JP5655808B2 - Cylindrical alkaline storage battery - Google Patents

Cylindrical alkaline storage battery Download PDF

Info

Publication number
JP5655808B2
JP5655808B2 JP2012073205A JP2012073205A JP5655808B2 JP 5655808 B2 JP5655808 B2 JP 5655808B2 JP 2012073205 A JP2012073205 A JP 2012073205A JP 2012073205 A JP2012073205 A JP 2012073205A JP 5655808 B2 JP5655808 B2 JP 5655808B2
Authority
JP
Japan
Prior art keywords
separator
electrode plate
positive electrode
negative electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012073205A
Other languages
Japanese (ja)
Other versions
JP2013206674A (en
Inventor
泰裕 新田
泰裕 新田
宏樹 竹島
宏樹 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012073205A priority Critical patent/JP5655808B2/en
Publication of JP2013206674A publication Critical patent/JP2013206674A/en
Application granted granted Critical
Publication of JP5655808B2 publication Critical patent/JP5655808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、円筒形アルカリ蓄電池に関し、さらに詳しくはセパレータの改良に関する。   The present invention relates to a cylindrical alkaline storage battery, and more particularly to improvement of a separator.

円筒形アルカリ蓄電池は、携帯型端末、デジタルスチルカメラなどのポータブル電子機器、ハイブリッド自動車、バックアップ機器などの電源として広く用いられている。   Cylindrical alkaline storage batteries are widely used as power sources for portable electronic devices such as portable terminals and digital still cameras, hybrid vehicles, and backup devices.

円筒形アルカリ蓄電池は、電池ケース、電極群、封口板、正極リード、絶縁リングなどから構成されている。電池ケースは、長手方向の一端部が開口する円筒形容器であり、その内部に電極群などを収容する。電極群は、正極板と負極板とをセパレータを介して捲回することにより得られる捲回型電極群である。封口板は、電池ケースの開口を封口する。正極は三次元網目構造を有する導電性基板に水酸化ニッケルのような活物質を含む合剤が充填されている。正極リードは正極の導電性基板に溶接などにより固定され、電極群の正極板と封口板とを導通させる。負極板はパンチングメタルのような導電性基板に水素吸蔵合金を含む合剤が塗着されている。セパレータはポリプロピレンなどを主体とした絶縁性の不織布やシートを用い正極と負極を絶縁するとともに正負極間の反応を媒体する電解液を保持している。絶縁リングは、電池ケース内において、電極群と封口板との間に装着され、主に電池ケースと電極群および正極リードとを絶縁保護する。   A cylindrical alkaline storage battery includes a battery case, an electrode group, a sealing plate, a positive electrode lead, an insulating ring, and the like. The battery case is a cylindrical container that is open at one end in the longitudinal direction, and accommodates an electrode group and the like therein. The electrode group is a wound electrode group obtained by winding a positive electrode plate and a negative electrode plate through a separator. The sealing plate seals the opening of the battery case. In the positive electrode, a conductive substrate having a three-dimensional network structure is filled with a mixture containing an active material such as nickel hydroxide. The positive electrode lead is fixed to the positive electrode conductive substrate by welding or the like, and makes the positive electrode plate and the sealing plate of the electrode group conductive. In the negative electrode plate, a mixture containing a hydrogen storage alloy is applied to a conductive substrate such as punching metal. The separator uses an insulating nonwoven fabric or sheet mainly composed of polypropylene or the like, and insulates the positive electrode and the negative electrode and holds an electrolytic solution that mediates a reaction between the positive and negative electrodes. The insulating ring is mounted between the electrode group and the sealing plate in the battery case, and mainly insulates and protects the battery case, the electrode group, and the positive electrode lead.

この種の円筒形アルカリ蓄電池においては短絡を防止する目的でさまざまな提案がなされている。例えば、電極群の捲回時に、正極板のばりやクラックにより正極板と負極板が短絡するのを防止するために、正極板の外面と負極板の内面との間に配置されるセパレータの内面に補助セパレータを介在させる構成をとることが提案されている(例えば、特許文献1参照)。   In this type of cylindrical alkaline storage battery, various proposals have been made for the purpose of preventing a short circuit. For example, the inner surface of the separator disposed between the outer surface of the positive electrode plate and the inner surface of the negative electrode plate to prevent the positive electrode plate and the negative electrode plate from being short-circuited due to flash or cracks of the positive electrode plate when the electrode group is wound. It has been proposed to adopt a configuration in which an auxiliary separator is interposed between the two (for example, see Patent Document 1).

特開2005−56676号公報JP 2005-56676 A

しかしながら、従来の構成の電池では短絡防止目的の補助セパレータを含むセパレータ全体にわたり均一に保液性をもっているために、この補助セパレータも、他の部分のセパレータと同等に電解液を保持してしまう。電池内に注液できる電解液量の上限は電池ケースの内容積と電極群材料体積および絶縁リングなどの内蔵部品の体積により決まっており、補助セパレータにも同等に電解液が保持される分、その他の部分のセパレータで保持できる電解液量は相対的に少なくなってしまう。その結果、充放電を繰り返す中で劣化する正極板や負極板の活物質に電解液が取り込まれることで、正負極板間のセパレータ中に存在する電解液が減少し、電池寿命が十分に確保できなくなってしまうという課題があった。   However, since a battery having a conventional structure has a uniform liquid retaining property over the entire separator including the auxiliary separator for the purpose of preventing a short circuit, this auxiliary separator also holds the electrolytic solution in the same manner as the other separators. The upper limit of the amount of electrolyte that can be injected into the battery is determined by the internal volume of the battery case, the volume of the electrode group material, and the volume of built-in components such as the insulating ring, The amount of electrolyte solution that can be held by the separators in other parts is relatively small. As a result, the electrolyte solution is taken into the active material of the positive electrode plate and negative electrode plate that deteriorates during repeated charging and discharging, so that the electrolyte solution present in the separator between the positive and negative electrode plates is reduced and the battery life is sufficiently secured. There was a problem that it would be impossible.

本発明は上記の課題を解決するものであり、短絡を防止しかつ充放電サイクル寿命性能の高い円筒形アルカリ蓄電池を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a cylindrical alkaline storage battery that prevents short circuit and has high charge / discharge cycle life performance.

上記目的を達成するために本発明の円筒形アルカリ蓄電池は、帯状の正極板と負極板とをセパレータを介して捲回した電極群と電解液とこれらを内装する電池ケースから構成さ
れる円筒形電池において、上記電極群の正極板の外面と負極板の内面との間に配置される第1のセパレータと、正極板の内面と負極板の外面に配置される第2のセパレータと、電極群の巻き終わり側の正極板と負極板との間に配置され保液率が第1のセパレータおよび第2のセパレータの保液率より小さい第3のセパレータを配置したことを特徴とする。第1のセパレータおよび第2のセパレータより保液率の小さい第3のセパレータを配置することで、反応に必要な電解液の最外周部分への偏在をなくし、正極板と負極板の間の全域に介在させることが可能となる。
In order to achieve the above object, a cylindrical alkaline storage battery of the present invention has a cylindrical shape composed of an electrode group obtained by winding a strip-like positive electrode plate and a negative electrode plate with a separator interposed therebetween, an electrolytic solution, and a battery case containing them. In the battery, the first separator disposed between the outer surface of the positive electrode plate and the inner surface of the negative electrode plate of the electrode group, the second separator disposed on the inner surface of the positive electrode plate and the outer surface of the negative electrode plate, and the electrode group A third separator is disposed between the positive electrode plate and the negative electrode plate on the winding end side, and the liquid retention ratio is smaller than the liquid retention ratio of the first separator and the second separator. By arranging the third separator having a smaller liquid retention rate than the first separator and the second separator, the electrolyte solution necessary for the reaction is not unevenly distributed in the outermost peripheral portion, and is interposed in the entire area between the positive electrode plate and the negative electrode plate. It becomes possible to make it.

本発明の円筒形アルカリ蓄電池は、電極群の正極板の外面と負極板の内面との間に配置される第1のセパレータと、正極板の内面と負極板の外面に配置される第2のセパレータと、電極群の巻き終わり側の正極板と負極板との間に配置され保液率が第1のセパレータおよび第2のセパレータの保液率より小さい第3のセパレータを配置することにより、最外周部分における正極板のばりやクラックによる短絡を抑制することができ、なおかつ第3のセパレータへの電解液の保液を抑制することで正負極の極板間のセパレータ全体にわたり電解液が保持されるため、充放電のくり返しを行った場合に正極板および負極板間のセパレータ中の電解液枯渇が起こりにくい。したがって、本発明の円筒形アルカリ蓄電池は短絡の発生が少なく、かつ充放電サイクル寿命性能に優れた特徴を有している。   The cylindrical alkaline storage battery of the present invention includes a first separator disposed between the outer surface of the positive electrode plate of the electrode group and the inner surface of the negative electrode plate, and a second separator disposed on the inner surface of the positive electrode plate and the outer surface of the negative electrode plate. By disposing a third separator that is disposed between the separator and the positive electrode plate and the negative electrode plate on the winding end side of the electrode group and whose liquid retention is smaller than the liquid retention of the first separator and the second separator, Short circuit due to flashing and cracking of the positive electrode plate in the outermost peripheral portion can be suppressed, and the electrolyte is retained throughout the separator between the positive and negative electrode plates by suppressing the retention of the electrolyte in the third separator. Therefore, when charging / discharging is repeated, electrolyte depletion in the separator between the positive electrode plate and the negative electrode plate hardly occurs. Therefore, the cylindrical alkaline storage battery of the present invention has the characteristics that the occurrence of short circuit is small and the charge / discharge cycle life performance is excellent.

本発明の円筒形アルカリ蓄電池の構成を示す一部切欠斜視図The partially cutaway perspective view showing the configuration of the cylindrical alkaline storage battery of the present invention 本発明の一実施の形態である電極群の構成を簡略化して示す平面図The top view which simplifies and shows the structure of the electrode group which is one embodiment of this invention 本発明の一実施の形態である電極群の構成を簡略化して示す平面図The top view which simplifies and shows the structure of the electrode group which is one embodiment of this invention 巻き終わり部分の電極群の構成の一形態を示す拡大図The enlarged view which shows one form of a structure of the electrode group of a winding end part 巻き終わり部分の電極群の構成の一形態を示す拡大図The enlarged view which shows one form of a structure of the electrode group of a winding end part

本発明における第1の発明は、帯状の正極板と負極板とをセパレータを介して捲回した電極群と電解液とこれらを内装する電池ケースから構成される円筒形アルカリ蓄電池において、上記電極群として正極板の外面と負極板の内面との間に配置される第1のセパレータと、正極板の内面と負極板の外面との間に配置される第2のセパレータと、電極群の巻き終わり側の正極板と負極板との間に配置され保液率が第1のセパレータおよび第2のセパレータの保液率より小さい第3のセパレータを配置したことを特徴とする円筒形アルカリ蓄電池である。この構成によれば、最外周部分における正極板のばりやクラックによる短絡を抑制することができる。また、第3のセパレータへの電解液の保液を抑制することで正負極の極板間のセパレータ全体にわたり電解液が保持されるため、充放電のくり返しを行った場合に正極板および負極板間のセパレータ中の電解液の枯渇が生じにくく、充放電サイクル寿命性能を向上させることができる。   According to a first aspect of the present invention, there is provided a cylindrical alkaline storage battery comprising an electrode group obtained by winding a strip-like positive electrode plate and a negative electrode plate with a separator interposed therebetween, an electrolyte, and a battery case in which these are housed. A first separator disposed between the outer surface of the positive electrode plate and the inner surface of the negative electrode plate, a second separator disposed between the inner surface of the positive electrode plate and the outer surface of the negative electrode plate, and the end of winding of the electrode group A cylindrical alkaline storage battery in which a third separator that is disposed between a positive electrode plate and a negative electrode plate on the side and has a liquid retention rate smaller than that of the first separator and the second separator is disposed. . According to this structure, the short circuit by the flash and crack of a positive electrode plate in an outermost peripheral part can be suppressed. Moreover, since electrolyte solution is hold | maintained over the whole separator between the electrode plates of a positive / negative electrode by suppressing the retention of the electrolyte solution to a 3rd separator, when repeating charge / discharge, a positive electrode plate and a negative electrode plate In the meantime, the electrolyte in the separator is hardly depleted, and the charge / discharge cycle life performance can be improved.

本発明における第2の発明は、第3のセパレータの保液率を第1のセパレータおよび第2のセパレータの保液率の半分以下としたことを特徴とする。第3のセパレータの保液率を、第1のセパレータおよび第2のセパレータの半分以下にすることで、第3のセパレータにおける過剰な電解液保持を抑制し、電極群全体に偏在なく電解液を配置することが可能となる。   The second aspect of the present invention is characterized in that the liquid retention rate of the third separator is less than half the liquid retention rate of the first separator and the second separator. By setting the liquid retention rate of the third separator to less than half that of the first separator and the second separator, excessive electrolyte retention in the third separator is suppressed, and the electrolyte is distributed unevenly throughout the electrode group. It becomes possible to arrange.

本発明における第3の発明は、第1のセパレータおよび第2のセパレータの保液率を100としたとき、前記第3のセパレータの保液率を20〜50としたことを特徴とする。第3のセパレータの保液率を50(半分)以下とすることで過剰な電解液保持を抑制し、より良好なサイクル寿命特性を得ることができるが、保液率が少なすぎると第3のセパレータの存在する部分において反応の抵抗となり高率放電特性が影響を受けてしまうので好
ましくない。そのため第3のセパレータの保液率は20〜50の範囲とすることがより好ましい。
According to a third aspect of the present invention, when the liquid retention ratio of the first separator and the second separator is 100, the liquid retention ratio of the third separator is 20 to 50. By setting the liquid retention rate of the third separator to 50 (half) or less, it is possible to suppress excessive electrolyte solution retention and obtain better cycle life characteristics. However, if the liquid retention rate is too low, This is not preferable because a reaction resistance occurs in a portion where the separator exists, and the high rate discharge characteristics are affected. Therefore, the liquid retention rate of the third separator is more preferably in the range of 20-50.

本発明における第4の発明は、第3のセパレータを電極群の最外周1ターン分の長さとしたことを特徴とする。電極群捲回時、電極群が電池ケースに挿入できる直径を越えないように加圧ローラーにて押さえ込みながら捲回されていく。捲回が巻き終わりに近くなるにつれて電極群径を押さえ込むために加圧が強くかけられていく。そのため最外周部分のセパレータは圧縮が強くかけられこの部分での正極板と負極板の短絡発生が多くみられる。第3のセパレータを最外周1ターン分の長さとすることで、この最外周部分で発生する短絡を防止することが可能となる。但し第3のセパレータの長さが1ターン分を若干超えても構わないが、電極群の内周部分にさらに1/4ターン分以上入ってくる構成をとると電極群の群径が大きくなり電極群を電池ケースに挿入するのが困難となるので好ましくない。   According to a fourth aspect of the present invention, the third separator has a length corresponding to one turn of the outermost periphery of the electrode group. When the electrode group is wound, the electrode group is wound while being pressed by a pressure roller so as not to exceed the diameter that can be inserted into the battery case. As the winding is nearing the end of winding, pressure is applied strongly to suppress the electrode group diameter. For this reason, the separator in the outermost peripheral portion is strongly compressed, and the occurrence of a short circuit between the positive electrode plate and the negative electrode plate in this portion is often observed. By setting the length of the third separator to the length of one turn at the outermost periphery, it is possible to prevent a short circuit that occurs at the outermost periphery. However, although the length of the third separator may slightly exceed one turn, the group diameter of the electrode group increases if it is configured to enter more than 1/4 turn into the inner periphery of the electrode group. Since it becomes difficult to insert an electrode group in a battery case, it is not preferable.

本発明における第5の発明は、第3のセパレータを、前記第1のセパレータの外面と負極板の内面との間に配置したことを特徴とする。充電時の電極板膨潤などにより正極板の近傍の電解液がより消費されやすくなる。そのため保液率の小さい第3のセパレータを第1のセパレータの外面と負極板の内面との間に配置することにより、正極板近傍の電解液の偏在を抑制し、より良好なサイクル寿命性能を得ることが可能となる。   According to a fifth aspect of the present invention, the third separator is disposed between the outer surface of the first separator and the inner surface of the negative electrode plate. Due to swelling of the electrode plate during charging, the electrolyte near the positive electrode plate is more easily consumed. Therefore, by arranging a third separator having a low liquid retention rate between the outer surface of the first separator and the inner surface of the negative electrode plate, uneven distribution of the electrolyte solution in the vicinity of the positive electrode plate is suppressed, and better cycle life performance is achieved. Can be obtained.

以下添付の図面を参照して、本発明の一実施形態の円筒形アルカリ蓄電池を説明する。図1に示したように、本発明の円筒形アルカリ蓄電池は、長手方向の一端部が開口する円筒形の電池ケース4を備え、その内部に正極板1、負極板2、第1のセパレータ9、第2のセパレータ10、第3のセパレータ11からなる電極群と電解液などを収容する。電池ケース4は導電性を有し負極端子として機能する。封口板6は中央にゴム製またはばね製の安全弁7を備えており、絶縁性樹脂パッキンを介して電池ケース4の開口部に固定されている。正極リード8は正極板1の導電性基板に溶接などにより固定され、電極群の正極板1と封口板6とを導通させる。絶縁リング5は、電池ケース4内において、電極群と封口板6との間に装着され、主に電池ケース4と電極群および正極リード8とを絶縁保護する。底部絶縁板3は電池ケース4の底面に配置され、電極群を絶縁保護する。   A cylindrical alkaline storage battery according to an embodiment of the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, the cylindrical alkaline storage battery of the present invention includes a cylindrical battery case 4 that is open at one end in the longitudinal direction, and includes a positive electrode plate 1, a negative electrode plate 2, and a first separator 9. The electrode group composed of the second separator 10 and the third separator 11 and an electrolyte solution are accommodated. The battery case 4 has conductivity and functions as a negative electrode terminal. The sealing plate 6 is provided with a rubber or spring safety valve 7 at the center, and is fixed to the opening of the battery case 4 via an insulating resin packing. The positive electrode lead 8 is fixed to the conductive substrate of the positive electrode plate 1 by welding or the like, and makes the positive electrode plate 1 and the sealing plate 6 of the electrode group conductive. The insulating ring 5 is mounted between the electrode group and the sealing plate 6 in the battery case 4 and mainly insulates and protects the battery case 4 from the electrode group and the positive electrode lead 8. The bottom insulating plate 3 is disposed on the bottom surface of the battery case 4 and insulates and protects the electrode group.

正極板1は三次元網目構造を有する導電性基材に正極合剤が充填されている。正極合剤は例えば正極活物質、結着剤、増粘剤などからなる。   In the positive electrode plate 1, a conductive base material having a three-dimensional network structure is filled with a positive electrode mixture. The positive electrode mixture includes, for example, a positive electrode active material, a binder, a thickener, and the like.

正極活物質としては特に限定されないが、コバルト、亜鉛等を固溶した水酸化ニッケル、またコバルト等を表面コートした水酸化ニッケルなどをあげることができる。   Although it does not specifically limit as a positive electrode active material, Nickel hydroxide etc. which surface-coated cobalt hydroxide etc. can be mention | raise | lifted, such as nickel hydroxide which dissolved solid cobalt and zinc.

結着剤は、熱可塑性樹脂および熱硬化性樹脂のいずれであってもよい。結着剤の具体例としては、スチレン−ブタジエン共重合ゴム(SBR)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレンなどがあげられる。   The binder may be either a thermoplastic resin or a thermosetting resin. Specific examples of the binder include styrene-butadiene copolymer rubber (SBR), polyethylene, polypropylene, polytetrafluoroethylene, and the like.

増粘剤としては正極合剤スラリーに粘性を付与できるもの、一例としては、カルボキシメチルセルロースおよびその変性体、ポリビニルアルコール、メチルセルロース、ポリエチレンオキシドなどが挙げられる。   Examples of the thickener include those capable of imparting viscosity to the positive electrode mixture slurry. Examples of the thickener include carboxymethyl cellulose and modified products thereof, polyvinyl alcohol, methyl cellulose, and polyethylene oxide.

正極合剤のスラリーを調合した後、三次元網目構造を有する導電性基材に充填、乾燥し、所定の加圧力およびギャップを有する圧延ロールに通して厚みを調整する。その後所定の寸法に裁断して、極板上端面の一部を超音波剥離などにより正極合剤を除去し、導電性を有する正極リード8を溶接する。   After the slurry of the positive electrode mixture is prepared, the conductive base material having a three-dimensional network structure is filled and dried, and the thickness is adjusted by passing through a rolling roll having a predetermined pressure and gap. Thereafter, it is cut into a predetermined size, the positive electrode mixture is removed from a part of the upper end surface of the electrode plate by ultrasonic peeling or the like, and the positive electrode lead 8 having conductivity is welded.

負極板2は導電性鋼板に周期的に開孔部を設けたパンチングメタル基材に負極合剤が塗着されている。負極合剤は、例えば負極活物質、導電剤、結着剤、増粘剤などからなる。   In the negative electrode plate 2, a negative electrode mixture is applied to a punching metal base material in which holes are periodically provided in a conductive steel plate. A negative electrode mixture consists of a negative electrode active material, a electrically conductive agent, a binder, a thickener, etc., for example.

負極活物質としては、水素を吸蔵放出可能な水素吸蔵合金やカドミウムなどをあげることができる。   Examples of the negative electrode active material include hydrogen storage alloys and cadmium that can store and release hydrogen.

導電剤としては、電子伝導性を有する材料であること以外は特に限定されず、各種の電子伝導性材料を用いることができる。具体的には、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類を用いることができる。   The conductive agent is not particularly limited except that it is a material having electron conductivity, and various electron conductive materials can be used. Specifically, for example, graphite such as natural graphite (such as flake graphite), artificial graphite, and expanded graphite, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black Can be used.

結着剤は水素吸蔵合金粉末や導電剤を集電体に結着させる役割を果たす。結着剤は、熱可塑性樹脂および熱硬化性樹脂のいずれであってもよい。結着剤の具体例としては、スチレン−ブタジエン共重合ゴム(SBR)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレンなどがあげられる。   The binder serves to bind the hydrogen storage alloy powder or the conductive agent to the current collector. The binder may be either a thermoplastic resin or a thermosetting resin. Specific examples of the binder include styrene-butadiene copolymer rubber (SBR), polyethylene, polypropylene, polytetrafluoroethylene, and the like.

増粘剤としては負極合剤ペーストに粘性を付与できるもの、一例としては、カルボキシメチルセルロースおよびその変性体、ポリビニルアルコール、メチルセルロース、ポリエチレンオキシドなどを用いることができる。   As the thickener, those capable of imparting viscosity to the negative electrode mixture paste, for example, carboxymethylcellulose and modified products thereof, polyvinyl alcohol, methylcellulose, polyethylene oxide and the like can be used.

負極合剤ペーストを調合した後、パンチングメタルに塗着、乾燥し、所定の加圧力およびギャップを有する圧延ロールに通して厚みを調整する。その後所定の寸法に裁断する。   After preparing the negative electrode mixture paste, it is applied to a punching metal, dried, and passed through a rolling roll having a predetermined pressure and gap to adjust the thickness. Thereafter, it is cut into a predetermined dimension.

第1のセパレータ9、第2のセパレータ10は、ポリプロピレンとポリエチレンを原料とする繊維を交絡させた不織布またはシート状フィルムからなる。これらのセパレータとしては、目付け重量(単位面積あたりの重量)が、20g/mから100g/mに調整されたものがより好ましい。また、厚みは50μmから200μmに調整されたものがより好ましい。これらのセパレータは親水性を付与させるために親水化処理がほどこされている。セパレータに対する親水化処理としては、スルホン化処理、フッ素処理、プラズマ処理などがある。 The 1st separator 9 and the 2nd separator 10 consist of a nonwoven fabric or a sheet-like film which entangled the fiber which uses polypropylene and polyethylene as a raw material. As these separators, those whose basis weight (weight per unit area) is adjusted from 20 g / m 2 to 100 g / m 2 are more preferable. Further, it is more preferable that the thickness is adjusted from 50 μm to 200 μm. These separators are subjected to a hydrophilic treatment in order to impart hydrophilicity. Examples of the hydrophilic treatment for the separator include sulfonation treatment, fluorine treatment, and plasma treatment.

図2および図3に示したように、電極群は、正極板1、負極板2、正極板1の外面と負極板2の内面との間に配置される第1のセパレータ9、正極板1の内面と負極板2の外面との間に配置される第2のセパレータ10を重ね合わせた状態で、中央部から外周に向かって渦巻状に捲回されている。   As shown in FIGS. 2 and 3, the electrode group includes a positive electrode plate 1, a negative electrode plate 2, a first separator 9 disposed between the outer surface of the positive electrode plate 1 and the inner surface of the negative electrode plate 2, the positive electrode plate 1. In a state where the second separator 10 disposed between the inner surface of the negative electrode plate 2 and the outer surface of the negative electrode plate 2 is overlapped, it is wound in a spiral shape from the central portion toward the outer periphery.

また正極板1の巻き終わりを含む最外周の一部または全部を覆う部分に第3のセパレータ11が配置されている。第3のセパレータ11は、ポリプロピレンとポリエチレンを原料とする繊維を交絡させた不織布またはシート状フィルムからなる。これらのセパレータとしては、目付け重量(単位面積あたりの重量)が、20g/mから100g/mに調整されたものがより好ましい。また、厚みは50μmから200μmに調整されたものがより好ましい。これらのセパレータは親水性を付与させるために親水化処理がほどこされている。セパレータに対する親水化処理としては、スルホン化処理、フッ素処理、プラズマ処理などがある。 A third separator 11 is disposed in a portion covering a part or all of the outermost periphery including the end of winding of the positive electrode plate 1. The 3rd separator 11 consists of a nonwoven fabric or a sheet-like film which entangled the fiber which uses a polypropylene and polyethylene as a raw material. As these separators, those whose basis weight (weight per unit area) is adjusted from 20 g / m 2 to 100 g / m 2 are more preferable. Further, it is more preferable that the thickness is adjusted from 50 μm to 200 μm. These separators are subjected to a hydrophilic treatment in order to impart hydrophilicity. Examples of the hydrophilic treatment for the separator include sulfonation treatment, fluorine treatment, and plasma treatment.

この第3のセパレータ11は第1のセパレータ9および第2のセパレータ10より保液率が小さいことを特徴としている。第3のセパレータ11の保液率を第1のセパレータ9および第2のセパレータ10より小さくする方法としては、目付け重量および厚みを調整することで第3のセパレータ11の空孔率を第1のセパレータ9および第2のセパレータ
10の空孔率より小さくすることで可能となる。また、親水化処理時間や処理剤濃度を調整することでセパレータ上の親水基量をコントロールし、第3のセパレータ11の単位面積あたりの親水基量を第1のセパレータ9および第2のセパレータ10より少なくすることでも、保液率を小さくすることができる。
The third separator 11 is characterized in that the liquid retention is smaller than that of the first separator 9 and the second separator 10. As a method of making the liquid retention rate of the third separator 11 smaller than that of the first separator 9 and the second separator 10, the porosity of the third separator 11 is adjusted by adjusting the basis weight and thickness. This can be achieved by making it smaller than the porosity of the separator 9 and the second separator 10. Further, the hydrophilic group amount on the separator is controlled by adjusting the hydrophilic treatment time and the treatment agent concentration, and the hydrophilic group amount per unit area of the third separator 11 is set to the first separator 9 and the second separator 10. By reducing the amount, the liquid retention rate can be reduced.

この構成によれば、最外周部分における正極板1のばりやクラックによる短絡を抑制することができる。また、第3のセパレータ11への電解液の保液を抑制することで正負極の極板間のセパレータ全体にわたり電解液が保持されるため、充放電のくり返しを行った場合に正極板1および負極板2間のセパレータ中の電解液の枯渇が生じにくく充放電サイクル寿命性能を向上させることができる。   According to this structure, the short circuit by the flash and crack of the positive electrode plate 1 in an outermost periphery part can be suppressed. Moreover, since electrolyte solution is hold | maintained over the whole separator between the electrode plates of a positive / negative electrode by suppressing the liquid retention of the electrolyte solution to the 3rd separator 11, when repeating charge / discharge, the positive electrode plate 1 and The electrolyte solution in the separator between the negative electrode plates 2 is hardly depleted, and the charge / discharge cycle life performance can be improved.

図5に示したように、第3のセパレータ11は、第1のセパレータ9の内面に配置されていてもよいが、充電時の電極板膨潤などにより正極板の近傍の電解液がより消費されやすいため、図4に示したように第1のセパレータ9の外面に配置するほうが良好なサイクル寿命性能を得ることが可能となるためより好ましい。   As shown in FIG. 5, the third separator 11 may be disposed on the inner surface of the first separator 9, but the electrolyte near the positive electrode plate is consumed more due to electrode plate swelling during charging. Therefore, it is more preferable to dispose the first separator 9 on the outer surface as shown in FIG. 4 because better cycle life performance can be obtained.

またこれらの発明は、第1のセパレータ9、第2のセパレータ10および第3のセパレータ11以外にさらに補助セパレータを使用した構成をとった電池、例えば巻き始め部分や、捲回の途中部分に別の補助セパレータが追加された構成をとった電池においても、第1のセパレータ9、第2のセパレータ10および第3のセパレータ11として前記発明の構成を満たしていれば同様の効果を得ることができる。   Further, these inventions are different from the first separator 9, the second separator 10 and the third separator 11 in that the battery further uses an auxiliary separator, for example, a winding start portion or a winding intermediate portion. Even in the battery having the configuration in which the auxiliary separator is added, the same effect can be obtained as long as the first separator 9, the second separator 10, and the third separator 11 satisfy the configuration of the invention. .

以下に実施例および比較例を挙げ、本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

(実施例1)
図1に示す円筒形アルカリ蓄電池を作製した。まず、コバルト化合物を表面コートした水酸化ニッケル(正極活物質)、ポリテトラフルオロエチレン(結着剤)、カルボキシルメチルセルロース(増粘剤)を水に分散させ、正極合剤スラリーを調製した。このスラリーを、三次元網目構造を有する発泡ニッケル多孔体(導電性基板)に充填、乾燥し0.6mmの厚みに圧延した。圧延後、縦43mm、横95mmに切断し、正極リード8となるニッケル板を溶接し溶接部の表裏両面をポリプロピレン製絶縁テープにより被覆した。以上の構成により正極板1を得た。
Example 1
A cylindrical alkaline storage battery shown in FIG. 1 was produced. First, nickel hydroxide (positive electrode active material) whose surface was coated with a cobalt compound, polytetrafluoroethylene (binder), and carboxymethyl cellulose (thickener) were dispersed in water to prepare a positive electrode mixture slurry. This slurry was filled in a foamed nickel porous body (conductive substrate) having a three-dimensional network structure, dried and rolled to a thickness of 0.6 mm. After rolling, it was cut into a length of 43 mm and a width of 95 mm, a nickel plate to be the positive electrode lead 8 was welded, and both front and back surfaces of the welded portion were covered with a polypropylene insulating tape. The positive electrode plate 1 was obtained by the above structure.

一方、水素吸蔵合金(負極活物質)、カーボンブラック(導電剤)、スチレン−ブタジエンゴム共重合体微粒子(結着剤)およびカルボキシメチルセルロース(増粘剤)を水に分散させ、負極合剤ペーストを調製した。このペーストをパンチングメタルに塗着し、0.3mmに圧延した。圧延後、縦43mm、横130mmの寸法に切断し負極板2を作製した。   On the other hand, hydrogen storage alloy (negative electrode active material), carbon black (conductive agent), styrene-butadiene rubber copolymer fine particles (binder) and carboxymethylcellulose (thickener) are dispersed in water, and negative electrode mixture paste is prepared. Prepared. This paste was applied to punching metal and rolled to 0.3 mm. After rolling, the negative electrode plate 2 was produced by cutting into 43 mm length and 130 mm width.

セパレータはポリプロピレンとポリエチレンを原料とする繊維を交絡させた目付け重量55g/m、厚み0.12mm、幅46mmの不織布を使用した。保液率は以下に説明する方法で測定される。セパレータより縦30mm、横30mmの試験片を切り出す。試験片の重量(W)を測定した後、純水に1時間浸漬する。次いで、試験片を取り出し、この試験片の重量(W1)を測定し、下記(1)式により保液率を算出する。 As the separator, a nonwoven fabric having a basis weight of 55 g / m 2 , a thickness of 0.12 mm, and a width of 46 mm in which fibers made of polypropylene and polyethylene are entangled was used. The liquid retention rate is measured by the method described below. A test piece 30 mm long and 30 mm wide is cut out from the separator. After measuring the weight (W) of the test piece, it is immersed in pure water for 1 hour. Next, the test piece is taken out, the weight (W1) of the test piece is measured, and the liquid retention is calculated by the following equation (1).

保液率(%)={(W1−W)/W}×100 (1)
この不織布セパレータの保液率を測定したところ、保液率150%であった。
Liquid retention rate (%) = {(W1-W) / W} × 100 (1)
When the liquid retention rate of this nonwoven fabric separator was measured, the liquid retention rate was 150%.

この不織布から長さ140mm(第1のセパレータ9)と125mm(第2のセパレー
タ10)の2枚のセパレータを切り出した。一方目付け重量45g/m、厚み0.05mm、幅46mmの不織布で、親水化処理を調整し保液率50%の不織布を準備し、ここから長さ10mmの第3のセパレータ11を切り出した。第3のセパレータ11を第1のセパレータ9の外面にそれぞれのセパレータの端面をそろえて超音波溶着した。これらのセパレータと上記で得られた正極板1と負極板2を巻芯を介して捲回し、図2に示すニッケル水素蓄電池の電極群を作製した。
Two separators having a length of 140 mm (first separator 9) and 125 mm (second separator 10) were cut out from the nonwoven fabric. On the other hand, a nonwoven fabric having a weight per unit area of 45 g / m 2 , a thickness of 0.05 mm, and a width of 46 mm was prepared by adjusting the hydrophilization treatment and preparing a nonwoven fabric having a liquid retention rate of 50%, from which a 10 mm long third separator 11 was cut out. . The third separator 11 was ultrasonically welded with the end face of each separator aligned with the outer surface of the first separator 9. These separators and the positive electrode plate 1 and the negative electrode plate 2 obtained above were wound through a winding core, and the electrode group of the nickel metal hydride storage battery shown in FIG. 2 was produced.

この電極群を表面にニッケルめっきを施したAAサイズの鉄製の電池ケース4に収納した。この状態でポリプロピレン樹脂製の絶縁リング5を電極群の封口板6側端部に装着した。次いで、電池ケース4にその周方向に延びる幅1.2mmの環状溝部を形成し、電池ケース4内に水酸化カリウムと水酸化ナトリウムと水酸化リチウムの水溶液(電解液)を2.5g注入した。さらに、封口板6に正極リード8の他端を溶接接続した後、封口板6を電池ケース4の開口に装着し、電池ケース4の開口端部を封口板6に向けてかしめ付けることにより電池ケース4を封口した。   This electrode group was housed in an AA-size iron battery case 4 whose surface was plated with nickel. In this state, an insulating ring 5 made of polypropylene resin was attached to the end of the electrode group on the sealing plate 6 side. Next, an annular groove having a width of 1.2 mm extending in the circumferential direction is formed in the battery case 4, and 2.5 g of an aqueous solution (electrolyte) of potassium hydroxide, sodium hydroxide, and lithium hydroxide is injected into the battery case 4. . Further, after the other end of the positive electrode lead 8 is welded to the sealing plate 6, the sealing plate 6 is attached to the opening of the battery case 4, and the opening end of the battery case 4 is caulked toward the sealing plate 6. Case 4 was sealed.

次いで0.19Aの電流で16時間充電した後、1.9Aの電流で40分間放電するサイクルを2回繰り返し、AAサイズの本発明の円筒形ニッケル水素蓄電池(公称容量1.9Ah)を得た。   Next, after charging for 16 hours at a current of 0.19 A, a cycle of discharging for 40 minutes at a current of 1.9 A was repeated twice to obtain a cylindrical nickel-metal hydride storage battery (nominal capacity 1.9 Ah) of the present invention of AA size. .

(実施例2)
第3のセパレータ11として保液率が75%の不織布を使用した以外は実施例1と同様にして、本発明の円筒形ニッケル水素蓄電池(公称容量1.9Ah)を得た。
(Example 2)
A cylindrical nickel-metal hydride storage battery (nominal capacity 1.9 Ah) of the present invention was obtained in the same manner as in Example 1 except that a nonwoven fabric having a liquid retention rate of 75% was used as the third separator 11.

(実施例3)
第3のセパレータ11として保液率が90%の不織布を使用した以外は実施例1と同様にして、本発明の円筒形ニッケル水素蓄電池(公称容量1.9Ah)を得た。
Example 3
A cylindrical nickel-metal hydride storage battery (nominal capacity 1.9 Ah) of the present invention was obtained in the same manner as in Example 1 except that a nonwoven fabric having a liquid retention rate of 90% was used as the third separator 11.

(実施例4)
第3のセパレータ11として保液率が50%の不織布を40mm使用し、図3に示すように電極群の最外周1ターン分を第3のセパレータ11で覆った以外は実施例1と同様にして、本発明の円筒形ニッケル水素蓄電池(公称容量1.9Ah)を得た。
Example 4
40 mm of non-woven fabric with a liquid retention rate of 50% is used as the third separator 11, and the same as in Example 1 except that the outermost one turn of the electrode group is covered with the third separator 11 as shown in FIG. Thus, a cylindrical nickel-metal hydride storage battery (nominal capacity 1.9 Ah) of the present invention was obtained.

(実施例5)
第3のセパレータ11として保液率が50%の不織布を10mm使用し、図5に示すようにそれを第1のセパレータ9の内面に配置した以外は実施例1と同様にして、本発明の円筒形ニッケル水素蓄電池(公称容量1.9Ah)を得た。
(Example 5)
The third separator 11 was used in the same manner as in Example 1 except that 10 mm of a non-woven fabric having a liquid retention rate of 50% was used and arranged on the inner surface of the first separator 9 as shown in FIG. A cylindrical nickel-metal hydride storage battery (nominal capacity 1.9 Ah) was obtained.

(比較例1)
第1のセパレータ9と第2のセパレータ10のみを使用した以外は実施例1と同様にして、円筒形ニッケル水素蓄電池(公称容量1.9Ah)を得た。
(Comparative Example 1)
A cylindrical nickel-metal hydride storage battery (nominal capacity 1.9 Ah) was obtained in the same manner as in Example 1 except that only the first separator 9 and the second separator 10 were used.

(比較例2)
第3のセパレータ11として保液率が150%の不織布を使用した以外は実施例1と同様にして、円筒形ニッケル水素蓄電池(公称容量1.9Ah)を得た。
(Comparative Example 2)
A cylindrical nickel-metal hydride storage battery (nominal capacity 1.9 Ah) was obtained in the same manner as in Example 1 except that a nonwoven fabric having a liquid retention rate of 150% was used as the third separator 11.

(評価項目1)
実施例1〜5および比較例1〜2の構成の電池について各2000個組立を実施し、そのときの短絡不良率を確認した。
(Evaluation item 1)
Each of the batteries having the configurations of Examples 1 to 5 and Comparative Examples 1 to 2 was assembled, and the short-circuit failure rate at that time was confirmed.

(評価項目2)
実施例1〜5および比較例1〜2で得られた電池について、0.95Aの電流で−ΔV(5mV)の充電制御で充電した後、1.9Aの電流で1.0Vまで放電する充放電サイクル寿命試験を実施した。電池容量が初期の電池容量の60%になった段階を寿命と判定し、寿命にいたった充放電回数を測定した。
(Evaluation item 2)
The batteries obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were charged with a current of 0.95 A with a charge control of -ΔV (5 mV), and then charged to 1.0 V with a current of 1.9 A. A discharge cycle life test was conducted. The stage when the battery capacity reached 60% of the initial battery capacity was judged as the life, and the number of times of charge / discharge reaching the life was measured.

これらの試験結果を(表1)に示す。   The test results are shown in (Table 1).

まず評価項目1の短絡不良率の結果をみると第3のセパレータを使用している実施例1〜5、比較例2については、第3のセパレータを使用していない比較例1と比べて短絡不良率は半減以下になっている。また第3のセパレータを電極群の最外周1ターン分とした実施例4ではさらに短絡不良率を半減以下に抑制することができている。   First, looking at the results of the short-circuit failure rate of the evaluation item 1, the first to fifth examples using the third separator and the comparative example 2 are short-circuited compared to the comparative example 1 not using the third separator. The defective rate is less than half. In Example 4 in which the third separator is used for one turn of the outermost periphery of the electrode group, the short-circuit failure rate can be further suppressed to half or less.

次に評価項目2の結果をみると、第3のセパレータを使用していない比較例1に比べて、第1および第2のセパレータの保液率を100としたときの第3のセパレータの保液率の比率が100(同等)である比較例2においては、サイクル寿命特性の100サイクル以上の低下が見られる。これは第3のセパレータの保液率が高く電極群の巻き終わり近傍に過剰な電解液が保持され、相対的に電極群内周部分での電解液量が減少し、充放電サイクルを繰り返す中でセパレータ中の電解液の枯渇を引き起こしていると推定される。   Next, looking at the result of evaluation item 2, the retention rate of the third separator when the liquid retention rate of the first and second separators is 100 as compared with Comparative Example 1 in which the third separator is not used. In Comparative Example 2 in which the ratio of the liquid ratio is 100 (equivalent), the cycle life characteristics are reduced by 100 cycles or more. This is because the liquid retention rate of the third separator is high and excess electrolyte solution is held near the end of winding of the electrode group, and the amount of electrolyte solution in the inner peripheral portion of the electrode group decreases relatively, and the charge / discharge cycle is repeated. Thus, it is estimated that the electrolyte in the separator is depleted.

これに対して第3のセパレータの保液率が第1のセパレータおよび第2のセパレータの保液率より小さい実施例1〜5においては良好なサイクル寿命特性を確保している。また第1および第2のセパレータの保液率を100としたときの第3のセパレータの保液率の比率が50(半分)以下である実施例1、2、4、5ではより良好なサイクル寿命特性を示している。さらに第3のセパレータの配置を第1のセパレータの内面に配置した実施例5よりも、第1のセパレータの外面に配置した実施例1のほうがより良好なサイクル寿命特性を確保している。これは充電時の電極板膨潤などにより正極板の近傍の電解液がより消費されやすく、保液率の小さい第3のセパレータを第1のセパレータの外面と負極板の内面との間に配置することにより正極板近傍の電解液の偏在を抑制することができているためと推測される。   On the other hand, in Examples 1 to 5 in which the liquid retention rate of the third separator is smaller than the liquid retention rates of the first separator and the second separator, good cycle life characteristics are secured. Further, in Examples 1, 2, 4, and 5 in which the ratio of the liquid retention ratio of the third separator is 50 (half) or less when the liquid retention ratio of the first and second separators is 100, the cycle is better. It shows the life characteristics. Furthermore, better cycle life characteristics are ensured in Example 1 arranged on the outer surface of the first separator than in Example 5 in which the third separator is arranged on the inner surface of the first separator. This is because the electrolyte solution in the vicinity of the positive electrode plate is more easily consumed due to swelling of the electrode plate during charging, and a third separator having a low liquid retention rate is disposed between the outer surface of the first separator and the inner surface of the negative electrode plate. This is presumably because the uneven distribution of the electrolyte near the positive electrode plate can be suppressed.

なお本発明は、本実施例に限定されず、請求項1〜請求項5に記載される構成をとる円筒形アルカリ蓄電池では、同様の効果を得ることができる。   In addition, this invention is not limited to a present Example, In the cylindrical alkaline storage battery which takes the structure described in Claims 1-5, the same effect can be acquired.

本発明によれば、充放電サイクル性能に優れた円筒形アルカリ蓄電池が提供される。本発明の円筒形アルカリ蓄電池は、繰り返し使用される回数の多い、たとえば携帯用ゲーム機や音楽機器などの携帯機器用電源として好適に使用できる。   According to the present invention, a cylindrical alkaline storage battery having excellent charge / discharge cycle performance is provided. The cylindrical alkaline storage battery of the present invention can be suitably used as a power source for portable devices such as portable game machines and music devices that are frequently used.

1 正極板
2 負極板
3 底部絶縁板
4 電池ケース
5 絶縁リング
6 封口板
7 安全弁
8 正極リード
9 第1のセパレータ
10 第2のセパレータ
11 第3のセパレータ
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Bottom part insulating plate 4 Battery case 5 Insulation ring 6 Sealing plate 7 Safety valve 8 Positive electrode lead 9 1st separator 10 2nd separator 11 3rd separator

Claims (3)

帯状の正極板と負極板とをセパレータを介して捲回した電極群と電解液とこれらを内装する電池ケースから構成される円筒形アルカリ蓄電池において、上記電極群として正極板の外面と負極板の内面との間に配置される第1のセパレータと、正極板の内面と負極板の外面との間に配置される第2のセパレータと、電極群の巻き終わり側の正極板と負極板との間に配置され保液率が第1のセパレータおよび第2のセパレータの保液率より小さい第3のセパレータを配置したことを特徴とする円筒形アルカリ蓄電池。 In a cylindrical alkaline storage battery composed of an electrode group obtained by winding a strip-like positive electrode plate and a negative electrode plate with a separator interposed therebetween, an electrolytic solution, and a battery case containing them, the outer surface of the positive electrode plate and the negative electrode plate are used as the electrode group. A first separator disposed between the inner surface, a second separator disposed between the inner surface of the positive electrode plate and the outer surface of the negative electrode plate, and the positive electrode plate and the negative electrode plate on the winding end side of the electrode group. A cylindrical alkaline storage battery, wherein a third separator disposed between them and having a liquid retention rate smaller than that of the first separator and the second separator is disposed. 前記第3のセパレータは電極群の最外周1ターン分の長さとしたことを特徴とする請求項1に記載の円筒形アルカリ蓄電池。The cylindrical alkaline storage battery according to claim 1, wherein the third separator has a length corresponding to one turn of the outermost periphery of the electrode group. 前記第3のセパレータは、前記第1のセパレータの外面と前記負極板の内面との間に配置したことを特徴とする請求項1または2に記載の円筒形アルカリ蓄電池。3. The cylindrical alkaline storage battery according to claim 1, wherein the third separator is disposed between an outer surface of the first separator and an inner surface of the negative electrode plate.
JP2012073205A 2012-03-28 2012-03-28 Cylindrical alkaline storage battery Active JP5655808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073205A JP5655808B2 (en) 2012-03-28 2012-03-28 Cylindrical alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073205A JP5655808B2 (en) 2012-03-28 2012-03-28 Cylindrical alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2013206674A JP2013206674A (en) 2013-10-07
JP5655808B2 true JP5655808B2 (en) 2015-01-21

Family

ID=49525563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073205A Active JP5655808B2 (en) 2012-03-28 2012-03-28 Cylindrical alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5655808B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292917B2 (en) * 2014-02-14 2018-03-14 湘南Corun Energy株式会社 Alkaline storage battery
CN108110332B (en) * 2018-01-05 2023-04-28 泉州劲鑫电子有限公司 Storage-resistant battery and preparation method thereof
CN109904524A (en) * 2019-01-25 2019-06-18 东莞市海商泰通讯科技有限公司 A kind of processing technology of 1 to No. 7 solid lithium ion battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190158A (en) * 1992-01-14 1993-07-30 Matsushita Electric Ind Co Ltd Storage battery
JP2003208883A (en) * 2002-01-11 2003-07-25 Sanyo Electric Co Ltd Battery
JP4859399B2 (en) * 2004-09-03 2012-01-25 パナソニック株式会社 Lithium ion secondary battery
JP4654700B2 (en) * 2005-01-31 2011-03-23 パナソニック株式会社 Lithium ion secondary battery
JP2009211857A (en) * 2008-03-03 2009-09-17 Sony Corp Battery

Also Published As

Publication number Publication date
JP2013206674A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5602092B2 (en) Alkaline secondary battery using negative electrode plate for alkaline secondary battery
WO2017090219A1 (en) Cylindrical battery
JP4868809B2 (en) Cylindrical alkaline storage battery
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
CN101719566B (en) Dynamic high-capacity nickel-hydrogen battery and production process thereof
JP5655808B2 (en) Cylindrical alkaline storage battery
JP2018160387A (en) Alkaline battery
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP4429569B2 (en) Nickel metal hydride storage battery
JP2015122276A (en) Cylindrical battery
JP5110889B2 (en) Nickel metal hydride secondary battery
JP7105525B2 (en) zinc battery
US20090170004A1 (en) Electrode for rechargeable battery and method for manufacturing the same
JP4967229B2 (en) A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied.
JP4201664B2 (en) Cylindrical alkaline storage battery
JP2006196207A (en) Alkaline storage battery and manufacturing method of its electrode group
JP6151106B2 (en) Nickel metal hydride storage battery
JP2019216059A (en) Porous membrane, battery member, and zinc battery
JP2011204539A (en) Cylindrical alkaline storage battery
KR102111288B1 (en) Positive electrode and alkaline secondary battery including the same
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
EP4156330A1 (en) Alkaline storage battery
JP2022124195A (en) alkaline storage battery
JP2013211122A (en) Alkaline storage battery
JP2011008930A (en) Cylindrical type alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R151 Written notification of patent or utility model registration

Ref document number: 5655808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151