1 wt% of carboxymethyl cellulose, about 1 wt% of carboxymethyl cellulose, and about 10 wt% of a spherical particle powder obtained by dissolving about 1 wt% of cobalt and about 3 wt% of zinc with respect to nickel hydroxide are dissolved in the electrode substrate. A paste and a solution in which about 0.1% by weight of vinyl alcohol is dissolved, and further, cobalt oxide (CoO) and zinc oxide (Z
nO) and about 3 wt% with respect to nickel hydroxide, respectively.
And a paste obtained by adding about 2% by weight of the mixture, and then dried to obtain a thin electrode as a final electrode having the same thickness as the conductive electrode substrate. In this final electrode, a concavo-convex pattern was arranged such that the distance from the active material farthest from the conductive electrode substrate to the conductive electrode substrate was 100 μm.

【0071】(実施例12)凹凸部により立体化された
導電性電極基体の厚さを210μmに、凸凹間のピッチ
(または凹凸間のピッチ)をフープの長尺方向およびそ
の直角方向とも210μmとした以外は実施例11と同
様にして最終電極を得た。なお、この最終電極において
は導電性電極基体より最も離れた活物質から導電性電極
基体までの距離を150μmとなるように凹凸パターン
を配した。
(Example 12) The thickness of the conductive electrode substrate three-dimensionally formed by the concavo-convex portions was set to 210 μm, and the pitch between the concavities and convexities (or the pitch between the concavities and convexities) was set to 210 μm in both the longitudinal direction of the hoop and its perpendicular direction. A final electrode was obtained in the same manner as in Example 11 except for performing the above. In this final electrode, a concavo-convex pattern was arranged such that the distance from the active material farthest from the conductive electrode substrate to the conductive electrode substrate was 150 μm.

【0072】(比較例4)凹凸部により立体化された導
電性電極基体の厚さを280μmに、凸凹間のピッチ
(または凹凸間のピッチ)をフープの長尺方向およびそ
の直角方向とも280μmとした以外は実施例11と同
様にして最終電極である薄型電極を得た。なお、この最
終電極においては導電性電極基体より最も離れた活物質
から導電性電極基体までの距離を200μmとなるよう
に凹凸パターンを配した。
(Comparative Example 4) The thickness of the conductive electrode substrate three-dimensionally formed by the concavo-convex portions was 280 μm, and the pitch between the concavities and convexities (or the pitch between the concavities and convexities) was 280 μm in both the longitudinal direction of the hoop and its perpendicular direction. A thin electrode as a final electrode was obtained in the same manner as in Example 11 except for performing the above. In this final electrode, a concavo-convex pattern was arranged such that the distance from the active material farthest from the conductive electrode substrate to the conductive electrode substrate was 200 μm.

【0073】(比較例5)凹凸部により立体化された導
電性電極基体の厚さを420μmに、凸凹間のピッチ
(または凹凸間のピッチ)をフープの長尺方向およびそ
の直角方向とも420μmとした以外は実施例11と同
様にして最終電極である薄型電極を得た。なお、この最
終電極においては導電性電極基体より最も離れた活物質
から導電性電極基体までの距離を300μmとなるよう
に凹凸パターンを配した。
(Comparative Example 5) The thickness of the conductive electrode substrate three-dimensionally formed by the concavo-convex portions was 420 μm, and the pitch between the concavities and convexities (or the pitch between the concavities and convexities) was 420 μm in the longitudinal direction of the hoop and in the direction perpendicular thereto. A thin electrode as a final electrode was obtained in the same manner as in Example 11 except for performing the above. In this final electrode, a concavo-convex pattern was arranged such that the distance from the active material farthest from the conductive electrode substrate to the conductive electrode substrate was 300 μm.

【0074】(実施例11及び12並びに比較例4及び
5の評価)実施例11及び12並びに比較例4及び5に
より得られた薄型電極について、ニッケルスクリーンを
対極とした半電池を作成し、高率放電特性を調べ、0.
5C放電での結果を図12に、5C放電での結果を図1
3に示す。実施例11の結果はe及びiで、実施例12
の結果はf及びjで、比較例4の結果はg及びkで、比
較例5の結果はh及びlである。実施例11及び実施例
12の薄型電極は、0.5C放電並びに5C放電での高
率放電特性については極端な電圧及び容量低下をきたす
ことがなく良好であった。これに対して、比較例4及び
比較例5の薄型電極を用いた二次電池は、0.5C放電
での高率放電特性が良好であったが、5C放電での高率
放電特性については、極端な電圧及び容量低下をきたし
た。実施例11及び12については、導電性電極基体よ
り最も遠い活物質粉末粒子からその導電性電極基体まで
の距離を150μm以内に保持することにより、優れた
高率放電特性が得られた。
(Evaluation of Examples 11 and 12 and Comparative Examples 4 and 5) For the thin electrodes obtained in Examples 11 and 12 and Comparative Examples 4 and 5, a half-cell with a nickel screen as a counter electrode was prepared. The discharge rate characteristics were examined.
FIG. 12 shows the result of 5C discharge, and FIG. 1 shows the result of 5C discharge.
3 is shown. The results of Example 11 are e and i, and Example 12
Are f and j, the result of Comparative Example 4 is g and k, and the result of Comparative Example 5 is h and l. The thin electrodes of Example 11 and Example 12 were good with respect to the high-rate discharge characteristics at 0.5 C discharge and 5 C discharge without causing an extreme decrease in voltage and capacity. On the other hand, the secondary batteries using the thin electrodes of Comparative Examples 4 and 5 had good high-rate discharge characteristics at 0.5 C discharge. , Extreme voltage and capacity drop. In Examples 11 and 12, excellent high-rate discharge characteristics were obtained by keeping the distance from the active material powder particles farthest from the conductive electrode substrate to the conductive electrode substrate within 150 μm.

【0075】[0075]

【発明の効果】以上のように本発明による薄型ニッケル
正極を採用すれば、軽量であって、高率放電特性、サイ
クル寿命及び信頼性に優れ、且つ低コストのNi/MH
電池を得ることが可能であり、さらに側壁面の厚さ(t
)に対する底部の厚さ(t)の比(t/t)が
1.5以上である電池ケースを用いることにより軽量で
高容量であるNi/MH電池を得ることが可能となる。
As described above, the use of the thin nickel positive electrode according to the present invention makes it possible to reduce the weight of Ni / MH, which is lightweight, excellent in high-rate discharge characteristics, cycle life and reliability, and low in cost.
A battery can be obtained, and the thickness of the side wall surface (t
It is possible to obtain a Ni / MH batteries are high capacity lightweight by the thickness of the bottom (the ratio of t 2) (t 2 / t 1) is used the battery case is 1.5 or more with respect to 1) .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態によるニッケル正極の断面
概略図。
FIG. 1 is a schematic cross-sectional view of a nickel positive electrode according to one embodiment of the present invention.

【図2】本発明の一実施形態によるニッケル正極。A−
Aの断面は図1に示した。
FIG. 2 shows a nickel positive electrode according to an embodiment of the present invention. A-
The cross section of A is shown in FIG.

【図3】本発明の一実施形態による円筒密閉形Ni/M
H電池(AAサイズ)。
FIG. 3 shows a cylindrical sealed Ni / M according to an embodiment of the present invention.
H battery (AA size).

【図4】本発明の一実施形態によるニッケル正極に使用
したフープ状の電極基体。
FIG. 4 is a hoop-shaped electrode substrate used for a nickel positive electrode according to one embodiment of the present invention.

【図5】(a)(b)は、凹凸加工のパターンの2例5 (a) and 5 (b) show two examples of a pattern of unevenness processing.

【図6】本発明の一実施形態によるニッケル正極のプレ
ス加工工程。
FIG. 6 shows a step of pressing a nickel positive electrode according to an embodiment of the present invention.

【図7】活物質粉末などのペースト充填後の電極断面
図。
FIG. 7 is a cross-sectional view of an electrode after filling of paste such as active material powder.

【図8】本発明の一実施形態によるニッケル正極を用い
た円筒密閉形Ni/MH電池(AAサイズ)の高率放電
特性。
FIG. 8 shows high-rate discharge characteristics of a cylindrical sealed Ni / MH battery (AA size) using a nickel positive electrode according to one embodiment of the present invention.

【図9】本発明の一実施形態によるニッケル正極を用い
た円筒密閉形Ni/MH電池(AAサイズ)のサイクル
寿命特性。
FIG. 9 is a cycle life characteristic of a cylindrical sealed Ni / MH battery (AA size) using a nickel positive electrode according to an embodiment of the present invention.

【図10】しごき−絞り加工工程。FIG. 10 Ironing-drawing process.

【図11】しごき−絞り加工により製造された電池ケー
スの拡大断面図
FIG. 11 is an enlarged sectional view of a battery case manufactured by ironing and drawing.

【図12】本発明の一実施形態によるニッケル正極の高
率放電特性(半電池)。
FIG. 12 shows a high-rate discharge characteristic (half cell) of a nickel positive electrode according to one embodiment of the present invention.

【図13】本発明の一実施形態によるニッケル正極の高
率放電特性(半電池)。
FIG. 13 shows a high-rate discharge characteristic (half cell) of a nickel positive electrode according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1: ニッケル正極 2: 水素吸蔵合金負極 3: セパレータ 4: 電槽 5: ガスケット 6: 正極ターミナル 7: 安全弁 8: 正極リード端子 9: ニッケル製電極基体 9’: 電極加工されていないニッケル製電極基体 10: 活物質を主とする混合粉末 11: 空間部 12: 無加工部 13:スピンドル 14:有底円筒容器 15:金型 16:電池ケース側壁面 17:電池ケース底面 B: 凸部 C: 凹部 D: 凹凸部の先端部 M、M’:基体から最も遠距離の混合粉末 S、S’: 小径のローラー N、N’: 大径の加圧ローラー R:肉厚部 1: Nickel positive electrode 2: Hydrogen storage alloy negative electrode 3: Separator 4: Battery case 5: Gasket 6: Positive electrode terminal 7: Safety valve 8: Positive electrode lead terminal 9: Nickel electrode base 9 ': Nickel electrode base not processed 10: Mixed powder mainly composed of active material 11: Space portion 12: Non-processed portion 13: Spindle 14: Bottomed cylindrical container 15: Mold 16: Battery case side wall surface 17: Battery case bottom surface B: Convex portion C: Concave portion D: Tip of uneven portion M, M ': Mixed powder farthest from substrate S, S': Small-diameter roller N, N ': Large-diameter pressure roller R: Thick portion

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/62 H01M 4/62 C 4/66 4/66 A Fターム(参考) 5H011 AA01 AA03 AA09 CC06 DD03 DD26 5H017 AA01 AA02 AA03 BB06 BB08 BB11 BB13 BB15 BB19 CC01 DD01 DD08 EE04 HH03 5H022 AA01 AA04 AA09 BB01 BB11 CC10 EE01 5H050 AA02 AA07 AA14 AA19 BA08 DA04 DA09 DA20 EA23 FA04 FA09 FA15 FA17 FA18 GA03 GA07 GA13 GA22 GA23 GA24 GA29 GA30 HA03 HA04 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/62 H01M 4/62 C 4/66 4/66 A F term (Reference) 5H011 AA01 AA03 AA09 CC06 DD03 DD26 5H017 AA01 AA02 AA03 BB06 BB08 BB11 BB13 BB15 BB19 CC01 DD01 DD08 EE04 HH03 5H022 AA01 AA04 AA09 BB01 BB11 CC10 EE01 5H050 AA02 AA07 AA14 AA19 BA08 DA04 DA09 DA20 EA23 FA03 GA03 FA03 GA09

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 三次元構造を有する導電性電極基体に活
物質粉末もしくは準活物質粉末を主とする粉末が充填ま
たは塗着された薄型電極であって、上記導電性電極基体
が、(a)中空で無数の凹凸部を有し、(b)上記凹凸
部で三次元化された上記導電性電極基体の厚さが電極に
ほぼ近い厚さである薄膜状の耐電解液性金属板であり、
(c)一つの凸部もしくは凸部群または一つの凹部もし
くは凹部群に対する最近接凹凸部または最近接凹凸部群
のうち半数以上が凹部もしくは凹部群または凸部もしく
は凸部群であり、(d)上記凹凸部の壁が上記導電性電
極基体の厚さ方向に歪曲し、先端に至るにつれ強く一方
向に傾斜していることを特徴とする電池用ペースト式薄
型電極。
1. A thin electrode in which a conductive electrode substrate having a three-dimensional structure is filled or coated with a powder mainly containing an active material powder or a quasi-active material powder, wherein the conductive electrode substrate comprises (a) And (b) a thin film-shaped electrolyte-resistant metal plate having a hollow and innumerable irregularities, and (b) a thickness of the conductive electrode substrate three-dimensionally formed by the irregularities is substantially equal to the thickness of the electrode. Yes,
(C) More than half of the closest unevenness portion or the closest unevenness portion group with respect to one protrusion or a group of protrusions or one recess or a group of recesses is a recess or a group of recesses or a group of the protrusions or protrusions; A paste-type thin electrode for a battery, wherein the wall of the uneven portion is distorted in the thickness direction of the conductive electrode substrate, and is strongly inclined in one direction toward the tip.
【請求項2】 上記導電性電極基体が、金属を主成分と
し、大部分の表面に微細な凹凸を無数に有する粗面であ
ることを特徴とする請求項1または請求項2に記載の電
池用ペースト式薄型電極。
2. The battery according to claim 1, wherein the conductive electrode substrate is a rough surface having a metal as a main component and having innumerable fine irregularities on most surfaces. Paste type thin electrode.
【請求項3】 上記導電性電極基体が、ニッケルを主成
分とし、少なくともその大部分の表面に、コバルト、カ
ルシウム、チタン、銀、ホウ素、イットリウム、ランタ
ニド、炭素及び/またはそれらの酸化物からなる群より
選ばれた一種以上の物質が配されていることを特徴とす
る請求項1乃至請求項3に記載の電池用ペースト式薄型
電極。
3. The conductive electrode substrate has nickel as a main component, and at least most of its surface is made of cobalt, calcium, titanium, silver, boron, yttrium, lanthanide, carbon and / or an oxide thereof. 4. The paste-type thin electrode for a battery according to claim 1, wherein at least one substance selected from the group is disposed.
【請求項4】 上記導電性電極基体における上記凹凸部
の先端部附近が、最先端部に至るほど肉厚が薄く、少な
くとも半数以上の最先端部には孔を有する請求項1乃至
請求項3に記載の電池用ペースト式薄型電極。
4. The conductive electrode substrate according to claim 1, wherein the thickness of the vicinity of the top end of the concave / convex portion of the conductive electrode substrate is thinner toward the front end, and at least half or more of the front end have holes. The paste-type thin electrode for batteries according to 1.
【請求項5】 上記導電性電極基体における殆どの凹凸
部の配置パターンが、電極の長さ方向に対して30度〜
60度の範囲の角度であり、多数の凹部または凹部群の
列と多数の凸部または凸部群の列とが、ほぼ平行して、
交互に設けられている請求項1に記載の電池用ペースト
式薄型電極。
5. The arrangement pattern of most of the concavo-convex portions on the conductive electrode base is 30 ° to 30 ° with respect to the length direction of the electrode.
An angle in the range of 60 degrees, and a row of a large number of concave portions or groups of concave portions and a row of a large number of convex portions or groups of convex portions are substantially parallel to each other,
The paste-type thin electrode for a battery according to claim 1, which is provided alternately.
【請求項6】 上記凹凸部における個々の凹凸形状が中
空の円錐、三角錐、四角錐、六角錐または八角錐である
ことを特徴とする請求項1に記載の電池用ペースト式薄
型電極。
6. The paste-type thin electrode for a battery according to claim 1, wherein each of the concavo-convex portions in the concavo-convex portion is a hollow cone, a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, or an octagonal pyramid.
【請求項7】 上記導電性電極基体における一方向に傾
斜している凸部と凹部の先端がそれぞれ隣接する凸部間
または凹部間の隙間を包むように傾いで曲げられている
請求項1に記載の電池用ペースト式薄型電極。
7. The conductive electrode substrate according to claim 1, wherein the tips of the convex portions and the concave portions which are inclined in one direction in the conductive electrode base are inclined so as to cover the gaps between the adjacent convex portions or concave portions. Paste type thin electrode for batteries.
【請求項8】 上記電極の表面が耐電解液性の合成樹脂
の微粉末で被覆されている請求項1に記載の電池用ペー
スト式薄型電極。
8. The paste-type thin electrode for a battery according to claim 1, wherein the surface of the electrode is covered with a fine powder of an electrolytic solution-resistant synthetic resin.
【請求項9】 渦巻状に構成されている上記電極におけ
る導電性電極基体の凹凸部の一方向への傾斜が捲回方向
とほぼ直角方向であることを特徴とする請求項1に記載
の電池用ペースト式薄型電極。
9. The battery according to claim 1, wherein the spirally configured electrode has an unevenness in one direction in the uneven portion of the conductive electrode substrate, which is substantially perpendicular to the winding direction. Paste type thin electrode.
【請求項10】 三次元構造を有する導電性電極基体に
活物質粉末もしくは準活物質粉末を主とする粉末が充填
または塗着された薄型電極であって、上記導電性電極基
体が中空で無数の凹凸部により三次元化された薄膜状の
耐電解液性金属板であり、上記導電性電極基体と充填ま
たは塗着された活物質粉末または準活物質粉末の粒子と
の最長距離が150μm以下に保たれていることを特徴
とする電池用ペースト式薄型電極。
10. A thin electrode in which a conductive electrode substrate having a three-dimensional structure is filled or coated with a powder mainly comprising an active material powder or a quasi-active material powder, wherein the conductive electrode substrate is hollow and innumerable. Is a thin film-shaped electrolyte-resistant metal plate three-dimensionally formed by the uneven portions, wherein the longest distance between the conductive electrode substrate and the filled or coated active material powder or quasi-active material powder particles is 150 μm or less. A paste-type thin electrode for a battery, characterized in that the electrode is maintained at a low temperature.
【請求項11】 三次元構造を有する導電性電極基体で
あって、(a)長尺方向に沿った少なくとも両端の所望
の幅の凹凸加工されていない部分を除いて凹凸加工さ
れ、(b)上記凹凸加工により中空で無数の凹凸部を有
し、(c)上記凹凸部で三次元化された導電性電極基体
の厚さが最終電極の厚さの0.5〜2.0倍である薄膜
状の耐電解液性金属板であり、(d)一つの凸部もしく
は凸部群または一つの凹部もしくは凹部群に対する最近
接凹凸部または最近接凹凸部群のうち半数以上が凹部も
しくは凹部群または凸部もしくは凸部群であるフープ状
の導電性電極基体に、主に凹凸部の中空部に活物質また
は準活物質を主とする混合粉末のペースト状粉末を充填
もしくは塗布し、充填もしくは塗布された上記導電性電
極基体を圧延ロール間で加圧成形した後、所望のサイズ
に切断して加工することを特徴とする電池用ペースト式
薄型電極の製造法。
11. A conductive electrode substrate having a three-dimensional structure, wherein (a) irregularities are formed at least at both ends along a longitudinal direction, excluding portions which are not irregularities having a desired width, and (b) (C) The thickness of the conductive electrode substrate three-dimensionally formed by the unevenness is 0.5 to 2.0 times the thickness of the final electrode. A thin film-like electrolytic solution-resistant metal plate, wherein (d) at least half of the closest irregularities or groups of one convex or convex group or one concave or concave group are concaves or concave groups; Alternatively, a hoop-shaped conductive electrode substrate that is a convex portion or a group of convex portions is filled or coated with a paste-like powder of a mixed powder mainly containing an active material or a quasi-active material mainly in a hollow portion of the concave and convex portion. The coated conductive electrode substrate is placed between rolling rolls. A method for producing a paste-type thin electrode for a battery, comprising forming the paste-type thin electrode for a battery after press-molding the same.
【請求項12】 上記導電性電極基体が、凹凸加工を施
して上下が噛み合せられる金型間もしくは同様な加工を
施したローラー間を通して凹凸加工されたことにより凹
凸部を施されたもの、または、電解析出法により凹凸部
を備えた金属基体が形成されたものであって、長尺方向
に対して30〜60度の範囲内の角度で多数の凹部また
は凹部群の列と多数の凸部または凸部群の列が、ほぼ一
定間隔で平行して、交互に設けられている請求項11に
記載の電池用ペースト式薄型電極の製造法。
12. The conductive electrode substrate is provided with an uneven portion by performing an uneven process through a mold that is subjected to an uneven process and is engaged with the upper and lower molds or a roller that has been subjected to a similar process, or A metal substrate having an uneven portion formed by an electrolytic deposition method, wherein a number of concave portions or rows of concave portions and a large number of convex portions are formed at an angle in a range of 30 to 60 degrees with respect to a longitudinal direction. 12. The method for producing a paste-type thin electrode for a battery according to claim 11, wherein the rows of the convex groups are arranged alternately in parallel at substantially constant intervals.
【請求項13】 上記導電性電極基体が、その両表面の
近傍が一方向に押し曲げられたものであることを特徴と
する請求項12に記載の電池用ペースト式薄型電極の製
造法。
13. The method for producing a paste-type thin electrode for a battery according to claim 12, wherein the conductive electrode substrate is formed by pressing and bending both surfaces in one direction.
【請求項14】 圧延ロール間での加圧成形が少なくと
も2回の加圧操作を施すものであって、先の加圧が直径
の小さいローラー間で電極の進行方向と逆方向に比較的
高速且つ低圧で加圧を施すものであり、後の加圧が先よ
り直径の大きいローラー間で先より低速且つ高圧で加圧
を施すものであることを特徴とする請求項11に記載の
電池用ペースト式薄型電極の製造法。
14. The method according to claim 1, wherein the pressing between the rolling rolls is performed at least twice, and the pressing is performed at a relatively high speed in a direction opposite to the advancing direction of the electrode between the rollers having a small diameter. The battery according to claim 11, wherein the pressure is applied at a low pressure, and the subsequent pressure is applied at a lower speed and a higher pressure between the rollers having a larger diameter than the former. Manufacturing method of paste type thin electrode.
【請求項15】 活物質または準活物質が充填または塗
布充填された電極をドクターナイフもしくはブラシ状の
もので表面を擦りながら軽く加圧した後に加圧形成する
ことを特徴とする請求項11に記載の電池用ペースト式
薄型電極の製造法。
15. The method according to claim 11, wherein the electrode filled or coated with the active material or the quasi-active material is lightly pressed while rubbing the surface with a doctor knife or a brush, and then formed under pressure. The method for producing a paste-type thin electrode for a battery according to the above.
【請求項16】 所望のサイズに切断後に、合成樹脂の
微粉末を分散させた液中に上記電極を浸漬しまたは上記
液を電極表面に噴霧して、上記合成樹脂の微粉末を薄く
電極に被覆することを特徴とする請求項11に記載の電
池用ペースト式薄型電極の製造法。
16. After cutting to a desired size, the electrode is immersed in a liquid in which fine synthetic resin powder is dispersed, or the liquid is sprayed on the electrode surface, and the fine synthetic resin powder is thinly applied to the electrode. The method for producing a paste-type thin electrode for a battery according to claim 11, wherein the electrode is coated.
【請求項17】 上記合成樹脂が、フッ素樹脂、ポリス
ルフォン樹脂もしくはそれらを主材料とする共重合体で
あることを特徴とする請求項16に記載の電池用ペース
ト式薄型電極の製造法。
17. The method according to claim 16, wherein the synthetic resin is a fluororesin, a polysulfone resin, or a copolymer containing them as a main material.
【請求項18】 三次元構造を有する導電性電極基体に
活物質粉末もしくは準活物質粉末を主とする粉末が充填
または塗着された薄型電極が正極及び/又は負極として
電池ケース内に封口された二次電池であって、上記導電
性電極基体が、(a)中空で無数の凹凸部を有し、
(b)上記凹凸部で三次元化された上記導電性電極基体
の厚さが電極にほぼ近い厚さである薄膜状の耐電解液性
金属板であり、(c)一つの凸部もしくは凸部群または
一つの凹部もしくは凹部群に対する最近接凹凸部または
最近接凹凸部群のうち半数以上が凹部もしくは凹部群ま
たは凸部もしくは凸部群であり、(d)上記凹凸部の壁
が上記導電性電極基体の厚さ方向に歪曲し、先端に至る
につれ強く一方向に傾斜している電池用ペースト式薄型
電極であることを特徴とする二次電池。
18. A thin electrode in which a conductive electrode substrate having a three-dimensional structure is filled or coated with a powder mainly containing an active material powder or a quasi-active material powder is sealed in a battery case as a positive electrode and / or a negative electrode. Wherein the conductive electrode substrate (a) has a hollow and innumerable irregularities,
(B) a thin film of an electrolytic solution-resistant metal plate in which the thickness of the conductive electrode substrate three-dimensionally formed by the uneven portions is almost the thickness of the electrode; and (c) one convex portion or one convex portion More than half of the closest concavo-convex portion or the closest concavo-convex portion group to one or more concavities or concavity portions is a concavity or a concavity group or a protruding portion or a protruding portion group. A secondary battery comprising: a paste-type thin electrode for a battery that is distorted in the thickness direction of the conductive electrode substrate and is strongly inclined in one direction toward the tip.
【請求項19】 上記電池ケースは、底部の厚さ
(t)が溶接に耐え得る厚さであり、側壁面の厚さ
(t)に対する底部の厚さ(t)の比(t
)が1.5以上であることを特徴とする請求項18
に記載の二次電池。
19. In the battery case, the thickness (t 2 ) of the bottom portion is a thickness that can withstand welding, and the ratio (t 2 ) of the thickness (t 2 ) of the bottom portion to the thickness (t 1 ) of the side wall surface. 2 /
19. The method according to claim 18, wherein t 1 ) is 1.5 or more.
2. The secondary battery according to 1.
【請求項20】 上記電池ケースの側壁面と底部との境
界における電池ケース内側には、肉厚部が設けられてい
ることを特徴とする請求項19に記載の二次電池。
20. The secondary battery according to claim 19, wherein a thick portion is provided inside the battery case at a boundary between a side wall surface and a bottom portion of the battery case.
【請求項21】 上記電池ケースの底部には、隣接する
二次電池の正極端子が直接もしくは金属製のコネクター
を介して溶接されていることを特徴とする請求項19に
記載の二次電池。
21. The secondary battery according to claim 19, wherein a positive terminal of an adjacent secondary battery is welded to the bottom of the battery case directly or via a metal connector.
JP2001159319A 2000-08-30 2001-05-28 Paste type thin electrode for battery, method for producing the same, and secondary battery Expired - Lifetime JP4536289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001159319A JP4536289B2 (en) 2000-08-30 2001-05-28 Paste type thin electrode for battery, method for producing the same, and secondary battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000261780 2000-08-30
JP2000-261780 2000-10-18
JP2000-318407 2000-10-18
JP2000318407 2000-10-18
JP2001159319A JP4536289B2 (en) 2000-08-30 2001-05-28 Paste type thin electrode for battery, method for producing the same, and secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009147468A Division JP5033164B2 (en) 2000-08-30 2009-06-22 Manufacturing method of paste type thin electrode for battery

Publications (2)

Publication Number Publication Date
JP2002198055A true JP2002198055A (en) 2002-07-12
JP4536289B2 JP4536289B2 (en) 2010-09-01

Family

ID=27344478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001159319A Expired - Lifetime JP4536289B2 (en) 2000-08-30 2001-05-28 Paste type thin electrode for battery, method for producing the same, and secondary battery

Country Status (1)

Country Link
JP (1) JP4536289B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022418A (en) * 2002-06-18 2004-01-22 Ishikawajima Harima Heavy Ind Co Ltd Battery, and its electrode core member, positive electrode and negative electrode
EP1478037A2 (en) * 2003-05-16 2004-11-17 M&G Eco-Battery Institute Co., Ltd. Secondary battery using non-sintered thin electrode and process for same
EP2159861A1 (en) 2008-09-02 2010-03-03 M&G Eco-Battery Co., Ltd. Secondary battery with a spirally-rolled electrode group
EP2398100A1 (en) 2010-06-17 2011-12-21 Finecs Co., Ltd. Metal foil for secondary battery and secondary battery
JP2013077558A (en) * 2011-09-15 2013-04-25 Nippon Zeon Co Ltd Electrode for electrochemical element
KR20140063789A (en) * 2011-09-14 2014-05-27 제온 코포레이션 Electrode for electrochemical element
US9299986B2 (en) 2010-10-20 2016-03-29 M&G Eco-Battery Co., Ltd. Method for manufacturing metal-made three-dimensional substrate for electrodes, metal-made three-dimensional substrate for electrodes and electrochemical applied products using the same
JP2016115664A (en) * 2014-12-11 2016-06-23 株式会社エムアンドジーエコバッテリー Manufacturing method of electrode using three-dimensional electrode substrate for electrochemical application product
JP2019057434A (en) * 2017-09-21 2019-04-11 日本電気株式会社 Collector and forming method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW508860B (en) * 2000-08-30 2002-11-01 Mitsui & Amp Co Ltd Paste-like thin electrode for battery, its manufacturing method, and battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734665A (en) * 1980-08-07 1982-02-25 Matsushita Electric Ind Co Ltd Electrode of battery and its manufacturing method
JPS60180058A (en) * 1984-02-28 1985-09-13 Matsushita Electric Ind Co Ltd Manufacture of battery and its can
JPH07335209A (en) * 1994-06-10 1995-12-22 Matsushita Electric Ind Co Ltd Coated electrode for battery, and its manufacture
JP2000048823A (en) * 1998-05-29 2000-02-18 Matsushita Electric Ind Co Ltd Non-sintering type electrode and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734665A (en) * 1980-08-07 1982-02-25 Matsushita Electric Ind Co Ltd Electrode of battery and its manufacturing method
JPS60180058A (en) * 1984-02-28 1985-09-13 Matsushita Electric Ind Co Ltd Manufacture of battery and its can
JPH07335209A (en) * 1994-06-10 1995-12-22 Matsushita Electric Ind Co Ltd Coated electrode for battery, and its manufacture
JP2000048823A (en) * 1998-05-29 2000-02-18 Matsushita Electric Ind Co Ltd Non-sintering type electrode and manufacture thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022418A (en) * 2002-06-18 2004-01-22 Ishikawajima Harima Heavy Ind Co Ltd Battery, and its electrode core member, positive electrode and negative electrode
JP4576785B2 (en) * 2002-06-18 2010-11-10 株式会社Ihi Battery and its electrode core material, positive electrode and negative electrode
EP1478037A2 (en) * 2003-05-16 2004-11-17 M&G Eco-Battery Institute Co., Ltd. Secondary battery using non-sintered thin electrode and process for same
JP2004342519A (en) * 2003-05-16 2004-12-02 M & G Eco Battery Institute Co Ltd Battery using paste type thin electrode and its manufacturing method
EP1478037A3 (en) * 2003-05-16 2007-01-31 M&G Eco-Battery Institute Co., Ltd. Secondary battery using non-sintered thin electrode and process for same
CN1305151C (en) * 2003-05-16 2007-03-14 日本无公害电池研究所 Battery using non-sintered thin electrode and process for same
EP2159861A1 (en) 2008-09-02 2010-03-03 M&G Eco-Battery Co., Ltd. Secondary battery with a spirally-rolled electrode group
US8557410B2 (en) 2008-09-02 2013-10-15 M&G Eco-Battery Co., Ltd. Secondary battery with a spirally-rolled electrode group
US8426068B2 (en) 2010-06-17 2013-04-23 Finecs Co., Ltd. Metal foil for secondary battery and secondary battery
EP2398100A1 (en) 2010-06-17 2011-12-21 Finecs Co., Ltd. Metal foil for secondary battery and secondary battery
US9299986B2 (en) 2010-10-20 2016-03-29 M&G Eco-Battery Co., Ltd. Method for manufacturing metal-made three-dimensional substrate for electrodes, metal-made three-dimensional substrate for electrodes and electrochemical applied products using the same
KR20140063789A (en) * 2011-09-14 2014-05-27 제온 코포레이션 Electrode for electrochemical element
KR101998658B1 (en) * 2011-09-14 2019-07-10 제온 코포레이션 Electrode for electrochemical element
JP2013077558A (en) * 2011-09-15 2013-04-25 Nippon Zeon Co Ltd Electrode for electrochemical element
JP2016115664A (en) * 2014-12-11 2016-06-23 株式会社エムアンドジーエコバッテリー Manufacturing method of electrode using three-dimensional electrode substrate for electrochemical application product
JP2019057434A (en) * 2017-09-21 2019-04-11 日本電気株式会社 Collector and forming method of the same
JP7009867B2 (en) 2017-09-21 2022-01-26 日本電気株式会社 Current collector and its formation method

Also Published As

Publication number Publication date
JP4536289B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP5033164B2 (en) Manufacturing method of paste type thin electrode for battery
CN100405658C (en) Nickel electrode and alkali storage battery using the same
JP3604879B2 (en) Battery manufacturing method
KR100782993B1 (en) Secondary battery
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
EP1082768B1 (en) Non-sintered electrode and method of manufacturing same
JP2003317707A (en) Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2002134161A (en) Spiral electrode group for battery and battery
JP2004342519A (en) Battery using paste type thin electrode and its manufacturing method
US20030180621A1 (en) Non-sintered type thin electrode for battery, battery using same and process for same
JP2002198055A (en) Paste-like thin electrode for battery, its manufacturing method and secondary battery
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP4429569B2 (en) Nickel metal hydride storage battery
JP2947284B2 (en) Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2006059807A (en) Nickel electrode and alkali storage battery using the same
JP2000208144A (en) Battery electrode substrate and manufacture thereof
JP2000048823A (en) Non-sintering type electrode and manufacture thereof
CN101150193A (en) Battery electrode substrate and electrode using the same
JP4644336B2 (en) Method for producing positive electrode for alkaline storage battery
JP2002175833A (en) Alkali secondary battery
JP3567021B2 (en) Alkaline secondary battery
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JP2006040698A (en) Positive electrode for alkaline storage battery and alkaline storage battery
JP3094033B2 (en) Nickel hydride rechargeable battery
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4536289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term