JP6151106B2 - Nickel metal hydride storage battery - Google Patents

Nickel metal hydride storage battery Download PDF

Info

Publication number
JP6151106B2
JP6151106B2 JP2013133492A JP2013133492A JP6151106B2 JP 6151106 B2 JP6151106 B2 JP 6151106B2 JP 2013133492 A JP2013133492 A JP 2013133492A JP 2013133492 A JP2013133492 A JP 2013133492A JP 6151106 B2 JP6151106 B2 JP 6151106B2
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen storage
storage alloy
electrode mixture
mixture layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013133492A
Other languages
Japanese (ja)
Other versions
JP2015008107A (en
Inventor
俊毅 佐藤
俊毅 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2013133492A priority Critical patent/JP6151106B2/en
Publication of JP2015008107A publication Critical patent/JP2015008107A/en
Application granted granted Critical
Publication of JP6151106B2 publication Critical patent/JP6151106B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ニッケル水素蓄電池に関し、詳しくは、円筒型のニッケル水素蓄電池に関する。   The present invention relates to a nickel-metal hydride storage battery, and more particularly to a cylindrical nickel-metal hydride storage battery.

アルカリ蓄電池の一つとして、円筒型のニッケル水素蓄電池が知られている。このニッケル水素蓄電池は、例えば、以下のようにして製造される。まず、負極活物質としての水素を吸蔵放出可能な水素吸蔵合金を含む負極合剤層を備えた負極と、正極活物質としての水酸化ニッケルを含む正極合剤層を備えた正極とが、セパレータを間に挟んだ状態で渦巻き状に巻回されて電極群が形成される。得られた電極群は、有底円筒状の容器内にアルカリ電解液とともに密閉状態で収容される。このようにして、ニッケル水素蓄電池が得られる。   A cylindrical nickel-metal hydride storage battery is known as one of alkaline storage batteries. This nickel metal hydride storage battery is manufactured as follows, for example. First, a negative electrode provided with a negative electrode mixture layer containing a hydrogen storage alloy capable of occluding and releasing hydrogen as a negative electrode active material, and a positive electrode provided with a positive electrode mixture layer containing nickel hydroxide as a positive electrode active material The electrode group is formed by being wound in a spiral shape with a gap therebetween. The obtained electrode group is housed in a sealed state together with an alkaline electrolyte in a bottomed cylindrical container. In this way, a nickel metal hydride storage battery is obtained.

このようなニッケル水素蓄電池は、ニッケルカドミウム蓄電池に比べて高容量で、且つ環境安全性にも優れているという点から、各種のポータブル機器やハイブリッド電気自動車等、さまざまな用途に使用されるようになっている。このように、さまざまな用途が見出されたことによりニッケル水素蓄電池に対しては、より長い期間、安定して使用できるように、長寿命化が望まれている。   Such nickel metal hydride storage batteries are used in various applications such as various portable devices and hybrid electric vehicles because they have higher capacity and better environmental safety than nickel cadmium storage batteries. It has become. As described above, it has been desired that the nickel-metal hydride storage battery has a long life so that it can be used stably for a longer period of time by finding various uses.

ニッケル水素蓄電池の寿命に悪影響を与える因子の一つとしては、水素吸蔵合金が高温にさらされることによる劣化が挙げられる。例えば、電池の充放電に際し、電池の各部の構成部材が電気的な抵抗となって発熱することにより、電池内部は高温となる。このように電池内部が高温になると電解液による水素吸蔵合金の腐食反応がより進行するため、水素吸蔵合金は劣化する。水素吸蔵合金が劣化すると、電池反応を良好に進行させることが困難となるため、電池の寿命が尽きてしまう。   One of the factors that adversely affect the life of the nickel-metal hydride storage battery is deterioration due to exposure of the hydrogen storage alloy to high temperatures. For example, when the battery is charged / discharged, the constituent members of each part of the battery generate electric resistance and generate heat, so that the temperature inside the battery becomes high. As described above, when the inside of the battery becomes high temperature, the corrosion reaction of the hydrogen storage alloy by the electrolytic solution further proceeds, so that the hydrogen storage alloy deteriorates. When the hydrogen storage alloy deteriorates, it becomes difficult to make the battery reaction proceed well, and the battery life is exhausted.

ニッケル水素蓄電池の長寿命化の観点から、水素吸蔵合金の耐食性を向上させるために水素吸蔵合金粒子の粒径を大きくするといった手段をとることが知られている。特に、円筒型の電池においては、充放電にともない熱が発生すると、電池の中心部は熱がこもり易く比較的高温となるため、電池の中心部の水素吸蔵合金の腐食反応が進行し易い。このため、電池の中心部の水素吸蔵合金粒子の粒径を大きくすることが行われている(例えば、特許文献1参照)。   From the viewpoint of extending the life of nickel-metal hydride storage batteries, it is known to take measures such as increasing the particle size of the hydrogen storage alloy particles in order to improve the corrosion resistance of the hydrogen storage alloy. In particular, in a cylindrical battery, when heat is generated during charging / discharging, the central portion of the battery is likely to accumulate heat and becomes relatively high temperature, so that the corrosion reaction of the hydrogen storage alloy in the central portion of the battery is likely to proceed. For this reason, increasing the particle size of the hydrogen storage alloy particles in the center of the battery is performed (for example, see Patent Document 1).

特開2009−211970号公報JP 2009-211970

ところで、電極群の製造に際し、正極、セパレータ及び負極を巻回する作業にともない、正極における電極群の径方向内側の面の正極合剤層が、電極群の周方向に沿った方向に圧縮されて内側の負極に向かって局部的に盛り上がることがある。このように正極合剤層の盛り上がった部分は、先端が比較的鋭角な突起となる。そして、このような突起は、セパレータを負極側へ部分的に押圧する。このとき、負極に粒径が大きな水素吸蔵合金粒子が含まれていると、負極の表面の凹凸が大きくなるため、表面の凹凸が大きな負極と突起を有する正極とに挟まれたセパレータは突き破られ易くなる。その結果、電池の短絡不良が起こることがある。上記したように、電池の中心部、即ち、電極群の中心部に粒径の大きな水素吸蔵合金を分布させる場合、電極群の中心部は、曲率が大きいため曲がり具合がきつく、上記したような短絡不良はより起こり易い。   By the way, during the production of the electrode group, the positive electrode mixture layer on the radially inner surface of the electrode group in the positive electrode is compressed in the direction along the circumferential direction of the electrode group, as the positive electrode, the separator, and the negative electrode are wound. May rise locally toward the inner negative electrode. Thus, the raised portion of the positive electrode mixture layer becomes a protrusion having a relatively sharp tip. Such protrusions partially press the separator toward the negative electrode side. At this time, if the negative electrode contains hydrogen storage alloy particles having a large particle size, the unevenness on the surface of the negative electrode becomes large, so that the separator sandwiched between the negative electrode having a large surface unevenness and the positive electrode having protrusions breaks through. It becomes easy to be done. As a result, a short circuit failure of the battery may occur. As described above, when a hydrogen storage alloy having a large particle size is distributed in the center of the battery, that is, in the center of the electrode group, the center of the electrode group has a large curvature, so that the bending condition is tight. Short circuit failure is more likely to occur.

このような短絡不良を避けるため、水素吸蔵合金粒子の粒径を小さくすることが考えられる。しかしながら、水素吸蔵合金粒子の粒径を小さくするとアルカリ電解液に対する水素吸蔵合金の耐食性が低下し、電池の寿命が短くなってしまう。つまり、電池の短絡不良を抑制しようとすると、電池の寿命がある程度犠牲になり、電池の長寿命化を図ろうとすると、短絡不良の発生率が上昇してしまうという不具合がある。   In order to avoid such a short circuit failure, it is conceivable to reduce the particle size of the hydrogen storage alloy particles. However, if the particle size of the hydrogen storage alloy particles is reduced, the corrosion resistance of the hydrogen storage alloy with respect to the alkaline electrolyte is lowered, and the life of the battery is shortened. In other words, there is a problem that if the short circuit failure of the battery is suppressed, the life of the battery is sacrificed to some extent, and if the life of the battery is extended, the occurrence rate of the short circuit failure is increased.

本発明は、上記の事情に基づいてなされたものであり、その目的とするところは、電池の短絡不良の発生率の低減と電池の長寿命化の両立を図ることができるニッケル水素蓄電池を提供することにある。   The present invention has been made based on the above circumstances, and an object of the present invention is to provide a nickel-metal hydride storage battery that can achieve both reduction in the occurrence rate of short-circuit failure of the battery and extension of the battery life. There is to do.

上記目的を達成するために、本発明によれば、容器と、正極及び負極がセパレータを間に挟んだ状態で巻回されてなり、前記容器内にアルカリ電解液とともに密閉状態で収容された電極群と、を備え、前記負極は、前記電極群の径方向外側に位置する第1面及び前記電極群の径方向内側に位置する第2面を有する帯状の負極芯体と、前記負極芯体の第1面に形成された第1負極合剤層と、前記負極芯体の第2面に形成された第2負極合剤層とを有し、前記第1負極合剤層に含まれる水素吸蔵合金粒子の平均粒径が前記第2負極合剤層に含まれる水素吸蔵合金粒子の平均粒径よりも小さいことを特徴とするニッケル水素蓄電池が提供される。   In order to achieve the above object, according to the present invention, a container, a positive electrode and a negative electrode are wound in a state of sandwiching a separator, and the electrode is housed in a sealed state with an alkaline electrolyte in the container. A strip-shaped negative electrode core having a first surface located on the radially outer side of the electrode group and a second surface located on the radial inner side of the electrode group, and the negative electrode core The first negative electrode mixture layer formed on the first surface and the second negative electrode mixture layer formed on the second surface of the negative electrode core, and hydrogen contained in the first negative electrode mixture layer There is provided a nickel-metal hydride storage battery characterized in that the average particle size of the storage alloy particles is smaller than the average particle size of the hydrogen storage alloy particles contained in the second negative electrode mixture layer.

この態様によれば、正極における電極群の径方向内側の面と相対する負極における電極群の径方向外側の面に形成された第1負極合剤層に含まれる水素吸蔵合金粒子の粒径が、負極における電極群の径方向内側の面に形成された第2負極合剤層に含まれる水素吸蔵合金粒子の粒径よりも小さいので、全ての水素吸蔵合金粒子につき粒径が大きなものを用いる場合に比べて、巻回作業にともなって正極の正極合剤層の盛り上がった部分がセパレータを突き破る不具合は発生し難くなる。しかも、第2負極合剤層に含まれる水素吸蔵合金粒子の粒径は、比較的大きいので、アルカリ電解液に対する耐食性に優れている。つまり、この態様の場合、短絡が起きやすい部分には、短絡発生の防止に貢献する比較的粒径が小さい水素吸蔵合金粒子が配置され、それ以外の部分には、耐食性に優れる比較的粒径が大きい水素吸蔵合金粒子が配置されている。これにより、電池の短絡の発生を抑制でき、しかも、電池の寿命も延ばすことができる。   According to this aspect, the particle size of the hydrogen storage alloy particles contained in the first negative electrode mixture layer formed on the radially outer surface of the electrode group in the negative electrode opposed to the radially inner surface of the electrode group in the positive electrode is Since the particle size of the hydrogen storage alloy particles contained in the second negative electrode mixture layer formed on the radially inner surface of the electrode group in the negative electrode is smaller than that of all the hydrogen storage alloy particles, one having a large particle size is used. Compared with the case, the problem that the raised portion of the positive electrode mixture layer of the positive electrode breaks through the separator is less likely to occur with the winding operation. And since the particle size of the hydrogen storage alloy particle contained in a 2nd negative mix layer is comparatively large, it is excellent in the corrosion resistance with respect to alkaline electrolyte. That is, in this aspect, hydrogen storage alloy particles having a relatively small particle size that contributes to prevention of the occurrence of short-circuiting are disposed in the portion where short-circuiting is likely to occur, and the other particle portions have relatively large particle sizes with excellent corrosion resistance. Larger hydrogen storage alloy particles are arranged. Thereby, generation | occurrence | production of the short circuit of a battery can be suppressed, and also the lifetime of a battery can be extended.

また、前記負極芯体は、無孔の金属製シートである構成とすることが好ましい。   The negative electrode core is preferably a non-porous metal sheet.

この態様の場合、負極芯体における第1面側の第1負極合剤層に含まれる水素吸蔵合金粒子と、負極芯体における第2面側の第2負極合剤層に含まれる水素吸蔵合金粒子とが互いに混ざり合うことを確実に防止することができる。これにより、第1面側に粒径の大きな水素吸蔵合金粒子が存在し、第2面側に粒径の小さい水素吸蔵合金粒子が存在するといった不具合は発生しないので、短絡不良の発生率はより低くなり、電池の寿命もより長くなる。   In this embodiment, the hydrogen storage alloy particles contained in the first negative electrode mixture layer on the first surface side of the negative electrode core and the hydrogen storage alloy contained in the second negative electrode mixture layer on the second surface side of the negative electrode core. It is possible to reliably prevent the particles from being mixed with each other. As a result, there is no inconvenience that hydrogen storage alloy particles with a large particle size exist on the first surface side and hydrogen storage alloy particles with a small particle size exist on the second surface side, so the incidence of short circuit failure is more The battery life will be longer.

好ましくは、前記負極芯体は、前記負極芯体の単位面積当たりの貫通孔の面積の比率で表される開孔率が10%以下の金属製シートである構成とする。   Preferably, the negative electrode core is a metal sheet having a hole area ratio represented by a ratio of the area of through holes per unit area of the negative electrode core of 10% or less.

この態様の場合、負極芯体の第1面側の水素吸蔵合金粒子と負極芯体の第2面側の水素吸蔵合金粒子とが互いに混ざり合うことをある程度抑えつつ負極芯体への負極合剤層の結着性が高められる。   In the case of this aspect, the negative electrode mixture to the negative electrode core is suppressed to some extent while mixing the hydrogen storage alloy particles on the first surface side of the negative electrode core and the hydrogen storage alloy particles on the second surface side of the negative electrode core to each other. The binding property of the layer is increased.

本発明に係るニッケル水素蓄電池は、電池の短絡不良の発生率の低減と電池の長寿命化の両立を図ることができる優れた電池となる。   The nickel-metal hydride storage battery according to the present invention is an excellent battery that can achieve both a reduction in the occurrence rate of short-circuit defects in the battery and a longer battery life.

本発明の一実施形態に係るニッケル水素蓄電池を部分的に破断して示した斜視図である。It is the perspective view which fractured | ruptured and showed the nickel hydride storage battery which concerns on one Embodiment of this invention. 負極芯体の第1面に第1負極合剤ペーストを塗布した状態を概略的に示した断面図である。It is sectional drawing which showed roughly the state which apply | coated the 1st negative mix paste on the 1st surface of the negative electrode core. 負極芯体の第1面に第1負極合剤ペーストを塗布し、負極芯体の第2面に第2負極合剤ペーストを塗布した状態を概略的に示した断面図である。It is sectional drawing which showed roughly the state which apply | coated 1st negative mix paste on the 1st surface of the negative electrode core, and apply | coated 2nd negative mix paste on the 2nd surface of the negative electrode core. 負極、セパレータ及び正極を積層して得られた積層体を巻回し、電極群を形成する態様を概略的に示した図である。It is the figure which showed schematically the aspect which rolls the laminated body obtained by laminating | stacking a negative electrode, a separator, and a positive electrode, and forms an electrode group.

以下、本発明に係るニッケル水素蓄電池(以下、単に電池と称する)2を、図面を参照して説明する。
電池2は、例えば、図1に示すAAサイズの円筒型の電池である。
Hereinafter, a nickel metal hydride storage battery (hereinafter simply referred to as a battery) 2 according to the present invention will be described with reference to the drawings.
The battery 2 is, for example, an AA size cylindrical battery shown in FIG.

図1に示すように、電池2は、上端が開口した有底円筒形状をなす外装缶10を備えている。外装缶10は導電性を有し、その底壁35は負極端子として機能する。外装缶10の開口内には、導電性を有する円板形状の蓋板14及びこの蓋板14を囲むリング形状の絶縁パッキン12が配置され、絶縁パッキン12は外装缶10の開口縁37をかしめ加工することにより外装缶10の開口縁37に固定されている。即ち、蓋板14及び絶縁パッキン12は互いに協働して外装缶10の開口を気密に閉塞している。   As shown in FIG. 1, the battery 2 includes an outer can 10 having a bottomed cylindrical shape with an open upper end. The outer can 10 has conductivity, and its bottom wall 35 functions as a negative electrode terminal. In the opening of the outer can 10, a disc-shaped cover plate 14 having conductivity and a ring-shaped insulating packing 12 surrounding the cover plate 14 are arranged. The insulating packing 12 caulks the opening edge 37 of the outer can 10. It is fixed to the opening edge 37 of the outer can 10 by processing. That is, the lid plate 14 and the insulating packing 12 cooperate with each other to airtightly close the opening of the outer can 10.

ここで、蓋板14は中央に中央貫通孔16を有し、そして、蓋板14の外面上には中央貫通孔16を塞ぐゴム製の弁体18が配置されている。更に、蓋板14の外面上には、弁体18を覆うようにしてフランジ付き円筒形状の正極端子20が固定され、正極端子20は弁体18を蓋板14に向けて押圧している。なお、この正極端子20には、図示しないガス抜き孔が開口されている。   Here, the cover plate 14 has a central through hole 16 in the center, and a rubber valve body 18 that closes the central through hole 16 is disposed on the outer surface of the cover plate 14. Further, a flanged cylindrical positive terminal 20 is fixed on the outer surface of the cover plate 14 so as to cover the valve body 18, and the positive terminal 20 presses the valve body 18 toward the cover plate 14. The positive electrode terminal 20 has a gas vent hole (not shown).

通常時、中央貫通孔16は弁体18によって気密に閉じられている。一方、外装缶10内にガスが発生し、その内圧が高まれば、弁体18は内圧によって圧縮され、中央貫通孔16を開き、この結果、外装缶10内から中央貫通孔16及び正極端子20のガス抜き孔を介して外部にガスが放出される。つまり、中央貫通孔16、弁体18及び正極端子20は電池のための安全弁を形成している。   Normally, the central through hole 16 is hermetically closed by the valve body 18. On the other hand, if gas is generated in the outer can 10 and its internal pressure increases, the valve body 18 is compressed by the internal pressure and opens the central through hole 16. As a result, the central through hole 16 and the positive electrode terminal 20 are opened from the outer can 10. Gas is released to the outside through the vent holes. That is, the central through hole 16, the valve body 18, and the positive electrode terminal 20 form a safety valve for the battery.

外装缶10には、電極群22が収容されている。この電極群22は、それぞれ帯状の正極24、負極26及びセパレータ28からなり、これらは正極24と負極26との間にセパレータ28が挟み込まれた状態で渦巻状に巻回されている。即ち、セパレータ28を介して正極24及び負極26が重ね合わされている。電極群22の最外周は負極26の一部(最外周部)により形成され、外装缶10の内周壁と接触している。即ち、負極26と外装缶10とは互いに電気的に接続されている。   An electrode group 22 is accommodated in the outer can 10. Each of the electrode groups 22 includes a strip-like positive electrode 24, a negative electrode 26, and a separator 28, which are wound in a spiral shape with the separator 28 sandwiched between the positive electrode 24 and the negative electrode 26. That is, the positive electrode 24 and the negative electrode 26 are overlapped via the separator 28. The outermost periphery of the electrode group 22 is formed by a part of the negative electrode 26 (the outermost periphery) and is in contact with the inner peripheral wall of the outer can 10. That is, the negative electrode 26 and the outer can 10 are electrically connected to each other.

そして、外装缶10内には、電極群22と蓋板14との間に正極リード30が配置されている。詳しくは、正極リード30は、その一端が正極24に接続され、その他端が蓋板14に接続されている。従って、正極端子20と正極24とは、正極リード30及び蓋板14を介して互いに電気的に接続されている。なお、蓋板14と電極群22との間には円形の上部絶縁部材32が配置され、正極リード30は絶縁部材32に設けられたスリット39を通して延びている。また、電極群22と外装缶10の底部との間にも円形の下部絶縁部材34が配置されている。   In the outer can 10, a positive electrode lead 30 is disposed between the electrode group 22 and the lid plate 14. Specifically, the positive electrode lead 30 has one end connected to the positive electrode 24 and the other end connected to the lid plate 14. Therefore, the positive electrode terminal 20 and the positive electrode 24 are electrically connected to each other via the positive electrode lead 30 and the cover plate 14. A circular upper insulating member 32 is disposed between the cover plate 14 and the electrode group 22, and the positive electrode lead 30 extends through a slit 39 provided in the insulating member 32. A circular lower insulating member 34 is also disposed between the electrode group 22 and the bottom of the outer can 10.

更に、外装缶10内には、所定量のアルカリ電解液(図示せず)が注入されている。このアルカリ電解液は、電極群22に含浸され、正極24と負極26との間での充放電反応を進行させる。なお、アルカリ電解液の種類としては、特に限定されないが、例えば、水酸化ナトリウム水溶液をあげることができ、またアルカリ電解液の濃度についても、適当な充放電反応を進行させることができる濃度であれば特には限定されない。   Further, a predetermined amount of alkaline electrolyte (not shown) is injected into the outer can 10. The alkaline electrolyte is impregnated in the electrode group 22 to advance a charge / discharge reaction between the positive electrode 24 and the negative electrode 26. The type of the alkaline electrolyte is not particularly limited. For example, an aqueous sodium hydroxide solution can be used, and the concentration of the alkaline electrolyte can be an appropriate charge / discharge reaction. There is no particular limitation.

セパレータ28の材料としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布が挙げられる。   Examples of the material of the separator 28 include a polyamide fiber nonwoven fabric and a polyolefin fiber nonwoven fabric such as polyethylene and polypropylene.

正極24は、多孔質構造を有する導電性の正極芯体と、この正極芯体の空孔内に保持された正極合剤とからなる。
正極合剤は、正極活物質粒子と、導電材と、これら正極活物質粒子及び導電材を正極芯体に結着するための結着剤とからなる。また、必要に応じて正極の特性を改善するための種々の添加剤を加えても構わない。この添加剤としては、例えば、酸化イットリウムが好適に用いられる。
The positive electrode 24 includes a conductive positive electrode core having a porous structure and a positive electrode mixture held in the pores of the positive electrode core.
The positive electrode mixture includes positive electrode active material particles, a conductive material, and a binder for binding the positive electrode active material particles and the conductive material to the positive electrode core. Moreover, you may add the various additive for improving the characteristic of a positive electrode as needed. As this additive, for example, yttrium oxide is preferably used.

正極活物質粒子は、水酸化ニッケル粒子又は高次水酸化ニッケル粒子である。なお、これら水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等を固溶していてもよく、あるいは表面がコバルト化合物で被覆されていてもよい。   The positive electrode active material particles are nickel hydroxide particles or higher order nickel hydroxide particles. In addition, these nickel hydroxide particles may be dissolved in cobalt, zinc, cadmium or the like, or the surface may be coated with a cobalt compound.

導電材としては、一酸化コバルト、金属コバルト等を用いることができる。   As the conductive material, cobalt monoxide, metallic cobalt, or the like can be used.

結着剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、PTFE(ポリテトラフルオロエチレン)ディスパージョン、HPC(ヒドロキシプロピルセルロース)ディスパージョンなどを用いることができる。   As the binder, for example, carboxymethylcellulose, methylcellulose, PTFE (polytetrafluoroethylene) dispersion, HPC (hydroxypropylcellulose) dispersion, and the like can be used.

正極24は、例えば、以下のようにして製造することができる。
まず、正極活物質粒子からなる正極活物質粉末、導電材、結着剤及び水を含む正極合剤ペーストを調製する。得られた正極合剤ペーストは、ニッケルフォームに充填され、乾燥させられる。乾燥後、水酸化ニッケル粒子等が充填されたニッケルフォームは、ロール圧延されてから所定寸法に裁断される。これにより、正極合剤を保持した所定形状の正極24が作製される。
The positive electrode 24 can be manufactured as follows, for example.
First, a positive electrode mixture paste including a positive electrode active material powder composed of positive electrode active material particles, a conductive material, a binder, and water is prepared. The obtained positive electrode mixture paste is filled in nickel foam and dried. After drying, the nickel foam filled with nickel hydroxide particles and the like is roll-rolled and then cut into a predetermined dimension. Thereby, the positive electrode 24 having a predetermined shape holding the positive electrode mixture is produced.

次に、負極26について説明する。
負極26は、帯状をなす導電性の負極芯体を有し、この負極芯体に負極合剤が保持されている。
Next, the negative electrode 26 will be described.
The negative electrode 26 has a conductive negative electrode core having a strip shape, and a negative electrode mixture is held in the negative electrode core.

負極芯体は、金属製シートからなる。この金属製シートとしては、後述する理由から、貫通孔が設けられていない無孔の金属製シート、或いは、多数の貫通孔が分布されている金属製シートであって、開孔率が10%以下の金属製シートを用いることが好ましい。
ここで、開孔率とは、金属製シートを平面視した際の単位面積当たりの貫通孔の面積の比率で表される。ここで、金属製シートをパンチング加工により打ち抜いた開孔部を貫通孔とし、開孔部以外の部分、即ち、貫通孔と貫通孔との間の金属製シートが残った部分を骨部とした場合、開孔率が低いほど貫通孔の占める割合は低くなり骨部の面積が大きくなることを表す。
The negative electrode core is made of a metal sheet. The metal sheet is a non-porous metal sheet in which no through holes are provided or a metal sheet in which a large number of through holes are distributed for a reason to be described later, and has an opening rate of 10%. It is preferable to use the following metal sheet.
Here, the hole area ratio is represented by the ratio of the area of the through holes per unit area when the metal sheet is viewed in plan. Here, the hole part punched out by punching the metal sheet was used as a through hole, and the part other than the hole part, that is, the part where the metal sheet between the through hole and the through hole remained was used as the bone part. In this case, the lower the hole area ratio, the lower the proportion of the through-holes, and the larger the bone area.

上記した金属製シートとしては、ニッケルめっき鋼板が好適に用いられる。また、貫通孔が分布された金属製シートとしては、例えば、ニッケルめっき鋼板のパンチングメタルシートが好適に用いられる。   As the above-mentioned metal sheet, a nickel-plated steel sheet is preferably used. Moreover, as a metal sheet | seat with which the through-hole was distributed, the punching metal sheet of a nickel plating steel plate is used suitably, for example.

ここで、負極芯体として無孔の金属製シートを用いる場合、負極合剤は、かかる金属製シートの両面上に層状にして保持されている。一方、負極芯体としてパンチングメタルシートを用いる場合、負極合剤は、パンチングメタルシートの両面上に層状にして保持されるばかりでなく、貫通孔内にも充填される。   Here, when a non-porous metal sheet is used as the negative electrode core, the negative electrode mixture is held in layers on both surfaces of the metal sheet. On the other hand, when a punching metal sheet is used as the negative electrode core, the negative electrode mixture is not only held in layers on both sides of the punching metal sheet, but also filled into the through holes.

負極合剤は、負極活物質としての水素を、吸蔵及び放出可能な水素吸蔵合金粒子を含み、更に導電材及び結着剤を含む。この結着剤は水素吸蔵合金粒子及び導電材を互いに結着させると同時に負極合剤を負極芯体に結着させる働きをなす。ここで、結着剤としては親水性若しくは疎水性のポリマー等を用いることができ、導電材としては、カーボンブラックや黒鉛を用いることができる。   The negative electrode mixture includes hydrogen storage alloy particles capable of storing and releasing hydrogen as a negative electrode active material, and further includes a conductive material and a binder. This binder serves to bind the hydrogen storage alloy particles and the conductive material to each other and at the same time bind the negative electrode mixture to the negative electrode core. Here, a hydrophilic or hydrophobic polymer or the like can be used as the binder, and carbon black or graphite can be used as the conductive material.

水素吸蔵合金粒子は、電池の充電時にアルカリ電解液中で電気化学的に発生させた水素を吸蔵でき、なおかつ放電時にその吸蔵した水素を容易に放出できるものであればよい。このような水素吸蔵合金としては、特に限定されないが、例えば、希土類−Ni系水素吸蔵合金、希土類−Mg−Ni系水素吸蔵合金等を用いることができる。   The hydrogen storage alloy particles may be any particles as long as they can store hydrogen generated electrochemically in an alkaline electrolyte during battery charging, and can easily release the stored hydrogen during discharge. Such a hydrogen storage alloy is not particularly limited. For example, a rare earth-Ni-based hydrogen storage alloy, a rare-earth-Mg-Ni-based hydrogen storage alloy, or the like can be used.

ここで、水素吸蔵合金粒子は、例えば、以下のようにして得られる。
まず、所望の水素吸蔵合金を得るべく各種の金属原材料を準備する。そして、所定の組成となるよう各金属原材料を計量したのち、これらを混合して金属原材料の混合物を得る。ついで、この混合物を例えば誘導溶解炉で溶解した後、冷却してインゴットにする。得られたインゴットには、900〜1200℃の不活性ガス雰囲気下にて5〜24時間加熱する熱処理を施す。この後、室温まで冷却したインゴットを粉砕し、水素吸蔵合金粒子を得る。得られた水素吸蔵合金粒子は、篩にかけられ、所望する粒径の水素吸蔵合金粒子が選別される。
Here, the hydrogen storage alloy particles are obtained, for example, as follows.
First, various metal raw materials are prepared to obtain a desired hydrogen storage alloy. And after measuring each metal raw material so that it may become a predetermined composition, these are mixed and the mixture of a metal raw material is obtained. Next, the mixture is melted in, for example, an induction melting furnace, and then cooled to an ingot. The obtained ingot is subjected to heat treatment by heating for 5 to 24 hours in an inert gas atmosphere at 900 to 1200 ° C. Thereafter, the ingot cooled to room temperature is pulverized to obtain hydrogen storage alloy particles. The obtained hydrogen storage alloy particles are sieved to select the hydrogen storage alloy particles having a desired particle size.

本発明においては、平均粒径が第1の粒径である第1水素吸蔵合金粒子と、平均粒径が第2の粒径である第2水素吸蔵合金粒子とが選別される。ここで、第1の粒径は、第2の粒径よりも小さい。好ましくは、第1水素吸蔵合金粒子の平均粒径(第1の粒径)は、20μm〜60μmとし、第2水素吸蔵合金粒子の平均粒径(第2の粒径)は、70μm〜120μmとする。ここで、本発明において平均粒径とは、レーザー回折・散乱法により求めた粒度分布における積算値50%での粒径を意味する。   In the present invention, first hydrogen storage alloy particles having an average particle size of the first particle size and second hydrogen storage alloy particles having an average particle size of the second particle size are selected. Here, the first particle size is smaller than the second particle size. Preferably, the average particle size (first particle size) of the first hydrogen storage alloy particles is 20 μm to 60 μm, and the average particle size (second particle size) of the second hydrogen storage alloy particles is 70 μm to 120 μm. To do. Here, the average particle diameter in the present invention means a particle diameter at an integrated value of 50% in a particle size distribution obtained by a laser diffraction / scattering method.

次に、負極26は、例えば、以下のようにして製造することができる。
まず、第1水素吸蔵合金粒子からなる水素吸蔵合金粉末、導電材、結着剤及び水を混練して第1負極合剤ペーストを調製する。更に、第2水素吸蔵合金粒子からなる水素吸蔵合金粉末、導電材、結着剤及び水を混練して第2負極合剤ペーストを調製する。
Next, the negative electrode 26 can be manufactured as follows, for example.
First, a first negative electrode mixture paste is prepared by kneading a hydrogen storage alloy powder composed of first hydrogen storage alloy particles, a conductive material, a binder, and water. Further, a hydrogen storage alloy powder composed of the second hydrogen storage alloy particles, a conductive material, a binder and water are kneaded to prepare a second negative electrode mixture paste.

得られた第1及び第2の負極合剤ペーストは、準備された金属製シートに以下のようにして塗布される。   The obtained 1st and 2nd negative mix paste is apply | coated to the prepared metal sheet | seat as follows.

上記した金属製シート40は、図2に示すように、第1面42及びこの第1面42とは反対側の第2面44を有しており、まずは、金属製シート40の第1面42に対し、例えば、塗布装置としてのダイコーターを用いて、第1負極合剤ペースト46が塗布される。このとき、第1負極合剤ペースト46は、厚さが、例えば、0.25mm〜0.35mmとなるように塗布される。ここで、図2では、金属製シート40の第1面42に第1負極合剤ペースト46が塗布された状態が概略的に示されている。次いで、金属製シート40の第2面44に対して第2負極合剤ペースト48が塗布される。このとき、第2負極合剤ペースト48は、厚さが、例えば、0.25mm〜0.35mmとなるように塗布される。この場合も塗布装置としてのダイコーターを用いて塗布作業が行われる。ここで、金属製シート40の第1面42及び第2面44に第1及び第2負極合剤ペースト46,48がそれぞれ塗布された状態を概略的に示すと図3のようになる。   As shown in FIG. 2, the metal sheet 40 has a first surface 42 and a second surface 44 opposite to the first surface 42. First, the first surface of the metal sheet 40. For example, the first negative electrode mixture paste 46 is applied to 42 using a die coater as a coating device. At this time, the first negative electrode mixture paste 46 is applied so that the thickness is, for example, 0.25 mm to 0.35 mm. Here, FIG. 2 schematically shows a state in which the first negative electrode mixture paste 46 is applied to the first surface 42 of the metal sheet 40. Next, the second negative electrode mixture paste 48 is applied to the second surface 44 of the metal sheet 40. At this time, the second negative electrode mixture paste 48 is applied so that the thickness is, for example, 0.25 mm to 0.35 mm. Also in this case, the coating operation is performed using a die coater as a coating apparatus. Here, FIG. 3 schematically shows a state where the first and second negative electrode mixture pastes 46 and 48 are respectively applied to the first surface 42 and the second surface 44 of the metal sheet 40.

以上のように金属製シート40に塗布された第1及び第2負極合剤ペースト46,48は、この後、乾燥装置により乾燥処理が施され、水素吸蔵合金粒子等が含まれた負極合剤層となる。乾燥後、負極合剤層を保持した金属製シートは、ロール圧延されてから所定寸法に裁断される。これにより負極合剤を保持した所定形状の負極26が作製される。   The first and second negative electrode mixture pastes 46 and 48 applied to the metal sheet 40 as described above are then subjected to a drying process by a drying device, and the negative electrode mixture containing hydrogen storage alloy particles and the like. Become a layer. After drying, the metal sheet holding the negative electrode mixture layer is roll-rolled and then cut into a predetermined dimension. Thereby, the negative electrode 26 having a predetermined shape holding the negative electrode mixture is produced.

ここで、図4から明らかなように、負極26は、金属製シート40の第1面42側において第1負極合剤ペースト46が乾燥させられてなる第1負極合剤層54と、金属製シート40の第2面44側において第2負極合剤ペースト48が乾燥させられてなる第2負極合剤層56とを有している。そして、第1負極合剤層54に含まれる第1水素吸蔵合金粒子50の粒径は、第2負極合剤層56に含まれる第2水素吸蔵合金粒子52の粒径よりも小さい。   Here, as apparent from FIG. 4, the negative electrode 26 includes a first negative electrode mixture layer 54 obtained by drying the first negative electrode mixture paste 46 on the first surface 42 side of the metal sheet 40, and a metal On the second surface 44 side of the sheet 40, there is a second negative electrode mixture layer 56 formed by drying the second negative electrode mixture paste 48. The particle size of the first hydrogen storage alloy particles 50 included in the first negative electrode mixture layer 54 is smaller than the particle size of the second hydrogen storage alloy particles 52 included in the second negative electrode mixture layer 56.

負極26においては、図4に示すように、金属製シート40の第1面44に対応する側を第1面58、金属製シート40の第2面44に対応する側を第2面60とする。ここで、図4においては、第1負極合剤層54及び第2負極合剤層56の表面部分にのみ第1水素吸蔵合金粒子50及び第2水素吸蔵合金粒子52が存在していないように描かれているが、図4においては、負極26の構成を概略的に示しており、表面部分以外の第1水素吸蔵合金粒子50及び第2水素吸蔵合金粒子52は省略しているので、実際には負極合剤層中にもこれら粒子は存在している。   In the negative electrode 26, as shown in FIG. 4, the side corresponding to the first surface 44 of the metal sheet 40 is the first surface 58, and the side corresponding to the second surface 44 of the metal sheet 40 is the second surface 60. To do. Here, in FIG. 4, the first hydrogen storage alloy particles 50 and the second hydrogen storage alloy particles 52 are not present only on the surface portions of the first negative electrode mixture layer 54 and the second negative electrode mixture layer 56. Although drawn, FIG. 4 schematically shows the configuration of the negative electrode 26, and the first hydrogen storage alloy particles 50 and the second hydrogen storage alloy particles 52 other than the surface portion are omitted. These particles are also present in the negative electrode mixture layer.

上記したように金属製シート40として無孔の金属製シート40を用いた場合、金属製シート40により第1面42側の第1負極合剤ペースト46と第2面44側の第2負極合剤ペースト48とは隔離され、これらが混ざることはない。よって、第1面42側に第2水素吸蔵合金粒子52が存在すること及び第2面44側に第1水素吸蔵合金粒子50が存在するといった不具合は有効に防止される。   When the non-porous metal sheet 40 is used as the metal sheet 40 as described above, the first negative electrode mixture paste 46 on the first surface 42 side and the second negative electrode mixture on the second surface 44 side are used by the metal sheet 40. It is isolated from the agent paste 48 and does not mix. Therefore, problems such as the presence of the second hydrogen storage alloy particles 52 on the first surface 42 side and the presence of the first hydrogen storage alloy particles 50 on the second surface 44 side are effectively prevented.

また、本発明においては、金属製シート40として、多数の貫通孔を有するパンチングメタルシートを使用することもできる。この場合、貫通孔内にも負極合剤層54,56が入り込むので、金属製シート40への負極合剤層54,56の結着性は向上する。ところで、金属製シート40に多数の貫通孔が存在する場合、これらの貫通孔を介して第1面42側の第1負極合剤ペースト46と第2面44側の第2負極合剤ペースト48とが接する。このとき、パンチングメタルシートの開孔率を10%以下に規定すると、第1面42側の第1負極合剤ペースト46と第2面44側の第2負極合剤ペースト48とが貫通孔を介して接したとしても、その接する範囲は極めて小さく、これら第1負極合剤ペースト46と第2負極合剤ペースト48とが混ざり合って、第1負極合剤層54の表面(第1面58)側にまで第2水素吸蔵合金粒子52が進出し、第2面60側の第2負極合剤層56の表面(第2面60)側にまで第1水素吸蔵合金粒子50が進出することはない。   In the present invention, a punching metal sheet having a large number of through holes can also be used as the metal sheet 40. In this case, since the negative electrode mixture layers 54 and 56 also enter the through holes, the binding property of the negative electrode mixture layers 54 and 56 to the metal sheet 40 is improved. By the way, when many through-holes exist in the metal sheet 40, the first negative electrode mixture paste 46 on the first surface 42 side and the second negative electrode mixture paste 48 on the second surface 44 side through these through holes. And touch. At this time, if the opening ratio of the punching metal sheet is defined to be 10% or less, the first negative electrode mixture paste 46 on the first surface 42 side and the second negative electrode mixture paste 48 on the second surface 44 side have through holes. The first negative electrode mixture paste 46 and the second negative electrode mixture paste 48 are mixed to form the surface of the first negative electrode mixture layer 54 (first surface 58). ) Side, the second hydrogen storage alloy particles 52 advance, and the first hydrogen storage alloy particles 50 advance to the surface (second surface 60) side of the second negative electrode mixture layer 56 on the second surface 60 side. There is no.

一方、パンチングメタルシートの開孔率が10%を超えると、第1負極合剤ペースト46と第2負極合剤ペースト48とが貫通孔を介して接する範囲が大きくなり、これらペーストの混ざり合いがより進行して第1負極合剤層54の表面(第1面58)に第2水素吸蔵合金粒子52が存在し、第2負極合剤層56の表面(第2面60)に第1水素吸蔵合金粒子50が存在する不具合が生じるおそれがある。よって、パンチングメタルシートの開孔率は10%以下に規定することが好ましい。なお、パンチングメタルシートの開孔率の下限値は、0%を超えた値であればよい。   On the other hand, when the hole area ratio of the punching metal sheet exceeds 10%, the range in which the first negative electrode mixture paste 46 and the second negative electrode mixture paste 48 are in contact with each other through the through holes is increased, and the mixing of these pastes is increased. Further, the second hydrogen storage alloy particles 52 are present on the surface (first surface 58) of the first negative electrode mixture layer 54, and the first hydrogen is present on the surface (second surface 60) of the second negative electrode mixture layer 56. There is a possibility that a problem that the occlusion alloy particles 50 are present may occur. Therefore, it is preferable to define the hole area ratio of the punching metal sheet to 10% or less. In addition, the lower limit value of the hole area ratio of the punching metal sheet may be a value exceeding 0%.

以上のようにして作製された正極24及び負極26は、セパレータ28を介在させた状態で、渦巻き状に巻回され、電極群22に形成される。   The positive electrode 24 and the negative electrode 26 manufactured as described above are spirally wound with the separator 28 interposed therebetween, and are formed in the electrode group 22.

このとき、負極26は、粒径が小さい第1水素吸蔵合金粒子50を含む第1負極合剤層54が電極群22の径方向外側に位置付けられ、粒径が大きい第2水素吸蔵合金粒子52を含む第2負極合剤層56が電極群22の径方向内側に位置付けるように配置される。つまり、図4に示すように、矢印Aで示す方向が電極群22の径方向外側に相当し、矢印Bで示す方向が電極群22の径方向内側に相当するので、負極26においては、矢印A方向側に第1面58が、矢印B方向側に第2面60が配置され、この状態で巻回作業が行われる。   At this time, in the negative electrode 26, the first negative electrode mixture layer 54 including the first hydrogen storage alloy particles 50 having a small particle size is positioned on the outside in the radial direction of the electrode group 22, and the second hydrogen storage alloy particles 52 having a large particle size. The second negative electrode material mixture layer 56 containing is disposed so as to be positioned on the radially inner side of the electrode group 22. That is, as shown in FIG. 4, the direction indicated by the arrow A corresponds to the radially outer side of the electrode group 22, and the direction indicated by the arrow B corresponds to the radially inner side of the electrode group 22. The first surface 58 is disposed on the A direction side and the second surface 60 is disposed on the arrow B direction side, and the winding operation is performed in this state.

具体的には、図4に示すように、セパレータ28を2枚準備し、下から、セパレータ28、正極24、セパレータ28、負極26の順に積層して積層体を形成する。このとき、負極26は、第1面58を上側、第2面60を正極24側となるように配置する。そして、最下層のセパレータ28の一方の端部に巻き芯62を配置し、負極26を外側にして、巻き芯62を矢印C方向に回転させ、積層体を巻回する。これにより、電極群22が形成される。得られた電極群22においては、第1水素吸蔵合金粒子50が含まれる第1負極合剤層54と、正極24における電極群22の径方向内側に位置する径方向内側面64とが相対し、第2水素吸蔵合金粒子52が含まれる第2負極合剤層56と、正極24における電極群22の径方向外側に位置する径方向外側面66とが相対する。   Specifically, as shown in FIG. 4, two separators 28 are prepared, and a laminate is formed by laminating the separator 28, the positive electrode 24, the separator 28, and the negative electrode 26 in this order from the bottom. At this time, the negative electrode 26 is disposed so that the first surface 58 is on the upper side and the second surface 60 is on the positive electrode 24 side. And the winding core 62 is arrange | positioned at one edge part of the separator 28 of the lowest layer, the negative electrode 26 is made the outer side, the winding core 62 is rotated in the arrow C direction, and a laminated body is wound. Thereby, the electrode group 22 is formed. In the obtained electrode group 22, the first negative electrode mixture layer 54 containing the first hydrogen storage alloy particles 50 and the radially inner side surface 64 located on the radially inner side of the electrode group 22 in the positive electrode 24 are opposed to each other. The second negative electrode mixture layer 56 containing the second hydrogen storage alloy particles 52 and the radially outer surface 66 located on the radially outer side of the electrode group 22 in the positive electrode 24 are opposed to each other.

このため、巻回作業にともない正極24の径方向内側面64が局部的に盛り上がったとしても、負極26における対応する部分に存在する第1水素吸蔵合金粒子50は粒径が比較的小さいので、負極26の第1面58(第1負極合剤層54の表面)の凹凸は小さくなりセパレータ28は突き破られ難い。一方、正極24の局部的な盛り上がりの影響を受けない負極26における電極群22の径方向内側(第2負極合剤層56)には、粒径が比較的大きい耐食性に優れる第2水素吸蔵合金粒子52を存在させることができる。   For this reason, even if the radial inner side surface 64 of the positive electrode 24 locally rises due to the winding operation, the first hydrogen storage alloy particles 50 present in the corresponding part of the negative electrode 26 have a relatively small particle size. The unevenness of the first surface 58 of the negative electrode 26 (the surface of the first negative electrode mixture layer 54) becomes small and the separator 28 is difficult to break through. On the other hand, on the radially inner side (second negative electrode mixture layer 56) of the electrode group 22 in the negative electrode 26 that is not affected by the local bulge of the positive electrode 24, the second hydrogen storage alloy having a relatively large particle size and excellent corrosion resistance. Particles 52 can be present.

このようにして得られた電極群22は、外装缶10内に収容される。引き続き、当該外装缶10内にはアルカリ電解液が所定量注入される。その後、電極群22及びアルカリ電解液を収容した外装缶10は、正極端子20を備えた蓋板14により封口され、本発明に係る電池2が得られる。   The electrode group 22 thus obtained is accommodated in the outer can 10. Subsequently, a predetermined amount of alkaline electrolyte is injected into the outer can 10. Thereafter, the outer can 10 containing the electrode group 22 and the alkaline electrolyte is sealed by the cover plate 14 provided with the positive electrode terminal 20, and the battery 2 according to the present invention is obtained.

本発明の電池2は、上記したように、負極26の第1負極合剤層54に含まれる第1水素吸蔵合金粒子50が、負極26の第2負極合剤層56に含まれる第2水素吸蔵合金粒子52よりも粒径が小さい。そして、負極26の第1負極合剤層54は、電極群22の径方向外側に位置し、負極の第2負極合剤層56は、電極群22の径方向内側に位置している。このため、第1負極合剤層54は正極24における電極群22の径方向内側の面に相対し、負極26の第2負極合剤層56は正極24における電極群22の径方向外側の面に相対している。よって、正極24における電極群22の径方向内側の面が負極26側に盛り上がったとしても負極26の第1負極合剤層54の表面(第1面58)は凹凸が小さいのでセパレータ28が破られることは抑制され短絡を起こし難い。一方、正極24における電極群22の径方向外側の面は負極26の第2負極合剤層56側に盛り上がることはなく、セパレータ28を破る不具合は起こり難い。このため、負極26の第2負極合剤層56には、第1水素吸蔵合金粒子50よりも粒径が大きい第2水素吸蔵合金粒子52を配置することができる。かかる第2水素吸蔵合金粒子52は、粒径が大きいことからアルカリ電解液に対する耐食性に優れ、電池の長寿命化に貢献する。よって、本発明のニッケル水素蓄電池は、電池の短絡不良の発生率の低減と電池の長寿命化の両立を図ることができる優れた電池となる。   As described above, in the battery 2 of the present invention, the first hydrogen storage alloy particles 50 included in the first negative electrode mixture layer 54 of the negative electrode 26 are the second hydrogen included in the second negative electrode mixture layer 56 of the negative electrode 26. The particle size is smaller than the occlusion alloy particles 52. The first negative electrode mixture layer 54 of the negative electrode 26 is located on the radially outer side of the electrode group 22, and the second negative electrode mixture layer 56 of the negative electrode 26 is located on the radially inner side of the electrode group 22. Therefore, the first negative electrode mixture layer 54 is opposed to the radially inner surface of the electrode group 22 in the positive electrode 24, and the second negative electrode mixture layer 56 of the negative electrode 26 is the radially outer surface of the electrode group 22 in the positive electrode 24. Relative to Therefore, even if the radially inner surface of the electrode group 22 in the positive electrode 24 rises toward the negative electrode 26, the surface (first surface 58) of the first negative electrode mixture layer 54 of the negative electrode 26 has small unevenness, so that the separator 28 is broken. Is suppressed and it is difficult to cause a short circuit. On the other hand, the radially outer surface of the electrode group 22 in the positive electrode 24 does not swell toward the second negative electrode mixture layer 56 side of the negative electrode 26, and a problem that breaks the separator 28 is unlikely to occur. For this reason, in the second negative electrode mixture layer 56 of the negative electrode 26, the second hydrogen storage alloy particles 52 having a particle diameter larger than that of the first hydrogen storage alloy particles 50 can be arranged. Since the second hydrogen storage alloy particles 52 have a large particle size, they are excellent in corrosion resistance against alkaline electrolyte and contribute to extending the life of the battery. Therefore, the nickel-metal hydride storage battery of the present invention is an excellent battery that can achieve both reduction in the occurrence rate of short circuit failure of the battery and extension of the battery life.

[実施例]
1.電池の製造
実施例1
(1)正極の作製
目付が400g/cm2であり、厚さが約2mmであるニッケルフォームを準備した。
[Example]
1. Production of Battery Example 1
(1) Production of positive electrode A nickel foam having a basis weight of 400 g / cm 2 and a thickness of about 2 mm was prepared.

ついで、水酸化ニッケル粒子からなるニッケル正極活物質粉末10質量部、導電材としての一酸化コバルト粉末0.01質量部、結着剤としてのカルボキシメチルセルロース0.003質量部及び水5質量部を混合して正極合剤ペーストを作製した。   Next, 10 parts by mass of nickel positive electrode active material powder composed of nickel hydroxide particles, 0.01 parts by mass of cobalt monoxide powder as a conductive material, 0.003 parts by mass of carboxymethyl cellulose as a binder, and 5 parts by mass of water are mixed. Thus, a positive electrode mixture paste was prepared.

そして、得られた正極合剤ペーストを上記したニッケルフォームに充填した。正極合剤が充填されたニッケルフォームを乾燥後、ロール圧延した。圧延加工された正極合剤が付着したニッケルフォームは、所定形状に裁断され、AAサイズ用の正極24に形成された。   The obtained positive electrode mixture paste was filled in the nickel foam described above. The nickel foam filled with the positive electrode mixture was dried and rolled. The nickel foam to which the positive electrode mixture that had been rolled was attached was cut into a predetermined shape and formed into a positive electrode 24 for AA size.

(2)負極の作製
負極芯体として、厚さが25μmの冷間圧延鋼板(SPCC鋼板)に厚さ1.5μmのニッケルめっきを施した無孔のニッケルめっき鋼板を準備した。
(2) Production of Negative Electrode As a negative electrode core, a non-porous nickel-plated steel sheet in which a cold-rolled steel sheet (SPCC steel sheet) with a thickness of 25 μm was plated with a nickel with a thickness of 1.5 μm was prepared.

ついで、組成が、Nd0.36Sm0.54Mg0.10Ni3.33Al0.17である水素吸蔵合金を製造した。得られた水素吸蔵合金を粉砕し、平均粒径が35μmの第1水素吸蔵合金粒子からなる第1水素吸蔵合金粉末と、平均粒径が100μmの第2水素吸蔵合金粒子からなる第2水素吸蔵合金粉末とを準備した。そして、第1水素吸蔵合金粉末10質量部に対し、結着剤としてのカルボキシメチルセルロース0.005質量部、導電材としてのカーボンブラック0.05質量部、水2.5質量部を添加して混練し、第1負極合剤ペーストを調製した。一方、第2水素吸蔵合金粉末10質量部に対し、結着剤としてのカルボキシメチルセルロース0.005質量部、導電材としてのカーボンブラック0.05質量部、水2.5質量部を添加して混練し、第2負極合剤ペーストを調製した。 Next, a hydrogen storage alloy having a composition of Nd 0.36 Sm 0.54 Mg 0.10 Ni 3.33 Al 0.17 was produced. The obtained hydrogen storage alloy is pulverized, and a first hydrogen storage alloy powder composed of first hydrogen storage alloy particles having an average particle diameter of 35 μm and a second hydrogen storage alloy composed of second hydrogen storage alloy particles having an average particle diameter of 100 μm. An alloy powder was prepared. Then, with respect to 10 parts by mass of the first hydrogen storage alloy powder, 0.005 parts by mass of carboxymethyl cellulose as a binder, 0.05 parts by mass of carbon black as a conductive material, and 2.5 parts by mass of water are added and kneaded. The first negative electrode mixture paste was prepared. On the other hand, with respect to 10 parts by mass of the second hydrogen storage alloy powder, 0.005 parts by mass of carboxymethyl cellulose as a binder, 0.05 parts by mass of carbon black as a conductive material, and 2.5 parts by mass of water are added and kneaded. Then, a second negative electrode mixture paste was prepared.

次に、準備した負極芯体としての無孔のニッケルめっき鋼板の第1面にダイコーターを用いて第1負極合剤ペーストを厚さが0.29mmとなるように塗布した。引き続きこのニッケルめっき鋼板の第2面にダイコーターを用いて第2負極合剤ペーストを厚さが0.29mmとなるように塗布した。
第1及び第2負極合剤ペーストの乾燥後、水素吸蔵合金の粉末等が付着した無孔のニッケルめっき鋼板を更にロール圧延したのち裁断し、AAサイズ用の負極26を作成した。
Next, the first negative electrode mixture paste was applied to the first surface of the non-porous nickel-plated steel sheet as the prepared negative electrode core so as to have a thickness of 0.29 mm using a die coater. Subsequently, the second negative electrode mixture paste was applied to the second surface of the nickel-plated steel sheet using a die coater so that the thickness was 0.29 mm.
After drying the first and second negative electrode mixture pastes, the non-porous nickel-plated steel sheet to which the hydrogen-absorbing alloy powder and the like were adhered was further rolled and cut to produce an AA-size negative electrode 26.

(3)ニッケル水素蓄電池の組み立て
厚みが0.1mm(目付は40g/m2)のポリプロピレン繊維製不織布からなるセパレータ28を2枚準備した。そして、下からセパレータ28、正極24、セパレータ28、負極26の順序でこれらを積層し、積層体を形成した。このとき、負極26は、第1面58を上側とし、第2面60を正極24側に向けて配置した。そして、最下層のセパレータ28の一方の端に巻き芯62を配置し、負極26を外側にして上記した積層体の巻回を行った。これにより渦巻状の電極群22を作製した。
(3) Assembly of Nickel Metal Hydride Battery Two separators 28 made of a nonwoven fabric made of polypropylene fiber having a thickness of 0.1 mm (weight is 40 g / m 2 ) were prepared. And these were laminated | stacked in order of the separator 28, the positive electrode 24, the separator 28, and the negative electrode 26 from the bottom, and the laminated body was formed. At this time, the negative electrode 26 was disposed with the first surface 58 on the upper side and the second surface 60 facing the positive electrode 24 side. And the winding core 62 was arrange | positioned at the one end of the separator 28 of the lowest layer, the negative electrode 26 was turned outside, and the above-mentioned laminated body was wound. Thereby, the spiral electrode group 22 was produced.

次いで、得られた電極群22を外装缶10内に収容した。この外装缶10は、ニッケルめっきが施された冷間圧延鋼板からなる有底円筒形状なしている。そして、この外装缶10内に30質量%の水酸化ナトリウム水溶液からなるアルカリ電解液を2.2g注入した。この後、蓋板14等で外装缶10の開口を塞ぎ、AAサイズの円筒型のニッケル水素蓄電池2を組み立てた。このニッケル水素蓄電池を電池aと称する。そして、この電池aは1000個製造した。   Next, the obtained electrode group 22 was accommodated in the outer can 10. The outer can 10 has a bottomed cylindrical shape made of a cold-rolled steel plate with nickel plating. Then, 2.2 g of an alkaline electrolyte composed of a 30% by mass aqueous sodium hydroxide solution was injected into the outer can 10. Thereafter, the opening of the outer can 10 was closed with the cover plate 14 or the like, and the AA size cylindrical nickel-metal hydride storage battery 2 was assembled. This nickel metal hydride storage battery is referred to as battery a. And 1000 pieces of this battery a were manufactured.

比較例1
以下に示すような従来型負極を用いたこと以外は、実施例1と同様なニッケル水素蓄電池(電池b)を1000個製造した。
従来型負極は、以下のようにして製造した。
まず、負極芯体として、厚さが60μmの冷間圧延鋼板(SPCC鋼板)に直径1mmの貫通孔を格子状に多数あけ、更に厚さ1.5μmのニッケルめっきを施して形成したパンチングメタルシートを準備した。なお、このパンチングメタルシートの開孔率は、43%である。
Comparative Example 1
1000 nickel-metal hydride storage batteries (batteries b) were produced in the same manner as in Example 1 except that the conventional negative electrode as shown below was used.
The conventional negative electrode was manufactured as follows.
First, as a negative electrode core, a punching metal sheet formed by cold drilling steel plate (SPCC steel plate) having a thickness of 60 μm with a large number of through-holes having a diameter of 1 mm formed in a lattice shape and nickel plating having a thickness of 1.5 μm. Prepared. The punching metal sheet has a hole area ratio of 43%.

ついで、組成が、Nd0.36Sm0.54Mg0.10Ni3.33Al0.17である水素吸蔵合金を製造し、得られた水素吸蔵合金を粉砕して平均粒径が65μmの水素吸蔵合金粒子からなる水素吸蔵合金粉末を準備した。そして、この水素吸蔵合金粉末10質量部に対し、結着剤としてのカルボキシメチルセルロース0.005質量部、導電材としてのカーボンブラック0.05質量部、水2.5質量部を添加して混練し、負極合剤ペーストを調製した。 Subsequently, a hydrogen storage alloy having a composition of Nd 0.36 Sm 0.54 Mg 0.10 Ni 3.33 Al 0.17 is manufactured, and the obtained hydrogen storage alloy is pulverized to form hydrogen storage alloy powder comprising hydrogen storage alloy particles having an average particle size of 65 μm. Prepared. Then, with respect to 10 parts by mass of the hydrogen storage alloy powder, 0.005 part by mass of carboxymethyl cellulose as a binder, 0.05 part by mass of carbon black as a conductive material, and 2.5 parts by mass of water are added and kneaded. A negative electrode mixture paste was prepared.

そして、この負極合剤ペーストを、準備したパンチングメタルシートの両面にダイコーターを用いてそれぞれ0.25mmの厚さで塗布した。負極合剤ペーストの乾燥後、水素吸蔵合金の粉末等が付着したパンチングメタルシートを更にロール圧延したのち裁断し、AAサイズ用の従来型負極を作成した。   And this negative electrode mixture paste was apply | coated by the thickness of 0.25 mm, respectively on both surfaces of the prepared punching metal sheet using the die-coater. After the negative electrode mixture paste was dried, the punched metal sheet to which the hydrogen storage alloy powder or the like was attached was further rolled and cut to produce a conventional negative electrode for AA size.

2.ニッケル水素蓄電池の評価
(1)短絡不良の発生率
1000個の電池a及び1000個の電池bに対し、それぞれ100Vの電圧を印加し、そのときの短絡の有無を検査した。そして、短絡が生じた電池の個数を計数し、電池1000個のうち短絡が発生した電池の割合を求め、その値を短絡不良の発生率として表1に示した。
2. Evaluation of Nickel Metal Hydride Battery (1) Incidence of short circuit failure A voltage of 100 V was applied to each of 1000 batteries a and 1000 batteries b, and the presence or absence of a short circuit at that time was examined. The number of short-circuited batteries was counted, the ratio of the short-circuited batteries out of 1000 batteries was determined, and the value is shown in Table 1 as the incidence of short-circuit defects.

Figure 0006151106
Figure 0006151106

(2)考察
表1の結果から明らかなように、比較例1の電池bの短絡不良の発生率が0.4%であるのに対し、実施例1の電池aの短絡不良の発生率は0.2%であり、実施例1の電池aの方が比較例1の電池bよりも短絡不良の発生率が0.2%改善されていることがわかる。これは、実施例1の電池aにおいては、負極の第1負極合剤層に含まれている第1水素吸蔵合金粒子の平均粒径が負極の第2負極合剤層に含まれている第2水素吸蔵合金粒子の平均粒径よりも小さく設定されているため、負極の第1負極合剤層は、表面の凹凸は比較的小さくなっている。そして、この第1負極合剤層は、正極における電極群の径方向内側と相対するように配置されている。このため、電極群の巻回作業にともない正極における電極群の径方向内側が負極側に盛り上がったとしても、対応する負極の第1負極合剤層の表面は凹凸が小さいためセパレータの破れは発生し難くなっている。これにより実施例1の電池aの短絡発生率は低く抑えられた。
(2) Discussion As is apparent from the results in Table 1, the incidence of short circuit failure in the battery b of Comparative Example 1 is 0.4%, whereas the incidence of short circuit failure in the battery a of Example 1 is It can be seen that the rate of occurrence of short circuit failure is improved by 0.2% in the battery a of Example 1 compared to the battery b of Comparative Example 1. This is because, in the battery a of Example 1, the average particle diameter of the first hydrogen storage alloy particles contained in the first negative electrode mixture layer of the negative electrode is contained in the second negative electrode mixture layer of the negative electrode. Since it is set smaller than the average particle diameter of the two hydrogen storage alloy particles, the first negative electrode mixture layer of the negative electrode has relatively small surface irregularities. And this 1st negative mix layer is arrange | positioned so as to oppose the radial inside of the electrode group in a positive electrode. For this reason, even if the inner side in the radial direction of the electrode group in the positive electrode rises to the negative electrode side as the electrode group is wound, the surface of the first negative electrode mixture layer of the corresponding negative electrode has small irregularities, so that the separator breaks. It is difficult to do. Thereby, the short circuit incidence rate of the battery a of Example 1 was suppressed low.

また、実施例1の電池aでは、短絡が発生し難い部分である正極における電極群の径方向外側部分と対応する負極の第2負極合剤層に、比較的大きな粒径の水素吸蔵合金粒子を配置することができた。つまり、粒径が大きくアルカリ電解液に対する耐食性に優れる水素吸蔵合金粒子を短絡の起こり難いところに配置できているので、実施例1の電池aは短絡の発生を抑えつつ電池の長寿命化を図ることが可能である。   Further, in the battery a of Example 1, the hydrogen storage alloy particles having a relatively large particle size are formed on the second negative electrode mixture layer of the negative electrode corresponding to the radially outer portion of the electrode group in the positive electrode, which is a portion where short-circuiting is difficult to occur. Could be placed. In other words, since the hydrogen storage alloy particles having a large particle size and excellent corrosion resistance to the alkaline electrolyte can be disposed in a place where short-circuiting is unlikely to occur, the battery a of Example 1 aims to extend the life of the battery while suppressing the occurrence of short-circuiting. It is possible.

2 ニッケル水素蓄電池
10 外装缶
12 絶縁パッキン
14 蓋板
20 正極端子
22 電極群
24 正極
26 負極
28 セパレータ
40 金属製シート(負極芯体)
42 第1面
44 第2面
50 第1水素吸蔵合金粒子
52 第2水素吸蔵合金粒子
54 第1負極合剤層
56 第2負極合剤層
2 Nickel metal hydride storage battery 10 Exterior can 12 Insulating packing 14 Cover plate 20 Positive electrode terminal 22 Electrode group 24 Positive electrode 26 Negative electrode 28 Separator 40 Metal sheet (negative electrode core)
42 1st surface 44 2nd surface 50 1st hydrogen storage alloy particle 52 2nd hydrogen storage alloy particle 54 1st negative electrode mixture layer 56 2nd negative electrode mixture layer

Claims (2)

容器と、正極及び負極がセパレータを間に挟んだ状態で巻回されてなり、前記容器内にアルカリ電解液とともに密閉状態で収容された電極群と、を備え、
前記負極は、前記電極群の径方向外側に位置する第1面及び前記電極群の径方向内側に位置する第2面を有する帯状の負極芯体と、前記負極芯体の第1面に形成された第1負極合剤層と、前記負極芯体の第2面に形成された第2負極合剤層とを有し、
前記負極芯体は、金属製シートからなり、
前記金属製シートは、無孔の金属製シートであり、
前記第1負極合剤層に含まれる水素吸蔵合金粒子の平均粒径が前記第2負極合剤層に含まれる水素吸蔵合金粒子の平均粒径よりも小さいことを特徴とするニッケル水素蓄電池。
A container, and a positive electrode and a negative electrode wound in a state of sandwiching a separator, and an electrode group housed in an airtight state together with an alkaline electrolyte in the container,
The negative electrode is formed on a first negative electrode core having a first surface located radially outside the electrode group and a second surface located radially inner of the electrode group, and a first surface of the negative electrode core. The first negative electrode mixture layer formed, and a second negative electrode mixture layer formed on the second surface of the negative electrode core,
The negative electrode core is made of a metal sheet,
The metal sheet is a non-porous metal sheet,
The nickel hydride storage battery, wherein an average particle diameter of the hydrogen storage alloy particles contained in the first negative electrode mixture layer is smaller than an average particle diameter of the hydrogen storage alloy particles contained in the second negative electrode mixture layer.
容器と、正極及び負極がセパレータを間に挟んだ状態で巻回されてなり、前記容器内にアルカリ電解液とともに密閉状態で収容された電極群と、を備え、A container, and a positive electrode and a negative electrode wound in a state of sandwiching a separator, and an electrode group housed in an airtight state together with an alkaline electrolyte in the container,
前記負極は、前記電極群の径方向外側に位置する第1面及び前記電極群の径方向内側に位置する第2面を有する帯状の負極芯体と、前記負極芯体の第1面に形成された第1負極合剤層と、前記負極芯体の第2面に形成された第2負極合剤層とを有し、The negative electrode is formed on a first negative electrode core having a first surface located radially outside the electrode group and a second surface located radially inner of the electrode group, and a first surface of the negative electrode core. The first negative electrode mixture layer formed, and a second negative electrode mixture layer formed on the second surface of the negative electrode core,
前記負極芯体は、金属製シートからなり、The negative electrode core is made of a metal sheet,
前記金属製シートは、前記負極芯体の単位面積当たりの貫通孔の面積の比率で表される開孔率が10%以下の金属製シートであり、The metal sheet is a metal sheet having an open area ratio represented by a ratio of the area of the through holes per unit area of the negative electrode core of 10% or less,
前記第1負極合剤層に含まれる水素吸蔵合金粒子の平均粒径が前記第2負極合剤層に含まれる水素吸蔵合金粒子の平均粒径よりも小さいことを特徴とするニッケル水素蓄電池。The nickel hydride storage battery, wherein an average particle diameter of the hydrogen storage alloy particles contained in the first negative electrode mixture layer is smaller than an average particle diameter of the hydrogen storage alloy particles contained in the second negative electrode mixture layer.
JP2013133492A 2013-06-26 2013-06-26 Nickel metal hydride storage battery Expired - Fee Related JP6151106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133492A JP6151106B2 (en) 2013-06-26 2013-06-26 Nickel metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133492A JP6151106B2 (en) 2013-06-26 2013-06-26 Nickel metal hydride storage battery

Publications (2)

Publication Number Publication Date
JP2015008107A JP2015008107A (en) 2015-01-15
JP6151106B2 true JP6151106B2 (en) 2017-06-21

Family

ID=52338250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133492A Expired - Fee Related JP6151106B2 (en) 2013-06-26 2013-06-26 Nickel metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP6151106B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022138530A (en) * 2021-03-10 2022-09-26 Fdk株式会社 Electrode for alkaline secondary battery and alkaline secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792938B2 (en) * 1989-09-13 1998-09-03 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage batteries
JPH04253154A (en) * 1991-01-29 1992-09-08 Shin Kobe Electric Mach Co Ltd Electrode plate for battery
US5518833A (en) * 1994-05-24 1996-05-21 Eagle-Picher Industries, Inc. Nonwoven electrode construction
AU7448998A (en) * 1997-05-20 1998-12-11 Toyo Kohan Co. Ltd. Method for manufacturing perforated steel sheets, cores for electrode plates of secondary cells, and secondary cell comprising the core
JP2001093520A (en) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and preparation thereof
JP5110889B2 (en) * 2007-01-29 2012-12-26 三洋電機株式会社 Nickel metal hydride secondary battery

Also Published As

Publication number Publication date
JP2015008107A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP6282007B2 (en) Nickel metal hydride secondary battery
JP5959003B2 (en) Nickel metal hydride secondary battery and negative electrode for nickel metal hydride secondary battery
JP5754802B2 (en) Negative electrode for nickel hydride secondary battery and nickel hydride secondary battery using the negative electrode
JP6057369B2 (en) Nickel metal hydride secondary battery
JP6153156B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy
JP6151106B2 (en) Nickel metal hydride storage battery
JP6947541B2 (en) Non-sintered positive electrode for alkaline secondary battery and alkaline secondary battery equipped with this non-sintered positive electrode
JP5655808B2 (en) Cylindrical alkaline storage battery
JP7129288B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery containing this positive electrode
JP2015201334A (en) Negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery using this negative electrode
JP2008186658A (en) Nickel-hydrogen secondary battery
WO2017169163A1 (en) Negative electrode for alkali secondary cell and alkali secondary cell including negative electrode
JP7488008B2 (en) Alkaline storage battery
JP7197250B2 (en) secondary battery
JP7125218B2 (en) Negative electrode for alkaline secondary battery and alkaline secondary battery
WO2024070232A1 (en) Negative electrode for alkaline secondary batteries, alkaline secondary battery, and method for producing negative electrode for alkaline secondary batteries
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP2019091533A (en) Negative electrode for nickel hydrogen secondary battery, and nickel hydrogen secondary battery including the same
JP7421038B2 (en) Alkaline storage battery and method for manufacturing an alkaline storage battery
WO2022158242A1 (en) Cylindrical alkaline storage battery
JP6573518B2 (en) Negative electrode for alkaline secondary battery and alkaline secondary battery using the negative electrode
JP2022138530A (en) Electrode for alkaline secondary battery and alkaline secondary battery
JP2022124195A (en) alkaline storage battery
JP6234190B2 (en) Nickel metal hydride secondary battery
KR20190043086A (en) Positive electrode and alkaline secondary battery including the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170524

R150 Certificate of patent or registration of utility model

Ref document number: 6151106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees