JP4997529B2 - Nickel electrode for alkaline battery and method for producing the same - Google Patents
Nickel electrode for alkaline battery and method for producing the same Download PDFInfo
- Publication number
- JP4997529B2 JP4997529B2 JP2006247119A JP2006247119A JP4997529B2 JP 4997529 B2 JP4997529 B2 JP 4997529B2 JP 2006247119 A JP2006247119 A JP 2006247119A JP 2006247119 A JP2006247119 A JP 2006247119A JP 4997529 B2 JP4997529 B2 JP 4997529B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- nickel
- nonwoven fabric
- active material
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims description 251
- 229910052759 nickel Inorganic materials 0.000 title claims description 126
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000000835 fiber Substances 0.000 claims description 103
- 239000004745 nonwoven fabric Substances 0.000 claims description 89
- 239000011149 active material Substances 0.000 claims description 49
- 238000007747 plating Methods 0.000 claims description 28
- -1 polyethylene Polymers 0.000 claims description 28
- 239000000758 substrate Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 15
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims description 15
- 239000004743 Polypropylene Substances 0.000 claims description 12
- 229920001155 polypropylene Polymers 0.000 claims description 12
- 239000004698 Polyethylene Substances 0.000 claims description 11
- 229920000573 polyethylene Polymers 0.000 claims description 11
- 229920000098 polyolefin Polymers 0.000 claims description 7
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 3
- 150000001869 cobalt compounds Chemical class 0.000 claims description 2
- 238000000034 method Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 14
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 12
- 238000012423 maintenance Methods 0.000 description 11
- 238000007599 discharging Methods 0.000 description 10
- 238000012856 packing Methods 0.000 description 8
- 230000008961 swelling Effects 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910018003 Mm-Ni-Co-Al-Mn Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910002640 NiOOH Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- OSOVKCSKTAIGGF-UHFFFAOYSA-N [Ni].OOO Chemical compound [Ni].OOO OSOVKCSKTAIGGF-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 229910000483 nickel oxide hydroxide Inorganic materials 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- AIBQNUOBCRIENU-UHFFFAOYSA-N nickel;dihydrate Chemical compound O.O.[Ni] AIBQNUOBCRIENU-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、アルカリ電池用ニッケル極及びその製造方法に関する。特に、充放電サイクル特性に優れるアルカリ電池用ニッケル極及びその製造方法に関する。 The present invention relates to a nickel electrode for an alkaline battery and a method for producing the same. In particular, the present invention relates to an alkaline battery nickel electrode excellent in charge / discharge cycle characteristics and a method for producing the same.
従来、携帯用、移動用、産業用機器の電源に一次電池あるいは二次電池が利用されている。後者の二次電池としては、鉛蓄電池、アルカリ二次電池、リチウムイオン二次電池が広く利用されている。中でも、アルカリ二次電池は、高信頼、長寿命、リチウムイオン二次電池に比べて安価、さらに小型軽量化が可能といった特徴がある。代表的なアルカリ二次電池としては、ニッケル‐水素電池、ニッケル‐カドミウム電池が挙げられる。 Conventionally, primary batteries or secondary batteries have been used as power sources for portable, mobile and industrial equipment. As the latter secondary battery, a lead storage battery, an alkaline secondary battery, and a lithium ion secondary battery are widely used. Among them, the alkaline secondary battery is characterized by high reliability, long life, low cost compared to the lithium ion secondary battery, and further capable of being reduced in size and weight. Typical alkaline secondary batteries include nickel-hydrogen batteries and nickel-cadmium batteries.
また近年、省エネルギー、環境保全の立場からエンジンと電気モータとの双方を備えるハイブリッド自動車や電気自動車が実用されている。これらの電源には、アルカリ二次電池、主にニッケル‐水素電池が現在利用されている。 In recent years, hybrid vehicles and electric vehicles equipped with both an engine and an electric motor have been put into practical use from the standpoint of energy saving and environmental protection. Alkaline secondary batteries, mainly nickel-hydrogen batteries, are currently used for these power sources.
ところで、携帯用小型機器から産業用大型機器までの各種装置の電源として汎用されているアルカリ二次電池のほとんどは、正極にニッケル極を使用している。ニッケル極は集電機能を備える集電体に電池反応を生起させるための正極活物質を保持させた構成である。集電体にはポケット式や焼結式といった構造のものが古くから利用されており、活物質には、例えばニッケル‐水素電池の場合、水酸化ニッケルが主活物質として利用されている。 By the way, most of the alkaline secondary batteries that are widely used as power sources for various devices ranging from portable small devices to industrial large devices use nickel electrodes as positive electrodes. The nickel electrode has a structure in which a positive electrode active material for causing a battery reaction is held in a current collector having a current collecting function. For collectors, those having a structure such as a pocket type and a sintered type have been used for a long time. For example, in the case of a nickel-hydrogen battery, nickel hydroxide is used as a main active material.
また、さらなるニッケル極の低廉化や高容量化を実現する技術が提案されている。例えば、低廉化の技術としては、パンチングメタル等の二次元構造の金属多孔体を用いることが提案されており、高容量化の技術としては、三次元網状構造の発泡状ニッケルを集電体に用いることが提案されている。 In addition, a technique for further reducing the cost and increasing the capacity of the nickel electrode has been proposed. For example, as a technology for reducing the cost, it has been proposed to use a porous metal body having a two-dimensional structure such as punching metal. As a technology for increasing the capacity, a foamed nickel having a three-dimensional network structure is used as a current collector. It has been proposed to use.
発泡状ニッケルは一般的に、ウレタン樹脂でできた発泡状シートにニッケルめっきを施した後、ウレタン樹脂を焼失させ、残った網状構造のニッケルを還元性雰囲気下で焼鈍することで製造される。この発泡状ニッケルにペースト状の活物質を充填し、加圧することでニッケル極が得られる。発泡状ニッケルは、多孔度(体積に対する空隙の割合)が大きく、保持する活物質の量が多くなり、高容量化が可能である。しかし、発泡状ニッケルは強度が低く、損傷が生じ易い。例えば、得られたシート状のニッケル極と負極との間にセパレータを挟んで捲回し、この渦巻状の電極群を円筒形の電池ケースに挿入して円筒形電池を製造する際、ニッケル極に亀裂が生じることがある。また、発泡状ニッケルを製造する際のウレタン樹脂に対するニッケルめっきの目付け重量は一般的に350g/m2〜600g/m2である。 Foamed nickel is generally produced by subjecting a foamed sheet made of urethane resin to nickel plating, then burning away the urethane resin, and annealing the remaining network nickel in a reducing atmosphere. A nickel electrode is obtained by filling the foamed nickel with a paste-like active material and pressurizing it. Foamed nickel has a large porosity (ratio of voids to volume), increases the amount of active material to be held, and can increase the capacity. However, foam nickel is low in strength and easily damaged. For example, when a cylindrical battery is manufactured by inserting the spiral electrode group into a cylindrical battery case by winding a separator between the obtained sheet-like nickel electrode and a negative electrode, Cracks may occur. Also, the basis weight by weight of the nickel plating for the urethane resin in the production of foamed nickel is generally 350g / m 2 ~600g / m 2 .
そこで、発泡状ニッケルに代わる、三次元構造の新たな集電体が提案されている。具体的には、この集電体は、強度に優れる有機繊維から成る不織布にニッケルめっきを施し、不織布の繊維を除去することなくそのまま残すことで、強度特性に優れる。このニッケルめっきを施した不織布にペースト状の活物質を充填し、加圧することでニッケル極が得られる。 Therefore, a new current collector having a three-dimensional structure has been proposed in place of foamed nickel. Specifically, the current collector is excellent in strength characteristics by performing nickel plating on a nonwoven fabric made of organic fibers having excellent strength and leaving the nonwoven fabric without removing the fibers. A nickel electrode is obtained by filling the nickel-plated nonwoven fabric with a paste-like active material and pressurizing it.
このような不織布を用いた集電体に関する技術が、例えば特許文献1に開示されている。 For example, Patent Document 1 discloses a technique related to a current collector using such a nonwoven fabric.
特許文献1には、ポリプロピレンやポリエチレンの繊維から成る不織布にニッケルめっきを施すことで繊維表面にニッケルめっき膜が形成された集電体が開示されている。また、電極は、活物質ペーストが充填された集電体を、乾燥した後、ロールプレスで加圧成形して製造する。 Patent Document 1 discloses a current collector in which a nickel plating film is formed on a fiber surface by applying nickel plating to a nonwoven fabric made of polypropylene or polyethylene fibers. Further, the electrode is manufactured by drying a current collector filled with an active material paste, followed by pressure forming with a roll press.
しかし最近では、アルカリ二次電池の高容量化、高出力化だけでなく、充放電サイクル特性(寿命)が優れていることが求められている。 However, recently, it is required not only to increase the capacity and output of alkaline secondary batteries, but also to have excellent charge / discharge cycle characteristics (lifetime).
特に、過酷な使用条件、例えば周囲温度が40℃を超えるような高温環境での充放電や、常温でも電池の発熱が顕著となる大電流での急速な充放電においても安定してアルカリ二次電池が動作することが求められている。 In particular, even under harsh usage conditions, such as charging / discharging in a high temperature environment where the ambient temperature exceeds 40 ° C, or rapid charging / discharging at a large current where the heat generation of the battery becomes remarkable even at room temperature, the alkaline secondary is stable. The battery is required to operate.
本発明は上記の事情に鑑みてなされたものであり、その目的の一つは、高容量、高出力であると共に、充放電サイクル特性に優れるアルカリ電池用ニッケル極を提供することである。 The present invention has been made in view of the above circumstances, and one of its purposes is to provide a nickel electrode for an alkaline battery that has high capacity and high output and is excellent in charge / discharge cycle characteristics.
また、本発明の別の目的は、高容量、高出力であると共に、充放電サイクル特性に優れるアルカリ電池用ニッケル極の製造方法を提供することである。 Another object of the present invention is to provide a method for producing a nickel electrode for an alkaline battery that has high capacity and high output and is excellent in charge / discharge cycle characteristics.
従来提案されている集電体に用いる不織布は、繊維がランダムに配向している。このような不織布にニッケルめっきを施した集電体を用いたニッケル極は、常温環境で使用した場合、実用上問題がない程度の充放電サイクル特性を有する。しかし、上記ニッケル極は、例えば40℃以上の高温環境で使用した場合、充放電サイクル初期から電池容量が低下し、充放電サイクル特性の低下が顕著となることが分かった。 In the nonwoven fabric used for the conventionally proposed current collector, the fibers are randomly oriented. A nickel electrode using a current collector obtained by applying nickel plating to such a nonwoven fabric has charge / discharge cycle characteristics that are practically not problematic when used in a room temperature environment. However, it has been found that when the nickel electrode is used in a high temperature environment of, for example, 40 ° C. or more, the battery capacity is reduced from the beginning of the charge / discharge cycle, and the charge / discharge cycle characteristics are significantly reduced.
アルカリ二次電池のニッケル極(正極)では、基本的に、充電時には活物質である放電状態の水酸化ニッケル(Ni(OH)2)がオキシ水酸化ニッケル(NiOOH)となる反応が起り、放電時はその逆の反応が起こる。そして、この充放電反応を繰り返すことによりニッケル極の膨潤が起こることが知られている。膨潤が進行すると、集電体と活物質との密着性の低下や活物質の利用率の低下により、容量特性や高率放電特性が低下し、また、セパレータ内の電解液の減少により、充放電特性も低下する。特に、周囲温度が40℃以上の高温環境での充放電や、大電流での急速な充放電といった過酷な使用条件では、膨潤は加速度的に起り易くなると推測される。 In the nickel electrode (positive electrode) of an alkaline secondary battery, basically, a reaction occurs in which nickel hydroxide (Ni (OH) 2 ) in the discharged state, which is an active material, becomes nickel oxyhydroxide (NiOOH) during charging. Sometimes the opposite happens. It is known that the nickel electrode swells by repeating this charge / discharge reaction. As the swelling progresses, the capacity characteristics and the high rate discharge characteristics decrease due to a decrease in the adhesion between the current collector and the active material and a decrease in the utilization factor of the active material. Discharge characteristics also deteriorate. In particular, swelling is likely to occur at an accelerated rate under severe usage conditions such as charging / discharging in a high temperature environment where the ambient temperature is 40 ° C. or higher, and rapid charging / discharging at a large current.
そして、不織布を集電体に用いたニッケル極は、有機繊維が存在することで屈曲や引張りに対しては十分な強度を有するが、従来の発泡状ニッケルを集電体に用いたニッケル極と同じように、膨張に対しては強くなく、膨潤を抑えることが困難であると考えられる。 And the nickel electrode using the nonwoven fabric as the current collector has sufficient strength against bending and tension due to the presence of organic fibers, but the nickel electrode using the conventional foamed nickel as the current collector and Similarly, it is not strong against expansion and it is considered difficult to suppress swelling.
ここで、ニッケル極の膨潤を抑制するため、集電体に活物質を充填した後の加圧工程において、加圧度合いを高くすることが考えられる。つまり、加圧度合いを高めてニッケル極の厚みの減少率を大きくすることで、ニッケル極の膨張を押さえ込む。 Here, in order to suppress the swelling of the nickel electrode, it is conceivable to increase the degree of pressurization in the pressurization step after the current collector is filled with the active material. That is, the expansion of the nickel electrode is suppressed by increasing the degree of pressurization and increasing the decrease rate of the thickness of the nickel electrode.
しかし、単に加圧度合いを高めた場合、最終的に得られるニッケル極の伸びが顕著となり活物質の充填密度が高まらず、ニッケル極の成形性も低下し、極端な場合ニッケル極の変形や破損を引き起こす等の問題が生じる。 However, when the degree of pressurization is simply increased, the elongation of the finally obtained nickel electrode becomes noticeable and the packing density of the active material does not increase, and the formability of the nickel electrode also decreases. Cause problems.
そこで、本発明者らは、ニッケル極の伸びの抑制と厚みの減少率の向上とを考慮して検討した結果、不織布の繊維方向を一定の方向にして加圧することが好ましいとの知見を得た。この知見に基づき、本発明を規定する。 Therefore, the present inventors have studied in consideration of the suppression of the elongation of the nickel electrode and the improvement of the reduction rate of the thickness, and as a result, obtained the knowledge that it is preferable to press the fiber direction of the nonwoven fabric in a certain direction. It was. Based on this finding, the present invention is defined.
本発明のアルカリ電池用ニッケル極の製造方法は、ポリオレフィン繊維から成る不織布にニッケルめっきを施した集電体に、活物質を充填して電極基材を作製し、この電極基材を加圧する。特に、本発明の製造方法は、繊維の大部分が一方向に配向している不織布を用意する工程と、不織布にニッケルめっきを施した集電体に活物質を充填して電極基材を作製する工程と、電極基材を繊維方向に沿ってロール加圧する工程とを具える。 In the method for producing a nickel electrode for an alkaline battery according to the present invention, an active material is filled in a current collector obtained by applying nickel plating to a nonwoven fabric made of polyolefin fibers, and the electrode substrate is pressurized. In particular, the manufacturing method of the present invention includes a step of preparing a nonwoven fabric in which most of the fibers are unidirectionally oriented, and a current collector in which the nonwoven fabric is nickel-plated is filled with an active material to produce an electrode substrate. And a step of roll pressing the electrode substrate along the fiber direction.
本発明のアルカリ電池用ニッケル極は、ポリオレフィン繊維から成る不織布にニッケルめっきを施した集電体に、活物質を充填して電極基材を作製し、この電極基材を加圧して成る。特に、本発明のニッケル極は、不織布を構成する繊維の大部分が一方向に配向しており、集電体に活物質を充填した電極基材を繊維方向に沿ってロール加圧して成る。 The nickel electrode for alkaline batteries of the present invention is prepared by filling an active material into a current collector obtained by applying nickel plating to a nonwoven fabric made of polyolefin fibers, and pressurizing the electrode substrate. In particular, the nickel electrode of the present invention is formed by roll-pressing an electrode base material in which an active material is filled in a current collector, with most of the fibers constituting the nonwoven fabric oriented in one direction.
繊維方向とロール加圧方向とを同じとすることで、ニッケル極の伸びを抑制すると共にニッケル極の厚みを容易に減少させることができるので、充放電に伴うニッケル極の膨張を抑え、ニッケル極の膨潤抑制力を高めることができる。また、ニッケル極の活物質の充填密度を高めることができると共に、集電体と活物質との密着性を高め、活物質の利用率を高めることができる。 By making the fiber direction and the roll pressing direction the same, it is possible to suppress the expansion of the nickel electrode and easily reduce the thickness of the nickel electrode. It is possible to increase the swelling suppression power. Further, the packing density of the active material of the nickel electrode can be increased, the adhesion between the current collector and the active material can be increased, and the utilization factor of the active material can be increased.
ニッケル極の伸びが抑制されると共に厚みの減少率が大きくなる理由としては、不織布の大部分の繊維が一方向に配向しており、繊維方向に沿ってロール加圧することで、厚さ方向に重なり合う繊維が繊維同士の間に入り込み易いことが考えられる。また、繊維の並ぶ方向が揃っているので、繊維方向の強度が高く、ニッケル極の伸びが抑制されると考えられる。 The reason why the elongation of the nickel electrode is suppressed and the reduction rate of the thickness is increased is that most of the fibers of the nonwoven fabric are oriented in one direction, and roll pressurization is performed along the fiber direction. It is conceivable that the overlapping fibers easily enter between the fibers. Moreover, since the direction in which the fibers are arranged is uniform, it is considered that the strength in the fiber direction is high and the elongation of the nickel electrode is suppressed.
これに対し、従来提案されている集電体に用いる不織布は、繊維がランダムに配向しており、厚さ方向に重なり合う繊維同士の交差箇所が多く、ロール加圧した際、ニッケル極に伸びが生じ易く、かつ厚みの減少率が小さくなると考えられる。 In contrast, in the conventionally proposed nonwoven fabric used for the current collector, the fibers are randomly oriented, and there are many intersections between fibers that overlap in the thickness direction. This is likely to occur, and the thickness reduction rate is considered to be small.
加圧は、生産性の点からロール加圧とする。ロール加圧は、例えばローラープレス機を用いることで、ニッケル極を連続的に製造することができ、生産性を向上させることができる。なお、加圧はプレス機を用いてもよいが、本願の効果はロール加圧の場合に十分発揮される。 The pressurization is roll pressurization from the viewpoint of productivity. Roll pressurization can produce a nickel electrode continuously, for example by using a roller press, and can improve productivity. In addition, although press may use a press machine, the effect of this application is fully exhibited in the case of roll pressurization.
加圧後のニッケル極の厚みは、加圧前の電極基材の厚みの30%以上70%以下であることが好ましい。特に好ましくは40%以上60%以下である。 The thickness of the nickel electrode after pressurization is preferably 30% or more and 70% or less of the thickness of the electrode substrate before pressurization. Particularly preferably, it is 40% or more and 60% or less.
ニッケル極の厚みの減少率をこのような範囲とすることで、ニッケル極の損傷を防止すると共に、ニッケル極の膨張を抑え、ニッケル極の膨潤抑制力をより高めることができる。また、ニッケル極の活物質の充填密度を高めることができる。 By setting the reduction rate of the thickness of the nickel electrode in such a range, damage to the nickel electrode can be prevented, the expansion of the nickel electrode can be suppressed, and the swelling suppression force of the nickel electrode can be further increased. Moreover, the packing density of the active material of the nickel electrode can be increased.
不織布を構成するポリオレフィン繊維は、ポリエチレン、ポリプロピレン、これらの混合物からなる群から選択される一種を含有することが好ましい。混合物にはポリエチレンとポリプロピレンの共重合体が含まれる。また、不織布を構成する繊維は、同群から選択される一種を主成分としてもよいし、一種のみからなるものとしてもよい。繊維の具体例としては、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンとポリプロピレンの混合繊維の他、中心部をポリプロピレンとし、その上にポリエチレンを被覆した被覆繊維が挙げられる。 The polyolefin fiber constituting the nonwoven fabric preferably contains one kind selected from the group consisting of polyethylene, polypropylene, and mixtures thereof. The mixture includes a copolymer of polyethylene and polypropylene. Moreover, the fiber which comprises a nonwoven fabric is good also as what consists of only 1 type selected from the same group as a main component. Specific examples of the fibers include polyethylene fibers, polypropylene fibers, mixed fibers of polyethylene and polypropylene, and coated fibers in which the central portion is polypropylene and polyethylene is coated thereon.
このような繊維がニッケル極(集電体)内に存在することにより、ニッケル極に十分な強度を付与することができる。例えば電極群作製の際、ニッケル極に発生する亀裂の度合いを少なくすることができる。 When such a fiber exists in the nickel electrode (current collector), sufficient strength can be imparted to the nickel electrode. For example, it is possible to reduce the degree of cracking that occurs in the nickel electrode during electrode group production.
集電体のニッケルめっき量は、50g/m2以上350g/m2以下であることが好ましい。特に好ましくは100g/m2以上300g/m2以下である。 The nickel plating amount of the current collector is preferably 50 g / m 2 or more and 350 g / m 2 or less. Particularly preferred is 100 g / m 2 or more and 300 g / m 2 or less.
ニッケルめっき量をこのような範囲とすることで、ニッケル使用量を低減することができる。また、集電体の孔径が小さくなり過ぎず、集電体が適度な多孔度を有することとなり、ニッケル極の活物質の充填密度を高めることができると共に、集電体と活物質との密着性を高め、活物質の利用率を高めることができる。高出力化という点では、ニッケルめっき量を多くすることが好ましい。 The nickel usage-amount can be reduced by making nickel plating amount into such a range. Moreover, the pore diameter of the current collector does not become too small, the current collector has an appropriate porosity, and the packing density of the active material of the nickel electrode can be increased, and the current collector and the active material are in close contact with each other. And the utilization rate of the active material can be increased. In terms of higher output, it is preferable to increase the amount of nickel plating.
活物質は、水酸化ニッケルとコバルトあるいはコバルト化合物を含有することが好ましく、特に、表面にオキシ水酸化コバルト層が形成された水酸化ニッケルを含有することが好ましい。 The active material preferably contains nickel hydroxide and cobalt or a cobalt compound, and particularly preferably contains nickel hydroxide having a cobalt oxyhydroxide layer formed on the surface.
主活物質である水酸化ニッケルにコバルト等を含有することで、導電性を改善し、活物質の利用率を高めることができる。特に、オキシ水酸化コバルト層が形成された水酸化ニッケルを含有することで、活物質の利用率をより高めることができる。また、水酸化ニッケルの形状は、活物質の充填性、集電体との密着性といった点から、球状とすることが好ましい。 By containing cobalt or the like in nickel hydroxide, which is the main active material, conductivity can be improved and the utilization rate of the active material can be increased. In particular, the utilization rate of the active material can be further increased by containing nickel hydroxide in which a cobalt oxyhydroxide layer is formed. The shape of the nickel hydroxide is preferably spherical from the viewpoints of active material filling and adhesion to the current collector.
本発明のニッケル極は、以下の効果を奏する。
1.活物質の密度充填が高く、エネルギー密度が高い(高容量)。
2.集電体と活物質との密着性が高く、活物質の利用率が高い(高出力)。
3.膨潤抑制力が高く、充放電サイクル特性に優れる(長寿命)。
The nickel electrode of the present invention has the following effects.
1. High density packing of active material, high energy density (high capacity).
2. The adhesion between the current collector and the active material is high, and the utilization rate of the active material is high (high output).
3. Swelling inhibiting power is high and charge / discharge cycle characteristics are excellent (long life).
また、本発明のニッケル極は、本発明の製造方法により製造することができる。 Moreover, the nickel electrode of this invention can be manufactured with the manufacturing method of this invention.
以下、本発明のニッケル極の構成をより詳しく説明する。 Hereinafter, the configuration of the nickel electrode of the present invention will be described in more detail.
本発明に用いる不織布は、大部分の繊維が一方向に配向された第一繊維群と残部の繊維が第一繊維群の方向と交差方向に配向された第二繊維群とから構成される。ここでは、不織布を構成する大部分の繊維の方向、即ち第一繊維群の繊維の方向を不織布の繊維方向と呼ぶ。このような不織布は、乾式法や湿式法といった公知の方法を利用して作製することができる。また、不織布に交絡処理や熱処理を施して、繊維同士を絡ませた後に熱融着させることで、繊維同士の密着力を向上させて不織布の強度を高めてもよい。不織布を構成する第一繊維群の繊維の本数割合は、多い方が好ましいが、不織布の強度や活物質の充填性を考慮して55%以上90%以下が好ましい。下限値のより好ましい値は60%以上、さらにより好ましくは65%以上、さらにより好ましくは70%以上、さらにより好ましくは75%以上である。上限値のより好ましい値は85%以下である。 The nonwoven fabric used in the present invention is composed of a first fiber group in which most of the fibers are oriented in one direction and a second fiber group in which the remaining fibers are oriented in the direction intersecting with the direction of the first fiber group. Here, the direction of most fibers constituting the nonwoven fabric, that is, the direction of the fibers of the first fiber group is referred to as the fiber direction of the nonwoven fabric. Such a nonwoven fabric can be produced using a known method such as a dry method or a wet method. Moreover, the non-woven fabric may be subjected to an entanglement treatment or heat treatment so that the fibers are entangled and then thermally fused, thereby improving the adhesion between the fibers and increasing the strength of the nonwoven fabric. The number ratio of the fibers of the first fiber group constituting the nonwoven fabric is preferably large, but is preferably 55% or more and 90% or less in consideration of the strength of the nonwoven fabric and the fillability of the active material. A more preferable value of the lower limit value is 60% or more, still more preferably 65% or more, still more preferably 70% or more, and even more preferably 75% or more. A more preferable value of the upper limit is 85% or less.
前記不織布は、市販の不織布製造装置を利用して作製することができる。前記装置の種々の設定を変更することで、一方向に配向する繊維の割合を変化させ、残りの繊維をその方向と異なる方向に配向させて絡ませた不織布を作製することができる。ここで、不織布中に存在する一方向に配向した繊維(第一繊維群)の割合は、顕微鏡を用いて1インチ角の任意の領域を観察し、前記領域の横軸と交差する繊維の本数aと、前記領域の縦軸と交差する繊維の本数bとを求め、[a/(a+b)]により求める。なお、任意の領域は10ヶ所選択し、第一繊維群の割合はその平均値から求める。 The said nonwoven fabric can be produced using a commercially available nonwoven fabric manufacturing apparatus. By changing various settings of the apparatus, it is possible to produce a nonwoven fabric in which the proportion of fibers oriented in one direction is changed, and the remaining fibers are oriented in a direction different from that direction and entangled. Here, the ratio of the fibers (first fiber group) oriented in one direction existing in the nonwoven fabric is determined by observing an arbitrary area of 1 inch square using a microscope, and the number of fibers intersecting the horizontal axis of the area. a and the number b of the fibers intersecting with the vertical axis of the region are obtained and obtained by [a / (a + b)]. In addition, 10 arbitrary regions are selected, and the ratio of the first fiber group is obtained from the average value.
不織布の厚みは適宜決定すればよい。不織布の厚みを厚くすることで、集電体が保持する活物質の量を多くすることができる。ただし、一般的なアルカリ電池に使用されるニッケル極の厚みは、高出力タイプでは400μm〜550μm程度であり、高容量タイプでは550μm〜800μm程度である。よって、例えば厚さが550μmのニッケル極を作製する場合、上記したニッケル極の厚みの減少率(電極基材の厚みの30%〜70%)を考慮して、不織布の厚みは785μm〜1833μm程度とすればよい。また、不織布の目付け重量は、20g/m2以上100g/m2以下であることが好ましい。 What is necessary is just to determine the thickness of a nonwoven fabric suitably. By increasing the thickness of the nonwoven fabric, the amount of the active material held by the current collector can be increased. However, the thickness of the nickel electrode used in a general alkaline battery is about 400 μm to 550 μm for the high output type, and about 550 μm to 800 μm for the high capacity type. Therefore, for example, when producing a nickel electrode having a thickness of 550 μm, the thickness of the nonwoven fabric is about 785 μm to 1833 μm in consideration of the reduction rate of the nickel electrode thickness (30% to 70% of the thickness of the electrode substrate). And it is sufficient. The weight of the nonwoven fabric is preferably 20 g / m 2 or more and 100 g / m 2 or less.
不織布へのニッケルめっきは、公知の電解めっき法を利用すればよい。なお、不織布にニッケルめっきを施す前に、不織布表面、より具体的には不織布を構成する繊維表面に導電性を付与する。この導電性を付与する手段としては、無電解めっき法、スパッタリング法を用いることができる。導電性を付与した不織布にニッケルめっき浴を用いて電気ニッケルめっきを施すことで、繊維表面にニッケル層が形成された集電体を作製することができる。めっき浴としては、ワット浴、塩化浴、スルファミン酸浴が挙げられる。 For the nickel plating on the nonwoven fabric, a known electrolytic plating method may be used. In addition, before giving nickel plating to a nonwoven fabric, electroconductivity is provided to the nonwoven fabric surface, more specifically the fiber surface which comprises a nonwoven fabric. As a means for imparting this conductivity, an electroless plating method or a sputtering method can be used. A current collector in which a nickel layer is formed on the fiber surface can be produced by applying electro-nickel plating to the nonwoven fabric provided with conductivity using a nickel plating bath. Examples of the plating bath include a watt bath, a chloride bath, and a sulfamic acid bath.
不織布にニッケルめっきを施した集電体の多孔度は85%〜98%であることが好ましい。集電体の多孔度をこのような範囲とすることで、活物質の充填性に優れ、ニッケル極の活物質の充填密度を高めることができる。 The porosity of the current collector obtained by subjecting the nonwoven fabric to nickel plating is preferably 85% to 98%. By setting the porosity of the current collector in such a range, the active material can be filled with good density and the packing density of the active material of the nickel electrode can be increased.
集電体に活物質を充填した後のロール加圧は、例えばローラープレス機を用いることができる。また、ローラー表面に凹凸を設けて、ニッケル極にエンボス加工を施してもよい。 Roll pressurization after filling the current collector with the active material can use, for example, a roller press. Moreover, unevenness may be provided on the roller surface, and the nickel electrode may be embossed.
本発明のニッケル極は、ニッケル‐水素電池の他、ニッケル‐カドミウム電池、ニッケル‐亜鉛電池などのアルカリ二次電池の正極として利用することができる。ニッケル‐水素電池は、例えば、ポリオレフィン不織布を親水性処理したセパレータと水素吸蔵合金から成る負極とを用意し、ニッケル極と負極との間にセパレータを挟んで電極群を作製する。円筒形電池の場合は、捲回して渦巻状とした電極群を電池ケースに挿入した後、電解液を注入し、ニッケル極の端子を蓋部に溶接して、封口を行う。角形電池の場合は、通常、1端子形のニッケル極とし、ニッケル極と負極とをセパレータを介して重ねて積層構造とした電極群を電池ケースに挿入する。高出力タイプの電池とする場合、いわゆるタブレス方式を採用してもよい。なお、ニッケル‐カドミウム電池の場合、セパレータにポリアミド不織布を用いてもよい。 The nickel electrode of the present invention can be used as a positive electrode for alkaline secondary batteries such as nickel-cadmium batteries and nickel-zinc batteries, in addition to nickel-hydrogen batteries. In the nickel-hydrogen battery, for example, a separator obtained by hydrophilic treatment of a polyolefin nonwoven fabric and a negative electrode made of a hydrogen storage alloy are prepared, and an electrode group is manufactured by sandwiching the separator between the nickel electrode and the negative electrode. In the case of a cylindrical battery, a wound and wound electrode group is inserted into a battery case, an electrolyte is injected, a nickel electrode terminal is welded to the lid, and sealing is performed. In the case of a rectangular battery, a single-terminal nickel electrode is usually used, and an electrode group having a laminated structure in which the nickel electrode and the negative electrode are stacked with a separator interposed therebetween is inserted into the battery case. When a high output type battery is used, a so-called tabless method may be employed. In the case of a nickel-cadmium battery, a polyamide nonwoven fabric may be used for the separator.
本発明ニッケル極を用いて、高出力タイプのニッケル‐水素電池を作製し、電極の性能評価を行った。 Using the nickel electrode of the present invention, a high-power type nickel-hydrogen battery was fabricated and the performance of the electrode was evaluated.
<不織布の作製>
図1は、実施例に用いた不織布の模式図であり、不織布表面から見ている。矢印は、不織布にニッケルめっきを施した集電体に活物質を充填して得られる電極基材をロール加圧する際の電極基材の送り方向を示している。不織布10は、一定の方向を向いた多くの繊維11(第一繊維群の繊維)と、その方向と異なる方向を向いた残りの繊維12(第二繊維群の繊維)と、から構成されている。ここでは、繊維11はほぼ一方向に配向しており、繊維12は上記方向とほぼ直角方向に配向している。なお後述するように、電極基材をロール加圧する際は、不織布の繊維方向(繊維11の方向)と電極基材の送り方向とを同じにする。
<Production of non-woven fabric>
FIG. 1 is a schematic view of the nonwoven fabric used in the examples, as viewed from the nonwoven fabric surface. The arrows indicate the feed direction of the electrode base material when roll pressing the electrode base material obtained by filling the non-woven fabric with nickel plating and the active material. The
繊維には、ポリプロピレンを骨格とし、この骨格にポリエチレンを被覆した被覆繊維(平均繊維径15μm、ポリプロピレン50質量%、ポリエチレン50質量%)を用いた。そして、第一繊維群の本数割合が異なる不織布N1、N2、N3を作製した。各不織布は湿式法を用いて、目付け重量65g/m2、平均厚さ0.95mm(950μm)となるように作製した。得られた各不織布の多孔度及び孔径は、いずれも92%及び15〜200μmであった。また、不織布N1〜N3の第一繊維群と第二繊維群の本数割合は、それぞれ80:20、70:30、60:40とした。 As the fiber, a coated fiber (average fiber diameter 15 μm, polypropylene 50% by mass, polyethylene 50% by mass) in which polypropylene was used as the skeleton and polyethylene was coated on the skeleton was used. And the nonwoven fabrics N1, N2, and N3 from which the number ratio of the 1st fiber group differs were produced. Each nonwoven fabric was prepared by a wet method so that the weight per unit area was 65 g / m 2 and the average thickness was 0.95 mm (950 μm). The porosity and pore size of each nonwoven fabric obtained were 92% and 15 to 200 μm. Moreover, the number ratios of the first fiber group and the second fiber group of the nonwoven fabrics N1 to N3 were 80:20, 70:30, and 60:40, respectively.
比較のため、上記した各不織布と同じ繊維を用いて、ランダムに繊維が配向している不織布N4を作製した。この不織布も同じ方法を用いて、目付け重量65g/m2、平均厚さ0.95mm(950μm)となるように作製した。得られた不織布の多孔度及び孔径は、上記した各不織布と同等であった。 For comparison, a nonwoven fabric N4 in which fibers are randomly oriented was prepared using the same fibers as the above-described nonwoven fabrics. This non-woven fabric was also produced using the same method so that the weight per unit area was 65 g / m 2 and the average thickness was 0.95 mm (950 μm). The resulting nonwoven fabric had the same porosity and pore size as those of the nonwoven fabrics described above.
<電極基材の作製>
不織布N1〜N4にそれぞれニッケルめっきを施して集電体を作製した。具体的には、スパッタリング法で不織布表面に導電性を有する層を形成した後、ワット浴を用いて不織布に電解ニッケルめっきを行った。得られた集電体は、いずれも90%以上の多孔度を有する不織布状のニッケル多孔体であった。また、各集電体のニッケルめっき量は、いずれも200g/m2とした。
<Preparation of electrode substrate>
Non-woven fabrics N1 to N4 were each plated with nickel to produce current collectors. Specifically, after a conductive layer was formed on the nonwoven fabric surface by sputtering, electrolytic nickel plating was performed on the nonwoven fabric using a Watt bath. All of the obtained current collectors were non-woven nickel porous bodies having a porosity of 90% or more. Further, the nickel plating amount of each current collector was 200 g / m 2 .
次に、集電体に充填する正極活物質を作製した。具体的には、表面にオキシ水酸化コバルト層が形成された水酸化ニッケル粉末(コバルト4質量%含有)92重量部に、水酸化コバルト粉末4重量部とカルボキシメチルセルロース水溶液0.19重量部とを加え、混練してペーストとした。 Next, a positive electrode active material filled in the current collector was produced. Specifically, to 92 parts by weight of nickel hydroxide powder (containing 4% by weight of cobalt) having a cobalt oxyhydroxide layer formed on the surface, 4 parts by weight of cobalt hydroxide powder and 0.19 parts by weight of carboxymethyl cellulose aqueous solution were added, The paste was kneaded.
そして、公知のペースト圧入法を用いて各集電体に活物質ペーストを充填して電極基材を作製した。 Then, each current collector was filled with an active material paste using a known paste press-fitting method to produce an electrode substrate.
図2は、繊維の大部分が一方向に配向している不織布を集電体に用いた電極基材の模式断面図であり、電極基材の厚さ方向に切断している。繊維21の表面にはニッケル層23が形成され、繊維同士の交差箇所22ではこの箇所を覆うように連続したニッケル層23が形成されていた。また、電極基材20には、活物質24が均一かつ高密度に充填されていた。矢印は、ロール加圧する際の電極基材の加圧(圧縮)方向を示している。
FIG. 2 is a schematic cross-sectional view of an electrode base material using a nonwoven fabric in which most of the fibers are oriented in one direction as a current collector, and is cut in the thickness direction of the electrode base material. A
<ニッケル極の作製>
不織布N1〜N4を集電体に用いた各電極基材を、長さ270mm、幅40mmとなるように裁断した後、ローラープレス機を用いて各電極基材を長さ方向にロール加圧し、ニッケル極を作製した。なお、不織布N1〜N3については、長さ方向と繊維方向とが同じになるように裁断し、繊維方向に沿ってロール加圧した。
<Production of nickel electrode>
After cutting each electrode base material using the nonwoven fabric N1 to N4 as a current collector to a length of 270 mm and a width of 40 mm, each electrode base material is roll-pressed in the length direction using a roller press machine, A nickel electrode was prepared. In addition, about nonwoven fabric N1-N3, it cut | judged so that a length direction and a fiber direction might become the same, and roll-pressed along the fiber direction.
ローラープレス機は直径が300mmの一対のローラーにより構成され、ローラー間のスリットを100μm、電極基材の送り速度を50cm/分とした。また、ローラー表面には凹凸が設けられており、ニッケル極にエンボス加工を施した。 The roller press was composed of a pair of rollers having a diameter of 300 mm, the slit between the rollers was 100 μm, and the feed rate of the electrode substrate was 50 cm / min. Moreover, the roller surface was provided with unevenness, and the nickel electrode was embossed.
不織布N1〜N4を用いたニッケル極をそれぞれ電極a、b、c、dとし、得られた各電極の、長さ方向の伸び率、厚さ、容積エネルギー密度(mAh/cc)を求めた。結果を表1に示す。ここで、伸び率は[(電極の長さ/電極基材の長さ)−1]により求め、容積エネルギー密度は活物質(水酸化ニッケル)の充填量から計算で求めた。なお、表中の値は各電極10枚の平均値である。 The nickel electrodes using non-woven fabrics N1 to N4 were designated as electrodes a, b, c, and d, respectively, and the elongation, thickness, and volume energy density (mAh / cc) in the length direction of the obtained electrodes were determined. The results are shown in Table 1. Here, the elongation percentage was obtained by [(electrode length / electrode substrate length) -1], and the volumetric energy density was obtained by calculation from the filling amount of the active material (nickel hydroxide). The values in the table are average values of 10 electrodes.
表1から明らかなように、電極dと比較して、本発明の電極a〜cは、電極の伸び率が小さく、厚みの減少率が大きくなった。また、本発明の電極は、活物質の充填密度が高く、容積エネルギー密度が高くなった。特に、不織布の第一繊維群の割合が多い方が、電極の伸びが抑制され、かつ厚みの減少率が大きくなり、活物質の充填密度が高くなる傾向が見られた。 As is apparent from Table 1, the electrodes a to c of the present invention have a smaller electrode elongation rate and a greater thickness reduction rate than the electrode d. Further, the electrode of the present invention has a high packing density of the active material and a high volumetric energy density. In particular, when the proportion of the first fiber group of the nonwoven fabric was larger, the electrode elongation was suppressed, the reduction rate of the thickness was increased, and the filling density of the active material was increased.
<電池の作製>
得られた電極を正極として用いたSubCサイズのニッケル‐水素電池を作製した。この電池は、正極と負極との間にセパレータを挟んで渦巻状とした電極群を、電池ケースに挿入した後、電解液を注入し、封口を行うことで作製した。そして、電極a〜dを用いた電池をそれぞれ電池A、B、C、Dとした。
<Production of battery>
A SubC size nickel-hydrogen battery using the obtained electrode as a positive electrode was fabricated. This battery was prepared by inserting a spiral electrode group with a separator between a positive electrode and a negative electrode into a battery case, injecting an electrolyte, and sealing. The batteries using the electrodes a to d were designated as batteries A, B, C, and D, respectively.
電池作製前に、電極a〜dの成形を行った。具体的には、各電極を長さ270mm、幅32mmとなるように裁断し、正極と負極との計算容量比が1.5以上となるようにした。このときの電極a〜dの計算容量は、水酸化ニッケルの理論容量を289mAh/gとして、水酸化ニッケルの充填量から求めたところ、それぞれ2.40Ah、2.38Ah、2.29Ah、2.12Ahであった。 Prior to battery production, the electrodes a to d were formed. Specifically, each electrode was cut to have a length of 270 mm and a width of 32 mm so that the calculated capacity ratio of the positive electrode to the negative electrode was 1.5 or more. The calculated capacities of the electrodes a to d at this time were 2.40 Ah, 2.38 Ah, 2.29 Ah, and 2.12 Ah, respectively, when the theoretical capacity of nickel hydroxide was 289 mAh / g and obtained from the amount of nickel hydroxide charged. .
負極には、AB5系の水素吸蔵合金を用いた。具体的には、Mm-Ni系合金にAl、Mn及びCoを添加した、Mm-Ni-Co-Al-Mn5元系水素吸蔵合金(Mm:ミッシュメタル)を用い、正極と負極との計算容量比が1.5以上となるようにした。また、セパレータには、厚さ130μmの親水性処理を施したポリプロピレン不織布を用いた。電解液には、水酸化リチウムを添加した水酸化カリウム水溶液を用いた。 For the negative electrode, an AB5-based hydrogen storage alloy was used. Specifically, using Mm-Ni-Co-Al-Mn ternary hydrogen storage alloy (Mm: Misch metal) with Al, Mn and Co added to Mm-Ni alloy, the calculated capacity of the positive and negative electrodes The ratio was set to 1.5 or more. The separator was a polypropylene nonwoven fabric with a hydrophilic treatment having a thickness of 130 μm. As the electrolytic solution, an aqueous potassium hydroxide solution to which lithium hydroxide was added was used.
次に、各電池について、低率で3回の充放電を繰り返し、化成を行った。具体的には、0.1Cで計算容量の140%まで充電、0.2Cで終止電圧0.9Vまで放電を1回、0.2Cで計算容量の120%まで充電、0.2Cで終止電圧0.9Vまで放電を1回、0.5Cで計算容量の115%まで充電、0.5Cで終止電圧0.9Vまで放電を1回行って、化成を施した。 Next, each battery was formed by repeating charge and discharge three times at a low rate. Specifically, the battery is charged to 140% of the calculated capacity at 0.1C, discharged once to a final voltage of 0.9V at 0.2C, charged to 120% of the calculated capacity at 0.2C, and discharged to 0.9V at 0.2C. Chemical conversion was performed by charging once to 115% of the calculated capacity at 0.5 C and discharging once to 0.5 V at a final voltage of 0.5 V at 0.5 C.
<25℃での充放電サイクル特性>
25℃の常温環境にて、各電池A、B、C、Dの充放電サイクル特性を調べた。充放電条件は、充電:1Cの電流で−ΔV(5mV)方式の充電、放電:1Cの定電流で0.9Vまで放電、とし、これを1サイクルとして繰り返し行い、各サイクルでの容量維持率(利用率)を求めた。結果を表2に示す。なお、充放電サイクル初期(5サイクル)での放電容量がいずれの電池も計算容量の102%程度であったので、これを100%として各電池の容量維持率を求めた。
<Charge / discharge cycle characteristics at 25 ° C>
The charge / discharge cycle characteristics of the batteries A, B, C, and D were examined in a room temperature environment of 25 ° C. The charge and discharge conditions are: charge: 1C current with a -ΔV (5mV) charge, discharge: 1C constant current with a discharge of 0.9V, this is repeated as one cycle, and the capacity retention rate in each cycle ( Utilization rate). The results are shown in Table 2. Since the discharge capacity at the beginning of the charge / discharge cycle (5 cycles) was about 102% of the calculated capacity for all the batteries, the capacity maintenance rate of each battery was determined with this as 100%.
表2から明らかなように、いずれの電池も1300サイクルでの容量維持率が90%以上であった。しかし、電極dを用いた電池Dと比較して、本発明の電極a〜cを用いた電池A〜Cは、各サイクルで容量維持率が上回っており、中でも電池A、Bは、1300サイクルでの容量維持率が95%を超えていた。 As is clear from Table 2, the capacity retention rate at 1300 cycles of each battery was 90% or more. However, compared with the battery D using the electrode d, the batteries A to C using the electrodes a to c of the present invention have higher capacity retention ratios in each cycle. Among them, the batteries A and B have 1300 cycles. The capacity maintenance rate at was over 95%.
<45℃での充放電サイクル特性>
45℃の高温環境にて、同じ充放電条件で各電池A、B、C、Dの充放電サイクル特性を調べた。結果を表3に示す。なお、高温環境では電極の充電効率に若干の低下が見られ、充放電サイクル初期(5サイクル)での放電容量がいずれの電池も
計算容量の98%程度であったので、これを100%として各電池の容量維持率(利用率)を求めた。
<Charging / discharging cycle characteristics at 45 ° C>
The charge / discharge cycle characteristics of the batteries A, B, C, and D were examined under the same charge / discharge conditions in a high temperature environment of 45 ° C. The results are shown in Table 3. In the high temperature environment, there was a slight decrease in the charging efficiency of the electrodes, and the discharge capacity at the beginning of the charge / discharge cycle (5 cycles) was about 98% of the calculated capacity. The capacity maintenance rate (utilization rate) of each battery was determined.
高温環境では、常温環境と比較して、いずれの電池も少ない充放電サイクルで電池容量の低下が起き、充放電サイクル特性が低下する傾向が見られた。 In the high temperature environment, the battery capacity decreased with fewer charge / discharge cycles than in the normal temperature environment, and the charge / discharge cycle characteristics tended to decrease.
また、表3から明らかなように、電池A〜Cの容量維持率は、200サイクルで99%程度、300サイクルで90%以上であるのに対し、電池Dでは、200サイクルで95%程度、300サイクルで80%台にまで低下した。さらに、500サイクルでの電池A〜Cの容量維持率は81%以上であるのに対し、電池Dでは76%程度であった。中でも電池A、Bは、500サイクルでの容量維持率が85%を超えていた。 Further, as apparent from Table 3, the capacity maintenance rate of the batteries A to C is about 99% at 200 cycles and 90% or more at 300 cycles, whereas the battery D is about 95% at 200 cycles. Decreased to 80% in 300 cycles. Furthermore, the capacity maintenance rate of the batteries A to C at 500 cycles was 81% or more, while the battery D was about 76%. In particular, batteries A and B had a capacity retention rate of over 85% at 500 cycles.
各電池A、B、C、Dの高率放電特性を調べるために、25℃にて10C放電を行った。25℃での充放電サイクルを数回繰り返した後、25℃にて10C放電を行ったところ、いずれの電池も平均電圧が1.05V〜1.00Vであり、差はほとんど認められなかった。しかし、45℃での充放電サイクルを300回繰り返した後、25℃にて10C放電を行ったところ、電池A〜Cは0.985V〜0.980Vであるのに対し、電池Dでは0.910Vであった。また、電池Dは放電初期から電圧が低くなった。この結果から、本発明の電極は、高率放電での放電電圧の低下を抑制することができ、高率放電特性に優れていることが分かった。これは、本発明の電極が、集電体と活物質との密着性に優れていることが要因と考えられる。 In order to investigate the high rate discharge characteristics of each battery A, B, C, D, 10C discharge was performed at 25 ° C. After repeating the charge / discharge cycle at 25 ° C. several times, 10C discharge was carried out at 25 ° C. As a result, all batteries had an average voltage of 1.05 V to 1.00 V, and almost no difference was observed. However, after repeating the charge / discharge cycle at 45 ° C. 300 times and performing 10C discharge at 25 ° C., batteries A to C were 0.985V to 0.980V, while battery D was 0.910V. It was. Further, the voltage of the battery D became low from the initial discharge. From this result, it was found that the electrode of the present invention can suppress a decrease in discharge voltage in high rate discharge and is excellent in high rate discharge characteristics. This is considered to be because the electrode of the present invention is excellent in the adhesion between the current collector and the active material.
<電極の亀裂の有無>
さらに、充放電サイクル特性を調べた後、各電池A、B、C、Dの正極を取り出して亀裂の有無を確認したところ、いずれの電極にも亀裂が生じていなかった。
<Presence or absence of electrode cracks>
Further, after examining the charge / discharge cycle characteristics, the positive electrodes of the batteries A, B, C, and D were taken out and checked for cracks. No cracks were generated in any of the electrodes.
本発明ニッケル極を用いて、高容量タイプのニッケル‐水素電池を作製し、電極の性能評価を行った。 Using the nickel electrode of the present invention, a high capacity type nickel-hydrogen battery was fabricated and the performance of the electrode was evaluated.
<不織布の作製>
繊維には、平均繊維径20μmのポリエチレン繊維とポリプロピレン繊維とを用いた。そして、第一繊維群の本数割合が異なる不織布N5、N6、N7を作製した。ポリエチレン繊維とポリプロピレン繊維との本数割合を6:4とし、各不織布は実施例1と同じ方法(湿式法)を用いて、目付け重量70g/m2、平均厚さ1.41mm(1410μm)となるように作製した。得られた各不織布の多孔度及び孔径は、いずれも92%及び15〜200μmであった。また、不織布N5〜N7の第一繊維群と第二繊維群の本数割合は、それぞれ80:20、70:30、60:40とした。
<Production of non-woven fabric>
As the fibers, polyethylene fibers and polypropylene fibers having an average fiber diameter of 20 μm were used. And the nonwoven fabrics N5, N6, and N7 from which the number ratio of the 1st fiber group differs were produced. The ratio of the number of polyethylene fibers and polypropylene fibers is 6: 4, and each nonwoven fabric has a weight per unit area of 70 g / m 2 and an average thickness of 1.41 mm (1410 μm) using the same method (wet method) as in Example 1. It was prepared. The porosity and pore size of each nonwoven fabric obtained were 92% and 15 to 200 μm. Moreover, the number ratios of the first fiber group and the second fiber group of the nonwoven fabrics N5 to N7 were 80:20, 70:30, and 60:40, respectively.
比較のため、上記した各不織布と同じ繊維を用いて、ランダムに繊維が配向している不織布N8を作製した。この不織布も同じ方法を用いて、目付け重量70g/m2、平均厚さ1.41mm(1410μm)となるように作製した。得られた不織布の多孔度及び孔径は、上記した各不織布と同等であった。 For comparison, a nonwoven fabric N8 in which fibers are randomly oriented was prepared using the same fibers as the above-described nonwoven fabrics. Using the same method, this nonwoven fabric was also prepared so as to have a weight per unit area of 70 g / m 2 and an average thickness of 1.41 mm (1410 μm). The resulting nonwoven fabric had the same porosity and pore size as those of the nonwoven fabrics described above.
<電極基材の作製>
不織布N5〜N8に、実施例1と同様にして、ニッケルめっき量が200g/m2となるようにニッケルめっきを施して集電体を作製した。
<Preparation of electrode substrate>
In the same manner as in Example 1, the non-woven fabrics N5 to N8 were subjected to nickel plating so that the nickel plating amount was 200 g / m 2 , thereby producing current collectors.
次に、集電体に充填する正極活物質を作製した。具体的には、表面にオキシ水酸化コバルト層が形成された水酸化ニッケル粉末(コバルト3.5質量%含有)92重量部に、水酸化コバルト粉末4重量部とカルボキシメチルセルロース水溶液0.19重量部とを加え、混練してペーストとした。 Next, a positive electrode active material filled in the current collector was produced. Specifically, to 92 parts by weight of nickel hydroxide powder (containing 3.5% by mass of cobalt) having a cobalt oxyhydroxide layer formed on the surface, 4 parts by weight of cobalt hydroxide powder and 0.19 parts by weight of carboxymethylcellulose aqueous solution were added, The paste was kneaded.
そして、公知のペースト圧入法を用いて各集電体に活物質ペーストを充填して電極基材を作製した。 Then, each current collector was filled with an active material paste using a known paste press-fitting method to produce an electrode substrate.
<ニッケル極の作製>
不織布N5〜N8を集電体に用いた各電極基材を、長さ200mm、幅40mmとなるように裁断した後、ローラープレス機を用いて各電極基材を長さ方向にロール加圧し、ニッケル極を作製した。なお、不織布N5〜N7については、長さ方向と繊維方向とが同じになるように裁断し、繊維方向に沿ってロール加圧した。
<Production of nickel electrode>
After cutting each electrode substrate using nonwoven fabric N5 to N8 as a current collector to a length of 200 mm and a width of 40 mm, each electrode substrate is roll-pressed in the length direction using a roller press machine, A nickel electrode was prepared. In addition, about nonwoven fabric N5-N7, it cut | judged so that a length direction and a fiber direction might become the same, and roll-pressed along the fiber direction.
ローラープレス機は実施例1と同じものを用い、ローラー間のスリットを180μm、電極基材の送り速度を50cm/分とした。 The same roller press machine as in Example 1 was used, the slit between the rollers was 180 μm, and the feed rate of the electrode substrate was 50 cm / min.
不織布N5〜N8を用いたニッケル極をそれぞれ電極e、f、g、hとし、得られた各電極の、長さ方向の伸び率、厚さ、容積エネルギー密度(mAh/cc)を求めた。結果を表4に示す。なお、表中の値は各電極10枚の平均値である。 The nickel electrodes using non-woven fabrics N5 to N8 were designated as electrodes e, f, g, and h, respectively, and the elongation, thickness, and volumetric energy density (mAh / cc) in the length direction of each of the obtained electrodes were determined. The results are shown in Table 4. The values in the table are average values of 10 electrodes.
表4から明らかなように、電極hと比較して、本発明の電極e〜gは、電極の伸び率が小さく、厚みの減少率が大きくなった。また、本発明の電極は、活物質の充填密度が高く、容積エネルギー密度が高くなった。特に、不織布の第一繊維群の割合が多い方が、電極の伸びが抑制され、かつ厚みの減少率が大きくなり、活物質の充填密度が高くなる傾向が見られた。 As is apparent from Table 4, the electrodes e to g of the present invention had a smaller electrode elongation rate and a larger thickness reduction rate than the electrode h. Further, the electrode of the present invention has a high packing density of the active material and a high volumetric energy density. In particular, when the proportion of the first fiber group of the nonwoven fabric was larger, the electrode elongation was suppressed, the reduction rate of the thickness was increased, and the filling density of the active material was increased.
<電池の作製>
得られた電極を正極として用いたSubCサイズのニッケル‐水素電池を作製した。この電池は、実施例1と同様にして作製した。そして、電極e〜hを用いた電池をそれぞれ電池E、F、G、Hとした。
<Production of battery>
A SubC size nickel-hydrogen battery using the obtained electrode as a positive electrode was fabricated. This battery was manufactured in the same manner as in Example 1. The batteries using the electrodes e to h were designated as batteries E, F, G, and H, respectively.
電池作製前に、電極e〜hの成形を行った。具体的には、各電極を長さ200mm、幅32mmとなるように裁断し、正極と負極との計算容量比が1.5以上となるようにした。このときの電極e〜hの計算容量は、水酸化ニッケルの理論容量を289mAh/gとして、水酸化ニッケルの充填量から求めたところ、それぞれ3.85Ah、3.79Ah、3.71Ah、3.55Ahであった。 Prior to battery production, the electrodes e to h were formed. Specifically, each electrode was cut to a length of 200 mm and a width of 32 mm so that the calculated capacity ratio of the positive electrode to the negative electrode was 1.5 or more. The calculated capacities of the electrodes e to h at this time were 3.85 Ah, 3.79 Ah, 3.71 Ah, and 3.55 Ah, respectively, when the theoretical capacity of nickel hydroxide was 289 mAh / g and obtained from the amount of nickel hydroxide charged. .
負極には、実施例1と同じものを用い、正極と負極との計算容量比が1.5以上となるようにした。また、セパレータ及び電解液には、実施例1と同じものを用いた。 The negative electrode was the same as in Example 1, and the calculated capacity ratio of the positive electrode to the negative electrode was 1.5 or more. In addition, the same separator and electrolytic solution as in Example 1 were used.
次に、各電池について、低率で6回の充放電を繰り返し、化成を行った。具体的には、0.1Cで計算容量の140%まで充電、0.2Cで終止電圧0.9Vまで放電を1回、0.2Cで計算容量の120%まで充電、0.2Cで終止電圧0.9Vまで放電を2回、0.5Cで計算容量の115%まで充電、0.5Cで終止電圧0.9Vまで放電を3回行って、化成を施した。 Next, each battery was subjected to chemical conversion by repeating charging and discharging six times at a low rate. Specifically, the battery is charged to 140% of the calculated capacity at 0.1C, discharged once to a final voltage of 0.9V at 0.2C, charged to 120% of the calculated capacity at 0.2C, and discharged to 0.9V at 0.2C. Chemical conversion was performed by charging twice to 115% of the calculated capacity at 0.5 C and discharging three times to a final voltage of 0.9 V at 0.5 C.
<25℃での充放電サイクル特性>
25℃の常温環境にて、各電池E、F、G、Hの充放電サイクル特性を調べた。充放電条件は、充電:1Cの電流で−ΔV(5mV)方式の充電、放電:1Cの定電流で0.9Vまで放電、とし、これを1サイクルとして繰り返し行い、各サイクルでの容量維持率(利用率)を求めた。結果を表5に示す。なお、充放電サイクル初期(5サイクル)での放電容量がいずれの電池も計算容量の101%程度であったので、これを100%として各電池の容量維持率を求めた。
<Charge / discharge cycle characteristics at 25 ° C>
The charge / discharge cycle characteristics of the batteries E, F, G, and H were examined in a room temperature environment of 25 ° C. The charge and discharge conditions are: charge: 1C current with a -ΔV (5mV) charge, discharge: 1C constant current with a discharge of 0.9V, this is repeated as one cycle, and the capacity retention rate in each cycle ( Utilization rate). The results are shown in Table 5. Since the discharge capacity at the beginning of the charge / discharge cycle (5 cycles) was about 101% of the calculated capacity for all the batteries, the capacity maintenance rate of each battery was determined with this as 100%.
高容量タイプでは、高出力タイプ(実施例1)と比較して、電池容量の低下が起き易く、充放電サイクル特性が低下する傾向が見られた。これは、実施例1と同じ1Cの充放電であっても電流が大きく、特に充電末期には電池内の温度が40℃以上の高温となり、電極(ニッケル極)の膨張、及びセパレータ内の電解液の減少が引き起こされているものと推測される。 In the high capacity type, as compared with the high output type (Example 1), the battery capacity was likely to decrease, and the charge / discharge cycle characteristics tended to decrease. This is the same 1C charge and discharge as in Example 1, and the current is large. Especially, at the end of charging, the temperature in the battery becomes a high temperature of 40 ° C or higher, the expansion of the electrode (nickel electrode), and the electrolysis in the separator. It is presumed that the decrease of the liquid is caused.
しかし、表5から明らかなように、電極hを用いた電池Hと比較して、本発明の電極e〜fを用いた電池E〜Fは、各サイクルで容量維持率が上回っていた。例えば、600サイクルでの電池E〜Fの容量維持率は88%以上であるのに対し、電池Hでは82%程度であった。中でも電池E、Fは、800サイクルでの容量維持率が86%を超えているのに対し、電池Hでは80%程度であった。 However, as is apparent from Table 5, the capacity maintenance ratios of the batteries E to F using the electrodes e to f of the present invention exceeded each other as compared with the battery H using the electrode h. For example, the capacity maintenance rate of the batteries E to F at 600 cycles was 88% or more, while that of the battery H was about 82%. In particular, batteries E and F had a capacity retention rate of more than 86% at 800 cycles, while battery H had a capacity maintenance rate of about 80%.
<45℃での充放電サイクル特性>
45℃の高温環境にて、同じ充放電条件で各電池E、F、G、Hの充放電サイクル特性を調べた。結果を表6に示す。なお、高温環境では電極の充電効率に若干の低下が見られ、充放電サイクル初期(5サイクル)での放電容量がいずれの電池も計算容量の96%程度であったので、これを100%として各電池の容量維持率(利用率)を求めた。
<Charging / discharging cycle characteristics at 45 ° C>
The charge / discharge cycle characteristics of the batteries E, F, G, and H were examined under the same charge / discharge conditions in a high temperature environment of 45 ° C. The results are shown in Table 6. In the high temperature environment, there was a slight decrease in the charging efficiency of the electrodes, and the discharge capacity at the beginning of the charge / discharge cycle (5 cycles) was about 96% of the calculated capacity for all batteries. The capacity maintenance rate (utilization rate) of each battery was determined.
実施例1と同じように、高温環境では、常温環境と比較して、いずれの電池も少ない充放電サイクルで電池容量の低下が起き、充放電サイクル特性が低下する傾向が見られた。これは、高温環境下では電池内の温度がより高くなり(例えば充電末期には60℃以上)、電極(ニッケル極)の膨張、及びセパレータ内の電解液の減少が加速するものと推測される。 As in Example 1, in the high temperature environment, as compared with the normal temperature environment, the battery capacity decreased with a small charge / discharge cycle, and the charge / discharge cycle characteristics tended to decrease. This is presumed that the temperature in the battery becomes higher (for example, 60 ° C. or more at the end of charging) in a high-temperature environment, and the expansion of the electrode (nickel electrode) and the decrease in the electrolyte in the separator are accelerated. .
しかし、表6から明らかなように、100サイクルでの電池E〜Gの容量維持率は90%程度であるのに対し、電池Hでは82%程度であった。さらに、300サイクルでの電池E〜Gの容量維持率は80%以上であるのに対し、電池Hでは73%程度であった。 However, as is clear from Table 6, the capacity retention rate of the batteries E to G at 100 cycles was about 90%, while that of the battery H was about 82%. Furthermore, the capacity maintenance rate of the batteries E to G at 300 cycles was 80% or more, while that of the battery H was about 73%.
なお、汎用されている発泡状ニッケルを集電体に用いた電極を作製し、この電極を用いた電池の充放電特性を調べたところ、電池Gと同程度の性能であった。この発泡状ニッケルは、具体的には、発泡ウレタン樹脂にニッケルめっき(ニッケルめっき量400g/m2)を施した後、焼成することでウレタンを焼失させて作製した。 In addition, when an electrode using a widely used foamed nickel as a current collector was produced and the charge / discharge characteristics of a battery using this electrode were examined, the performance was similar to that of the battery G. Specifically, the foamed nickel was produced by subjecting the foamed urethane resin to nickel plating (nickel plating amount: 400 g / m 2 ) and then firing to burn away the urethane.
<電極の亀裂の有無>
さらに、充放電サイクル特性を調べた後、各電池E、F、G、Hの正極を取り出して亀裂の有無を確認したところ、いずれの電極にも亀裂が生じていなかった。
<Presence or absence of electrode cracks>
Further, after examining the charge / discharge cycle characteristics, the positive electrodes of the batteries E, F, G, and H were taken out and checked for cracks. No cracks were generated in any of the electrodes.
実施例1、2の結果から、本発明の電極は、充放電サイクル特性に優れていることが分かった。これは、厚みの減少率が大きい本発明の電極が、膨張し難く、膨潤抑制力に優れていることが要因と考えられる。特に高温環境下においては、比較に用いた従来の電極と比較して、優れた充放電サイクル特性を示すことが分かった。また、不織布の第一繊維群の割合が多い方が、充放電サイクル特性に優れる傾向が見られた。 From the results of Examples 1 and 2, it was found that the electrode of the present invention was excellent in charge / discharge cycle characteristics. This is considered to be due to the fact that the electrode of the present invention having a large thickness reduction rate hardly expands and is excellent in swelling suppression power. In particular, in a high temperature environment, it was found that excellent charge / discharge cycle characteristics were exhibited as compared with the conventional electrode used for comparison. Moreover, the direction with many ratios of the 1st fiber group of a nonwoven fabric showed the tendency which is excellent in charging / discharging cycling characteristics.
本発明のニッケル極は、充放電サイクル特性、及び高率放電特性に優れており、アルカリ二次電池に好適に利用することができる。また、本発明のニッケル極の製造方法は、充放電サイクル特性、及び高率放電特性に優れたニッケル極の製造に利用することができる。 The nickel electrode of the present invention is excellent in charge / discharge cycle characteristics and high-rate discharge characteristics, and can be suitably used for alkaline secondary batteries. Moreover, the manufacturing method of the nickel electrode of this invention can be utilized for manufacture of the nickel electrode excellent in the charge / discharge cycle characteristic and the high rate discharge characteristic.
10 不織布
11 第一繊維群の繊維 12 第二繊維群の繊維
20 電極基材
21 繊維 22 繊維同士の交差箇所 23 ニッケル層 24 活物質
10 Nonwoven fabric
11 Fibers of the
20 Electrode substrate
21
Claims (8)
繊維の大部分が一方向に配向している不織布を用意する工程と、
不織布にニッケルめっきを施した集電体に活物質を充填して電極基材を作製する工程と、
電極基材を繊維方向に沿ってロール加圧する工程とを具えることを特徴とするアルカリ電池用ニッケル極の製造方法。 A method for producing a nickel electrode for an alkaline battery, in which an electrode base material is prepared by filling an active material into a current collector obtained by subjecting a non-woven fabric made of polyolefin fiber to nickel plating, and pressurizing the electrode base material,
Preparing a nonwoven fabric in which most of the fibers are oriented in one direction;
A step of filling an active material into a current collector obtained by subjecting a nonwoven fabric to nickel plating, and producing an electrode substrate;
A method for producing a nickel electrode for an alkaline battery, comprising the step of roll-pressing an electrode substrate along a fiber direction.
不織布を構成する繊維の大部分が一方向に配向しており、
電極基材を繊維方向に沿ってロール加圧して成ることを特徴とするアルカリ電池用ニッケル極。 A nickel electrode for an alkaline battery, in which an electrode base material is prepared by filling an active material into a current collector obtained by applying nickel plating to a nonwoven fabric made of polyolefin fiber, and pressurizing the electrode base material.
Most of the fibers constituting the nonwoven are oriented in one direction,
A nickel electrode for an alkaline battery, wherein the electrode substrate is roll-pressed along the fiber direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006247119A JP4997529B2 (en) | 2006-09-12 | 2006-09-12 | Nickel electrode for alkaline battery and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006247119A JP4997529B2 (en) | 2006-09-12 | 2006-09-12 | Nickel electrode for alkaline battery and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008071536A JP2008071536A (en) | 2008-03-27 |
JP4997529B2 true JP4997529B2 (en) | 2012-08-08 |
Family
ID=39292959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006247119A Expired - Fee Related JP4997529B2 (en) | 2006-09-12 | 2006-09-12 | Nickel electrode for alkaline battery and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4997529B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2917956A4 (en) * | 2012-11-09 | 2016-06-22 | Univ City New York Res Found | Secondary zinc-manganese dioxide batteries for high power applications |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001332257A (en) * | 1999-10-08 | 2001-11-30 | Hitachi Maxell Ltd | Non-baking type positive electrode for alkaline battery, its manufacturing method and the alkaline battery using the non-baking type positive electrode |
JP2005347177A (en) * | 2004-06-04 | 2005-12-15 | Sanoh Industrial Co Ltd | Alkaline battery |
JP5005951B2 (en) * | 2006-05-09 | 2012-08-22 | プライムアースEvエナジー株式会社 | Positive electrode for battery, method for producing the same, and battery |
-
2006
- 2006-09-12 JP JP2006247119A patent/JP4997529B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008071536A (en) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5062724B2 (en) | Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery | |
JP5602092B2 (en) | Alkaline secondary battery using negative electrode plate for alkaline secondary battery | |
JP2009212092A (en) | Method of manufacturing paste type thin electrode for battery | |
JP7260349B2 (en) | Electrolyte for zinc battery and zinc battery | |
JP2023133607A (en) | Electrolyte solution for zinc battery and zinc battery | |
JP4429569B2 (en) | Nickel metal hydride storage battery | |
JP3527586B2 (en) | Manufacturing method of nickel electrode for alkaline storage battery | |
US7879496B2 (en) | Battery electrode substrate, battery electrode, and alkaline secondary battery including the same | |
EP1039566B1 (en) | Alkaline storage battery with two separators | |
JP2002198055A (en) | Paste-like thin electrode for battery, its manufacturing method and secondary battery | |
JP2014139880A (en) | Separator for alkaline electrolyte secondary battery, alkaline electrolyte secondary battery, and method for manufacturing alkaline electrolyte secondary battery | |
JP7105525B2 (en) | zinc battery | |
JP4997529B2 (en) | Nickel electrode for alkaline battery and method for producing the same | |
JP5655808B2 (en) | Cylindrical alkaline storage battery | |
JP2008078037A (en) | Electrode substrate for battery and electrode for battery | |
US20090170004A1 (en) | Electrode for rechargeable battery and method for manufacturing the same | |
JP4644336B2 (en) | Method for producing positive electrode for alkaline storage battery | |
JP3893856B2 (en) | Square alkaline storage battery | |
JP4967229B2 (en) | A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied. | |
JP2006196207A (en) | Alkaline storage battery and manufacturing method of its electrode group | |
JP5093275B2 (en) | Method for manufacturing electrode for secondary battery | |
JP2006040698A (en) | Positive electrode for alkaline storage battery and alkaline storage battery | |
JP4359678B2 (en) | Secondary battery electrode and secondary battery using the same | |
JP5924670B2 (en) | Battery having sheet-like fiber positive electrode and manufacturing method thereof | |
JP2009026562A (en) | Electrode substrate for battery, electrode for battery, and battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120419 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4997529 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150525 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |