JP5023645B2 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP5023645B2
JP5023645B2 JP2006276227A JP2006276227A JP5023645B2 JP 5023645 B2 JP5023645 B2 JP 5023645B2 JP 2006276227 A JP2006276227 A JP 2006276227A JP 2006276227 A JP2006276227 A JP 2006276227A JP 5023645 B2 JP5023645 B2 JP 5023645B2
Authority
JP
Japan
Prior art keywords
storage battery
nickel
active material
porous body
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006276227A
Other languages
Japanese (ja)
Other versions
JP2007265960A (en
Inventor
浩志 渡邉
相龍 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006276227A priority Critical patent/JP5023645B2/en
Publication of JP2007265960A publication Critical patent/JP2007265960A/en
Application granted granted Critical
Publication of JP5023645B2 publication Critical patent/JP5023645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明はアルカリ蓄電池に関し、より詳しくは正極の生産性と特性の双方を高次化したアルカリ蓄電池に関する。   The present invention relates to an alkaline storage battery, and more particularly to an alkaline storage battery in which both productivity and characteristics of a positive electrode are enhanced.

近年アルカリ蓄電池は、携帯機器の普及に伴い高容量化が強く要望されている。特にニッケル水素蓄電池は、水酸化ニッケルを主体とした正極と、水素吸蔵合金を主体とした負極からなる二次電池であり、高容量で高信頼性の二次電池として普及している。このアルカリ蓄電池用の正極には、大別して焼結式と非焼結式の二つがある。   In recent years, alkaline storage batteries have been strongly demanded to have higher capacities with the spread of portable devices. In particular, the nickel metal hydride storage battery is a secondary battery including a positive electrode mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy, and is widely used as a secondary battery having a high capacity and high reliability. The positive electrode for the alkaline storage battery is roughly classified into two types, a sintered type and a non-sintered type.

前者の焼結式正極はパンチングメタル等の芯材とニッケル粉末とを焼結させて得た多孔度80%程度のニッケル焼結基板に、硝酸ニッケル水溶液等のニッケル塩溶液を含浸し、続いて、アルカリ水溶液に含浸するなどして多孔質ニッケル焼結基板中に活物質である水酸化ニッケルを生成させて作製するものである。この正極は基板の多孔度をこれ以上大きくすることが困難であるため、活物質量を増加することができず、高容量化には限界がある。   The former sintered positive electrode is obtained by impregnating a nickel sintered substrate having a porosity of about 80% obtained by sintering a core material such as punching metal and nickel powder with a nickel salt solution such as an aqueous nickel nitrate solution. In this method, nickel hydroxide as an active material is produced in a porous nickel sintered substrate by impregnating with an alkaline aqueous solution. Since it is difficult for the positive electrode to further increase the porosity of the substrate, the amount of active material cannot be increased, and there is a limit to increasing the capacity.

後者の非焼結式正極は3次元網状構造を有する金属多孔体(例えば多孔度95%程度の発泡ニッケル基板)に、活物質である水酸化ニッケルを充填して作製するものであり、高容量タイプのアルカリ蓄電池の正極として広く用いられている。この非焼結式正極では高容量化の観点から、嵩密度が大きい球状の水酸化ニッケルが使用される。   The latter non-sintered positive electrode is produced by filling a metal porous body having a three-dimensional network structure (for example, a foamed nickel substrate having a porosity of about 95%) with nickel hydroxide as an active material, and has a high capacity. Widely used as the positive electrode of the type alkaline storage battery. In this non-sintered positive electrode, spherical nickel hydroxide having a large bulk density is used from the viewpoint of increasing the capacity.

発泡式ニッケル基板は発泡させたポリウレタンなどの3次元網目状構造体の表面をニッケルでメッキした後、3次元網目状構造体を除去して製造される。一般的には発泡ニッケル基板の孔径は活物質の粒径よりも十分大きく設定するため、集電が保たれた基板骨格近傍の活物質の充放電反応は円滑に進行するが、骨格から離れた活物質の充放電反応は不十分になる。そこで非焼結式正極では充填した活物質の利用率を向上させるために、導電剤を用いて活物質間の導電性を高めている。導電剤としては水酸化コバルト、一酸化コバルトのような2価のコバルト酸化物を使用する。これら2価のコバルト酸化物はそれ自身は導電性を有しないものの、電池内での初期の充電において導電性を有するβ−オキシ水酸化コバルトへと電気化学的に酸化され、これが導電ネットワークとして機能する。導電ネットワークの存在によって、非焼結式正極では高密度に充填した活物質の利用率を大幅に高められ、実用的な電池特性が発揮できるようになる。   The foamed nickel substrate is manufactured by plating the surface of a foamed three-dimensional network structure such as polyurethane with nickel and then removing the three-dimensional network structure. In general, the pore diameter of the foamed nickel substrate is set to be sufficiently larger than the particle diameter of the active material, so that the charge / discharge reaction of the active material in the vicinity of the substrate skeleton where current collection is maintained proceeds smoothly, but separated from the skeleton. The charge / discharge reaction of the active material becomes insufficient. Therefore, in the non-sintered positive electrode, in order to improve the utilization factor of the filled active material, the conductivity between the active materials is increased by using a conductive agent. As the conductive agent, a divalent cobalt oxide such as cobalt hydroxide or cobalt monoxide is used. Although these divalent cobalt oxides are not electrically conductive per se, they are electrochemically oxidized into β-cobalt oxyhydroxide having electrical conductivity in the initial charge in the battery, which functions as a conductive network. To do. Due to the presence of the conductive network, in the non-sintered positive electrode, the utilization factor of the active material filled with high density can be greatly increased, and practical battery characteristics can be exhibited.

しかしながら充放電を繰り返して非焼結式正極が電解液を吸収した際、活物質の粒径よりも発泡ニッケル基板の孔径を大きくしたがゆえに活物質の保持力が低下し、発泡ニッケル基板から活物質が脱落しやすくなる。そこでこの課題を解決するために、非焼結式正極の表面に糸状化したフッ素樹脂層を設ける提案がなされている(例えば、特許文献1)。
特開平6−20685号公報
However, when the non-sintered positive electrode absorbs the electrolyte solution by repeating charge and discharge, the active material holding force decreases because the pore diameter of the foamed nickel substrate is made larger than the particle size of the active material, and the active material from the foamed nickel substrate is reduced. The substance is easy to fall off. In order to solve this problem, a proposal has been made to provide a threaded fluororesin layer on the surface of a non-sintered positive electrode (for example, Patent Document 1).
Japanese Patent Laid-Open No. 6-20585

しかしながら特許文献1で用いるフッ素樹脂層は撥水性が高い上に電池内の残空間を減少させるので、電解液の注入性や浸透性を悪化させることになる。本発明は上記課題に基づいてなされたものであり、非焼結式正極における活物質の脱落を無理なく抑制し、高容量でかつ容量維持率の高いアルカリ蓄電池を提供することを目的とする。   However, since the fluororesin layer used in Patent Document 1 has high water repellency and reduces the remaining space in the battery, the electrolyte injectability and permeability are deteriorated. The present invention has been made based on the above problems, and an object of the present invention is to provide an alkaline storage battery having a high capacity and a high capacity retention rate by suppressing the falling off of the active material in the non-sintered positive electrode without difficulty.

上記の課題を解決するために、本発明のアルカリ蓄電池は、3次元網状構造を有する金属多孔体に活物質を充填してなる正極と、負極と、これらの間に介在させたセパレータと、電解液とからなり、金属多孔体の骨格に中空を設けかつその断面を略三角形状とし、この断面における各頂点部の厚みAを辺部の中空までの厚みBより大きくしたことを特徴とする。   In order to solve the above-mentioned problems, the alkaline storage battery of the present invention includes a positive electrode formed by filling a porous metal body having a three-dimensional network structure with an active material, a negative electrode, a separator interposed therebetween, electrolysis It is characterized in that it is made of a liquid, a hollow is provided in the skeleton of the porous metal body, and its cross section is substantially triangular, and the thickness A of each apex portion in this cross section is made larger than the thickness B up to the hollow side.

上述したような断面構造を有する金属多孔体は空孔内に活物質を効率的に囲い込めるので、非焼結式正極からの活物質の脱落を回避して、容量維持率を高めることができるようになる。   Since the metal porous body having the cross-sectional structure as described above efficiently encloses the active material in the pores, it is possible to avoid the loss of the active material from the non-sintered positive electrode and to increase the capacity retention rate. It becomes like this.

なお金属多孔体の骨格平面上に突起を設けることにより、金属多孔体と活物質との接触面積が大きくなるので接触性が向上し、高率放電特性および容量維持率をより高めることができる。   By providing protrusions on the skeleton plane of the porous metal body, the contact area between the porous metal body and the active material is increased, so that the contact property is improved, and the high rate discharge characteristics and the capacity retention rate can be further increased.

本発明の構成を活用すれば、高容量ながら活物質の脱落が顕著であった非焼結式正極の課題が解決できるので、高容量でかつ容量維持率の高いアルカリ蓄電池を提供することができる。   By utilizing the configuration of the present invention, it is possible to solve the problem of the non-sintered positive electrode, in which the active material has been noticeably dropped even though the capacity is high, and thus it is possible to provide an alkaline storage battery having a high capacity and a high capacity retention rate. .

以下、発明を実施するための最良の形態について、図を用いて説明する。なおここで示す図は一例であって、本発明の請求項に表す構成を有していれば、同様の効果を得ることができる。   Hereinafter, the best mode for carrying out the invention will be described with reference to the drawings. In addition, the figure shown here is an example, Comprising: If it has the structure represented to the claim of this invention, the same effect can be acquired.

第1の発明は、3次元網状構造を有する金属多孔体に活物質を充填してなる正極と、負極と、これらの間に介在させたセパレータと、電解液とからなり、金属多孔体の骨格に中空を設けかつその断面を略三角形状とし、この断面における各頂点部の厚みAを辺部の中空までの厚みBより大きくしたことを特徴とするアルカリ蓄電池に関する。   1st invention consists of the positive electrode formed by filling the metal porous body which has a three-dimensional network structure with an active material, the negative electrode, the separator interposed between these, and electrolyte solution, The frame | skeleton of a metal porous body The present invention relates to an alkaline storage battery, characterized in that a hollow is provided in the cross section, the cross section thereof is substantially triangular, and the thickness A of each apex portion in the cross section is larger than the thickness B of the side portion up to the hollow.

図1は本発明のアルカリ蓄電池の金属多孔体の骨格断面を示す概略図である。金属多孔体1は骨格の断面が略三角形状でかつその内部に中空4が設けられている。この断面における頂点部2の厚みAは、辺部3の中空4までの厚みBより大きい。このような断面構造を有する金属多孔体1は空孔内に活物質を効率的に囲い込めるので、非焼結式正極からの活物質の脱落を回避して、容量維持率を高めることができるようになる。   FIG. 1 is a schematic view showing a skeleton cross section of a metal porous body of the alkaline storage battery of the present invention. The metal porous body 1 has a substantially triangular cross section and a hollow 4 provided inside thereof. The thickness A of the vertex 2 in this cross section is larger than the thickness B of the side 3 up to the hollow 4. Since the metal porous body 1 having such a cross-sectional structure efficiently encloses the active material in the pores, it is possible to prevent the active material from falling off from the non-sintered positive electrode and to increase the capacity retention rate. It becomes like this.

図1に示すような断面構造を有する金属多孔体1は、例えば繊維系が5〜100μmのポリウレタンに電流密度5A/dm2以上でエッジ部への電流集中現象が起こるようにメッキを行うことにより得ることが可能である。なおメッキを行う金属はニッケルのほかに銅、亜鉛などを用いることができる。 The metal porous body 1 having a cross-sectional structure as shown in FIG. 1 is obtained by plating a polyurethane having a fiber system of 5 to 100 μm so that a current concentration phenomenon at the edge portion occurs at a current density of 5 A / dm 2 or more. It is possible to obtain. The metal to be plated can be copper, zinc or the like in addition to nickel.

第2の発明は、第1の発明において、頂点部2の厚みAと辺部3の中空4までの厚みBとの比A/Bを1.5〜3.0としたことを特徴とする。この比が1.5倍未満の場合、本発明の効果である活物質の効率的な囲い込みが不十分になって活物質の脱落による容量低下がやや顕著になる。またこの比が3.0倍より大きい場合、金属多孔体1の空孔内に活物質を充填しにくくなり、所望の容量が得られなくなるので好ましくない。この比は上述したメッキ条件(具体的にはメッキ速度)を変えることにより調整が可能である。   The second invention is characterized in that, in the first invention, the ratio A / B between the thickness A of the apex portion 2 and the thickness B of the side portion 3 up to the hollow 4 is 1.5 to 3.0. . When this ratio is less than 1.5 times, the effective enclosure of the active material, which is the effect of the present invention, becomes insufficient, and the capacity reduction due to the falling off of the active material becomes somewhat remarkable. Moreover, when this ratio is larger than 3.0 times, it becomes difficult to fill the pores of the metal porous body 1 with the active material, and a desired capacity cannot be obtained. This ratio can be adjusted by changing the above-described plating conditions (specifically, the plating speed).

第3の発明は、第1の発明において、金属多孔体1の骨格平面上に突起を設けたことを特徴とする。図2は本発明のアルカリ蓄電池における金属多孔体1の表面を示す図で、円
で囲んだCが図1に示す金属多孔体1の骨格断面(ただし、終端部につき中空4はなし)に相当する。金属多孔体1の表面には突起5を設けることにより、第1の発明の効果に加えて、金属多孔体1と活物質との接触面積が大きくなって接触性が向上するので、高率放電特性および容量維持率をより高めることができるようになる。なお第3の発明に示す金属多孔体1は、例えば繊維系が5〜100μmのポリウレタンにカーボンを塗布した後、電流密度5A/dm2以上でエッジ部への電流集中現象が起こるようにメッキを行うことにより得ることが可能である。なお、図2に示すように電子顕微鏡撮影にて突起5と認定される箇所は、金属多孔体1の断面において、通常の骨格平面の厚みの1.2倍以上の厚みを有している。
A third invention is characterized in that, in the first invention, a protrusion is provided on the skeleton plane of the metal porous body 1. FIG. 2 is a view showing the surface of the metal porous body 1 in the alkaline storage battery of the present invention, and C surrounded by a circle corresponds to the skeleton cross section of the metal porous body 1 shown in FIG. 1 (however, there is no hollow 4 per terminal portion). . By providing the protrusions 5 on the surface of the metal porous body 1, in addition to the effect of the first invention, the contact area between the metal porous body 1 and the active material is increased and the contact property is improved. The characteristics and capacity maintenance rate can be further increased. In the metal porous body 1 shown in the third invention, for example, after applying carbon to polyurethane having a fiber system of 5 to 100 μm, plating is performed so that a current concentration phenomenon at the edge occurs at a current density of 5 A / dm 2 or more. It can be obtained by doing. Note that, as shown in FIG. 2, the portion recognized as the protrusion 5 by the electron micrograph has a thickness of 1.2 times or more of the thickness of the normal skeleton plane in the cross section of the metal porous body 1.

ここで本発明の金属多孔体1を用いたニッケル水素蓄電池を例にあげ、アルカリ蓄電池の製造方法を具体的に説明する。まず正極は、活物質として水酸化ニッケル(Ni(OH)2)の粉末に、CoOやCo(OH)2のような2価のコバルト化合物の粉末を混合し、その混合粉末にカルボキシメチルセルロース(以下、CMCと略記)やメチルセルロースなどを溶解して成る増粘剤水溶液を添加して全体を混練し、粘稠な合剤ペーストを調製したのち、この合剤ペーストをスポンジ状のニッケルシートやニッケルフェルトのような3次元網状構造の金属多孔体1に充填塗布し、乾燥、圧延処理を順次行うことにより製造される。金属多孔体1には、厚み方向に押しつぶされた凹没部が予め所定位置に形成されており、この凹没部に正極集電体としてニッケル片のような金属片をスポット溶接し、正極が得られる。 Here, a nickel-metal hydride storage battery using the porous metal body 1 of the present invention is taken as an example, and a method for producing an alkaline storage battery will be specifically described. First, in the positive electrode, a powder of a divalent cobalt compound such as CoO or Co (OH) 2 is mixed with a powder of nickel hydroxide (Ni (OH) 2 ) as an active material, and carboxymethyl cellulose (hereinafter referred to as “mixed powder”). , Abbreviated as CMC) and an aqueous solution of a thickener prepared by dissolving methylcellulose and the like, kneading the whole to prepare a viscous mixture paste, and then mixing the mixture paste with a sponge-like nickel sheet or nickel felt The metal porous body 1 having a three-dimensional network structure as described above is filled and applied, followed by drying and rolling in order. The metal porous body 1 has a recessed portion crushed in the thickness direction at a predetermined position in advance. A metal piece such as a nickel piece is spot-welded as a positive electrode current collector to the recessed portion, can get.

負極は、パンチングメタル(穿孔鋼板にニッケルメッキを施したもの)やニッケルネットのような多孔質導電板に、活物質である水素吸蔵合金粉末に導電材粉末、結着剤および増粘剤を所定割合で混合した混合物スラリーを塗着し、乾燥、圧延処理を順次行うことにより製造される。   The negative electrode is a porous conductive plate such as punching metal (perforated steel plate plated with nickel) or nickel net, a hydrogen storage alloy powder that is an active material, and a conductive material powder, a binder and a thickener. It is manufactured by applying a mixture slurry mixed at a ratio, followed by drying and rolling.

セパレータはポリプロピレンなどのポリオレフィンの不織布にスルホン化などの表面処理を施したものが用いられる。セパレータは正極および負極の寸法より大きく切断され、両者の間に介在した状態で捲回され、負極が最外周に位置するように捲回する。以上のようにして形成された電極群は、外装缶の開口部から外装缶の中へ挿入される。この外装缶内にKOHなどを主体とするアルカリ電解液が注入された後、正極集電体と封口体とが溶接され、この封口体が正極端子となる。一方負極においては、電極群の最外周に位置する負極が負極端子を兼ねる外装缶と接触することにより、負極と負極端子が電気的に接続される。そして最後に、外装缶の開口部に、封口体が絶縁板を介して嵌合装着され、外装缶と封口体との封口溶接がなされ、密閉構造のニッケル水素電池が製造される。   As the separator, a non-woven fabric made of polyolefin such as polypropylene is subjected to a surface treatment such as sulfonation. The separator is cut larger than the dimensions of the positive electrode and the negative electrode, wound with the separator interposed therebetween, and wound so that the negative electrode is located on the outermost periphery. The electrode group formed as described above is inserted into the outer can through the opening of the outer can. After an alkaline electrolyte mainly composed of KOH or the like is injected into the outer can, the positive electrode current collector and the sealing body are welded, and the sealing body becomes a positive electrode terminal. On the other hand, in the negative electrode, the negative electrode located on the outermost periphery of the electrode group comes into contact with the outer can serving as the negative electrode terminal, whereby the negative electrode and the negative electrode terminal are electrically connected. Finally, the sealing body is fitted and attached to the opening of the outer can via an insulating plate, and the outer can and the sealing body are sealed and welded to produce a sealed nickel-metal hydride battery.

本発明の金属多孔体1を用いることができるアルカリ蓄電池としては、上述したニッケル水素蓄電池のほかにニッケルカドミウム蓄電池やニッケル鉄蓄電池、ニッケル亜鉛蓄電池などを挙げることができる。中でもニッケル水素蓄電池は、エネルギー密度が高いので本発明の主旨に最も合致している。   Examples of the alkaline storage battery that can use the porous metal body 1 of the present invention include a nickel cadmium storage battery, a nickel iron storage battery, and a nickel zinc storage battery in addition to the nickel hydride storage battery described above. Among them, the nickel-metal hydride storage battery most closely matches the gist of the present invention because of its high energy density.

以下に、本発明の実施例および比較例を、ニッケル水素蓄電池を用いて詳細に説明する。   Below, the Example and comparative example of this invention are described in detail using a nickel metal hydride storage battery.

(実施例1)
1インチあたりの空孔数が約50個で繊維径が40μm、平均孔径300μm、気孔率96%、厚さ1.8mmの発泡ウレタン基板に真空中でニッケルを蒸着させ、10g/m2のニッケル金属を被覆した。次いでこれをワット浴中で電流密度10A/dm2にて電解ニッケルメッキしてメッキ層を形成した。メッキ析出量は400g/m2であった。この
後、下地である発泡ウレタン基板を600℃で焼成除去し、さらに900℃の水素気流中でニッケル還元処理を行った。得られた金属多孔体1は均一に1.3mm厚になるようにロールプレスして調厚した。得られた金属多孔体1の頂点部2の厚みAは30μm、辺部3の中空4までの厚みBは15μm、比A/Bは2.0であった。
Example 1
Nickel is deposited in a vacuum on a foamed urethane substrate having about 50 holes per inch, fiber diameter of 40 μm, average pore diameter of 300 μm, porosity of 96%, and thickness of 1.8 mm. 10 g / m 2 of nickel The metal was coated. This was then subjected to electrolytic nickel plating in a watt bath at a current density of 10 A / dm 2 to form a plating layer. The amount of plating deposition was 400 g / m 2 . Thereafter, the foamed urethane substrate as a base was baked and removed at 600 ° C., and further nickel reduction treatment was performed in a hydrogen stream at 900 ° C. The obtained metal porous body 1 was roll-pressed so as to have a uniform thickness of 1.3 mm. The thickness A of the apex portion 2 of the obtained metal porous body 1 was 30 μm, the thickness B up to the hollow 4 of the side portion 3 was 15 μm, and the ratio A / B was 2.0.

この金属多孔体1に活物質である水酸化ニッケルと、導電剤である水酸化コバルトおよび一酸化コバルト粉末とを充填した後で圧延し、所定の寸法に切断して正極を得た。一方負極は、活物質である水素吸蔵合金粉末と、導電剤であるケッチェンブラックと、結着剤であるスチレン−ブタジエンゴム共重合体と、増粘剤であるCMCとからなるペーストを、穿孔鋼板にニッケルをメッキした2次元多孔体(パンチングメタル)に塗布乾燥した後、圧延を行い、所定の寸法に切断して得た。これら正負極を、ポリプロピレン製不織布を主構成要素とするセパレータを介して捲回し、電極群を構成した。この電極群を円筒型の有底缶に挿入し、ここに水酸化カリウム水溶液からなる電解液を注入して、公称容量3Ahのニッケル水素蓄電池を作製した。これを実施例1とする。   The metal porous body 1 was filled with nickel hydroxide as an active material, cobalt hydroxide and cobalt monoxide powder as conductive agents, and then rolled and cut into predetermined dimensions to obtain a positive electrode. On the other hand, the negative electrode is formed by perforating a paste composed of hydrogen storage alloy powder as an active material, ketjen black as a conductive agent, styrene-butadiene rubber copolymer as a binder, and CMC as a thickener. After coating and drying on a two-dimensional porous body (punching metal) in which nickel was plated on a steel plate, the steel sheet was rolled and cut into predetermined dimensions. These positive and negative electrodes were wound through a separator having a polypropylene non-woven fabric as a main constituent element to constitute an electrode group. This electrode group was inserted into a cylindrical bottomed can, and an electrolytic solution composed of an aqueous potassium hydroxide solution was injected therein to produce a nickel hydride storage battery having a nominal capacity of 3 Ah. This is Example 1.

(実施例2〜5)
実施例1のアルカリ蓄電池に対し、金属多孔体1のニッケルめっきの電流密度を5A/dm2(実施例2)、7A/dm2(実施例3)、15A/dm2(実施例4)、18A/dm2(実施例5)とすることにより、頂点部2の厚みAを23.5μm(実施例2)、27μm(実施例3)、33.8μm(実施例4)、35μm(実施例5)とし、辺部3の中空4までの厚みBを21.5μm(実施例2)、18μm(実施例3)、11.2μm(実施例4)、10μm(実施例5)とし、比A/Bを1.1(実施例2)、1.5(実施例3)、3.0(実施例4)、3.5(実施例5)とした以外は、実施例1と同様のアルカリ蓄電池を構成した。これを実施例2〜5とする。
(Examples 2 to 5)
For the alkaline storage battery of Example 1, the current density of the nickel plating of the metal porous body 1 is 5 A / dm 2 (Example 2), 7 A / dm 2 (Example 3), 15 A / dm 2 (Example 4), By setting 18 A / dm 2 (Example 5), the thickness A of the apex 2 is 23.5 μm (Example 2), 27 μm (Example 3), 33.8 μm (Example 4), and 35 μm (Example). 5), and the thickness B of the side 3 up to the hollow 4 is 21.5 μm (Example 2), 18 μm (Example 3), 11.2 μm (Example 4), 10 μm (Example 5), and the ratio A / B was the same alkali as in Example 1 except that 1.1 (Example 2), 1.5 (Example 3), 3.0 (Example 4), and 3.5 (Example 5). A storage battery was constructed. Let this be Examples 2-5.

(実施例6)
実施例1のアルカリ蓄電池に対し、実施例1と同様の発泡ウレタン基板に平均粒径が3μmの導電性カーボン粉末を塗布した後、真空中でニッケルを蒸着させた以外は、実施例1と同様のアルカリ蓄電池を構成した。これを実施例6とする。
(Example 6)
For the alkaline storage battery of Example 1, similar to Example 1 except that conductive carbon powder having an average particle size of 3 μm was applied to the same urethane foam substrate as in Example 1 and then nickel was evaporated in vacuum. An alkaline storage battery was constructed. This is Example 6.

(比較例1)
実施例1のアルカリ蓄電池に対し、金属多孔体1のニッケルめっきの電流密度を4A/dm2とすることにより、頂点部2の厚みAおよび辺部3の中空4までの厚みBを22.5μm(比A/Bが1.0)とした以外は、実施例1と同様のアルカリ蓄電池を構成した。これを比較例とする。
(Comparative Example 1)
By setting the current density of nickel plating of the metal porous body 1 to 4 A / dm 2 with respect to the alkaline storage battery of Example 1, the thickness A of the apex portion 2 and the thickness B of the side portion 3 up to the hollow 4 is 22.5 μm. An alkaline storage battery similar to that of Example 1 was configured except that the ratio A / B was 1.0. This is a comparative example.

これらのアルカリ蓄電池に対し、以下の評価を行った。   The following evaluation was performed on these alkaline storage batteries.

(サイクル寿命評価)
20℃環境下において3Aで1.5Vまでの充電を行った後、3Aで0.9Vまで放電する充放電を繰り返した。5サイクル、100サイクル及び300サイクル後の放電容量を(表1)に示す。
(Cycle life evaluation)
After charging to 1.5V at 3A in a 20 ° C. environment, charging / discharging to discharge to 0.9V at 3A was repeated. The discharge capacity after 5 cycles, 100 cycles and 300 cycles is shown in Table 1.

(高率放電評価)
20℃環境下において3Aで1.5Vまでの充電を行った後、10Aで0.9Vまで放電した。その時の放電容量を(表1)に示す。
(High rate discharge evaluation)
After charging to 1.5V at 3A in a 20 ° C. environment, it was discharged to 0.9V at 10A. The discharge capacity at that time is shown in (Table 1).

Figure 0005023645
(表1)より、A/B比が1.0である比較例は、300サイクルでの容量維持率が極端に低下している。この理由として、隣り合う骨格の頂点部2どうしで活物質を囲い込むという本発明の効果が発揮できなかったため、活物質の脱落による容量低下が顕著になったと考えられる。
Figure 0005023645
From Table 1, the capacity retention rate at 300 cycles is extremely lowered in the comparative example having an A / B ratio of 1.0. The reason for this is that the effect of the present invention of enclosing the active material between the apex portions 2 of adjacent skeletons could not be exhibited, so that the capacity reduction due to the loss of the active material was conspicuous.

これら比較例に対し、本発明の実施例1〜5は良好なサイクル特性を示した。ただし比A/Bが1.5倍未満の実施例2は、本発明の効果である活物質の効率的な囲い込みが不十分になって活物質の脱落による容量低下がやや顕著になった。また比A/Bが3.0倍より大きい実施例5は、金属多孔体1の空孔内に活物質を充填しにくくなり、5サイクル目の容量がやや小さくなった。この結果から、比A/Bの好適範囲は1.5〜3.0であることがわかる。   In contrast to these comparative examples, Examples 1 to 5 of the present invention showed good cycle characteristics. However, in Example 2 in which the ratio A / B was less than 1.5 times, the efficient enclosing of the active material, which is the effect of the present invention, was insufficient, and the capacity reduction due to the falling off of the active material became somewhat remarkable. Further, in Example 5 in which the ratio A / B was larger than 3.0 times, it was difficult to fill the active material into the pores of the metal porous body 1, and the capacity at the fifth cycle was slightly reduced. From this result, it is understood that the preferable range of the ratio A / B is 1.5 to 3.0.

また、本発明の実施例6は実施例1に対し良好な高率放電特性を示した。この理由として、金属多孔体1と活物質との接触面積が大きくなって接触性が向上したことが挙げられる。また容量維持率も他の実施例より高くなっていることから、活物質の脱落もより強固に抑制できたと推測される。   In addition, Example 6 of the present invention showed better high rate discharge characteristics than Example 1. This is because the contact area between the metal porous body 1 and the active material is increased and the contact property is improved. Moreover, since the capacity retention rate is higher than in the other examples, it is presumed that the falling off of the active material could be more firmly suppressed.

本発明は、3次元網目状構造を有する金属多孔体を用いるアルカリ蓄電池に好適であり、電池反応を妨げることなく、正極表面全体での活物質脱落不良を少なくでき、正極容量低下を抑えることが可能になるので、産業上の利用可能性は高いと考えられる。   The present invention is suitable for an alkaline storage battery using a porous metal body having a three-dimensional network structure, and can reduce the active material dropout failure on the entire surface of the positive electrode without interfering with the battery reaction, thereby suppressing a decrease in the positive electrode capacity. Because it becomes possible, the industrial applicability is considered high.

本発明のアルカリ蓄電池の金属多孔体の骨格断面を示す概略図Schematic which shows the frame | skeleton cross section of the metal porous body of the alkaline storage battery of this invention 第3の発明のアルカリ蓄電池における金属多孔体の表面を示す図The figure which shows the surface of the metal porous body in the alkaline storage battery of 3rd invention

符号の説明Explanation of symbols

1 金属多孔体
2 頂点部
3 辺部
4 中空
5 突起

1 Metal porous body 2 Vertex 3 Side 4 Hollow 5 Protrusion

Claims (1)

3次元網状構造を有する金属多孔体に活物質を充填してなる正極と、負極と、これらの間に介在させたセパレータと、電解液とからなるアルカリ蓄電池であって、
前記金属多孔体は、発泡ウレタンにカーボン粉末を塗布した後、前記発泡ウレタンおよびカーボン粉末上に金属層を形成することにより、前記金属多孔体の骨格平面上に突起が設けられており、
前記金属多孔体の骨格に中空を設けかつその断面を略三角形状とし、この断面における各頂点部の厚みA辺部の中空までの厚みBとの比A/Bを1.5〜3.0としたことを特徴とするアルカリ蓄電池。
An alkaline storage battery comprising a positive electrode formed by filling a metal porous body having a three-dimensional network structure with an active material, a negative electrode, a separator interposed therebetween, and an electrolytic solution,
The metal porous body is provided with protrusions on the skeleton plane of the metal porous body by forming a metal layer on the urethane foam and carbon powder after applying the carbon powder to the urethane foam,
A hollow is provided in the skeleton of the porous metal body, and the cross section thereof is substantially triangular, and the ratio A / B between the thickness A of each apex and the thickness B of the side in the cross section is 1.5-3. An alkaline storage battery characterized by being zero .
JP2006276227A 2006-02-28 2006-10-10 Alkaline storage battery Active JP5023645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276227A JP5023645B2 (en) 2006-02-28 2006-10-10 Alkaline storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006051719 2006-02-28
JP2006051719 2006-02-28
JP2006276227A JP5023645B2 (en) 2006-02-28 2006-10-10 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2007265960A JP2007265960A (en) 2007-10-11
JP5023645B2 true JP5023645B2 (en) 2012-09-12

Family

ID=38638732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276227A Active JP5023645B2 (en) 2006-02-28 2006-10-10 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5023645B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251210A (en) * 2011-06-03 2012-12-20 Sumitomo Electric Ind Ltd Porous metallic body, electrode material using the same, and cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999676A (en) * 1982-11-30 1984-06-08 Sanyo Electric Co Ltd Electrode base plate for battery
JP3408047B2 (en) * 1996-01-31 2003-05-19 三洋電機株式会社 Alkaline storage battery
JPH11176450A (en) * 1997-12-11 1999-07-02 Sumitomo Electric Ind Ltd Metal porous material, manufacture thereof, and battery substrate using the same
JPH11176451A (en) * 1997-12-11 1999-07-02 Sumitomo Electric Ind Ltd Metal porous body having inclined structure, and manufacture thereof, and battery board using the metal porous body
JP2004014411A (en) * 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd Core material for alkaline storage battery, its manufacturing method and alkaline storage battery using it

Also Published As

Publication number Publication date
JP2007265960A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP2009543276A (en) New silver positive electrode for alkaline storage batteries
JP2011165680A (en) Alkaline secondary battery applying alkaline secondary battery anode plate
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
US20150162601A1 (en) Cell design for an alkaline battery with channels in electrodes to remove gas
JP2019216057A (en) Porous membrane, battery member, and zinc battery
JP5023645B2 (en) Alkaline storage battery
JP2002198055A (en) Paste-like thin electrode for battery, its manufacturing method and secondary battery
JP5655808B2 (en) Cylindrical alkaline storage battery
CN109037600A (en) Non-sintered type anode and the alkaline secondary cell for having non-sintered type anode
JP5096910B2 (en) Alkaline storage battery
JP2006196207A (en) Alkaline storage battery and manufacturing method of its electrode group
JP7105525B2 (en) zinc battery
JP4747536B2 (en) Alkaline storage battery
JP4967229B2 (en) A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied.
JP2019216059A (en) Porous membrane, battery member, and zinc battery
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP2006040698A (en) Positive electrode for alkaline storage battery and alkaline storage battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JP2008117579A (en) Hydrogen absorbing alloy negative electrode for alkaline battery
JP4085434B2 (en) Alkaline battery electrode
JP2000200612A (en) Rectangular alkaline secondary battery
JP2007066836A (en) Manufacturing method of cylindrical alkaline storage battery
JP2000077067A (en) Positive electrode for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5023645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151