JP2006196207A - Alkaline storage battery and manufacturing method of its electrode group - Google Patents

Alkaline storage battery and manufacturing method of its electrode group Download PDF

Info

Publication number
JP2006196207A
JP2006196207A JP2005003581A JP2005003581A JP2006196207A JP 2006196207 A JP2006196207 A JP 2006196207A JP 2005003581 A JP2005003581 A JP 2005003581A JP 2005003581 A JP2005003581 A JP 2005003581A JP 2006196207 A JP2006196207 A JP 2006196207A
Authority
JP
Japan
Prior art keywords
separator
alkaline storage
storage battery
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005003581A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
浩志 渡邉
Souryu Nakayama
相龍 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005003581A priority Critical patent/JP2006196207A/en
Publication of JP2006196207A publication Critical patent/JP2006196207A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the generation of a minute short circuit caused by whiskers or burrs of substrates of a positive electrode and a negative electrode, and enhance the reliability of a battery. <P>SOLUTION: An alkaline storage battery is comprised of a positive electrode, a negative electrode, a separator interposed between them, and an electrolyte. The separator has a nonwoven fabric as the main composition, and high fiber density portions are partially present in the separator. By this constitution, high short circuit resistance and high discharge characteristics are compatible. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルカリ蓄電池およびその製造方法に関し、更に詳しくは、正極及び負極の基板のヒゲ・バリによる微小短絡の発生を少なくでき、電池信頼性を向上させることができるアルカリ蓄電池およびその製造方法に関する。   The present invention relates to an alkaline storage battery and a method for manufacturing the same, and more particularly, to an alkaline storage battery that can reduce the occurrence of minute short-circuits due to whiskers and burrs of positive and negative electrode substrates and improve battery reliability, and a method for manufacturing the same. .

一般に密閉形アルカリ蓄電池用セパレータは、正負極間に介在されて両者の接触を防止するとともに、電解液を十分に保持して起電反応を円滑に進行させるものでなければならない。同時に過充電時に正極から発生する酸素ガスが速やかに負極に吸収されるよう、ガスを効率よく通過させる性質も備える必要がある。このような特性を満足させるセパレータとして、従来から繊維径10〜20μm、厚み0.1〜0.2mm、繊維密度60〜100g/m2のナイロン、ポリプロピレンなどの繊維からなる不織布状のものが一般に用いられてきた。 In general, a separator for a sealed alkaline storage battery must be interposed between positive and negative electrodes to prevent contact between the two and to sufficiently hold an electrolytic solution so that an electromotive reaction proceeds smoothly. At the same time, it is necessary to have a property of allowing the gas to pass efficiently so that oxygen gas generated from the positive electrode at the time of overcharge is quickly absorbed by the negative electrode. As a separator satisfying such characteristics, a nonwoven fabric having a fiber diameter of 10 to 20 μm, a thickness of 0.1 to 0.2 mm, and a fiber density of 60 to 100 g / m 2 is generally used. Has been used.

しかし、このようなセパレータでは厚みに対して繊維径が太いために、単繊維分布のムラによって孔径の大きい部分が生じやすい。特に、ニッケルカドミウム電池においては、充放電サイクルの進行にともなって負極活物質であるカドミウムがセパレータ繊維表面や繊維の隙間に樹枝状結晶を生成し、正極との微小短絡に至るために、セパレータの孔径を必要以上に大きくしないことが、電池の長寿命化にとって重要である。   However, in such a separator, since the fiber diameter is thicker than the thickness, a portion having a large hole diameter is likely to occur due to unevenness of single fiber distribution. In particular, in a nickel cadmium battery, cadmium, which is a negative electrode active material, generates dendritic crystals on the surface of the separator fiber and in the gaps between the fibers as the charge / discharge cycle progresses. It is important for extending the life of the battery not to increase the pore size more than necessary.

さらに、ニッケルカドミウム電池、あるいはニッケル水素電池等の正極活物質である水酸化ニッケルは、充放電サイクルの進行にともなって膨潤が進行するため、基板である発泡ニッケルのヒゲ、あるいは切断バリが極板の膨潤にともないセパレータを貫通し、負極と微小短絡を引き起こす。   Furthermore, nickel hydroxide, which is a positive electrode active material for nickel cadmium batteries or nickel metal hydride batteries, swells as the charge / discharge cycle progresses. As it swells, it penetrates the separator and causes a short circuit with the negative electrode.

そこで、これらを防ぐために正極タブに対面する部分のセパレータを溶融・被膜化する提案がなされている(例えば、特許文献1)。
特開平11−40147号公報
In order to prevent these problems, a proposal has been made to melt and coat a portion of the separator facing the positive electrode tab (for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-40147

しかしながら、特許文献1のセパレータでは、正極タブの取付部に対面する部分のみ溶融・皮膜化することにより、正極エッジでのヒゲ・バリによる微小短絡は防止することができるが、ヒゲの切れ端が電極表面に存在する場合には特許文献1の技術では微小短絡を防止することはできない。また、セパレータは電解液を十分に保持して起電反応を円滑に進行させ、同時にガスを効率よく通過させる性質も備える必要があるため、特許文献1の技術を電極表面全体に用いることはできない。   However, in the separator of Patent Document 1, only a portion facing the attachment portion of the positive electrode tab can be melted and formed into a film to prevent a minute short circuit due to whisker / burr at the positive electrode edge. If it exists on the surface, the technique of Patent Document 1 cannot prevent a minute short circuit. In addition, since the separator needs to have a property of sufficiently holding an electrolyte solution to smoothly promote an electromotive reaction and simultaneously allowing gas to pass efficiently, the technique of Patent Document 1 cannot be used for the entire electrode surface. .

本発明は上記課題に基づいてなされたものであり、正極及び負極の基板のヒゲ・バリによる微小短絡の発生を少なくでき、電池信頼性を向上させることを目的とするものである。   The present invention has been made on the basis of the above problems, and it is an object of the present invention to reduce the occurrence of minute short-circuits due to whisker burrs on the positive and negative electrode substrates, and to improve battery reliability.

上記の課題を解決するために、本発明の密閉形アルカリ蓄電池は、正極と、負極と、これらの間に介在させたセパレータと、電解液とからなるアルカリ蓄電池であって、前記セパレータは不織布を主構成要素とし、前記セパレータには部分的に繊維密度の高い箇所が存在することを特徴とする。   In order to solve the above problems, a sealed alkaline storage battery of the present invention is an alkaline storage battery comprising a positive electrode, a negative electrode, a separator interposed therebetween, and an electrolytic solution, and the separator is made of a nonwoven fabric. The main component is characterized in that the separator has a portion with a high fiber density partially.

さらに上述した電池構造を具現化するために、本発明のアルカリ蓄電池用電極群の製造方法は、正極と、負極と、不織布を主構成要素とするセパレータとより電極群を製造する方法であって、正極と負極とセパレータとをそれぞれ巻出す工程と、セパレータの一部を高密度化処理する工程と、正極と負極とセパレータとを巻き取り電極群を構成する工程を有することを特徴とする。   Furthermore, in order to embody the above-described battery structure, the method for producing an alkaline storage battery electrode group of the present invention is a method for producing an electrode group from a positive electrode, a negative electrode, and a separator having a nonwoven fabric as a main component. And a step of unwinding each of the positive electrode, the negative electrode, and the separator, a step of densifying a part of the separator, and a step of forming a winding electrode group of the positive electrode, the negative electrode, and the separator.

繊維密度の高い箇所をセパレータ表面全体に部分的に設けることにより、電池反応を妨げることなく、正極表面の如何なる場所にヒゲの切れ端が存在しても、微小短絡を良好に防止することができるようになる。   By providing a part with a high fiber density on the entire separator surface, it is possible to satisfactorily prevent a minute short circuit from occurring at any location on the positive electrode surface without interfering with the battery reaction. become.

本発明のアルカリ蓄電池用セパレータは、正極の基板のヒゲによる微小短絡の発生を少なくでき、電池信頼性を向上させることができる。   The separator for an alkaline storage battery of the present invention can reduce the occurrence of minute short-circuits due to the beard of the positive electrode substrate, and can improve battery reliability.

以下、発明を実施するための最良の形態について、図を用いて説明する。なおここで示す図は一例であって、本発明の請求項に表す構成を有していれば、同様の効果を得ることができる。   Hereinafter, the best mode for carrying out the invention will be described with reference to the drawings. In addition, the figure shown here is an example, Comprising: If it has the structure represented to the claim of this invention, the same effect can be acquired.

図1は本発明のアルカリ蓄電池用セパレータの一例を示す表面略図である。不織布を主構成要素とするセパレータ1の表面全体に、繊維密度の高い箇所(以下、高密度部と称する)2を部分的に設けている。   FIG. 1 is a schematic surface view showing an example of the alkaline storage battery separator of the present invention. A portion (hereinafter referred to as a high density portion) 2 having a high fiber density is partially provided on the entire surface of the separator 1 having a nonwoven fabric as a main component.

本発明は、アルカリ蓄電池において、セパレータ1に部分的に高密度部2を設けると、電池反応を妨げることなく、正極表面の如何なる場所にヒゲの切れ端が存在しても微小短絡を良好に防止することができるようになることを見出したものである。   In the alkaline storage battery according to the present invention, when the separator 1 is partially provided with the high-density portion 2, a minute short circuit can be satisfactorily prevented regardless of the location of the beard at any location on the positive electrode surface without interfering with the battery reaction. It has been found that it will be possible.

ここで高密度部2における空孔率が10%以上30%以下であると、正極基板のヒゲの貫通を防止する点で好ましい。空孔率が10%未満である場合は、アルカリ蓄電池に良好な充放電特性が得られないので好ましくなく、30%より大きい場合は、正極基板のヒゲ貫通防止の効果が小さくなる点で好ましくない。高密度部2における空孔率Cは、この部分に与える加圧力や温度によって変えることが可能であり、セパレータ1の比重から求められる空孔率ゼロの場合の理論厚みをA、高密度部2の厚みをBとした場合、以下の(式1)によって計算できる。   Here, the porosity in the high density portion 2 is preferably 10% or more and 30% or less, from the viewpoint of preventing the penetration of the beard of the positive electrode substrate. When the porosity is less than 10%, it is not preferable because good charge / discharge characteristics cannot be obtained for an alkaline storage battery, and when the porosity is more than 30%, it is not preferable in that the effect of preventing the penetration of the positive electrode substrate becomes small. . The porosity C in the high-density portion 2 can be changed depending on the applied pressure and temperature applied to this portion. The theoretical thickness when the porosity is zero determined from the specific gravity of the separator 1 is A, and the high-density portion 2 When the thickness of B is B, it can be calculated by the following (Formula 1).

C=(B−A)/B×100・・・(式1)
また高密度部2は、セパレータ1全体に対して面積比で5%以上20%以下であると、正極基板のヒゲの貫通を防止する点で好ましい。面積比で20%より大きい場合には、不織布1が電解液を十分に保持して起電反応を円滑に進行させ、同時にガスを効率よく通過させるという本来の役割を阻害するおそれがあるので好ましくない。逆に、面積比で20%未満である場合には、正極基板のヒゲ貫通防止の効果が低くなる点で好ましくない。よって、面積比で上記範囲に設定することが、イオン伝導性の確保によるアルカリ蓄電池の充放電特性の維持と、正負極間の短絡防止を両立するために好ましい。
C = (B−A) / B × 100 (Equation 1)
Moreover, the high density part 2 is preferable at the point which prevents the penetration of the beard of a positive electrode board | substrate as it is 5% or more and 20% or less by area ratio with respect to the separator 1 whole. When the area ratio is larger than 20%, the nonwoven fabric 1 is preferable because it may hinder the original role of holding the electrolyte sufficiently to smoothly promote the electromotive reaction and at the same time efficiently passing the gas. Absent. On the contrary, when the area ratio is less than 20%, it is not preferable in that the effect of preventing the penetration of the positive electrode substrate becomes low. Therefore, it is preferable to set the area ratio within the above range in order to achieve both the maintenance of the charge / discharge characteristics of the alkaline storage battery by ensuring the ionic conductivity and the prevention of a short circuit between the positive and negative electrodes.

また高密度部2の形状は、図1のようにスポット状だけでなく、図2のような格子状、または図3のような筋目状にすることができる。これらの形状はセパレータ1の全面に均一な形状で施されていることが、放電特性のバラツキのない電池を提供する観点から好ましい。   The shape of the high density portion 2 can be not only a spot shape as shown in FIG. 1 but also a lattice shape as shown in FIG. 2 or a streak shape as shown in FIG. It is preferable that these shapes are applied to the entire surface of the separator 1 in a uniform shape from the viewpoint of providing a battery having no variation in discharge characteristics.

ここで本発明のセパレータを用いたニッケル水素電池を例にあげ、その製造方法を具体的に説明する。まず正極(ニッケル極)は、例えば正極活物質である水酸化ニッケル(Ni(OH)2)の粉末に、CoOやCo(OH)2のような2価のコバルト化合物の粉末を混合し、その混合粉末にカルボキシメチルセルロース(以下、CMCと略記)やメチルセルロースなどを溶解して成る増粘剤水溶液を添加して全体を混練し、粘稠な合剤ペーストを調製したのち、この合剤ペーストをスポンジ状のニッケルシートやニッケルフェルトのような3次元網状構造の導電性基板に充填塗布し、乾燥、圧延処理を順次行うことにより製造される。ここで前記導電性基板は、その所定位置が厚み方向に押しつぶされ、凹没部が予め形成されており、この凹没部に正極集電体としてニッケル片のような金属片をスポット溶接し、正極が得られる。負極(水素吸蔵合金電極)は、例えばパンチングニッケル板やニッケルネットのような多孔質導電板に、水素吸蔵合金粉末のような導電材粉末とポリビニリデンフルオライドのような結着剤粉末とを所定割合で混合した混合物スラリーを塗着し、乾燥、圧延処理を順次行うことにより製造される。セパレータは、正極および負極の寸法より大きく切断され、両者の間に介在した状態で捲回され、負極が最外周に位置するように捲回する。以上のようにして形成された電極群は、外装缶の開口部から外装缶の中へ挿入される。この外装缶内にKOHなどを主体とするアルカリ電解液が注入された後、正極集電体と封口体とが溶接され、この封口体が正極端子となる。一方負極においては、電極群の最外周に位置する負極が負極端子を兼ねる外装缶と接触することにより、負極と負極端子が電気的に接続される。そして最後に、外装缶の開口部に、封口体が絶縁板を介して嵌合装着され、外装缶と封口体との封口溶接がなされ、密閉構造のニッケル水素電池が製造される。 Here, a nickel-metal hydride battery using the separator of the present invention is taken as an example, and the manufacturing method thereof will be specifically described. First, a positive electrode (nickel electrode) is prepared by, for example, mixing a powder of a divalent cobalt compound such as CoO or Co (OH) 2 with a powder of nickel hydroxide (Ni (OH) 2 ) which is a positive electrode active material. After adding a thickener aqueous solution prepared by dissolving carboxymethylcellulose (hereinafter abbreviated as CMC) or methylcellulose to the mixed powder and kneading the whole, a viscous mixture paste is prepared. It is manufactured by filling and applying to a conductive substrate having a three-dimensional network structure such as a nickel sheet or nickel felt, followed by drying and rolling. Here, the conductive substrate, the predetermined position is crushed in the thickness direction, a recessed portion is formed in advance, a metal piece such as a nickel piece is spot welded to the recessed portion as a positive electrode current collector, A positive electrode is obtained. For the negative electrode (hydrogen storage alloy electrode), a conductive material powder such as a hydrogen storage alloy powder and a binder powder such as polyvinylidene fluoride are provided on a porous conductive plate such as a punched nickel plate or nickel net, for example. It is manufactured by applying a mixture slurry mixed at a ratio, followed by drying and rolling. The separator is cut larger than the dimensions of the positive electrode and the negative electrode, wound in a state of being interposed therebetween, and wound so that the negative electrode is located on the outermost periphery. The electrode group formed as described above is inserted into the outer can through the opening of the outer can. After an alkaline electrolyte mainly composed of KOH or the like is injected into the outer can, the positive electrode current collector and the sealing body are welded, and the sealing body becomes a positive electrode terminal. On the other hand, in the negative electrode, the negative electrode located on the outermost periphery of the electrode group comes into contact with the outer can serving as the negative electrode terminal, whereby the negative electrode and the negative electrode terminal are electrically connected. Finally, the sealing body is fitted and attached to the opening of the outer can via an insulating plate, and the outer can and the sealing body are sealed and welded to produce a sealed nickel-metal hydride battery.

次に、本発明のアルカリ蓄電池用電極群の最良の製造方法について、図を用いて説明する。本発明は、正極と、負極と、不織布を主構成要素とするセパレータとより電極群を製造する方法であって、前記正極と前記負極と前記セパレータとをそれぞれ巻出す工程と、前記セパレータの一部を高密度化処理する工程と、前記正極と前記負極と前記セパレータとを巻き取り電極群を構成する工程を有する、アルカリ蓄電池用電極群の製造方法である。中でも本発明の骨子は、セパレータの一部を高密度化処理する工程にある。   Next, the best manufacturing method of the electrode group for alkaline storage batteries of this invention is demonstrated using figures. The present invention relates to a method for producing an electrode group from a positive electrode, a negative electrode, and a separator having a nonwoven fabric as a main component, the step of unwinding the positive electrode, the negative electrode, and the separator, respectively, It is the manufacturing method of the electrode group for alkaline storage batteries which has the process of densifying a part and the process of winding up the said positive electrode, the said negative electrode, and the said separator, and comprising an electrode group. Above all, the gist of the present invention is in the process of densifying part of the separator.

図4(A)は、本発明のセパレータの一部を片面のみ高密度化処理する工程の一例を示した概略側面図である。不織布を主構成要素とするセパレータ1を、片面に凹凸加工を施したエンボスローラー3と平面ローラー4との間を通過させることにより、高密度部2を設ける。エンボスローラー3の凹凸形状は、所望される高密度部2の形状や面積比に合せて変更することが可能である。例えば図1のようにスポット状としたい場合は図4(B)、図2のような格子状としたい場合は図4(C)、図3のような横筋目状としたい場合は図4(D)、縦筋目状としたい場合は図4(E)のように、凹凸パターンを変更することができる。   FIG. 4A is a schematic side view showing an example of a process for densifying a part of the separator of the present invention only on one side. The high density part 2 is provided by allowing the separator 1 which has a nonwoven fabric as a main component to pass between the embossing roller 3 and the flat roller 4 which processed the unevenness | corrugation on one side. The uneven shape of the embossing roller 3 can be changed in accordance with the desired shape and area ratio of the high-density portion 2. For example, FIG. 4B shows a spot shape as shown in FIG. 1, FIG. 4C shows a grid shape like FIG. 2, and FIG. 4B shows a horizontal line shape like FIG. D) When the vertical streak is desired, the uneven pattern can be changed as shown in FIG.

図4(F)は、本発明のセパレータの一部を両側とも高密度化処理する工程の一例を示した概略側面図であり、両側ともエンボスローラー3を用い、その突起部を重ね合わせてセパレータ1を通過させることにより、高密度部2を設ける。例えば高密度部2を図3のような横筋目状としたい場合は図4(G)、縦筋目状としたい場合は図4(H)のように、凹凸パターンを変更することができる。   FIG. 4 (F) is a schematic side view showing an example of a process of densifying part of the separator of the present invention on both sides. The embossing roller 3 is used on both sides and the protrusions are overlapped to separate the separators. The high density portion 2 is provided by passing 1. For example, the concave / convex pattern can be changed as shown in FIG. 4G when the high density portion 2 is desired to have a horizontal streak shape as shown in FIG. 3 and as shown in FIG.

また、本発明のセパレータの一部を高密度化処理する工程の好ましい形態について、図5を用いて説明する。図5(A)は概略側面図であり、図4の如く両側ともエンボスローラー3を用い、その突起部が重ね合わないようにセパレータ1を通過させることにより、高密度部2を設ける。この方法によれば、高密度部2がセパレータ1の両面に存在し、かつ両面で高密度部2が重ならないので、耐短絡性と電池特性とが高次元で両立できる。図5(B)および(C)はその概略斜視図の例であり、図3および4と同様、エンボスロー
ラー3の凹凸パターンを変更することにより、所望の形状の高密度部2を設けることができる。
Moreover, the preferable form of the process which densifies a part of separator of this invention is demonstrated using FIG. FIG. 5 (A) is a schematic side view. As shown in FIG. 4, the embossing roller 3 is used on both sides, and the high density portion 2 is provided by passing the separator 1 so that the protruding portions do not overlap. According to this method, since the high density part 2 exists on both surfaces of the separator 1 and the high density part 2 does not overlap on both surfaces, both short-circuit resistance and battery characteristics can be achieved at a high level. 5 (B) and 5 (C) are examples of schematic perspective views, and the high-density portion 2 having a desired shape can be provided by changing the concavo-convex pattern of the embossing roller 3 as in FIGS. it can.

なお本発明のセパレータに用いられる不織布の繊維材質としては、ナイロン、ポリプロピレンなどを選択することができる。   In addition, nylon, a polypropylene, etc. can be selected as a fiber material of the nonwoven fabric used for the separator of this invention.

本発明のセパレータを用いることができる二次電池としては、ニッケル水素電池やニッケルカドミウム電池などのアルカリ蓄電池のほかに、上記不織布セパレータを用いる二次電池であればよい。中でも正極にニッケル極をもち、重量エネルギー密度の高いニッケル水素電池に用いるのが本発明の主旨に最も合致している。   The secondary battery that can use the separator of the present invention may be a secondary battery that uses the above-mentioned nonwoven fabric separator in addition to an alkaline storage battery such as a nickel metal hydride battery or a nickel cadmium battery. Among them, the use of a nickel-hydrogen battery having a nickel electrode as a positive electrode and a high weight energy density is most consistent with the gist of the present invention.

以下に、本発明の実施例および比較例を用いて詳細に説明する。なお実施例には代表例としてニッケル水素蓄電池の場合を示すが、本発明はこれに限られるものではなく、ニッケル正極を備える他のアルカリ蓄電池、具体的にはニッケルカドミウム蓄電池などにも展開可能なことはいうまでもない。   Below, it demonstrates in detail using the Example and comparative example of this invention. In addition, although the example shows the case of a nickel metal hydride storage battery as a representative example, the present invention is not limited to this, and can be expanded to other alkaline storage batteries including a nickel positive electrode, specifically, nickel cadmium storage batteries. Needless to say.

(実施例1)
正極は、活物質である水酸化ニッケルと、導電剤である水酸化コバルトおよび一酸化コバルト粉末とを、発泡ニッケル3次元多孔体に充填・圧延し、所定の寸法に切断して得た。一方負極は、活物質である水素吸蔵合金粉末と、導電剤であるケッチェンブラックと、結着剤であるスチレン−ブタジエンゴム共重合体と、増粘剤であるCMCとからなるペーストを、穿孔した鉄板にニッケル鍍金を行った2次元多孔体であるパンチングメタルに塗布乾燥した後、圧延を行い、所定の寸法に切断して得た。これら正負極を、ポリプロピレン製不織布を主構成要素とするセパレータ1を介して捲回し、電極群を構成した。この電極群を円筒型の有底缶に挿入し、ここに水酸化カリウム水溶液からなる電解液を注入して、公称容量3Ahのニッケル水素蓄電池を10000個作製した。
Example 1
The positive electrode was obtained by filling and rolling nickel hydroxide, which is an active material, and cobalt hydroxide and cobalt monoxide powder, which are conductive agents, into a foamed nickel three-dimensional porous body, and cutting the powder into predetermined dimensions. On the other hand, the negative electrode is formed by perforating a paste composed of hydrogen storage alloy powder as an active material, ketjen black as a conductive agent, styrene-butadiene rubber copolymer as a binder, and CMC as a thickener. The obtained iron plate was applied to a punching metal, which is a two-dimensional porous body obtained by performing nickel plating, dried, then rolled, and cut into predetermined dimensions. These positive and negative electrodes were wound through a separator 1 having a polypropylene non-woven fabric as a main constituent element to constitute an electrode group. This electrode group was inserted into a cylindrical bottomed can, and an electrolytic solution made of an aqueous potassium hydroxide solution was injected therein to produce 10,000 nickel hydride storage batteries having a nominal capacity of 3 Ah.

このとき、電極群を構成する群構成機は、正極と負極と高密度処理前のセパレータ1とをそれぞれ巻き出す工程を第一の工程とし、セパレータ1の一部を高密度化処理する工程を第二の工程とし、正極と、負極と、セパレータ1とを巻き取り電極群を構成する工程を第三の工程とする。第二の工程では、図4(F)に示すようにエンボスローラー3のセパレータ1に接する凹凸部で、90℃に加熱しながら、7kgf/cm2の圧力で、0.4秒間圧縮することで、高密度化処理を施した。このときエンボスローラー3の対向側は平面ローラー4である。この高密度化処理部より一定距離の後、エンボスローラー3と平面ローラー4とを逆向きに配置し、セパレータ1のもう一方の面に同様の処理を施した。 At this time, the group constituting machine constituting the electrode group has a step of unwinding the positive electrode, the negative electrode, and the separator 1 before the high-density treatment as a first step, and a step of densifying part of the separator 1. The step of forming the electrode group by winding up the positive electrode, the negative electrode, and the separator 1 as the second step is the third step. In the second step, as shown in FIG. 4 (F), the concavo-convex portion in contact with the separator 1 of the embossing roller 3 is compressed at a pressure of 7 kgf / cm 2 for 0.4 seconds while being heated to 90 ° C. The densification process was performed. At this time, the opposite side of the embossing roller 3 is a flat roller 4. After a certain distance from the densification processing section, the embossing roller 3 and the flat roller 4 were disposed in opposite directions, and the other surface of the separator 1 was subjected to the same processing.

ここで、セパレータ1における高密度部2の空孔率を20%、高密度部2がセパレータ全体に占める面積比を10%とした。また、高密度部2はセパレータの表裏両面に存在するが、両面で重ならない箇所に存在し、その形状はセパレータの特定の一部分ではなく、全面に均一におよぶスポット状とした。これを実施例1のアルカリ蓄電池とする。   Here, the porosity of the high-density part 2 in the separator 1 was 20%, and the area ratio of the high-density part 2 to the whole separator was 10%. Further, the high density portion 2 exists on both the front and back sides of the separator, but exists in a portion where the both surfaces do not overlap, and the shape thereof is not a specific part of the separator, but a spot shape uniformly extending over the entire surface. This is the alkaline storage battery of Example 1.

(実施例2〜5)
実施例1のアルカリ蓄電池に対し、セパレータ1における高密度部2の空孔率を5、10、30、35%とした以外は、実施例1と同様のアルカリ蓄電池を構成した。これを実施例2〜5のアルカリ蓄電池とする。
(Examples 2 to 5)
An alkaline storage battery similar to that of Example 1 was configured except that the porosity of the high density portion 2 in the separator 1 was set to 5, 10, 30, and 35% with respect to the alkaline storage battery of Example 1. Let this be the alkaline storage battery of Examples 2-5.

(実施例6〜9)
実施例1のアルカリ蓄電池に対し、セパレータ1における高密度部2の面積比を3、5、20、25%とした以外は、実施例1と同様のアルカリ蓄電池を構成した。これを実施
例6〜9のアルカリ蓄電池とする。
(Examples 6 to 9)
The alkaline storage battery similar to Example 1 was comprised except having set the area ratio of the high-density part 2 in the separator 1 to 3, 5, 20, 25% with respect to the alkaline storage battery of Example 1. Let this be the alkaline storage battery of Examples 6-9.

(実施例10)
実施例1のアルカリ蓄電池に対し、高密度部2がセパレータ1の表裏両面で重なるようにした以外は、実施例1と同様のアルカリ蓄電池を構成した。これを実施例10のアルカリ蓄電池とする。
(Example 10)
An alkaline storage battery similar to that of Example 1 was configured except that the high-density portion 2 overlapped on both the front and back surfaces of the separator 1 with respect to the alkaline storage battery of Example 1. This is the alkaline storage battery of Example 10.

(実施例11)
実施例1のアルカリ蓄電池に対し、セパレータ1における高密度部2を偏在する形で設けたこと以外は、実施例1と同様のアルカリ蓄電池を構成した。これを実施例11のアルカリ蓄電池とする。
(Example 11)
An alkaline storage battery similar to that of Example 1 was configured except that the high-density portion 2 in the separator 1 was unevenly provided with respect to the alkaline storage battery of Example 1. This is the alkaline storage battery of Example 11.

(実施例12)
実施例1のアルカリ蓄電池に対し、図4(C)に示すローラーの組合せにより、セパレータ1における高密度部2の形状を格子状としたこと以外は、実施例1と同様のアルカリ蓄電池を構成した。これを実施例12のアルカリ蓄電池とする。
(Example 12)
With respect to the alkaline storage battery of Example 1, an alkaline storage battery similar to that of Example 1 was configured, except that the shape of the high-density portion 2 in the separator 1 was changed to a lattice by the combination of rollers shown in FIG. . This is the alkaline storage battery of Example 12.

(実施例13)
実施例1のアルカリ蓄電池に対し、図4(G)に示すローラーの組合せにより、セパレータ1における高密度部2の形状を横筋目状としたこと以外は、実施例1と同様のアルカリ蓄電池を構成した。これを実施例12のアルカリ蓄電池とする。
(Example 13)
For the alkaline storage battery of Example 1, the same alkaline storage battery as that of Example 1 is configured except that the shape of the high-density portion 2 in the separator 1 is a horizontal stripe by the combination of rollers shown in FIG. did. This is the alkaline storage battery of Example 12.

(比較例1)
実施例1のアルカリ蓄電池に対し、セパレータ1に高密度部2を設けないこと以外は、実施例1と同様のアルカリ蓄電池を構成した。これを比較例1のアルカリ蓄電池とする。
(Comparative Example 1)
An alkaline storage battery similar to that of Example 1 was configured except that the separator 1 was not provided with the high density portion 2 with respect to the alkaline storage battery of Example 1. This is the alkaline storage battery of Comparative Example 1.

(比較例2)
実施例1のアルカリ蓄電池に対し、セパレータ1全面を加圧することにより高密度部2とし、その空孔率を45%とした以外は、実施例1と同様のアルカリ蓄電池を構成した。これを比較例2のアルカリ蓄電池とする。
(Comparative Example 2)
The alkaline storage battery of Example 1 was configured in the same manner as in Example 1 except that the entire surface of the separator 1 was pressurized to form the high density portion 2 and the porosity was 45%. This is the alkaline storage battery of Comparative Example 2.

これらのアルカリ蓄電池に対し、以下の評価を行った。   The following evaluation was performed on these alkaline storage batteries.

(内部短絡評価)
電池の群構成後と電解液注入直前に、100Vの印加電圧を正負極端子間に加えた。ここで0.002MΩ以下の抵抗値を示した電池を内部短絡電池として排除した。この内部短絡不良数を計数し、組み立てた10000個の電池に対する割合を求め、その結果を電池の短絡発生率として、(表1)に示す。
(Internal short circuit evaluation)
An applied voltage of 100 V was applied between the positive and negative terminals after the group configuration of the batteries and immediately before the electrolyte injection. Here, batteries showing a resistance value of 0.002 MΩ or less were excluded as internal short-circuit batteries. The number of internal short-circuit defects is counted, the ratio to 10,000 assembled batteries is obtained, and the result is shown in Table 1 as the battery short-circuit occurrence rate.

(高率放電容量比率)
上記内部短絡不良を免れた良品電池において、20℃環境下で3Aで1.5Vまでの充電を行った後、0.6A、10Aにて0.8Vまで放電を行った。ここで10A放電容量を0.6A放電容量で除し、得られた比率を容量比率として、(表1)に示す。
(High rate discharge capacity ratio)
In the non-defective battery that was free from the internal short circuit failure, after charging to 1.5 V at 3 A in a 20 ° C. environment, the battery was discharged to 0.8 V at 0.6 A and 10 A. Here, the 10A discharge capacity is divided by the 0.6A discharge capacity, and the obtained ratio is shown in Table 1 as the capacity ratio.

(表1)より、セパレータ1に高密度部2を有していない比較例1は、容量比率が92%と良好であるが、短絡発生率が1.10%と高く、短絡防止効果は低いと言える。逆に、全面均一に繊維密度が高い比較例2は、短絡発生率が0.02%と良好であるが、容量比率は66%と低く、イオン伝導性が低いと言える。これら比較例に対し、本発明の実施例1〜14は、短絡発生率、容量比率のバランスが良いことがわかる。 From Table 1, the comparative example 1 in which the separator 1 does not have the high density part 2 has a good capacity ratio of 92%, but the short-circuit occurrence rate is as high as 1.10%, and the short-circuit prevention effect is low. It can be said. On the contrary, Comparative Example 2 having a high fiber density uniformly over the entire surface has a good short-circuit occurrence rate of 0.02%, but has a low capacity ratio of 66% and low ionic conductivity. In contrast to these comparative examples, it can be seen that Examples 1 to 14 of the present invention have a good balance of short-circuit occurrence rate and capacity ratio.

セパレータ1における高密度部2の空孔率が10%未満である実施例2は容量比率が若干低下し、30%を超える実施例5は短絡発生率が若干増加する。よって、セパレータ1における高密度部2の空孔率は、10〜30%が望ましい。   In Example 2 in which the porosity of the high-density portion 2 in the separator 1 is less than 10%, the capacity ratio is slightly decreased, and in Example 5 in which the porosity exceeds 30%, the short-circuit occurrence rate is slightly increased. Therefore, the porosity of the high density portion 2 in the separator 1 is desirably 10 to 30%.

また、セパレータ1における高密度部2の面積比が5%未満である実施例6は短絡発生率が若干増加し、20%を超える実施例9は容量比率が若干低下する。よって、セパレータ1における高密度部2の面積比は、5〜20%であることが望ましい。   Further, in Example 6 in which the area ratio of the high-density portion 2 in the separator 1 is less than 5%, the short-circuit occurrence rate slightly increases, and in Example 9 in which the area ratio exceeds 20%, the capacity ratio slightly decreases. Therefore, the area ratio of the high density portion 2 in the separator 1 is desirably 5 to 20%.

実施例10から明らかなように、高密度部2が表裏で重なっていても実施例1と同様、良好な耐短絡性および放電特性を示す。また実施例11のように高密度部2が偏在している場合、短絡発生率、容量比率とも、その効果は十分でない。よって高密度部2は、セパレータ1の特定の一部分ではなく、全面に均一におよぶ形状であることが望ましい。ただしその形状はスポット状(実施例1)、格子状(実施例12)および横筋目状(実施例13)の何れであっても、その効果は変わらない。   As is clear from Example 10, even when the high-density part 2 is overlapped on the front and back, the short-circuit resistance and the discharge characteristics are good as in Example 1. Moreover, when the high density part 2 is unevenly distributed like Example 11, the effect is not enough in both a short circuit generation rate and a capacity | capacitance ratio. Therefore, it is desirable that the high density portion 2 has a shape that extends uniformly over the entire surface, not a specific portion of the separator 1. However, the effect remains the same regardless of whether the shape is a spot shape (Example 1), a lattice shape (Example 12), or a horizontal streak shape (Example 13).

なお実施例1において、セパレータ1に高密度部2を表裏別々に設けたが、図5(B)に示すローラーの組合せにより、表裏同時に高密度部2を設けた場合も、同様の効果が得られることはいうまでもない。   In Example 1, the separator 1 was provided with the high-density part 2 separately on the front and back sides, but the same effect was obtained when the high-density part 2 was provided simultaneously on the front and back by the combination of rollers shown in FIG. Needless to say.

本発明は、ナイロン、ポリプロピレンなどの繊維からなる不織布状のものをセパレータとして用いる二次電池に好適であり、電池反応を妨げることなく、正極の如何なる場所に正極基板のヒゲの切れ端が存在しても微小短絡を良好に防止することが可能になるので、
産業上の利用可能性は高いと考えられる。
The present invention is suitable for a secondary battery using a nonwoven fabric made of fibers such as nylon and polypropylene as a separator, and there is a beard of the positive electrode substrate at any location of the positive electrode without interfering with the battery reaction. Since it becomes possible to prevent micro short-circuits well,
Industrial applicability is considered high.

高密度部をスポット状に設けた、本発明のアルカリ蓄電池に用いるセパレータの概略図Schematic diagram of a separator used in the alkaline storage battery of the present invention, in which a high density portion is provided in a spot shape. 高密度部を格子状に設けた、本発明のアルカリ蓄電池に用いるセパレータの概略図Schematic diagram of a separator used in the alkaline storage battery of the present invention, in which high-density portions are provided in a lattice shape 高密度部を筋目状に設けた、本発明のアルカリ蓄電池に用いるセパレータの概略図Schematic diagram of a separator used for the alkaline storage battery of the present invention, in which high-density portions are provided in a streak pattern (A)本発明のアルカリ蓄電池に用いるセパレータの片面を高密度化処理する工程の概略側面図、(B)高密度部が片面かつスポット状の場合のセパレータの高密度化工程の概略斜視図、(C)高密度部が片面かつ格子状の場合のセパレータの高密度化工程の概略斜視図、(D)高密度部が片面かつ横筋目状の場合のセパレータの高密度化工程の概略斜視図、(E)高密度部が片面かつ縦筋目子状の場合のセパレータの高密度化工程の概略斜視図、(F)本発明のアルカリ蓄電池に用いるセパレータの両面を同時かつ同一箇所に高密度化処理する工程の概略側面図、(G)高密度部が両面同一箇所かつ横筋目状の場合のセパレータの高密度化工程の概略斜視図、(H)高密度部が両面同一箇所かつ縦筋目状の場合のセパレータの高密度化工程の概略斜視図(A) Schematic side view of the step of densifying one side of the separator used in the alkaline storage battery of the present invention, (B) Schematic perspective view of the step of densifying the separator when the high-density portion is single-sided and spot-shaped, (C) Schematic perspective view of separator densification process when the high-density part is single-sided and lattice-shaped, (D) Schematic perspective view of separator densification process when the high-density part is single-sided and horizontal stripe-shaped. , (E) Schematic perspective view of separator densification process when the high-density portion is single-sided and vertical stripes, (F) Densification of both sides of the separator used in the alkaline storage battery of the present invention simultaneously and at the same location Schematic side view of processing step, (G) Schematic perspective view of separator densification process when the high-density portion has the same location on both sides and horizontal stripes, (H) The high-density portion has the same location on both sides and vertical stripes Densification process of separator in case of Schematic perspective view (A)本発明のアルカリ蓄電池に用いるセパレータの両面を同時かつ異なる箇所に高密度化処理する工程の概略側面図、(B)高密度部が両面異なる箇所かつスポット状の場合のセパレータの高密度化工程の概略斜視図、(C)高密度部が両面異なる箇所かつ縦筋目状の場合のセパレータの高密度化工程の概略斜視図(A) Schematic side view of the process of densifying both sides of the separator used in the alkaline storage battery of the present invention simultaneously and at different locations, (B) High density of the separator in the case where the high-density portion is different in both sides and spot-like Schematic perspective view of the forming step, (C) Schematic perspective view of the separator densifying step in the case where the high-density portion is different in both sides and has vertical streaks

符号の説明Explanation of symbols

1 セパレータ
2 高密度部
3 エンボスローラー
4 平面ローラー

1 Separator 2 High-density part 3 Embossed roller 4 Flat roller

Claims (7)

正極と、負極と、これらの間に介在させたセパレータと、電解液とからなるアルカリ蓄電池であって、
前記セパレータは不織布を主構成要素とし、部分的に繊維密度の高い箇所が存在することを特徴とする、アルカリ蓄電池。
An alkaline storage battery comprising a positive electrode, a negative electrode, a separator interposed therebetween, and an electrolyte solution,
The separator is an alkaline storage battery characterized in that a non-woven fabric is a main constituent, and a portion having a high fiber density is partially present.
前記セパレータの繊維密度の高い箇所における空孔率が10%以上30%以下である請求項1記載のアルカリ蓄電池。 The alkaline storage battery according to claim 1, wherein a porosity of the separator at a high fiber density is 10% or more and 30% or less. 前記セパレータの繊維密度の高い箇所は、セパレータ全体に対して面積比で5%以上20%以下である請求項1記載のアルカリ蓄電池。 2. The alkaline storage battery according to claim 1, wherein the portion having a high fiber density of the separator is 5% or more and 20% or less in an area ratio with respect to the whole separator. 前記セパレータの繊維密度の高い箇所の形状がスポット状、格子状または筋目状である請求項1記載のアルカリ蓄電池。 The alkaline storage battery according to claim 1, wherein the separator has a high fiber density in a spot shape, a lattice shape, or a line shape. 前記セパレータの繊維密度の高い箇所がセパレータの表裏両面に存在し、表裏面で繊維密度の高い箇所が重ならないことを特徴とする請求項1記載のアルカリ蓄電池。 2. The alkaline storage battery according to claim 1, wherein the separator has a high fiber density on both the front and back surfaces of the separator, and the front and back surfaces have a high fiber density and do not overlap. 正極と、負極と、不織布を主構成要素とするセパレータとより電極群を製造する方法であって、
前記正極と前記負極と前記セパレータとをそれぞれ巻出す工程と、前記セパレータの一部を高密度化処理する工程と、前記正極と前記負極と前記セパレータとを巻き取り電極群を構成する工程を有する、アルカリ蓄電池用電極群の製造方法。
A method for producing an electrode group from a positive electrode, a negative electrode, and a separator having a nonwoven fabric as a main component,
A step of unwinding each of the positive electrode, the negative electrode, and the separator, a step of densifying a part of the separator, and a step of forming a winding electrode group of the positive electrode, the negative electrode, and the separator. The manufacturing method of the electrode group for alkaline storage batteries.
前記セパレータの繊維密度の高い箇所がセパレータ両面に存在し、両面で繊維密度の高い箇所が重ならないことを特徴とする請求項7記載のアルカリ蓄電池用電極群の製造方法。 The method for producing an electrode group for an alkaline storage battery according to claim 7, wherein portions having a high fiber density of the separator are present on both sides of the separator, and portions having a high fiber density do not overlap on both sides.
JP2005003581A 2005-01-11 2005-01-11 Alkaline storage battery and manufacturing method of its electrode group Pending JP2006196207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003581A JP2006196207A (en) 2005-01-11 2005-01-11 Alkaline storage battery and manufacturing method of its electrode group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003581A JP2006196207A (en) 2005-01-11 2005-01-11 Alkaline storage battery and manufacturing method of its electrode group

Publications (1)

Publication Number Publication Date
JP2006196207A true JP2006196207A (en) 2006-07-27

Family

ID=36802119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003581A Pending JP2006196207A (en) 2005-01-11 2005-01-11 Alkaline storage battery and manufacturing method of its electrode group

Country Status (1)

Country Link
JP (1) JP2006196207A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120832A (en) * 2011-12-07 2013-06-17 Taiyo Yuden Co Ltd Separator for electrochemical device, and electrochemical device
JP2013211192A (en) * 2012-03-30 2013-10-10 Tdk Corp Porous film and lithium ion secondary battery using the same
US20220153011A1 (en) * 2020-11-18 2022-05-19 Prime Planet Energy & Solutions, Inc. Manufacturing method of electrode outer casing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120832A (en) * 2011-12-07 2013-06-17 Taiyo Yuden Co Ltd Separator for electrochemical device, and electrochemical device
JP2013211192A (en) * 2012-03-30 2013-10-10 Tdk Corp Porous film and lithium ion secondary battery using the same
US20220153011A1 (en) * 2020-11-18 2022-05-19 Prime Planet Energy & Solutions, Inc. Manufacturing method of electrode outer casing
CN114552082A (en) * 2020-11-18 2022-05-27 泰星能源解决方案有限公司 Method for manufacturing electrode package

Similar Documents

Publication Publication Date Title
JP5602092B2 (en) Alkaline secondary battery using negative electrode plate for alkaline secondary battery
US6582855B1 (en) Current collector substrate in electrode for use in alkaline secondary battery, electrode using the same, and alkaline secondary battery having incorporated thereinto the electrode
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP7260349B2 (en) Electrolyte for zinc battery and zinc battery
JP4342160B2 (en) Storage battery and manufacturing method thereof
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP2012086272A (en) Method for manufacturing metal-made three-dimensional substrate for electrodes, metal-made three-dimensional substrate for electrodes and electrochemical applied products using the same
JP2006196207A (en) Alkaline storage battery and manufacturing method of its electrode group
WO2015089208A1 (en) Cell design for an alkaline battery with channels in electrodes to remove gas
JP4498772B2 (en) Alkaline storage battery and its manufacturing method
JP5655808B2 (en) Cylindrical alkaline storage battery
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JP4967229B2 (en) A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied.
US20090170004A1 (en) Electrode for rechargeable battery and method for manufacturing the same
JP7105525B2 (en) zinc battery
JP3893856B2 (en) Square alkaline storage battery
JP5023645B2 (en) Alkaline storage battery
JP6686789B2 (en) Stacked alkaline secondary battery
JP2002175833A (en) Alkali secondary battery
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JP7431072B2 (en) Square batteries and electrode groups for square batteries
KR102111288B1 (en) Positive electrode and alkaline secondary battery including the same
JPH09259873A (en) Secondary battery electrode, its manufacture, and applying device of fluorine resin used for this manufacture
JP2008251199A (en) Electrode for alkaline storage battery, and alkaline storage battery
JP2008117579A (en) Hydrogen absorbing alloy negative electrode for alkaline battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201