JP2008117579A - Hydrogen absorbing alloy negative electrode for alkaline battery - Google Patents

Hydrogen absorbing alloy negative electrode for alkaline battery Download PDF

Info

Publication number
JP2008117579A
JP2008117579A JP2006298438A JP2006298438A JP2008117579A JP 2008117579 A JP2008117579 A JP 2008117579A JP 2006298438 A JP2006298438 A JP 2006298438A JP 2006298438 A JP2006298438 A JP 2006298438A JP 2008117579 A JP2008117579 A JP 2008117579A
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen storage
storage alloy
nickel
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006298438A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Masaru Yao
勝 八尾
Tetsuo Sakai
哲男 境
Kazuki Okuno
一樹 奥野
Masahiro Kato
真博 加藤
Tatsutama Boku
辰珠 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sumitomo Electric Industries Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006298438A priority Critical patent/JP2008117579A/en
Publication of JP2008117579A publication Critical patent/JP2008117579A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen absorbing alloy negative electrode for an alkaline battery reducing the used amount of nickel and enhancing cycle characteristics; and to provide the alkaline battery having the negative electrode. <P>SOLUTION: The hydrogen absorbing alloy negative electrode has a current collector of a nickel porous body formed by applying nickel plating on a nonwoven fabric of alkali resistant fibers, the nickel content of the current collector is 20-70 g/cm<SP>2</SP>. By using the nonwoven fabric in the current collector and making the filled hydrogen absorbing alloy present in the skeletons of the current collector, coming off of the alloy caused by finely dividing and expansion of the negative electrode can be suppressed. The nickel content in the current collector is low, the filling density of the hydrogen absorbing alloy is high, and the weight of the negative electrode can be made light. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アルカリ電池用水素吸蔵合金負極及びアルカリ電池に関する。特に、サイクル特性(寿命)に優れるアルカリ電池用水素吸蔵合金負極及びアルカリ電池に関する。   The present invention relates to a hydrogen storage alloy negative electrode for an alkaline battery and an alkaline battery. In particular, the present invention relates to a hydrogen storage alloy negative electrode for an alkaline battery and an alkaline battery having excellent cycle characteristics (lifetime).

従来、携帯用、移動用、産業用機器の電源に一次電池あるいは二次電池が利用されている。後者の二次電池としては、鉛蓄電池、アルカリ電池、リチウムイオン二次電池が広く利用されている。中でも、アルカリ電池は、高信頼、長寿命、リチウムイオン二次電池に比べて安価、さらに小型軽量化が可能といった特徴がある。代表的なアルカリ電池としては、ニッケル‐水素電池が挙げられる。   Conventionally, primary batteries or secondary batteries have been used as power sources for portable, mobile and industrial equipment. As the latter secondary battery, lead acid batteries, alkaline batteries, and lithium ion secondary batteries are widely used. Among them, the alkaline battery has characteristics such as high reliability, long life, low cost, and further reduction in size and weight compared to the lithium ion secondary battery. A typical alkaline battery is a nickel-hydrogen battery.

ニッケル‐水素電池は、正極にニッケル粉末の焼結体や発泡状ニッケルといった集電体に正極活物質の水酸化ニッケルを充填したニッケル極が使用され、負極に水素の吸蔵・放出が可能な水素吸蔵合金が使用されている。ニッケル水素電池用の水素吸蔵合金として今まで多くの合金が研究開発されているが、現在ではAB5タイプのMmNi5系を基本とした多元系合金が主流である。   Nickel-hydrogen batteries use a nickel electrode with a positive electrode active material nickel hydroxide filled in a current collector such as a nickel powder sintered body or foamed nickel on the positive electrode, and hydrogen that can absorb and release hydrogen in the negative electrode. An occlusion alloy is used. Many alloys have been researched and developed so far as hydrogen storage alloys for nickel metal hydride batteries. Currently, multi-component alloys based on the AB5 type MmNi5 system are the mainstream.

水素吸蔵合金負極は、例えば、水素吸蔵合金を集電体に塗着、あるいは充填することで作製される。このような水素吸蔵合金負極に用いる集電体として、二次元構造のパンチングメタルや、三次元構造の発泡状ニッケルが提案されている。   The hydrogen storage alloy negative electrode is produced, for example, by coating or filling a current collector with a hydrogen storage alloy. As a current collector used for such a hydrogen storage alloy negative electrode, a two-dimensional punching metal and a three-dimensional foamed nickel have been proposed.

例えば特許文献1や2には、パンチングメタルを集電体に用いた水素吸蔵合金負極が開示されている。パンチングメタルは、鉄を主成分とする板にニッケルめっきを施すことで製造することができ、低コスト化が可能である。   For example, Patent Documents 1 and 2 disclose a hydrogen storage alloy negative electrode using a punching metal as a current collector. The punching metal can be manufactured by applying nickel plating to a plate containing iron as a main component, and the cost can be reduced.

その他、例えば特許文献3や4には、発泡状ニッケルを集電体に用いた水素吸蔵合金負極が開示されている。発泡状ニッケルは一般的に、ウレタン樹脂でできた発泡状シートにニッケルめっきを施した後、ウレタン樹脂を焼失させ、残った網状構造のニッケルを還元性雰囲気下で焼鈍することで製造される。発泡状ニッケルは、多孔度(体積に対する空隙の割合)が大きく、水素吸蔵合金の充填密度を高めることができる。また、発泡状ニッケルを製造する際のウレタン樹脂に対するニッケルめっきの目付け重量は一般的に350g/m2〜600g/m2である。 In addition, for example, Patent Documents 3 and 4 disclose hydrogen storage alloy negative electrodes using foamed nickel as a current collector. Foamed nickel is generally produced by subjecting a foamed sheet made of urethane resin to nickel plating, burning away the urethane resin, and annealing the remaining network nickel in a reducing atmosphere. Foamed nickel has a large porosity (ratio of voids to volume) and can increase the packing density of the hydrogen storage alloy. Also, the basis weight by weight of the nickel plating for the urethane resin in the production of foamed nickel is generally 350g / m 2 ~600g / m 2 .

さらに、例えば特許文献5には、不織布にニッケルめっきを施すことで繊維表面にニッケルめっき膜が形成された集電体が開示されている。また、実施例には、この集電体を用いた正極が開示されており、集電体のニッケルめっき量は115g/m2である。 Furthermore, for example, Patent Document 5 discloses a current collector in which a nickel plating film is formed on a fiber surface by applying nickel plating to a nonwoven fabric. Further, in the examples, a positive electrode using this current collector is disclosed, and the nickel plating amount of the current collector is 115 g / m 2 .

特開2002−319395号公報JP 2002-319395 A 特開2002−343366号公報JP 2002-343366 A 特開平11−3705号公報Japanese Patent Laid-Open No. 11-3705 特開2003−151540号公報JP 2003-151540 A 特開2005−347177号公報JP 2005-347177 A

しかし、アルカリ電池の集電体にパンチングメタルを用いる場合、耐電解性を図る加工を鉄板に施す必要があり、単なる鉄板に比べてコスト高となる。また、パンチングメタルは、水素吸蔵合金の結着性を向上するために多孔性構造であるが、負極の集電体に用いた場合、負極全体に対する集電体の存在割合が10〜20質量%となり、水素吸蔵合金の充填密度を高くすることが困難である。例えば、水素吸蔵合金の充填密度を向上するために鉄板の厚さをより薄くすることが考えられるが、特殊加工となるため、そのような鉄板を使用することはコスト面から困難である。   However, when a punching metal is used for the current collector of an alkaline battery, it is necessary to apply a process for improving the electrolytic resistance to the iron plate, resulting in higher costs than a simple iron plate. Punching metal has a porous structure to improve the binding properties of the hydrogen storage alloy, but when used as a negative electrode current collector, the existing ratio of the current collector to the entire negative electrode is 10 to 20% by mass. Therefore, it is difficult to increase the packing density of the hydrogen storage alloy. For example, it is conceivable to reduce the thickness of the iron plate in order to improve the filling density of the hydrogen storage alloy. However, since it is a special process, it is difficult to use such an iron plate from the viewpoint of cost.

また、負極の水素吸蔵合金は、充放電の過程で水素の吸蔵・放出を繰り返すことにより合金が微粉化して体積の膨張が起こる。そのため、二次元構造のパンチングメタルを集電体に用いた場合、集電体からの水素吸蔵合金の脱落や剥離が起こり易い。また、水素吸蔵合金の微粉化により、負極による電解液の吸収が顕著となり、セパレータ中の電解液が枯渇して内部抵抗の増加及びサイクル特性の低下が起こり易い。   Further, the hydrogen storage alloy of the negative electrode is repeatedly pulverized and released in the charge / discharge process, whereby the alloy is pulverized and volume expansion occurs. For this reason, when a punching metal having a two-dimensional structure is used as a current collector, the hydrogen storage alloy is likely to fall off or peel off from the current collector. In addition, due to the pulverization of the hydrogen storage alloy, the absorption of the electrolytic solution by the negative electrode becomes remarkable, and the electrolytic solution in the separator is depleted, so that the internal resistance and the cycle characteristics are liable to occur.

一方、発泡状ニッケルを集電体に用いた場合、水素吸蔵合金は三次元構造の骨格に囲まれて存在することとなり、合金が微粉化して体積が膨張することを抑制することができ、負極の膨潤をある程度抑制することができる。しかし、発泡状ニッケルは製造工程が複雑であり、また使用するニッケルの量が多いため、製造コストが高い。   On the other hand, when foamed nickel is used for the current collector, the hydrogen storage alloy is surrounded by a three-dimensional structure skeleton, and the alloy can be prevented from being pulverized to expand its volume. Can be suppressed to some extent. However, foamed nickel has a complicated manufacturing process and a large amount of nickel to be used, so that the manufacturing cost is high.

さらに、不織布を集電体に用いた場合、発泡状ニッケルと同様に、三次元構造の骨格により負極の膨潤を抑制することができるが、使用するニッケルの量をより少なくすることが求められている。   Furthermore, when a non-woven fabric is used for the current collector, the swelling of the negative electrode can be suppressed by the three-dimensional structure as in the case of the foamed nickel, but it is required to use less nickel. Yes.

本発明は上記の事情に鑑みてなされたものであり、その目的の一つは、ニッケルの使用量を低減すると共に、充放電サイクル特性に優れるアルカリ電池用水素吸蔵合金負極を提供することである。また、本発明の別の目的は、前記アルカリ電池用水素吸蔵合金負極を備えるアルカリ電池を提供することである。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a hydrogen storage alloy negative electrode for an alkaline battery that is excellent in charge and discharge cycle characteristics while reducing the amount of nickel used. . Another object of the present invention is to provide an alkaline battery provided with the hydrogen storage alloy negative electrode for alkaline batteries.

本発明者らは、水素吸蔵合金の導電性に着目し、軽量化・低コスト化のためにニッケル量を低減したとしても不織布を用いた集電体の骨格内に水素吸蔵合金を充填することで、負極の集電性能の低下を抑制できることを見出し、本発明を完成するに到った。   The present inventors pay attention to the conductivity of the hydrogen storage alloy, and even if the nickel content is reduced for weight reduction and cost reduction, the hydrogen storage alloy is filled in the skeleton of the current collector using the nonwoven fabric. Thus, the inventors have found that the decrease in the current collecting performance of the negative electrode can be suppressed, and have completed the present invention.

本発明の水素吸蔵合金負極は、集電体内に水素吸蔵合金が充填されて成る。本発明の水素吸蔵合金負極は、集電体が耐アルカリ性繊維から成る不織布にニッケルめっきを施した三次元構造のニッケル多孔体であり、この集電体のニッケル量が20g/m2以上70g/m2以下である。 The hydrogen storage alloy negative electrode of the present invention is formed by filling a current collector with a hydrogen storage alloy. The hydrogen storage alloy negative electrode of the present invention is a three-dimensional nickel porous body in which the current collector is nickel-plated on a nonwoven fabric made of alkali-resistant fibers, and the nickel content of the current collector is 20 g / m 2 or more and 70 g / m m 2 or less.

不織布にニッケルめっきを施した集電体は、三次元構造の骨格を有する多孔体であり、充填した水素吸蔵合金の大部分もしくは全部を骨格内に存在させることで、集電性能に優れ、合金の微粉化に伴う集電体からの脱落を抑制することができる。また、合金の体積膨張を抑制することができ、負極の膨潤を抑制することができる。ここで、充填した水素吸蔵合金の大部分が骨格内に存在した状態とは、充填した水素吸蔵合金の全体量のうち、大部分が骨格内に存在し、残部が骨格(集電体)の表面に付着した状態を言う。集電体に水素吸蔵合金ペーストを充填した際、集電体表面には極少量のペーストが付着することとなり、表面に付着したペーストを拭き取るなどの操作を加えなければ表面に付着したペーストを無くすことはできない。しかし、このような操作は必ずしも採用する必要がなく、充填した水素吸蔵合金を完全に骨格内に存在させる必要はない。つまり、水素吸蔵合金の全体量のうち、大部分が骨格内に存在し、残りの極少量の水素吸蔵合金が集電体表面に付着した状態としてもよい。なお、骨格内に存在する水素吸蔵合金の量は、全体量の90質量%以上であることが好ましく、より好ましくは94質量%以上、さらにより好ましくは96質量%以上、さらにより好ましくは98質量%以上である。   A non-woven fabric nickel-plated current collector is a porous body having a three-dimensional structure skeleton, and by having most or all of the filled hydrogen storage alloy present in the skeleton, the current collector performance is excellent. Can be prevented from falling off the current collector due to the pulverization of the powder. Moreover, the volume expansion of the alloy can be suppressed, and the swelling of the negative electrode can be suppressed. Here, the state in which most of the filled hydrogen storage alloy is present in the framework means that the majority of the filled hydrogen storage alloy is present in the framework and the remainder is the framework (current collector). The state attached to the surface. When the current collector is filled with a hydrogen storage alloy paste, a very small amount of paste will adhere to the surface of the current collector. If no operation such as wiping off the paste attached to the surface is applied, the paste attached to the surface will be lost. It is not possible. However, such an operation does not necessarily need to be adopted, and the filled hydrogen storage alloy does not need to be completely present in the framework. In other words, it is also possible to have a state in which most of the total amount of the hydrogen storage alloy exists in the skeleton and the remaining extremely small amount of the hydrogen storage alloy adheres to the current collector surface. The amount of the hydrogen storage alloy present in the skeleton is preferably 90% by mass or more of the total amount, more preferably 94% by mass or more, still more preferably 96% by mass or more, and even more preferably 98% by mass. % Or more.

さらに、集電体のニッケル量を20g/m2以上70g/m2以下とすることで、ニッケル使用量を低減することができる。また、集電体の孔径が小さくなり過ぎず、集電体が適度な多孔度を有することとなり、水素吸蔵合金の充填密度を高めることができると共に、負極の軽量化が可能となる。 Furthermore, the amount of nickel used can be reduced by setting the amount of nickel in the current collector to 20 g / m 2 or more and 70 g / m 2 or less. In addition, the pore diameter of the current collector does not become too small, and the current collector has an appropriate porosity, so that the filling density of the hydrogen storage alloy can be increased and the weight of the negative electrode can be reduced.

不織布の多孔度は、85%以上97%以下であることが好ましい。より好ましくは90%以上96%以下である。   The porosity of the nonwoven fabric is preferably 85% or more and 97% or less. More preferably, it is 90% or more and 96% or less.

不織布の多孔度をこのような範囲とすることで、集電体に充填できる水素吸蔵合金の量が多くなり、水素吸蔵合金の充填密度を高めることができる。   By setting the porosity of the nonwoven fabric within such a range, the amount of the hydrogen storage alloy that can be filled in the current collector is increased, and the filling density of the hydrogen storage alloy can be increased.

不織布は、繊維間に交絡処理を行った後、熱処理されて成ることが好ましい。   The non-woven fabric is preferably heat-treated after entanglement treatment between the fibers.

繊維間に交絡処理を行うことで、繊維同士の交差箇所が増加し、更に熱処理を行うことで、交差箇所で繊維同士が融着することとなり、得られた不織布は強度が高く、三次元構造の骨格を強固に保つことができる。このような不織布を集電体に用いることで、水素吸蔵合金が集電体から脱落し難く、また繊維同士の交差箇所において繊維同士が強固に接着しているので、集電体が膨張し難く、合金の体積膨張を抑制して負極の膨潤をより抑制することができる。   By performing the entanglement treatment between the fibers, the number of crossing points between the fibers increases, and by further heat treatment, the fibers are fused at the crossing points, and the obtained nonwoven fabric has high strength and a three-dimensional structure. The skeleton of can be kept strong. By using such a non-woven fabric for the current collector, the hydrogen storage alloy is less likely to fall off the current collector, and the fibers are firmly bonded at the intersections between the fibers, so that the current collector is less likely to expand. The volume expansion of the alloy can be suppressed to further suppress the swelling of the negative electrode.

不織布を構成する耐アルカリ性繊維には、ポリオレフィン繊維やポリアミド繊維を利用することができる。中でもポリオレフィン繊維が好適に利用できる。ポリオレフィン繊維は、ポリエチレン、ポリプロピレン、これらの混合物、及びこれらの共重合体からなる群から選択される一種を含有することが好ましい。また、不織布を構成する繊維は、同群から選択される一種を主成分としてもよいし、一種のみから成るものとしてもよい。繊維の具体例としては、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンとポリプロピレンの混合繊維の他、中心部をポリプロピレンとし、その表面にポリエチレンを被覆した被覆繊維が挙げられる。   Polyolefin fibers and polyamide fibers can be used as the alkali-resistant fibers constituting the nonwoven fabric. Among these, polyolefin fibers can be suitably used. The polyolefin fiber preferably contains one selected from the group consisting of polyethylene, polypropylene, a mixture thereof, and a copolymer thereof. Moreover, the fiber which comprises a nonwoven fabric is good also as what consists of 1 type selected from the same group as a main component, or only 1 type. Specific examples of the fibers include polyethylene fibers, polypropylene fibers, mixed fibers of polyethylene and polypropylene, and coated fibers in which the center is made of polypropylene and the surface thereof is coated with polyethylene.

このような繊維が水素吸蔵合金負極(集電体)に存在することにより、負極に十分な強度を付与することができる。例えば、電池作製の際に負極に発生する亀裂の度合いを少なくすることができる。   When such a fiber exists in the hydrogen storage alloy negative electrode (current collector), sufficient strength can be imparted to the negative electrode. For example, the degree of cracking that occurs in the negative electrode during battery fabrication can be reduced.

ニッケルめっきは、スパッタ法および無電解めっき法の少なくとも一方を用いて不織布に導電性を付与した後、電解めっき法を用いて不織布に施されていることが好ましい。   The nickel plating is preferably applied to the nonwoven fabric using an electrolytic plating method after imparting conductivity to the nonwoven fabric using at least one of a sputtering method and an electroless plating method.

不織布表面、より具体的には不織布を構成する繊維表面に導電性を付与した後、電解めっき法を用いて不織布にニッケルめっきを施すことで、短時間で均一なニッケル層を繊維表面に形成することができる。   After imparting electrical conductivity to the nonwoven fabric surface, more specifically to the fiber surface constituting the nonwoven fabric, the nonwoven fabric is nickel-plated using an electrolytic plating method to form a uniform nickel layer on the fiber surface in a short time. be able to.

水素吸蔵合金は、導電剤を含有してもよく、その含有量は5質量%以下とすることが好ましい。   The hydrogen storage alloy may contain a conductive agent, and the content is preferably 5% by mass or less.

水素吸蔵合金に導電剤を含有することで、負極の導電性を高めることができる。導電剤の含有量が増加すると水素吸蔵合金の充填密度が低下するので、導電剤の含有量は5質量%以下とすることが好ましい。導電剤には、例えばカーボンブラックやニッケル粉末が好適に利用できる。   By containing a conductive agent in the hydrogen storage alloy, the conductivity of the negative electrode can be increased. Since the filling density of the hydrogen storage alloy decreases as the content of the conductive agent increases, the content of the conductive agent is preferably 5% by mass or less. For example, carbon black or nickel powder can be suitably used as the conductive agent.

水素吸蔵合金は、結着剤を含有してもよく、その含有量は3質量%以下とすることが好ましい。   The hydrogen storage alloy may contain a binder, and the content thereof is preferably 3% by mass or less.

水素吸蔵合金は、粉末状に加工して骨格内に充填・加圧することで粉末同士が結着し、一体化することができるが、結着剤を含有することで結着性が向上し、集電体からの脱落をさらに防止することができる。結着剤は負極の導電性を阻害し、かつ結着剤の含有量が増加すると水素吸蔵合金の充填密度が低下するので、結着剤の含有量は3質量%以下とすることが好ましい。結着剤には、例えばSBR(スチレン・ブタジエンゴム)やフッ素樹脂が好適に利用できる。   Hydrogen storage alloy is processed into powder and filled and pressed into the skeleton to bind the powders together, but it can be integrated, but by containing a binder, the binding property is improved, Dropping from the current collector can be further prevented. The binder hinders the conductivity of the negative electrode, and when the binder content increases, the filling density of the hydrogen storage alloy decreases. Therefore, the binder content is preferably 3% by mass or less. As the binder, for example, SBR (styrene butadiene rubber) or fluororesin can be suitably used.

集電体に充填する水素吸蔵合金は、水素吸蔵合金粉末に増粘剤水溶液を加えたペーストであり、水素吸蔵合金負極は、このペーストを集電体に充填した後、加圧して成ることが好ましい。   The hydrogen storage alloy to be filled in the current collector is a paste obtained by adding a thickener aqueous solution to the hydrogen storage alloy powder, and the hydrogen storage alloy negative electrode may be formed by pressurizing the current collector after filling the current collector. preferable.

増粘剤を添加した水素吸蔵合金のペーストを集電体に充填後、加圧することで、水素吸蔵合金の粉末同士の結合性を一層高めると共に、水素吸蔵合金の充填密度を高めることができる。増粘剤には、例えばCMC(カルボキシメチルセルロース)が好適に利用できる。また、加圧は、例えばローラープレス機を用いてロール加圧することが好ましい。   By filling the current collector with the paste of the hydrogen storage alloy to which the thickener is added, and then pressurizing, the bonding property between the hydrogen storage alloy powders can be further enhanced, and the packing density of the hydrogen storage alloy can be increased. For example, CMC (carboxymethyl cellulose) can be suitably used as the thickener. Moreover, it is preferable to pressurize a roll using a roller press, for example.

加圧前の不織布の厚さは、加圧して得られた水素吸蔵合金負極の厚さの1.2倍以上2.0倍以下であることが好ましい。より好ましくは1.4倍以上1.8倍以下である。   The thickness of the nonwoven fabric before pressurization is preferably 1.2 times or more and 2.0 times or less of the thickness of the hydrogen storage alloy negative electrode obtained by pressurization. More preferably, it is 1.4 times or more and 1.8 times or less.

不織布の厚さが負極の厚さの2.0倍超である場合、水素吸蔵合金を充填した際に水素吸蔵合金が充填されない孔が残り、水素吸蔵合金を骨格内に均一に充填することが困難となる。また、不織布の厚さが負極の厚さの1.2倍未満である場合、水素吸蔵合金を保持するための骨格により形成される孔が減少することとなり、十分な量の水素吸蔵合金を骨格内に存在させることができず、集電体表面に塗着された状態の合金量が多くなる。   When the thickness of the non-woven fabric is more than 2.0 times the thickness of the negative electrode, when the hydrogen storage alloy is filled, holes that are not filled with the hydrogen storage alloy remain, and it is difficult to uniformly fill the skeleton with the hydrogen storage alloy. Become. Further, when the thickness of the nonwoven fabric is less than 1.2 times the thickness of the negative electrode, the number of holes formed by the skeleton for holding the hydrogen storage alloy is reduced, and a sufficient amount of the hydrogen storage alloy is contained in the skeleton. It cannot be present, and the amount of alloy applied to the current collector surface increases.

本発明の水素吸蔵合金負極は、アルカリ電池に好適に利用することができる。   The hydrogen storage alloy negative electrode of this invention can be utilized suitably for an alkaline battery.

ニッケル‐水素電池の場合、例えば、ポリオレフィン不織布を親水性処理したセパレータと水酸化ニッケルを主活物質とするニッケル極とを用意し、負極とニッケル極との間にセパレータを挟んで電極群を作製する。円筒形電池の場合は、捲回して渦巻状とした電極群を電槽に挿入した後、電解液を注入し、ニッケル極の端子を蓋部に溶接して、封口を行う。角形電池の場合は、通常、1端子形のニッケル極とし、負極とニッケル極とをセパレータを介して重ねて積層構造とした電極群を電槽に挿入する。   In the case of a nickel-hydrogen battery, for example, a separator made of a hydrophilic non-woven polyolefin and a nickel electrode mainly composed of nickel hydroxide are prepared, and an electrode group is prepared by sandwiching the separator between the negative electrode and the nickel electrode. To do. In the case of a cylindrical battery, a wound and wound electrode group is inserted into a battery case, and then an electrolytic solution is injected, and a nickel electrode terminal is welded to the lid portion for sealing. In the case of a prismatic battery, a single-terminal nickel electrode is usually used, and an electrode group having a laminated structure in which a negative electrode and a nickel electrode are stacked with a separator interposed therebetween is inserted into the battery case.

また、アルカリ電池は、負極と電槽とを接触させて電槽が負極端子を兼ねていることが好ましい。   Moreover, it is preferable that an alkaline battery makes a negative electrode and a battery case contact, and a battery case also serves as a negative electrode terminal.

この構成によれば、負極の端子取り出しを行う必要がなく、製造性に優れる。捲回型の電極群を用いた円筒形電池では、負極が外周側となるように捲回し、負極の外周部を電槽に接触させる。また、積層型の電極群を用いた角形電池では、電槽に金属外装やラミネート外装を使用する場合、正極と負極とを上下にずらして積層し、電極群から突出する負極の外縁部を電槽に接触させる。   According to this configuration, it is not necessary to take out the terminal of the negative electrode, and the productivity is excellent. In a cylindrical battery using a wound electrode group, the negative electrode is wound so that the negative electrode is on the outer peripheral side, and the outer peripheral portion of the negative electrode is brought into contact with the battery case. In addition, in the case of a rectangular battery using a stacked electrode group, when a metal sheath or a laminate sheath is used for a battery case, the positive electrode and the negative electrode are stacked while being shifted up and down, and the outer edge of the negative electrode protruding from the electrode group is electrically connected. Contact the tank.

本発明の水素吸蔵合金負極をより詳しく説明する。   The hydrogen storage alloy negative electrode of the present invention will be described in more detail.

本発明に用いる不織布は、乾式法や湿式法といった公知の方法を利用して作製することができる。湿式法により得られた不織布は、乾式法により得られた不織布と比較して、目付けおよび厚みにばらつきが小さい。また、不織布に水流交絡処理やニードルパンチ処理といった交絡処理を行ったり、繊維同士を融着させる熱処理を行ったりすることで不織布の強度を高めてもよい。   The nonwoven fabric used in the present invention can be produced using a known method such as a dry method or a wet method. The nonwoven fabric obtained by the wet method has less variation in basis weight and thickness than the nonwoven fabric obtained by the dry method. Moreover, you may raise the intensity | strength of a nonwoven fabric by performing the entanglement process, such as a hydroentanglement process and a needle punch process, or performing the heat processing which fuse | melts fibers.

不織布の目付け重量は、適宜決定すればよい。また、不織布を嵩高にして不織布の多孔度を大きくすることで、集電体に充填できる水素吸蔵合金の量を多くすることができる。しかし、不織布の目付け重量を抑え、嵩高にして多孔度を大きくした場合、不織布の強度が低下することとなる。よって、不織布の目付け重量は45g/m2以上80g/m2以下であることが好ましい。 What is necessary is just to determine the fabric weight of a nonwoven fabric suitably. Moreover, the amount of hydrogen storage alloy that can be filled in the current collector can be increased by increasing the porosity of the nonwoven fabric by increasing the bulk of the nonwoven fabric. However, when the fabric weight of the nonwoven fabric is suppressed and the porosity is increased by increasing the bulkiness, the strength of the nonwoven fabric is lowered. Therefore, the weight per unit area of the nonwoven fabric is preferably 45 g / m 2 or more and 80 g / m 2 or less.

一般的なアルカリ電池に使用される水素吸蔵合金負極の厚さは、高出力タイプで300μm〜400μm程度であり、高容量タイプでは450μm〜550μm程度である。よって、不織布の厚さは、作製する負極の厚さを考慮して適宜決定すればよい。また、水素吸蔵合金を集電体に充填した後、加圧する場合は、不織布の厚さを加圧して得られる水素吸蔵合金負極の厚さの1.2倍以上2.0倍以下とすることが好ましい。   The thickness of the hydrogen storage alloy negative electrode used in a general alkaline battery is about 300 μm to 400 μm for the high output type, and about 450 μm to 550 μm for the high capacity type. Therefore, the thickness of the nonwoven fabric may be appropriately determined in consideration of the thickness of the negative electrode to be manufactured. In addition, when the pressure is applied after filling the current collector with the hydrogen storage alloy, the thickness of the nonwoven fabric is preferably 1.2 times or more and 2.0 times or less the thickness of the hydrogen storage alloy negative electrode obtained by pressurization.

不織布へのニッケルめっきは、公知の電解法を利用することができる。なお、不織布にニッケルめっきを施す前に、不織布表面、より具体的には不織布を構成する繊維表面に導電性を有する層を形成する。この導電性層を形成する手段として、無電解めっき法、スパッタリング法を利用することができる。例えば、無電解めっき法を利用する場合、活性化処理として塩化パラジウム溶液中に不織布を浸漬した後、無電解ニッケルめっき浴に不織布を浸漬する。また例えば、スパッタリング法を利用する場合、基板ホルダーに不織布を取り付け、不活性ガスを導入しながらホルダーとターゲット(ニッケル)間に直流高電圧を印加して、イオン化した不活性ガスをニッケルに衝突させて、弾き飛ばされたニッケル粒子を不織布表面に堆積させる。ここで、導電性層の形成量は4g/m2ないし9g/m2程度とすることが好ましい。導電性を付与した不織布にニッケルめっき浴を用いて電気ニッケルめっきを施すことで、繊維表面にニッケル層が形成された集電体を作製することができる。めっき浴としては、ワット浴、塩化浴、スルファミン酸浴が挙げられる。 A known electrolysis method can be used for nickel plating on the nonwoven fabric. In addition, before giving nickel plating to a nonwoven fabric, the layer which has electroconductivity is formed in the nonwoven fabric surface, more specifically the fiber surface which comprises a nonwoven fabric. As means for forming the conductive layer, an electroless plating method or a sputtering method can be used. For example, when using an electroless plating method, after immersing a nonwoven fabric in a palladium chloride solution as an activation treatment, the nonwoven fabric is immersed in an electroless nickel plating bath. For example, when using a sputtering method, a non-woven fabric is attached to the substrate holder, a DC high voltage is applied between the holder and the target (nickel) while introducing the inert gas, and the ionized inert gas collides with the nickel. Then, the nickel particles blown off are deposited on the nonwoven fabric surface. Here, the formation amount of the conductive layer is preferably about 4 g / m 2 to 9 g / m 2 . A current collector in which a nickel layer is formed on the fiber surface can be produced by applying electro-nickel plating to the nonwoven fabric provided with conductivity using a nickel plating bath. Examples of the plating bath include a watt bath, a chloride bath, and a sulfamic acid bath.

集電体のニッケルめっき量は、本発明の有用性を考慮して20g/m2以上70g/m2以下である。集電体のニッケル量は、特に高出力タイプの電池に使用する負極の場合、導電性の点で20g/m2以上が好ましく、価格の点で70g/m2以下が好ましい。なお、ニッケル量が70g/m2を越える場合、価格の他に水素吸蔵合金の充填密度が低下し、また負極の重量が増加するので好ましくない。例えば10C〜30Cの放電を行う高出力タイプの電池に使用する負極の場合、ニッケル量が70g/m2の集電体を用いることで、十分な高出力特性とサイクル特性を有する。また、例えば1C〜2Cの放電を行う高容量タイプの電池に使用する負極の場合、ニッケル量が20g/m2の集電体を用いることで、十分な放電特性とサイクル特性を有する。よって、集電体のニッケル量は、負極の出力特性や容量特性を考慮して、20g/m2以上70g/m2以下の範囲内で適宜決定すればよい。 The nickel plating amount of the current collector is 20 g / m 2 or more and 70 g / m 2 or less in consideration of the usefulness of the present invention. The amount of nickel in the current collector is preferably 20 g / m 2 or more in terms of conductivity and 70 g / m 2 or less in terms of price, particularly in the case of a negative electrode used in a high-power type battery. In addition, when the amount of nickel exceeds 70 g / m 2 , the filling density of the hydrogen storage alloy decreases in addition to the price, and the weight of the negative electrode increases, which is not preferable. For example, in the case of a negative electrode used for a high-power type battery that discharges at 10 C to 30 C, the use of a current collector with a nickel amount of 70 g / m 2 has sufficient high-power characteristics and cycle characteristics. For example, in the case of a negative electrode used for a high-capacity type battery that discharges at 1 C to 2 C, using a current collector with a nickel amount of 20 g / m 2 has sufficient discharge characteristics and cycle characteristics. Therefore, the nickel amount of the current collector may be appropriately determined within a range of 20 g / m 2 or more and 70 g / m 2 or less in consideration of output characteristics and capacity characteristics of the negative electrode.

本発明のアルカリ電池用水素吸蔵合金負極は、集電体が三次元構造のニッケル多孔体であり、大部分もしくは全部の水素吸蔵合金が集電体の骨格内に充填されることで、集電性能に優れ、水素吸蔵合金の微粉化に伴う集電体からの脱落を抑制すると共に合金の体積膨張を抑制して負極の膨潤を抑制することができる。また、本発明の負極は、ニッケル使用量が少なく軽量・安価であり、水素吸蔵合金の充填密度も高い。このような水素吸蔵合金負極を備えるアルカリ電池は、放電特性、サイクル特性に優れる。   In the hydrogen storage alloy negative electrode for an alkaline battery of the present invention, the current collector is a three-dimensional nickel porous body, and the current collector is filled with most or all of the hydrogen storage alloy in the skeleton of the current collector. It is excellent in performance, and it is possible to suppress the swelling of the negative electrode by suppressing the drop from the current collector accompanying the pulverization of the hydrogen storage alloy and suppressing the volume expansion of the alloy. In addition, the negative electrode of the present invention is light and inexpensive with a small amount of nickel, and has a high filling density of the hydrogen storage alloy. An alkaline battery provided with such a hydrogen storage alloy negative electrode is excellent in discharge characteristics and cycle characteristics.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

<水素吸蔵合金>
水素吸蔵合金には、Mm-Ni系合金にMn、Al及びCoを添加したMm-Ni-Mn-Al-Co合金(Mm:ミッシュメタル)を用いた。この合金は、MmNi4.1Mn0.3Al0.3Co0.35の割合で混合し、アーク溶解炉で溶解することで作製した。この合金を不活性雰囲気中で粒度300メッシュ以下に粉砕して粉末状に加工し、この合金粉末に、結着剤として1.5質量%のSBR水性エマルジョンと、増粘剤として0.1質量%のCMCとを加え、混練して水素吸蔵合金のペーストを作製した。
<Hydrogen storage alloy>
As the hydrogen storage alloy, an Mm-Ni-Mn-Al-Co alloy (Mm: Misch metal) obtained by adding Mn, Al, and Co to an Mm-Ni alloy was used. This alloy was prepared by mixing at a ratio of MmNi 4.1 Mn 0.3 Al 0.3 Co 0.35 and melting in an arc melting furnace. This alloy was pulverized to a particle size of 300 mesh or less in an inert atmosphere and processed into a powder. This alloy powder was mixed with 1.5% by mass SBR aqueous emulsion as a binder and 0.1% by mass CMC as a thickener. And kneaded to prepare a hydrogen storage alloy paste.

次に、このペーストを集電体に充填して水素吸蔵合金負極を作製し、この水素吸蔵合金負極の容量密度を調べた。水素吸蔵合金負極は、市販の発泡状ニッケルに前記ペーストを充填し、加圧成形して、電極面積が5×5cm、厚さが0.5mmとなるようにした。正極には、市販の発泡状ニッケルに正極活物質の水酸化ニッケルを充填したニッケル極を使用し、正極容量が負極容量に対して十分に大きくなるようにした。前記負極の両面にセパレータを介して正極を配置し、負極容量が規制(律即)された開放型の試験用電池を作製した。電解液には水酸化リチウムが溶解した水酸化カリウム水溶液を十分に用いて、0.2Cで充放電を行ったところ、3サイクルで放電容量がほぼ一定となり、この負極の放電容量密度は270mAh/gであった。   Next, the paste was filled in a current collector to produce a hydrogen storage alloy negative electrode, and the capacity density of the hydrogen storage alloy negative electrode was examined. The hydrogen storage alloy negative electrode was prepared by filling the paste in commercially available foamed nickel and press-molding so that the electrode area was 5 × 5 cm and the thickness was 0.5 mm. As the positive electrode, a nickel electrode obtained by filling commercially available foamed nickel with nickel hydroxide as a positive electrode active material was used so that the positive electrode capacity was sufficiently larger than the negative electrode capacity. A positive electrode was disposed on both sides of the negative electrode via a separator, and an open type test battery in which the negative electrode capacity was regulated (regulated) was produced. The electrolyte was fully charged with potassium hydroxide in which lithium hydroxide was dissolved and charged and discharged at 0.2 C. The discharge capacity became almost constant in 3 cycles, and the discharge capacity density of this negative electrode was 270 mAh / g. Met.

ところで、水素吸蔵合金負極の評価法として、上記したような負極規制の電池を作製して、放電特性やサイクル特性を調べることが多いが、負極規制では充電時に発生する酸素ガスを負極で吸収することができない。そこで、実用されている密閉型ニッケル‐水素電池では、正極規制、つまり負極容量が正極容量と比較して十分に大きくなるようにしている。したがって、本発明の実施例では、実用されている電池と同様に正極規制の電池を作製し、放電特性、サイクル特性及び負極のガス吸収性を調べ、本発明の水素吸蔵合金負極の評価を行うこととした。   By the way, as a method for evaluating a hydrogen storage alloy negative electrode, the negative electrode regulation battery as described above is often manufactured and the discharge characteristics and the cycle characteristics are examined. In the negative electrode regulation, oxygen gas generated during charging is absorbed by the negative electrode. I can't. Therefore, in a sealed nickel-hydrogen battery in practical use, the positive electrode regulation, that is, the negative electrode capacity is made sufficiently larger than the positive electrode capacity. Therefore, in the examples of the present invention, a positive electrode-regulated battery is manufactured in the same manner as a battery in practical use, the discharge characteristics, the cycle characteristics, and the gas absorption of the negative electrode are examined, and the hydrogen storage alloy negative electrode of the present invention is evaluated. It was decided.

本発明の水素吸蔵合金負極を用いて、高出力タイプのニッケル‐水素電池を作製し、負極の性能評価を行った。   Using the hydrogen storage alloy negative electrode of the present invention, a high-power type nickel-hydrogen battery was fabricated and the performance of the negative electrode was evaluated.

<不織布の作製>
繊維には、ポリプロピレンを中心部にポリエチレンを周囲に被覆した繊維(平均繊維径15μm、ポリプロピレンとポリエチレンの重量比7:3)を用いた。不織布は湿式法を用いて、目付け重量45g/m2、平均厚さ0.70mmとなるように作製した。得られた不織布の多孔度及び孔径は、95%及び15〜170μmであった。
<Production of non-woven fabric>
As the fiber, a fiber (average fiber diameter 15 μm, weight ratio of polypropylene to polyethylene 7: 3) in which polypropylene is coated around the center of polypropylene was used. The nonwoven fabric was prepared using a wet method so that the weight per unit area was 45 g / m 2 and the average thickness was 0.70 mm. The resulting nonwoven fabric had a porosity and pore size of 95% and 15 to 170 μm.

<集電体の作成>
この不織布に電解めっき法を用いてニッケルめっきを施し、集電体を作製した。電解ニッケルめっきを行う前に、スパッタリング法を用いて不織布表面に導電性を有する層を形成した。具体的には、基板ホルダーに不織布を取り付け、チャンバー内の真空排気を行った後、不活性ガスを導入しながらホルダーとターゲット(ニッケル)との間に直流高電圧を印加した。そして、イオン化した不活性ガスをニッケルに衝突させて、弾き飛ばされたニッケル粒子を不織布表面に堆積させることで導電性層を形成した。その形成量は8g/m2であった。この導電性層が形成された不織布に電解ニッケルめっきを行った。具体的には、対極としてチタンバスケットにニッケル片を入れ、めっき液として硫酸ニッケル330g/L、塩化ニッケル50g/L、硼酸40g/Lの割合で含有するワット浴を用いた。そして、このめっき液を60℃まで加熱した後、めっき液中にキャリヤーに巻き付けた不織布を送り込み、不織布にニッケルめっきを施した。また、集電体のニッケル量は平均70g/m2であった。
<Creation of current collector>
The nonwoven fabric was subjected to nickel plating using an electrolytic plating method to produce a current collector. Prior to electrolytic nickel plating, a conductive layer was formed on the nonwoven fabric surface by sputtering. Specifically, a nonwoven fabric was attached to the substrate holder, the chamber was evacuated, and then a DC high voltage was applied between the holder and the target (nickel) while introducing an inert gas. And the electroconductive layer was formed by making the ionized inert gas collide with nickel and depositing the nickel particle which blew off on the nonwoven fabric surface. The amount formed was 8 g / m 2 . Electrolytic nickel plating was performed on the nonwoven fabric on which the conductive layer was formed. Specifically, a nickel piece was placed in a titanium basket as a counter electrode, and a Watt bath containing nickel sulfate 330 g / L, nickel chloride 50 g / L, and boric acid 40 g / L as a plating solution was used. And after heating this plating solution to 60 degreeC, the nonwoven fabric wound around the carrier was sent in in the plating solution, and nickel plating was given to the nonwoven fabric. The average amount of nickel in the current collector was 70 g / m 2 .

<負極の作製>
この集電体に、一方からポンプで軽く加圧しながら充填する公知のペースト圧入法を用いて、上記した水素吸蔵合金のペーストを充填して電極基材を作製した。この電極基材を、長さ330mm、幅30mmに裁断した後、ローラープレス機を用いて長さ方向にロール加圧し、水素吸蔵合金負極を作製した。ローラープレス機は直径が300mmの一対のローラーにより構成され、ローラー間のスリットを100μm、電極基材の送り速度を50cm/分とした。また、ローラー表面には凹凸が設けられており、負極にエンボス加工が施される。加圧後の負極の厚さは平均390μmであった。この負極を負極aとした。
<Production of negative electrode>
The current collector was filled with the above-described hydrogen storage alloy paste by using a known paste press-fitting method in which the current was lightly pressurized with a pump from one side to prepare an electrode substrate. The electrode substrate was cut into a length of 330 mm and a width of 30 mm, and then roll-pressed in the length direction using a roller press to produce a hydrogen storage alloy negative electrode. The roller press was composed of a pair of rollers having a diameter of 300 mm, the slit between the rollers was 100 μm, and the feed rate of the electrode substrate was 50 cm / min. Further, the roller surface is provided with irregularities, and the negative electrode is embossed. The average thickness of the negative electrode after pressurization was 390 μm. This negative electrode was designated as negative electrode a.

図1は、得られた水素吸蔵合金負極の模式断面図であり、負極の厚さ方向に切断している。繊維11の表面にはニッケル層13が形成され、繊維同士の交差箇所12ではこの箇所を覆うように連続したニッケル層13が形成されていた。また、負極10には、水素吸蔵合金粉末14が均一かつ高密度に充填されていた。   FIG. 1 is a schematic cross-sectional view of the obtained hydrogen storage alloy negative electrode, which is cut in the thickness direction of the negative electrode. A nickel layer 13 was formed on the surface of the fiber 11, and a continuous nickel layer 13 was formed so as to cover this portion at the intersection 12 between the fibers. Further, the negative electrode 10 was filled with the hydrogen storage alloy powder 14 uniformly and with high density.

なお、水素吸蔵合金のペーストの充填は、合金の比重が大きく、また不織布の多孔度が大きいことから、容易であった。さらに、このペーストに0.1%程度の界面活性剤(ポリオキシエチレンアルキルエーテル)を添加することで、不織布に対するペーストの充填がより容易となることが分かった。   The filling of the hydrogen storage alloy paste was easy because the specific gravity of the alloy was large and the porosity of the nonwoven fabric was large. Furthermore, it was found that by adding about 0.1% of a surfactant (polyoxyethylene alkyl ether) to this paste, it becomes easier to fill the non-woven fabric with the paste.

<電池の作製>
得られた負極を用いたSubCサイズのニッケル‐水素電池を作製した。この電池は、正極と負極との間にセパレータを挟んで渦巻状とした電極群を、電槽に挿入した後、電解液を注入し、封口を行うことで作製した。また、負極の外周部が電槽と接触するように構成した。負極aを用いた電池を電池Aとした。
<Production of battery>
A SubC size nickel-hydrogen battery using the obtained negative electrode was fabricated. This battery was fabricated by inserting a spiral electrode group with a separator between a positive electrode and a negative electrode into a battery case, injecting an electrolyte, and sealing. Moreover, it comprised so that the outer peripheral part of a negative electrode might contact a battery case. A battery using the negative electrode a was designated as battery A.

正極には、市販の発泡状ニッケルに正極活物質の水酸化ニッケルを充填したニッケル極を用いた。具体的には、このニッケル極は、表面にオキシ水酸化コバルト層が形成された水酸化ニッケル粉末を主成分とするペーストを発泡状ニッケルに充填することで作製した。また、正極と負極との計算容量比が1.6となるように、長さ270mm、幅30mm、厚さ450μmのニッケル極とした。   As the positive electrode, a nickel electrode in which commercially available foamed nickel was filled with nickel hydroxide as a positive electrode active material was used. Specifically, this nickel electrode was prepared by filling foamed nickel with a paste mainly composed of nickel hydroxide powder having a cobalt oxyhydroxide layer formed on the surface thereof. The nickel electrode was 270 mm long, 30 mm wide, and 450 μm thick so that the calculated capacity ratio of the positive electrode to the negative electrode was 1.6.

セパレータには、厚さ130μmの親水性処理を施したポリプロピレン不織布を用いた。また、電解液には、水酸化リチウムが溶解した水酸化カリウム水溶液を用いた。   As the separator, a polypropylene nonwoven fabric having a thickness of 130 μm and subjected to hydrophilic treatment was used. Moreover, the potassium hydroxide aqueous solution which lithium hydroxide melt | dissolved was used for electrolyte solution.

負極aと同じ不織布を用いて、負極aと同じ工程で集電体のニッケル量を40g/m2とした負極bを作製した。また、比較のため、集電体のニッケル量を200g/m2とした負極cを作製した。さらに、開孔度50%、孔径0.5mm、厚さ0.10mmのパンチングメタルを集電体に用いた負極dを作製した。パンチメタルには平均厚さ5μmのニッケルめっきを施し、負極dは、このパンチングメタルに水素吸蔵合金のペーストを塗着することで作製され、厚さを390μmとした。負極b〜dを用いた電池をそれぞれ電池B、C、Dとした。 Using the same non-woven fabric as that of the negative electrode a, a negative electrode b in which the amount of nickel in the current collector was 40 g / m 2 was prepared in the same process as the negative electrode a. For comparison, a negative electrode c in which the amount of nickel in the current collector was 200 g / m 2 was produced. Further, a negative electrode d using a punching metal having a porosity of 50%, a hole diameter of 0.5 mm, and a thickness of 0.10 mm as a current collector was produced. The punch metal was subjected to nickel plating with an average thickness of 5 μm, and the negative electrode d was produced by applying a hydrogen storage alloy paste to the punching metal, and the thickness was set to 390 μm. Batteries using the negative electrodes b to d were designated as batteries B, C, and D, respectively.

次に、各電池について、低率で3回の充放電を繰り返し、化成を行った。具体的には、0.1Cで計算容量の140%まで充電、0.2Cで終止電圧0.9Vまで放電を1回、0.2Cで計算容量の120%まで充電、0.2Cで終止電圧0.9Vまで放電を1回、0.5Cで計算容量の115%まで充電、0.5Cで終止電圧0.9Vまで放電を1回行って、化成を行った。   Next, each battery was formed by repeating charge and discharge three times at a low rate. Specifically, the battery is charged to 140% of the calculated capacity at 0.1C, discharged once to a final voltage of 0.9V at 0.2C, charged to 120% of the calculated capacity at 0.2C, and discharged to 0.9V at 0.2C. Chemical conversion was performed by charging once to 115% of the calculated capacity at 0.5 C, and discharging once to 0.5 V at a final voltage of 0.9 V at 0.5 C.

<電池の放電特性>
25℃の常温環境にて、各電池A、B、C、Dの放電特性を調べた。充放電条件を、1Cで−ΔV(5mV)方式の電流で充電、1Cで0.9Vまで放電、とし、これを1サイクルとして15サイクル繰り返し行った後、放電条件を終止電圧0.7V、10C及び15Cに変更して放電を行い、このときの中間電圧を求めた。結果を表1に示す。
<Battery discharge characteristics>
The discharge characteristics of batteries A, B, C, and D were examined in a room temperature environment of 25 ° C. The charge / discharge conditions are: charge at 1 C with a current of -ΔV (5 mV), discharge at 1 C to 0.9 V, repeat this for 15 cycles, and then set the discharge conditions to a final voltage of 0.7 V, 10 C and 15 C Discharge was performed and the intermediate voltage at this time was determined. The results are shown in Table 1.

Figure 2008117579
Figure 2008117579

表1から明らかなように、本発明の電池A及びBの放電電圧は、電池Cとほぼ同等であり、電池Dよりも高かった。   As is clear from Table 1, the discharge voltages of the batteries A and B of the present invention were almost the same as the battery C and higher than the battery D.

この結果から、本発明の負極は、集電体のニッケル量が多い負極と同等の高出力特性を有しており、集電体のニッケル量を低減しても十分な高出力特性が得られることが分かる。また、本発明の負極は、パンチングメタルを集電体に用いた負極と比較して高出力特性に優れていることが分かる。   From this result, the negative electrode of the present invention has the same high output characteristics as the negative electrode with a large amount of nickel in the current collector, and sufficient high output characteristics can be obtained even if the nickel content of the current collector is reduced. I understand that. Moreover, it turns out that the negative electrode of this invention is excellent in the high output characteristic compared with the negative electrode which used punching metal for the electrical power collector.

<電池のサイクル特性>
45℃の高温環境にて、各電池A、B、C、Dのサイクル特性を調べた。充放電条件を、1Cで−ΔV(5mV)方式の電流で充電、1Cで0.9Vまで放電、とし、これを1サイクルとして繰り返し行い、各サイクルでの容量維持率(利用率)を求めた。結果を表2に示す。なお、充放電サイクル初期(4サイクル)での放電容量がいずれの電池も計算容量の102%程度であったので、これを100%として各電池の容量維持率を求めた。
<Battery cycle characteristics>
The cycle characteristics of batteries A, B, C, and D were examined in a high temperature environment of 45 ° C. The charge / discharge conditions were set to charge at a current of −ΔV (5 mV) at 1 C and discharged to 0.9 V at 1 C, and this was repeated as one cycle, and the capacity maintenance rate (utilization rate) in each cycle was determined. The results are shown in Table 2. Since the discharge capacity at the beginning of the charge / discharge cycle (4 cycles) was about 102% of the calculated capacity for all the batteries, the capacity maintenance rate of each battery was determined with this as 100%.

Figure 2008117579
Figure 2008117579

表2から明らかなように、いずれの電池も500サイクルまでは容量維持率に差がなかった。これは、正極律即であることを証明したものであり、いずれの電池も負極に問題がなかった。しかし、700サイクルでの容量維持率は、電池A、B、Cでは80%以上であるのに対し、電池Dでは78%に低下した。これは、電池Dに用いた負極dの集電体が二次元構造のパンチングメタルであり、充放電の繰り返しにより水素吸蔵合金が微粉化して集電体から脱落したことが原因と考えられる。また、水素吸蔵合金の微粉化に伴い合金が膨張して電解液を吸収し、セパレータ中の電解液が減少したことも原因と考えられる。   As is clear from Table 2, there was no difference in capacity retention rate for any of the batteries up to 500 cycles. This proves that the positive electrode rule is obtained, and none of the batteries has a problem with the negative electrode. However, the capacity retention rate at 700 cycles was 80% or more for batteries A, B, and C, but decreased to 78% for battery D. This is presumably because the current collector of the negative electrode d used in the battery D was a punching metal having a two-dimensional structure, and the hydrogen storage alloy was pulverized and dropped from the current collector by repeated charge and discharge. Another possible cause is that the alloy has expanded as the hydrogen storage alloy is pulverized to absorb the electrolytic solution and the electrolytic solution in the separator is reduced.

この結果から、本発明の負極は、集電体のニッケル量が多い負極と同等のサイクル特性を有しており、集電体のニッケル量を低減しても十分なサイクル特性が得られることが分かる。また、本発明の負極は、パンチングメタルを集電体に用いた負極と比較してサイクル特性に優れていることが分かる。   From this result, the negative electrode of the present invention has cycle characteristics equivalent to those of the negative electrode having a large amount of nickel in the current collector, and sufficient cycle characteristics can be obtained even if the nickel content of the current collector is reduced. I understand. Moreover, it turns out that the negative electrode of this invention is excellent in cycling characteristics compared with the negative electrode which used punching metal for the electrical power collector.

<負極のガス吸収性>
さらに、充電時のガス吸収性、つまり正極から充電末期に発生する酸素ガスを負極で水に戻す性能について調べた。具体的には、電池の漏液や重量減の有無により調べた。その結果、いずれの電池も差がなかった。また、正極と負極との計算容量比が1.2となるようにした電池を作製して、同じように充電時のガス吸収性について調べたところ、ガスの吸収性は低下したが、各電池間での差は認められなかった。
<Gas absorbability of negative electrode>
Furthermore, the gas absorptivity during charging, that is, the ability to return oxygen gas generated from the positive electrode at the end of charging to water at the negative electrode was investigated. Specifically, it was examined based on the presence or absence of battery leakage or weight loss. As a result, there was no difference in any of the batteries. In addition, when a battery having a calculated capacity ratio between the positive electrode and the negative electrode of 1.2 was prepared and the gas absorbency during charging was similarly examined, the gas absorbency decreased. There was no difference.

本発明の水素吸蔵合金負極を用いて、高容量タイプのニッケル‐水素電池を作製し、負極の性能評価を行った。   Using the hydrogen storage alloy negative electrode of the present invention, a high capacity type nickel-hydrogen battery was fabricated, and the performance of the negative electrode was evaluated.

<不織布の作製>
繊維には、実施例1と同様に、ポリプロピレンを中心部にポリエチレンを周囲に被覆した繊維(平均繊維径20μm、ポリプロピレンとポリエチレンの重量比5:5)を用いた。不織布は湿式法を用いて、目付け重量60g/m2、平均厚さ0.90mmとなるように作製した。得られた不織布の多孔度及び孔径は、95%及び15〜200μmであった。
<Production of non-woven fabric>
As in the case of Example 1, a fiber (average fiber diameter: 20 μm, weight ratio of polypropylene to polyethylene of 5: 5) in which polypropylene is coated around the center as in the case of Example 1 was used. The nonwoven fabric was prepared using a wet method so that the weight per unit area was 60 g / m 2 and the average thickness was 0.90 mm. The resulting nonwoven fabric had a porosity and pore size of 95% and 15 to 200 μm.

<集電体の作成>
この不織布に実施例1と同様にしてニッケルめっきを施し、集電体を作製した。集電体のニッケル量は平均20g/m2であった。
<Creation of current collector>
The nonwoven fabric was subjected to nickel plating in the same manner as in Example 1 to produce a current collector. The average amount of nickel in the current collector was 20 g / m 2 .

<負極の作製>
この集電体に公知のペースト圧入法を用いて上記した水素吸蔵合金のペーストを充填して電極基材を作製し、この電極基材を、長さ250mm、幅30mmに裁断した後、ローラープレス機を用いて長さ方向にロール加圧し、水素吸蔵合金負極を作製した。ローラープレス機は実施例1と同じものを用い、ローラー間のスリットを100μm、電極基材の送り速度を50cm/分とした。加圧後の負極の厚さは平均480μmであった。この負極を負極iとした。
<Production of negative electrode>
The current collector was filled with the above-described hydrogen storage alloy paste using a known paste press-fitting method to produce an electrode substrate, and this electrode substrate was cut into a length of 250 mm and a width of 30 mm, and then a roller press. Using a machine, roll pressure was applied in the length direction to produce a hydrogen storage alloy negative electrode. The same roller press machine as in Example 1 was used, the slit between the rollers was 100 μm, and the feed rate of the electrode substrate was 50 cm / min. The thickness of the negative electrode after pressing was an average of 480 μm. This negative electrode was designated as negative electrode i.

<電池の作製>
得られた負極を用いたSubCサイズのニッケル‐水素電池を作製した。この電池は、実施例1と同様にして作製し、負極iを用いた電池を電池Iとした。
<Production of battery>
A SubC size nickel-hydrogen battery using the obtained negative electrode was fabricated. This battery was produced in the same manner as in Example 1, and a battery using the negative electrode i was designated as battery I.

負極iと同じ不織布を用いて、負極iと同じ工程で集電体のニッケル量を30g/m2とした負極iiを作製した。また、比較のため、集電体のニッケル量を150g/m2とした負極iiiを作製した。さらに、開孔度50%、孔径0.5mm、厚さ0.15mmのパンチングメタルを集電体に用いた負極ivを作製した。パンチメタルには平均厚さ5μmのニッケルめっきを施し、負極ivは、このパンチングメタルに水素吸蔵合金のペーストを塗着することで作製され、厚さを480μmとした。負極ii〜ivを用いた電池をそれぞれ電池II、III、IVとした。 Using the same non-woven fabric as that of the negative electrode i, a negative electrode ii in which the amount of nickel in the current collector was 30 g / m 2 was produced in the same process as the negative electrode i. For comparison, a negative electrode iii having a current collector with a nickel content of 150 g / m 2 was produced. Further, a negative electrode iv was produced using a punching metal having a porosity of 50%, a hole diameter of 0.5 mm, and a thickness of 0.15 mm as a current collector. The punch metal was subjected to nickel plating with an average thickness of 5 μm, and the negative electrode iv was prepared by applying a hydrogen storage alloy paste to the punching metal to a thickness of 480 μm. Batteries using the negative electrodes ii to iv were designated as batteries II, III, and IV, respectively.

次に、各電池について、低率で5回の充放電を繰り返し、化成を行った。具体的には、0.1Cで計算容量の130%まで充電、0.2Cで終止電圧0.9Vまで放電を1回、0.2Cで計算容量の120%まで充電、0.2Cで終止電圧0.9Vまで放電を2回、0.5Cで計算容量の115%まで充電、0.5Cで終止電圧0.9Vまで放電を2回行って、化成を行った。   Next, each battery was formed by repeating charging and discharging 5 times at a low rate. Specifically, charging to 130% of the calculated capacity at 0.1C, discharging to 0.9V of the final voltage at 0.2C, charging to 120% of the calculated capacity at 0.2C, and discharging to 0.9V of the final voltage at 0.2C Chemical conversion was carried out by charging twice to 115% of the calculated capacity at 0.5 C and discharging twice to a final voltage of 0.9 V at 0.5 C.

<電池の放電特性>
25℃の常温環境にて、各電池I、II、III、IVの放電特性を調べた。充放電条件を、0.5Cで−ΔV(5mV)方式の電流で充電、0.5Cで0.9Vまで放電、とし、これを1サイクルとして15サイクル繰り返し行った後、放電条件を終止電圧0.7V、1C及び2Cに変更して放電を行い、このときの中間電圧を求めた。結果を表3に示す。
<Battery discharge characteristics>
The discharge characteristics of each battery I, II, III, and IV were examined in a room temperature environment of 25 ° C. The charge / discharge conditions were set to 0.5C at a current of -ΔV (5mV), 0.5C to 0.9V, and after 15 cycles, the discharge conditions were set to a final voltage of 0.7V and 1C. And the discharge was changed to 2C, and the intermediate voltage at this time was determined. The results are shown in Table 3.

Figure 2008117579
Figure 2008117579

表3から明らかなように、本発明の電池I及びIIの放電電圧は、電池IIIとほぼ同等であり、電池IVよりも高かった。   As is apparent from Table 3, the discharge voltages of the batteries I and II of the present invention were almost the same as the battery III and higher than the battery IV.

この結果から、本発明の負極は、集電体のニッケル量が多い負極と同等の放電特性を有しており、集電体のニッケル量を低減しても十分な放電特性が得られることが分かる。また、本発明の負極は、パンチングメタルを集電体に用いた負極と比較して放電特性に優れていることが分かる。   From this result, the negative electrode of the present invention has a discharge characteristic equivalent to that of a negative electrode with a large amount of nickel in the current collector, and sufficient discharge characteristics can be obtained even if the amount of nickel in the current collector is reduced. I understand. Moreover, it turns out that the negative electrode of this invention is excellent in the discharge characteristic compared with the negative electrode which used punching metal for the electrical power collector.

<電池のサイクル特性>
25℃の高温環境にて、各電池I、II、III、IVのサイクル特性を調べた。充放電条件を、0.2Cで−ΔV(5mV)方式の電流で充電、0.5Cで0.9Vまで放電、とし、これを1サイクルとして繰り返し行い、各サイクルでの容量維持率(利用率)を求めた。結果を表4に示す。なお、充放電サイクル初期(5サイクル)での放電容量がいずれの電池も計算容量の103%程度であったので、これを100%として各電池の容量維持率を求めた。
<Battery cycle characteristics>
The cycle characteristics of each battery I, II, III, and IV were examined in a high temperature environment of 25 ° C. Charge / discharge conditions are as follows: charge at a current of -ΔV (5 mV) at 0.2 C, discharge to 0.9 V at 0.5 C, and repeat this as one cycle to obtain the capacity maintenance rate (utilization rate) at each cycle. It was. The results are shown in Table 4. Since the discharge capacity at the beginning of the charge / discharge cycle (5 cycles) was about 103% of the calculated capacity for all the batteries, the capacity maintenance rate of each battery was determined with this as 100%.

Figure 2008117579
Figure 2008117579

表4から明らかなように、いずれの電池も800サイクルまでは容量維持率に差がなかった。これは、正極律即であることを証明したものであり、いずれの電池も負極に問題がなかった。しかし、1000サイクルでの容量維持率は、電池I、II、IIIでは85%以上であるのに対し、電池IVでは79%に低下した。これは、電池IVに用いた負極ivの集電体が二次元構造のパンチングメタルであり、充放電の繰り返しにより水素吸蔵合金が微粉化して集電体から脱落したことが原因と考えられる。また、水素吸蔵合金の微粉化に伴い合金が膨張して電解液を吸収し、セパレータ中の電解液が減少したことも原因と考えられる。   As is clear from Table 4, there was no difference in capacity retention rate for any battery up to 800 cycles. This proves that the positive electrode rule is obtained, and none of the batteries has a problem with the negative electrode. However, the capacity retention rate at 1000 cycles was 85% or more for batteries I, II, and III, but decreased to 79% for battery IV. This is presumably because the current collector of the negative electrode iv used in the battery IV was a punching metal having a two-dimensional structure, and the hydrogen storage alloy was pulverized and dropped from the current collector due to repeated charge and discharge. Another possible cause is that the alloy has expanded as the hydrogen storage alloy is pulverized to absorb the electrolytic solution and the electrolytic solution in the separator is reduced.

この結果から、本発明の負極は、集電体のニッケル量が多い負極と同等のサイクル特性を有しており、集電体のニッケル量を低減しても十分なサイクル特性が得られることが分かる。また、本発明の負極は、パンチングメタルを集電体に用いた負極と比較してサイクル特性に優れていることが分かる。   From this result, the negative electrode of the present invention has cycle characteristics equivalent to those of the negative electrode having a large amount of nickel in the current collector, and sufficient cycle characteristics can be obtained even if the nickel content of the current collector is reduced. I understand. Moreover, it turns out that the negative electrode of this invention is excellent in cycling characteristics compared with the negative electrode which used punching metal for the electrical power collector.

<負極のガス吸収性>
さらに、実施例1と同様にして、充電時のガス吸収性について調べた。その結果、いずれの電池も差がなかった。また、正極と負極との計算容量比が1.2となるようにした電池を作製して、同じように充電時のガス吸収性について調べたところ、ガスの吸収性は低下したが、各電池間での差は認められなかった。
<Gas absorbability of negative electrode>
Further, in the same manner as in Example 1, the gas absorbability during charging was examined. As a result, there was no difference in any of the batteries. In addition, when a battery having a calculated capacity ratio between the positive electrode and the negative electrode of 1.2 was prepared and the gas absorbency during charging was similarly examined, the gas absorbency decreased. There was no difference.

以上、実施例1、2に示すように、本発明の水素吸蔵合金負極は、ニッケル使用量が少なくコストを低く抑えることができる。また、本発明の負極は、パンチングメタルを集電体に用いた負極と比較して、重量が1/2〜1/3程度と軽量であり、製造工程も簡単である。   As described above, as shown in Examples 1 and 2, the hydrogen storage alloy negative electrode of the present invention uses a small amount of nickel and can keep costs low. In addition, the negative electrode of the present invention is light in weight of about 1/2 to 1/3 as compared with a negative electrode using a punching metal as a current collector, and the manufacturing process is simple.

本発明の水素吸蔵合金負極は、放電特性及びサイクル特性(寿命)に優れており、アルカリ電池に好適に利用することができる。また、本発明のアルカリ電池は、携帯用、移動用、産業用機器の電源に好適に利用できる。   The hydrogen storage alloy negative electrode of the present invention is excellent in discharge characteristics and cycle characteristics (life), and can be suitably used for alkaline batteries. Moreover, the alkaline battery of the present invention can be suitably used as a power source for portable, mobile and industrial equipment.

本発明の水素吸蔵合金負極の模式断面図である。It is a schematic cross section of the hydrogen storage alloy negative electrode of the present invention.

符号の説明Explanation of symbols

10 負極
11 繊維 12 繊維同士の交差箇所 13 ニッケル層 14 水素吸蔵合金
10 Negative electrode
11 Fiber 12 Intersection of fibers 13 Nickel layer 14 Hydrogen storage alloy

Claims (11)

集電体内に水素吸蔵合金が充填されているアルカリ電池用水素吸蔵合金負極であって、
集電体は、耐アルカリ性繊維から成る不織布にニッケルめっきを施した三次元構造のニッケル多孔体であり
この集電体のニッケル量は、20g/m2以上70g/m2以下であることを特徴とするアルカリ電池用水素吸蔵合金負極。
A hydrogen storage alloy negative electrode for an alkaline battery in which a current storage body is filled with a hydrogen storage alloy,
The current collector is a three-dimensional nickel porous body in which a non-woven fabric made of alkali-resistant fibers is plated with nickel. The amount of nickel in the current collector is from 20 g / m 2 to 70 g / m 2 A hydrogen storage alloy negative electrode for alkaline batteries.
不織布の多孔度が85%以上97%以下であることを特徴とする請求項1に記載のアルカリ電池用水素吸蔵合金負極。   The hydrogen storage alloy negative electrode for an alkaline battery according to claim 1, wherein the nonwoven fabric has a porosity of 85% or more and 97% or less. 不織布が、繊維間に交絡処理を行った後、熱処理されて成ることを特徴とする請求項1に記載のアルカリ電池用水素吸蔵合金負極。   The hydrogen storage alloy negative electrode for an alkaline battery according to claim 1, wherein the nonwoven fabric is subjected to a heat treatment after interlaced between the fibers. 耐アルカリ性繊維が、ポリオレフィン繊維であり、
このポリオレフィン繊維が、ポリエチレン、ポリプロピレン、これらの混合物、及びこれらの共重合体からなる群から選択される一種を含有することを特徴とする請求項1に記載のアルカリ電池用水素吸蔵合金負極。
The alkali resistant fiber is a polyolefin fiber,
2. The hydrogen storage alloy negative electrode for an alkaline battery according to claim 1, wherein the polyolefin fiber contains one selected from the group consisting of polyethylene, polypropylene, a mixture thereof, and a copolymer thereof.
ニッケルめっきが、スパッタ法および無電解めっき法の少なくとも一方を用いて不織布に導電性を付与した後、電解めっき法を用いて不織布に施されていることを特徴とする請求項1に記載のアルカリ電池用水素吸蔵合金負極。   2. The alkali according to claim 1, wherein the nickel plating is applied to the nonwoven fabric using an electrolytic plating method after imparting conductivity to the nonwoven fabric using at least one of a sputtering method and an electroless plating method. Hydrogen storage alloy negative electrode for batteries. 水素吸蔵合金が、導電剤を含有し、その含有量が5質量%以下であることを特徴とする請求項1に記載のアルカリ電池用水素吸蔵合金負極。   The hydrogen storage alloy negative electrode for an alkaline battery according to claim 1, wherein the hydrogen storage alloy contains a conductive agent, and the content thereof is 5 mass% or less. 水素吸蔵合金が、結着剤を含有し、その含有量が3質量%以下であることを特徴とする請求項1に記載のアルカリ電池用水素吸蔵合金負極。   The hydrogen storage alloy negative electrode for an alkaline battery according to claim 1, wherein the hydrogen storage alloy contains a binder and the content thereof is 3% by mass or less. 集電体に充填する水素吸蔵合金が、水素吸蔵合金粉末に増粘剤水溶液を加えたペーストであり、このペーストを集電体に充填後、加圧して成ることを特徴とする請求項1に記載のアルカリ電池用水素吸蔵合金負極。   The hydrogen storage alloy filled in the current collector is a paste obtained by adding a thickener aqueous solution to a hydrogen storage alloy powder, and the paste is filled into the current collector and then pressurized. The hydrogen storage alloy negative electrode for alkaline batteries as described. 加圧前の不織布の厚さが、加圧して得られた水素吸蔵合金負極の厚さの1.2倍以上2.0倍以下であることを特徴とする請求項8に記載のアルカリ電池用水素吸蔵合金負極。   The hydrogen storage alloy negative electrode for an alkaline battery according to claim 8, wherein the thickness of the nonwoven fabric before pressurization is 1.2 to 2.0 times the thickness of the hydrogen storage alloy negative electrode obtained by pressurization. . 請求項1〜9のいずれかに記載のアルカリ電池用水素吸蔵合金負極を備えることを特徴とするアルカリ電池。   An alkaline battery comprising the hydrogen storage alloy negative electrode for an alkaline battery according to claim 1. 負極と電槽とが接触しており、この電槽が負極端子を兼ねていることを特徴とする請求項10に記載のアルカリ電池。   The alkaline battery according to claim 10, wherein the negative electrode and the battery case are in contact with each other, and the battery case also serves as a negative electrode terminal.
JP2006298438A 2006-11-02 2006-11-02 Hydrogen absorbing alloy negative electrode for alkaline battery Pending JP2008117579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298438A JP2008117579A (en) 2006-11-02 2006-11-02 Hydrogen absorbing alloy negative electrode for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298438A JP2008117579A (en) 2006-11-02 2006-11-02 Hydrogen absorbing alloy negative electrode for alkaline battery

Publications (1)

Publication Number Publication Date
JP2008117579A true JP2008117579A (en) 2008-05-22

Family

ID=39503347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298438A Pending JP2008117579A (en) 2006-11-02 2006-11-02 Hydrogen absorbing alloy negative electrode for alkaline battery

Country Status (1)

Country Link
JP (1) JP2008117579A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009905A (en) * 2008-06-26 2010-01-14 Sumitomo Electric Ind Ltd Collector of positive electrode for lithium based secondary battery, and positive electrode and battery equipped with it
CN114023926A (en) * 2019-08-13 2022-02-08 深圳市量能科技有限公司 Nickel-hydrogen battery negative plate and manufacturing method thereof, battery core and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009905A (en) * 2008-06-26 2010-01-14 Sumitomo Electric Ind Ltd Collector of positive electrode for lithium based secondary battery, and positive electrode and battery equipped with it
CN114023926A (en) * 2019-08-13 2022-02-08 深圳市量能科技有限公司 Nickel-hydrogen battery negative plate and manufacturing method thereof, battery core and battery

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP2003317694A (en) Nickel hydride storage battery
US8236448B2 (en) Battery electrode substrate, and electrode employing the same
JP2008066145A (en) Electrode substrate for battery, electrode for battery, and alkaline secondary battery using it
JP2007207526A (en) Nickel-hydrogen storage battery
JP2008117579A (en) Hydrogen absorbing alloy negative electrode for alkaline battery
WO2020012891A1 (en) Nickel-metal hydride battery
JP4699686B2 (en) Current collector for electrochemical device, battery using the same, and electric double layer capacitor using the same
JP4930674B2 (en) Sealed alkaline storage battery and its assembled battery
JP2006196207A (en) Alkaline storage battery and manufacturing method of its electrode group
JP5023645B2 (en) Alkaline storage battery
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JP2009026562A (en) Electrode substrate for battery, electrode for battery, and battery
JP3761763B2 (en) Hydrogen storage alloy electrode, battery using the same, and manufacturing method thereof
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP5116080B2 (en) Battery electrode substrate, battery electrode and battery
JP2009187692A (en) Electrode for secondary battery, and secondary battery
JP5013361B2 (en) Method for producing nickel electrode for alkaline secondary battery
JPH09259873A (en) Secondary battery electrode, its manufacture, and applying device of fluorine resin used for this manufacture
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP4085434B2 (en) Alkaline battery electrode