JP4576785B2 - Battery and its electrode core material, positive electrode and negative electrode - Google Patents

Battery and its electrode core material, positive electrode and negative electrode Download PDF

Info

Publication number
JP4576785B2
JP4576785B2 JP2002177653A JP2002177653A JP4576785B2 JP 4576785 B2 JP4576785 B2 JP 4576785B2 JP 2002177653 A JP2002177653 A JP 2002177653A JP 2002177653 A JP2002177653 A JP 2002177653A JP 4576785 B2 JP4576785 B2 JP 4576785B2
Authority
JP
Japan
Prior art keywords
electrode
core material
active material
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002177653A
Other languages
Japanese (ja)
Other versions
JP2004022418A (en
Inventor
廣喜 吉澤
孝行 岩▲崎▼
智俊 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002177653A priority Critical patent/JP4576785B2/en
Publication of JP2004022418A publication Critical patent/JP2004022418A/en
Application granted granted Critical
Publication of JP4576785B2 publication Critical patent/JP4576785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池及びその電極芯材と正電極と負電極に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
例えば、二次電池の電極は電極芯材に活物質粉末を圧延処理により固着させている。電極芯材は負極活物質から電子を受け取り、その電子は仕事をした後、電解液を介して正極に渡される。この一連の動作により電池としての機能を有している。しかしながら、圧延処理によって固着された活物質はある程度の厚みを有しているため、上記活物質粉末の粉末粒子個々で考えた場合、各々の活物質粉末から電極芯材までの距離に差が生じる。つまり、電極芯材に電子を受け渡しする条件の良悪が発生する。そのため電極全体としての集電効率が悪くなってしまうという問題が生じる。特に活物質が粒子状であることが多くその粒子の接触抵抗が大きいことから電極芯材までの距離の影響が大きくなる。
【0003】
本発明は、上述する問題点に鑑みてなされたもので、電極の集電効率を向上させることにより電池の性能を向上させることを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するために、本発明では、電池の電極芯材に係わる第1の手段として、表面及び裏面に粉末状の活物質を所定厚で固着した電極芯材であって、電極芯材に設けられた突出部の先端が上記活物質の表面に露出して設置され、上記突出部が150Hv(ビッカース硬さ)以下の硬度であるという手段を採用する。これにより、上記した電極芯材から電子の受け渡しする条件の悪い活物質粉末から電極芯材までの距離が短くなり、電極全体の集電効率が向上する。また、例えば、負極活物質の充電時における体積膨張により負極活物質が上記突出部の先端にせり上がることによる絶縁材の破損防止が可能である。また、負極活物質の放電時の体積収縮によりせり出した突出部の先端が絶縁材を貫通することを防止することが可能である。
【0005】
電池の電極芯材に係わる第2の手段として、上記第1の手段において、突出部は上記電極芯材のいずれか片面あるいは両面から局所的に押圧することにより設けられた孔が有するバリであるという手段を採用する。これにより、例えば圧延処理を行うローラーに所定形状に設定された突出部を設けることで、容易に上記突出部を形成することができる。
【0007】
電池の正電極に係わる第1の手段として、上記第1または第2の電池の電極芯材に係わる手段における上記電極芯材の表面及び裏面に正極活物質を固着するという手段を採用する。これにより、上記電極芯材を正極とし使用することができる。
【0008】
電池の正極に係わる第2の手段として、上記第1の手段において、上記正極活物質は、水酸化ニッケルであるという手段を採用する。これにより、上記電極芯材を充電可能な二次電池の正極として使用することができる。
【0009】
電池の負電極に係わる第1の手段として、上記第1または第2の電池の電極芯材に係わる手段における上記電極芯材の表面及び裏面に負極活物質を固着するという手段を採用する。これにより、上記電極芯材を負極として使用することができる。
【0010】
電池の負電極に係わる第2の手段として、上記第1の手段において、上記負極活物質は、水素吸蔵合金であるという手段を採用する。これにより上記電極芯材を充電可能な二次電池の正極として使用することができる。
【0011】
電池に係わる第1の手段として、上記第1または2の正電極に係わる手段における正電極は絶縁材を挟んで負電極と交互に積層された状態で電槽内に収容されているという手段を採用する。これにより、正電極が負電極に触れ、短絡することなく小型の電池を構成することが可能である。
【0012】
電池に係わる第2の手段として、上記第1または2の正電極に係わる手段における正電極は絶縁材を挟んで負電極と重ねられた状態で渦巻き状に巻回されて電槽内に収容されているという手段を採用する。これにより正電極が負電極に触れ、短絡することなく円筒状の電槽内に電極を収納することができる。
【0013】
電池に係わる第3の手段として、上記第1または2の負電極に係わる手段における負電極は絶縁材を挟んで正電極と交互に積層された状態で電槽内に収容されているという手段を採用する。これにより、負電極が正電極に触れ、短絡することなく小型の電池を構成することが可能である。
【0014】
電池に係わる第4の手段として、上記第1または2の負電極に係わる手段における負電極は絶縁材を挟んで正電極と重ねられた状態で渦巻き状に巻回されて電槽内に収容されているという手段を採用する。これにより負電極が正電極に触れ、短絡することなく円筒状の電槽内に電極を収納することができる。
【0015】
【発明の実施の形態】
以下、図面を参照して、本発明に係わる電池及びその電極芯材と正電極と負電極の一実施形態について説明する。
【0016】
図1は電極Eの構成図であり、(a)は側面図、(b)は正面図である。符号1は電極芯材、1aはバリ、1bは貫通孔、2は活物質、Eは電極である。
【0017】
電極芯材1は、例えば厚さ50μmの箔状の平板であって表面及び裏面に活物質2を所定厚で固着されている。バリ(突出部)1aは、先端が活物質2の表面に露出しており、上記電極芯材1のいずれか片面あるいは両面から局所的に押圧することにより設けられた略長方形の貫通孔(孔)1bの短辺から活物質2の表面まで届くように形成されている。また上記電極芯材1の硬さは150Hv以下に設定されており、すなわち、バリ1aの硬さは150Hv(ビッカース硬さ)以下に形成されている。貫通孔1bは、所定間隔で電極芯材1に設けられている。活物質2は、上記電極Eを負電極E1に用いる場合には負極活物質であり、正電極E2に用いる場合には正極活物質であって、電極芯材1の表面及び裏面に圧延処理によって一定厚に固着されている。例えば上記電極Eをニッケル水素電池に用いる場合、上記負極活物質は水素吸蔵合金粉末であり、上記正極活物質は水酸化ニッケル粉末である。
【0018】
図2は、図1における電極Eを積載し、円筒に形状設定された二次電池Bの斜視図である。E1は負電極、E2は正電極、3はセパレータ(絶縁材)、4は電槽(負極端子)、5は正極端子、6は封口板である。
【0019】
負電極E1と正電極E2はセパレータ3をはさんだ状態で多重巻回され円筒状の電槽(負極端子)4内に収納されており、また電槽4内は電解液に満たされている。電槽4の上端は開口部が形成されており、該開口部は中央に正極端子5が設けられると共に電槽4に対して絶縁された封口板6によって封止されている。また、負電極E1は電槽4に接続され、また正電極E2は正極端子5に接続されており、負電極E1と正電極E2は電解液を介して直列回路を構成している。
【0020】
次に、本実施形態における電池及びその電極芯材と正電極と負電極の作用を説明する。
【0021】
例えば、負電極E1の場合、活物質2には水素吸蔵合金粉末が用いられる。負電極E1の表面の点Aに位置する活物質2の粉末は電極芯材1までの距離が電極芯材1にバリ1aが設けられていない場合と比較して近くなっているため、点Aの水素吸蔵合金粉末は電子をバリ1aつまりは電極芯材1に渡しやすくなる。逆に電極芯材1に対して対称に位置する負電極E1の表面の点A´では電極芯材1に貫通孔1bが設けられているためにバリ1aがない場合と比較すると電極芯材1までの距離が遠くなっているが、この点を考慮しても、負電極E1全体で見た場合、集電効率は向上する。一般に活物質2は粉末であって粉末表面の抵抗が大きいことから導電体が近くにあることの効果は大きくなる。実験によれば1つの略長方形の貫通孔1bに形成された1つのバリ1aと他方のバリ1aの間隔を電極の厚さの4倍程度にした場合、10%以上の集電効果の向上が認められている。
【0022】
しかしながら、上述した電極の構成を実現させるためには、バリ1aの硬さを150Hv(ビッカース硬さ)以下にする必要性がある。これは、例えば負電極E1の場合、上記二次電池Bの充電によって活物質2の粉末の体積が膨張する場合にバリ1aの硬さが150Hv以上であると電極芯材1と活物質2の粒子の接合が悪くなって電極Eの表面へ浮きやすくなり、浮いた活物質2の粉末は逃げ場を失い、バリ1aとセパレータ3の間に入り込み、セパレータ3を突き破って正電極E2と接触することによって、二次電池B内で短絡が発生してしまう。また二次電池Bの放電の繰り返しによって活物質2の粉末が収縮・膨張する場合には、次第に活物質2から剥離したバリ1aの先端が活物質2の表面から突出した状態となり、このバリ1aの硬さが150Hv以上であるとセパレータ3を突き破ってしまうので同様に二次電池B内で短絡が発生する原因となる。つまり、バリ1aの硬さを150Hv以下とすることで活物質2が膨張し、バリ1aとセパレータ3との間に入り込んでしまった場合であってもバリ1aが変形するのでセパレータ3を突き破ることが減少する。また、活物質2が収縮し、バリ1aが活物質2の表面から突出した状態となっても、バリ1aが変形することによってセパレータ3を突き破ることが減少する。バリ1aの硬さを150Hv以下にするために電極芯材1を加熱処理し、電極心材1自体を150Hv以下に加工する。
【0023】
図3は、電極芯材1に用いる材料の種類及びビッカース硬さの違いによってどの程度の頻度で二次電池B内において短絡が発生するかの実験結果を表した比較対照表である。この図が示すように、電極芯材1の材質が鉄箔であってもニッケル箔であっても共に硬さが150Hv以下であると二次電池B内の短絡発生頻度が少なくなっている。
【0024】
また、バリ1aが貫通孔1bから活物質2の表面に露出する位置まで届くように形成されているので、バリ1aとバリ1aの間に入り込んで電極芯材1に固着された活物質2は従来の電極よりも電極芯材1に対する固着力が向上する。そのため活物質2の剥離あるいは脱落を抑止することが可能である。そのため、図3の円筒に形状設定された二次電池Bを組み立てるために負電極E1と正電極E2がセパレータ3を挟んで巻回させることによって負電極E1に応力がかかる場合であっても、活物質2はより確実に電極心材1に固着された状態を維持することが可能である。
【0025】
なお、本発明は上記実施形態においてバリ1aが形成された電極芯材1を負電極E1に用いたが正電極E2に用いても良い。この場合、例えば、活物質2は水酸化ニッケルを用いる。また、電極芯材1にバリ1aを設けず、外部から集電性のある突出部を設置しても良い。
【0026】
上記実施形態において、平板の電極芯材1を用いたが、例えば電極Eが巻回される方向に対し、直角方向に湾曲している電極芯材1を用いても良い。この場合であっても、バリ1aは貫通孔1bから活物質の表面まで届くように形成する。
また、貫通孔1bは略長方形でなく例えば略正方形や略楕円形でも良い。
【0027】
【発明の効果】
以上説明したように、本発明によれば、表面及び裏面に粉末状の活物質を所定厚で固着した電極芯材であって、電極芯材に設けられた突出部の先端が上記活物質の表面に露出して設置され、上記突出部が150Hv(ビッカース硬さ)以下の硬度であるので、上記した電極芯材から電子の受け渡しする条件の悪い活物質粉末から電極芯材までの距離が短くなり、電極全体の集電効率が向上する。また、例えば、負極活物質の充電時における体積膨張により負極活物質が上記突出部の先端にせり上がることによる絶縁材の破損防止が可能である。また、負極活物質の放電時の体積収縮によりせり出した突出部の先端が絶縁材を貫通することを防止することが可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態に係わる電極Eの構成図であり、(a)は側面図、(b)は正面図である。
【図2】本発明の一実施形態に係わる円筒に形状設定された二次電池Bの斜視図である。
【図3】電極芯材1の材料の違いによる二次電池B内においての短絡発生頻度の比較図である。
【符号の説明】
1……電極芯材
1a……バリ(突出部)
1b……貫通孔(孔)
2……活物質
3……セパレータ(絶縁材)
4……電槽(負極端子)
5……正極端子
6……封口板
E1……負電極
E2……正電極
B……二次電池
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery, an electrode core material thereof, a positive electrode, and a negative electrode.
[0002]
[Prior art and problems to be solved by the invention]
For example, in an electrode of a secondary battery, an active material powder is fixed to an electrode core material by a rolling process. The electrode core material receives electrons from the negative electrode active material, and the electrons work and are then passed to the positive electrode through the electrolytic solution. The battery functions as a result of this series of operations. However, since the active material fixed by the rolling process has a certain thickness, when considering each powder particle of the active material powder, there is a difference in the distance from each active material powder to the electrode core material. . That is, the quality of conditions for delivering and receiving electrons to the electrode core material occurs. Therefore, the problem that the current collection efficiency as the whole electrode will worsen arises. In particular, since the active material is often in the form of particles and the contact resistance of the particles is large, the influence of the distance to the electrode core material becomes large.
[0003]
The present invention has been made in view of the above-described problems, and an object of the present invention is to improve battery performance by improving the current collection efficiency of an electrode.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, as a first means related to an electrode core material of a battery, an electrode core material having a powdery active material fixed to a front surface and a back surface at a predetermined thickness, The tip of the protrusion provided on the surface of the active material is disposed so as to be exposed, and the protrusion has a hardness of 150 Hv (Vickers hardness) or less . As a result, the distance from the active material powder having poor conditions for transferring electrons from the electrode core material to the electrode core material is shortened, and the current collection efficiency of the entire electrode is improved. In addition, for example, it is possible to prevent damage to the insulating material due to the negative electrode active material rising to the tip of the protruding portion due to volume expansion during charging of the negative electrode active material. In addition, it is possible to prevent the tip of the protruding portion protruding due to volume shrinkage during discharge of the negative electrode active material from penetrating the insulating material.
[0005]
As a second means related to the electrode core material of the battery, in the first means, the protrusion is a burr having a hole provided by locally pressing from one or both surfaces of the electrode core material. Adopt the means. Thereby, the said protrusion part can be easily formed by providing the protrusion part set to the predetermined shape, for example to the roller which performs a rolling process.
[0007]
As first means according to the positive electrode of the battery, employing the means of securing the positive electrode active material on the surface and the back surface of the electrode core member in unit according to the first or electrode core member of the second battery. Thereby, the said electrode core material can be used as a positive electrode.
[0008]
As a second means relating to the positive electrode of the battery, a means is adopted in which, in the first means, the positive electrode active material is nickel hydroxide. Thereby, the said electrode core material can be used as a positive electrode of the secondary battery which can be charged.
[0009]
As a first means related to the negative electrode of the battery, employing the means of securing the anode active material on the surface and the back surface of the electrode core member in unit according to the electrode core member of the first or second battery. Thereby, the said electrode core material can be used as a negative electrode.
[0010]
As a second means related to the negative electrode of the battery, in the first means, a means is adopted in which the negative electrode active material is a hydrogen storage alloy. Thereby, the said electrode core material can be used as a positive electrode of the secondary battery which can be charged.
[0011]
As a first means relating to the battery, a means in which the positive electrode in the means relating to the first or second positive electrode is accommodated in the battery case in a state of being alternately laminated with the negative electrode with an insulating material interposed therebetween. adopt. Thereby, it is possible to constitute a small battery without causing the positive electrode to touch the negative electrode and causing a short circuit.
[0012]
As a second means according to the battery, housed in the first or second positive electrode positive electrode in means according to the inside it is wound spirally battery container in a state of kneaded heavy and negative electrodes sandwiching the insulating material Adopt the means that has been . Thereby, a positive electrode touches a negative electrode and an electrode can be accommodated in a cylindrical battery case, without short-circuiting.
[0013]
As a third means relating to the battery, a means in which the negative electrode in the means relating to the first or second negative electrode is accommodated in the battery case in a state of being alternately laminated with the positive electrode across the insulating material. adopt. Thereby, it is possible to constitute a small battery without the negative electrode touching the positive electrode and short-circuiting.
[0014]
As a fourth means according to the battery, housed in the first or the negative electrode in means according to the negative electrode 2 in being wound spirally battery container in a state of kneaded heavy and positive electrode across the insulating material Adopt the means that has been . Thereby, a negative electrode touches a positive electrode and an electrode can be accommodated in a cylindrical battery case, without short-circuiting.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to the drawings, an embodiment of a battery according to the present invention and its electrode core material, a positive electrode, and a negative electrode will be described.
[0016]
FIG. 1 is a configuration diagram of an electrode E, (a) is a side view, and (b) is a front view. Reference numeral 1 is an electrode core, 1a is a burr, 1b is a through hole, 2 is an active material, and E is an electrode.
[0017]
The electrode core material 1 is, for example, a foil-like flat plate having a thickness of 50 μm, and an active material 2 is fixed to the front and back surfaces with a predetermined thickness. The burr (protrusion) 1a has a tip exposed at the surface of the active material 2, and a substantially rectangular through-hole (hole) provided by locally pressing from one or both surfaces of the electrode core material 1. ) It is formed so as to reach the surface of the active material 2 from the short side of 1b. Further, the hardness of the electrode core material 1 is set to 150 Hv or less, that is, the hardness of the burr 1a is formed to 150 Hv (Vickers hardness) or less. The through holes 1b are provided in the electrode core material 1 at predetermined intervals. The active material 2 is a negative electrode active material when the electrode E is used for the negative electrode E1, and a positive electrode active material when the electrode E is used for the positive electrode E2, and is applied to the front and back surfaces of the electrode core material 1 by rolling. It is fixed to a certain thickness. For example, when the electrode E is used in a nickel metal hydride battery, the negative electrode active material is a hydrogen storage alloy powder, and the positive electrode active material is a nickel hydroxide powder.
[0018]
FIG. 2 is a perspective view of the secondary battery B on which the electrode E in FIG. E1 is a negative electrode, E2 is a positive electrode, 3 is a separator (insulating material), 4 is a battery case (negative electrode terminal), 5 is a positive electrode terminal, and 6 is a sealing plate.
[0019]
The negative electrode E1 and the positive electrode E2 are wound in a multi-winding manner with the separator 3 interposed therebetween, and are accommodated in a cylindrical battery case (negative electrode terminal) 4, and the battery case 4 is filled with an electrolytic solution. An opening is formed at the upper end of the battery case 4, and the opening is sealed by a sealing plate 6 provided with a positive electrode terminal 5 at the center and insulated from the battery case 4. The negative electrode E1 is connected to the battery case 4, the positive electrode E2 is connected to the positive electrode terminal 5, and the negative electrode E1 and the positive electrode E2 constitute a series circuit through the electrolytic solution.
[0020]
Next, the effect | action of the battery in this embodiment, its electrode core material, a positive electrode, and a negative electrode is demonstrated.
[0021]
For example, in the case of the negative electrode E1, hydrogen storage alloy powder is used for the active material 2. Since the powder of the active material 2 located at the point A on the surface of the negative electrode E1 is closer to the electrode core material 1 than the case where the electrode core material 1 is not provided with the burr 1a, the point A This hydrogen storage alloy powder makes it easy to pass electrons to the burr 1 a, that is, the electrode core material 1. Conversely, at the point A ′ on the surface of the negative electrode E1 positioned symmetrically with respect to the electrode core material 1, the electrode core material 1 is compared with the case where there is no burr 1a because the electrode core material 1 is provided with the through-hole 1b. However, even if this point is taken into consideration, the current collection efficiency is improved when viewed from the negative electrode E1 as a whole. In general, the active material 2 is a powder, and since the resistance of the powder surface is large, the effect of having a conductor nearby increases. According to experiments, when the distance between one burr 1a formed in one substantially rectangular through hole 1b and the other burr 1a is about four times the thickness of the electrode, the current collection effect is improved by 10% or more. It recognized.
[0022]
However, in order to realize the above-described electrode configuration, the burr 1a needs to have a hardness of 150 Hv (Vickers hardness) or less. For example, in the case of the negative electrode E1, when the volume of the powder of the active material 2 expands due to the charging of the secondary battery B, if the hardness of the burr 1a is 150 Hv or more, the electrode core material 1 and the active material 2 Particles are poorly bonded and easily float on the surface of the electrode E, and the powder of the active material 2 that has floated loses its escape, enters between the burr 1a and the separator 3, breaks through the separator 3, and comes into contact with the positive electrode E2. As a result, a short circuit occurs in the secondary battery B. When the powder of the active material 2 contracts and expands due to repeated discharge of the secondary battery B, the tip of the burr 1a peeled off from the active material 2 gradually protrudes from the surface of the active material 2, and this burr 1a If the hardness of the battery is 150 Hv or more, the separator 3 is broken through, which similarly causes a short circuit in the secondary battery B. That is, by setting the hardness of the burr 1a to 150 Hv or less, the active material 2 expands, and even if it enters between the burr 1a and the separator 3, the burr 1a is deformed and breaks through the separator 3. Decrease. Further, even when the active material 2 contracts and the burr 1a protrudes from the surface of the active material 2, the breakage of the separator 3 due to the deformation of the burr 1a is reduced. In order to reduce the hardness of the burr 1a to 150 Hv or less, the electrode core material 1 is heat-treated, and the electrode core material 1 itself is processed to 150 Hv or less.
[0023]
FIG. 3 is a comparative table showing experimental results of how often a short circuit occurs in the secondary battery B depending on the type of material used for the electrode core material 1 and the difference in Vickers hardness. As shown in this figure, the frequency of occurrence of a short circuit in the secondary battery B is reduced when the hardness of the electrode core material 1 is either iron foil or nickel foil and the hardness is 150 Hv or less.
[0024]
Further, since the burr 1a is formed so as to reach the position where the burr 1a is exposed to the surface of the active material 2, the active material 2 that enters between the burr 1a and the burr 1a and is fixed to the electrode core 1 is The fixing force with respect to the electrode core material 1 is improved as compared with the conventional electrode. Therefore, it is possible to suppress peeling or dropping of the active material 2. Therefore, even when stress is applied to the negative electrode E1 by winding the negative electrode E1 and the positive electrode E2 with the separator 3 interposed therebetween in order to assemble the secondary battery B set in the cylinder of FIG. The active material 2 can maintain the state of being more firmly fixed to the electrode core material 1.
[0025]
In the present embodiment, the electrode core material 1 on which the burr 1a is formed is used for the negative electrode E1 in the above embodiment, but may be used for the positive electrode E2. In this case, for example, the active material 2 uses nickel hydroxide. In addition, the electrode core material 1 may be provided with a protruding portion having current collecting properties from the outside without providing the burr 1a.
[0026]
In the above-described embodiment, the flat electrode core material 1 is used. However, for example, the electrode core material 1 curved in a direction perpendicular to the direction in which the electrode E is wound may be used. Even in this case, the burr 1a is formed so as to reach the surface of the active material from the through hole 1b.
Further, the through hole 1b is not substantially rectangular, and may be, for example, substantially square or substantially elliptical.
[0027]
【The invention's effect】
As described above, according to the present invention, an electrode core material in which a powdery active material is fixed to a front surface and a back surface with a predetermined thickness, and a tip of a protrusion provided on the electrode core material is formed of the active material. Since it is installed exposed on the surface and the protruding portion has a hardness of 150 Hv (Vickers hardness) or less, the distance from the active material powder having poor conditions for transferring electrons from the electrode core material to the electrode core material is short. Thus, the current collection efficiency of the entire electrode is improved. In addition, for example, it is possible to prevent damage to the insulating material due to the negative electrode active material rising to the tip of the protruding portion due to volume expansion during charging of the negative electrode active material. In addition, it is possible to prevent the tip of the protruding portion protruding due to volume shrinkage during discharge of the negative electrode active material from penetrating the insulating material.
[Brief description of the drawings]
1A and 1B are configuration diagrams of an electrode E according to an embodiment of the present invention, in which FIG. 1A is a side view and FIG. 1B is a front view.
FIG. 2 is a perspective view of a secondary battery B having a cylindrical shape according to an embodiment of the present invention.
FIG. 3 is a comparison diagram of the frequency of occurrence of a short circuit in the secondary battery B due to the difference in material of the electrode core material 1;
[Explanation of symbols]
1 …… Electrode core material 1a …… Burr (protrusion)
1b: Through hole (hole)
2 …… Active material 3 …… Separator (insulating material)
4. Battery case (negative electrode terminal)
5 ... Positive terminal 6 ... Sealing plate E1 ... Negative electrode E2 ... Positive electrode B ... Secondary battery

Claims (10)

表面及び裏面に粉末状の活物質を所定厚で固着した電極芯材であって、
電極芯材に設けられた突出部の先端が前記活物質の表面に露出して設置され、前記突出部が150Hv(ビッカース硬さ)以下の硬度であることを特徴とする電極芯材。
An electrode core material in which a powdered active material is fixed to a front surface and a back surface with a predetermined thickness,
An electrode core material, characterized in that a tip of a protruding portion provided on the electrode core material is disposed so as to be exposed on the surface of the active material, and the protruding portion has a hardness of 150 Hv (Vickers hardness) or less .
前記突出部は前記電極芯材のいずれか片面あるいは両面から局所的に押圧することにより設けられた孔が有するバリであることを特徴とする請求項1記載の電極芯材。    2. The electrode core material according to claim 1, wherein the protruding portion is a burr provided in a hole provided by locally pressing from one or both surfaces of the electrode core material. 請求項1または2記載の前記電極芯材の表面及び裏面に正極活物質が固着されたことを特徴とした正電極。3. A positive electrode, wherein a positive electrode active material is fixed to the front and back surfaces of the electrode core material according to claim 1 or 2. 前記正極活物質は、水酸化ニッケルであることを特徴とする請求項3記載の正電極。The positive electrode according to claim 3, wherein the positive electrode active material is nickel hydroxide. 請求項1または2記載の前記電極芯材の表面及び裏面に負極活物質が固着されたことを特徴とした負電極。A negative electrode, wherein a negative electrode active material is fixed to a front surface and a back surface of the electrode core material according to claim 1. 前記負極活物質は、水素吸蔵合金であることを特徴とする請求項5記載の負電極。The negative electrode according to claim 5, wherein the negative electrode active material is a hydrogen storage alloy. 請求項3または4記載の正電極が絶縁材を挟んで負電極と交互に積層された状態で電槽内に収容されていることを特徴とする電池。5. A battery, wherein the positive electrode according to claim 3 or 4 is accommodated in a battery case in a state where the positive electrode is alternately laminated with a negative electrode with an insulating material interposed therebetween. 請求項3または4記載の正電極が絶縁材を挟んで負電極と重ねられた状態で渦巻き状に巻回されて電槽内に収容されていることを特徴とする電池。A battery, wherein the positive electrode according to claim 3 or 4 is spirally wound in a state where the positive electrode is overlapped with the negative electrode with an insulating material interposed therebetween and accommodated in a battery case. 請求項5または6記載の負電極が絶縁材を挟んで正極と交互に積層された状態で電槽内に収容されていることを特徴とする電池。A battery characterized in that the negative electrode according to claim 5 or 6 is accommodated in a battery case in a state of being alternately laminated with a positive electrode with an insulating material interposed therebetween. 請求項5または6記載の負電極が絶縁材を挟んで正電極と重ねられた状態で渦巻き状に巻回されて電槽内に収容されていることを特徴とする電池。A battery characterized in that the negative electrode according to claim 5 or 6 is spirally wound in a state of being overlapped with the positive electrode with an insulating material interposed therebetween and accommodated in a battery case.
JP2002177653A 2002-06-18 2002-06-18 Battery and its electrode core material, positive electrode and negative electrode Expired - Fee Related JP4576785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177653A JP4576785B2 (en) 2002-06-18 2002-06-18 Battery and its electrode core material, positive electrode and negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177653A JP4576785B2 (en) 2002-06-18 2002-06-18 Battery and its electrode core material, positive electrode and negative electrode

Publications (2)

Publication Number Publication Date
JP2004022418A JP2004022418A (en) 2004-01-22
JP4576785B2 true JP4576785B2 (en) 2010-11-10

Family

ID=31175632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177653A Expired - Fee Related JP4576785B2 (en) 2002-06-18 2002-06-18 Battery and its electrode core material, positive electrode and negative electrode

Country Status (1)

Country Link
JP (1) JP4576785B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218860A (en) * 1988-07-06 1990-01-23 Bridgestone Corp Battery
JPH0315157A (en) * 1989-06-13 1991-01-23 Ricoh Co Ltd Sheet-form electrode
JP2002198055A (en) * 2000-08-30 2002-07-12 Isao Matsumoto Paste-like thin electrode for battery, its manufacturing method and secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218860A (en) * 1988-07-06 1990-01-23 Bridgestone Corp Battery
JPH0315157A (en) * 1989-06-13 1991-01-23 Ricoh Co Ltd Sheet-form electrode
JP2002198055A (en) * 2000-08-30 2002-07-12 Isao Matsumoto Paste-like thin electrode for battery, its manufacturing method and secondary battery

Also Published As

Publication number Publication date
JP2004022418A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP5275298B2 (en) Secondary battery
EP2038942B1 (en) Safety kit for secondary battery
US11271274B2 (en) Secondary battery
KR20080019311A (en) Pouch-type secondary battery having improved safety by preventing internal moving of electrode assembly
KR20080009350A (en) Secondary battery having improved capacitance and safety
JP2018133201A (en) Power storage module
US20200295317A1 (en) Secondary battery, battery module and vehicle
JPH11273709A (en) Battery
WO2020177599A1 (en) Secondary battery
JP2015215988A (en) Square battery
US20240030521A1 (en) Battery and electric device
CN217847998U (en) Current collector, electrochemical device and electronic equipment
JPH10241725A (en) Alkali secondary battery
JP3926147B2 (en) battery
JP4576785B2 (en) Battery and its electrode core material, positive electrode and negative electrode
JP2018018666A (en) Power storage device and method for manufacturing power storage device
CN208078090U (en) Electrode, battery core, battery and electronic equipment
JP5528131B2 (en) Stacked battery
JPS58119154A (en) Alkaline storage battery
JP2018049802A (en) Power storage device
JPH09120836A (en) Nonaqueous electrolyte secondary battery and its manufacture
US20220190448A1 (en) Sealed battery and method of manufacturing sealed battery
CN217589160U (en) Battery with a battery cell
CN217588709U (en) Button type super capacitor
JP2012234626A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees