JP2002280057A - Alkaline secondary battery - Google Patents

Alkaline secondary battery

Info

Publication number
JP2002280057A
JP2002280057A JP2001074513A JP2001074513A JP2002280057A JP 2002280057 A JP2002280057 A JP 2002280057A JP 2001074513 A JP2001074513 A JP 2001074513A JP 2001074513 A JP2001074513 A JP 2001074513A JP 2002280057 A JP2002280057 A JP 2002280057A
Authority
JP
Japan
Prior art keywords
negative electrode
container
secondary battery
positive electrode
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001074513A
Other languages
Japanese (ja)
Inventor
Kazuhiko Harada
和彦 原田
Yutaka Tsuga
裕 都賀
Koji Taguchi
幸治 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2001074513A priority Critical patent/JP2002280057A/en
Publication of JP2002280057A publication Critical patent/JP2002280057A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline secondary battery to prevent ignition of a negative electrode layer of a negative electrode by heat and explosion generated at the time of welding a current collecting plate of the negative electrode (especially, plain part) to an electric conductive member to make conduction with a container while maintaining high capacity. SOLUTION: This alkaline secondary battery is furnished with the container, an electrode group stored in this container and spirally winding the negative electrode having the negative electrode layer containing hydrogen storage alloy powder and a positive electrode having a positive electrode layer containing nickel hydroxide with a separator between them and an alkaline electrolytic solution stored in the container, the negative electrode has the current collecting plate made of a punching metal sheet having the plain part at least on one side end part, the plain part is connected to an inner surface of a bottom part of the container through the electrical conductive member of a belt type or a plate type similar to the container bottom part, and the negative electrode constitutes its characteristic feature of having a region of 0.1-5 mm wide and where the current collecting plate is actually exposed on an end part on the container bottom part side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金を含
む負極層を有する負極を改良したアルカリ二次電池に関
する。
The present invention relates to an alkaline secondary battery having an improved negative electrode having a negative electrode layer containing a hydrogen storage alloy.

【0002】[0002]

【従来の技術】各種の電動工具や電動補助付き自転車、
さらに最近開発された電気自動車などの駆動電源として
は、充放電が可能で携帯に便利な点から各種の二次電池
が使用されている。
2. Description of the Related Art Various electric tools and bicycles with electric assist,
Further, various secondary batteries have been used as drive power supplies for recently developed electric vehicles and the like because they can be charged and discharged and are portable.

【0003】前記用途に適した二次電池としては、大電
流放電が可能であるという特徴を有するニッケル・カド
ミウム二次電池が多く採用されている。これは、前記ニ
ッケル・カドミウム二次電池はその内部抵抗が低く、か
つ時間率当たりの放電電流(放電率)が大きく、さらに
過充電・過放電を行なった場合でも電池特性の劣化を起
こし難いという特性を有することに起因する。
[0003] As a secondary battery suitable for the above-mentioned applications, a nickel-cadmium secondary battery having a feature of being capable of discharging a large current is often used. This is because the nickel-cadmium secondary battery has a low internal resistance, a large discharge current (discharge rate) per time rate, and is unlikely to cause deterioration of battery characteristics even when overcharge / overdischarge is performed. This is due to having characteristics.

【0004】一方、ノート型パソコンや携帯電話などの
小形電子機器の駆動電源としては、ニッケル・水素二次
電池が広く用いられている。これは、ニッケル・水素二
次電池は同一サイズのニッケル・カドミウム二次電池に
比べてその内部抵抗が高く、かつ放電率も小さいもの
の、放電容量がその二次電池に比べて1.5〜2倍と大
きく、さらに形状が小型であっても、微小電流で駆動可
能な電子機器を長期間にわたって駆動することが可能で
あるためである。
On the other hand, nickel-hydrogen secondary batteries are widely used as drive power supplies for small electronic devices such as notebook personal computers and mobile phones. This is because a nickel-hydrogen secondary battery has a higher internal resistance and a lower discharge rate than a nickel-cadmium secondary battery of the same size, but has a discharge capacity of 1.5 to 2 times as compared with the secondary battery. This is because an electronic device that can be driven with a small current can be driven over a long period of time even if the size is twice as large and the shape is small.

【0005】また、水素吸蔵合金を含む負極は従来の代
表的なアルカリ二次電池用負極の材料であるカドミニウ
ムに比較して単位重量または単位容積当たりのエネルギ
ー密度を大きくすることができ、電池の高容量化を可能
にする他、環境汚染の恐れが少ないばかりか、電池特性
も優れているという特徴を有する。
[0005] Further, the negative electrode containing a hydrogen storage alloy can increase the energy density per unit weight or unit volume as compared with cadmium, which is a material of a conventional representative negative electrode for an alkaline secondary battery. In addition to being able to increase the capacity, the battery has characteristics that it has a low risk of environmental pollution and also has excellent battery characteristics.

【0006】しかしながら、従来より市販されているニ
ッケル・水素二次電池は、1時間率の1〜3倍程度の放
電時(満充電量を20分から1時間で放電する時)に始
めて公称容量を得ることができるため、微小電流で駆動
可能な前記小型電子機器の電源としては有効であるもの
の、大電流を必要とする電動工具や電気自動車などの電
源としては事実上、使用できないという問題があった。
例えば、従来のニッケル・水素二次電池において1時間
率の5倍を超えるような大電流で放電させる、つまり満
充電量を12分未満で放電させると作動電圧が大幅に低
下する。特に、高容量化された電池では、前記作動電圧
の低下が顕著に現れ、作動電圧の低下のみならず、サイ
クル寿命においても、実用に耐え得ないという問題があ
った。
[0006] However, nickel-hydrogen secondary batteries which have been commercially available conventionally have a nominal capacity of not more than 1 to 3 times the hourly rate (when the full charge is discharged in 20 minutes to 1 hour). Therefore, although it is effective as a power source of the small electronic device that can be driven by a small current, it cannot be used as a power source of a power tool or an electric vehicle that requires a large current. Was.
For example, when a conventional nickel-hydrogen secondary battery is discharged with a large current that exceeds five times the hourly rate, that is, when the full charge is discharged in less than 12 minutes, the operating voltage is significantly reduced. In particular, in the case of a battery with a high capacity, the above-mentioned decrease in the operating voltage appears remarkably, and there has been a problem that not only the decrease in the operating voltage but also the cycle life is not practical.

【0007】このようなことから特開平11−2508
91号公報には、水素吸蔵合金粉末を含む負極層を有す
る負極と、この負極にセパレータを挟んで配置された水
酸化ニッケルを含む正極層を有する正極と、アルカリ電
解液と、これら部材を収納する容器とを具備し、前記負
極として少なくとも一方の側端部に無地部を持つパンチ
ングメタルシートからなる集電板を有し、かつ前記無地
部を帯状または前記容器底部と相似した板状の導電部材
を介して前記容器底部の内面に接続した構造のものを用
いることのよって、従来の問題を解決し、高容量でかつ
大電流放電を行っても作動電圧の低下を抑制することが
できるニッケル・水素二次電池が開示されている。
For these reasons, Japanese Patent Application Laid-Open No. H11-2508 discloses
No. 91 discloses a negative electrode having a negative electrode layer containing a hydrogen storage alloy powder, a positive electrode having a positive electrode layer containing nickel hydroxide arranged with a separator interposed between the negative electrode, an alkaline electrolyte, and a housing containing these members. And a current collector plate made of a punched metal sheet having a solid portion on at least one side end as the negative electrode, and the solid portion has a band-like shape or a plate-like conductive shape similar to the container bottom portion. By using a structure connected to the inner surface of the container bottom through a member, the conventional problem can be solved, and nickel having a high capacity and capable of suppressing a decrease in operating voltage even when a large current discharge is performed. -A hydrogen secondary battery is disclosed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記公
開公報に開示されたニッケル・水素二次電池は前記負極
の集電板、特に無地部を前記導電部材(例えば前記容器
底部と相似した板状の導電部材)に溶接する際に発生す
る熱や爆飛によって、前記負極の無地部に形成されてい
る負極層が発火や着火し、その結果その近傍のセパレー
タが熱収縮を生じて正負極同士が内部短絡する虞があっ
た。本発明は、高容量化を維持しつつ、負極の集電板
(特に無地部)を容器との導通をとるために導電部材に
溶接する際に発生する熱や爆飛によって、前記負極の負
極層が発火や着火するのを防止したアルカリ二次電池を
提供しようとするものである。
However, in the nickel-hydrogen secondary battery disclosed in the above publication, the current collector plate of the negative electrode, particularly, the uncoated portion is formed of a conductive member (for example, a plate-like material similar to the container bottom portion). The negative electrode layer formed in the uncoated part of the negative electrode is ignited or ignited by heat or explosion generated when welding to the conductive member), and as a result, the separator in the vicinity thereof undergoes heat shrinkage, and the positive and negative electrodes are separated from each other. There was a risk of internal short circuit. The present invention provides a negative electrode of the negative electrode, which is generated by heat or explosion generated when welding a current collector plate (particularly a plain portion) of the negative electrode to a conductive member in order to establish conduction with a container while maintaining high capacity. An object of the present invention is to provide an alkaline secondary battery in which a layer is prevented from firing or igniting.

【0009】[0009]

【課題を解決するための手段】本発明に係るアルカリ二
次電池は、容器と、この容器内に収納され、水素吸蔵合
金粉末を含む負極層を有する負極および水酸化ニッケル
を含む正極層を有する正極をセパレータを挟んで渦巻き
状に捲回した電極群と、前記容器内に収容されたアルカ
リ電解液とを具備し、前記負極は、少なくとも一方の側
端部に無地部を有するパンチングメタルシートからなる
集電板を有し、かつ前記無地部を帯状または前記容器底
部と相似した板状の導電部材を介して前記容器底部の内
面に接続され,かつ前記負極は、前記容器底部側の端部
に0.1〜5mmの幅の実質的に前記集電板が露出する
領域を有することを特徴とするものである。
The alkaline secondary battery according to the present invention comprises a container, a negative electrode having a negative electrode layer containing a hydrogen storage alloy powder, and a positive electrode layer containing nickel hydroxide, which is contained in the container. An electrode group in which a positive electrode is spirally wound with a separator interposed therebetween, comprising an alkaline electrolyte contained in the container, wherein the negative electrode is formed from a punched metal sheet having a solid portion at at least one side end. A current collector plate, and the uncoated portion is connected to the inner surface of the container bottom via a strip-shaped or plate-like conductive member similar to the container bottom, and the negative electrode is an end on the container bottom side. And a region having a width of 0.1 to 5 mm where the current collector plate is substantially exposed.

【0010】[0010]

【発明の実施の形態】以下、本発明に係わるアルカリ二
次電池(円筒形ニッケル水素二次電池)を図1を参照し
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an alkaline secondary battery (cylindrical nickel-metal hydride secondary battery) according to the present invention will be described with reference to FIG.

【0011】有底円筒状の容器1内には、電極群2が収
納されている。この電極群2は、図1〜図3に示すよう
に下側端部に無地部3を有するパンチングメタルシート
4からなる集電板を有し、かつ両面に水素吸蔵合金を含
む負極層5を形成した帯状負極6と帯状セパレータ7と
上側端部に導電性基板9に活物質である水酸化ニッケル
粒子を含む正極層10を形成し、かつ無地部8にリード
8aを取り付けた帯状正極11とを前記負極6の無地部
3が一方の側に表出し、前記正極11の無地部8が反対
側に表出するように相互にずらして積層し、この積層物
を渦巻状に巻回することにより作製される。前記負極6
は、前記容器1底部側の端部に0.1〜5mmの幅の実
質的に前記集電板が露出する領域を有する。
An electrode group 2 is housed in a cylindrical container 1 having a bottom. As shown in FIGS. 1 to 3, the electrode group 2 has a current collector plate made of a punched metal sheet 4 having a solid portion 3 at a lower end, and a negative electrode layer 5 containing a hydrogen storage alloy on both surfaces. A strip-shaped negative electrode 6, a strip-shaped separator 7, and a strip-shaped positive electrode 11 in which a positive electrode layer 10 containing nickel hydroxide particles as an active material is formed on a conductive substrate 9 at an upper end portion, and a lead 8 a is attached to a plain portion 8. Are stacked so that the uncoated portion 3 of the negative electrode 6 is exposed on one side and the uncoated portion 8 of the positive electrode 11 is exposed on the opposite side, and the laminate is spirally wound. It is produced by The negative electrode 6
Has an area on the bottom side of the container 1 where the current collector plate is substantially exposed with a width of 0.1 to 5 mm.

【0012】前記電極群2の負極6の無地部3下端は、
前記容器1底部と相似した板状(例えば円板状)の導電
部材13にスポット溶接されている。この導電部材13
は、図4に示すように前記負極6の無地部3下端が当接
される表面に多数の微小突起12が形成されている。前
記導電部材13は、前記容器1内に収納された後に、そ
の中心付近を前記容器1底面にスポット溶接されてい
る。前記電極群2の正極11のリード8a上端は、図1
に示すように中央に穴14が開口された円板状導電板1
5にスポット溶接されている。アルカリ電解液は、前記
容器1内に収容されている。
The lower end of the uncoated portion 3 of the negative electrode 6 of the electrode group 2 is
It is spot-welded to a plate-like (eg, disk-shaped) conductive member 13 similar to the bottom of the container 1. This conductive member 13
As shown in FIG. 4, a large number of minute projections 12 are formed on the surface of the negative electrode 6 on which the lower end of the uncoated portion 3 contacts. After being accommodated in the container 1, the conductive member 13 is spot-welded near its center to the bottom surface of the container 1. The upper end of the lead 8a of the positive electrode 11 of the electrode group 2 is shown in FIG.
Disc-shaped conductive plate 1 having a hole 14 opened in the center as shown in FIG.
5 is spot-welded. The alkaline electrolyte is contained in the container 1.

【0013】中央に孔16を有する円形の封口板17、
前記容器1の上部開口部に配置されている。リング状の
絶縁性ガスケット18は、前記封口板17の周縁と前記
容器1の上部開口部内面の間に配置され、前記上部開口
部を内側に縮径するカシメ加工により前記容器1に前記
封口板17を前記ガスケット18を介して気密に固定し
ている。正極タブ19は、一端が前記正極11の円板状
導電板15に接続され、他端が前記封口板17の下面に
接続されている。
A circular sealing plate 17 having a hole 16 in the center,
It is arranged at the upper opening of the container 1. The ring-shaped insulating gasket 18 is disposed between the peripheral edge of the sealing plate 17 and the inner surface of the upper opening of the container 1, and the sealing plate is formed on the container 1 by caulking to reduce the diameter of the upper opening inward. 17 is hermetically fixed via the gasket 18. The positive electrode tab 19 has one end connected to the disc-shaped conductive plate 15 of the positive electrode 11 and the other end connected to the lower surface of the sealing plate 17.

【0014】複数のガス抜き孔20を有する帽子形状を
なす正極端子21は、前記封口板17上にその封口板1
7の孔16を覆うように取り付けられている。ゴム製の
安全弁22は、前記封口板17と前記正極端子21で囲
まれた空間内に前記孔16を塞ぐように配置されてい
る。
A positive electrode terminal 21 having a hat shape having a plurality of gas vent holes 20 is provided on the sealing plate 17.
7 so as to cover the hole 16. The rubber safety valve 22 is disposed so as to close the hole 16 in a space surrounded by the sealing plate 17 and the positive electrode terminal 21.

【0015】次に、前記負極6、正極11、セパレータ
7および電解液について説明する。
Next, the negative electrode 6, the positive electrode 11, the separator 7, and the electrolyte will be described.

【0016】1)負極6 この負極6は、前述したように下側端部に無地部3を有
するパンチングメタルシート4からなる集電板を有し、
かつ前記容器1底部側の端部から0.1〜5mmの範囲
の前記無地部を除くパンチングメタルシート4領域に水
素吸蔵合金を含む負極層5を形成した構造を有する。こ
の負極層は、例えば水素吸蔵合金粉末に導電材を添加
し、高分子結着剤および水と共に混練して調製したペー
ストを、前述した無地部を有するパンチングメタルシー
ト(集電板)の所定領域に充填し、乾燥した後、成形す
ることにより形成される。
1) Negative electrode 6 This negative electrode 6 has a current collector plate made of a punched metal sheet 4 having a solid portion 3 at the lower end as described above.
In addition, the negative electrode layer 5 including the hydrogen storage alloy is formed in the area of the punched metal sheet 4 excluding the uncoated portion within a range of 0.1 to 5 mm from the end on the bottom side of the container 1. The negative electrode layer is formed, for example, by adding a conductive material to a hydrogen storage alloy powder, kneading the mixture with a polymer binder and water, and forming a paste on a predetermined area of a punching metal sheet (current collector plate) having the above-described uncoated portion. , Dried, and then molded.

【0017】前記水素吸蔵合金としては、格別制限され
るものではなく、電解液中で電気化学的に発生させた水
素を吸蔵でき、かつ放電時にその吸蔵水素を容易に放出
できるものであればよい。この水素吸蔵合金としては、
例えばLaNi5 、MmNi 5 (Mm;ミッシュメタ
ル)、LmNi5 (Lm;ランタン富化したミッシュメ
タル)、またはこれらのNiの一部をAl、Mn、C
o、Ti、Cu、Zn、Zr、Cr、Bのような元素で
置換した多元素系のもの、もしくはTiNi系、TiF
e系のものを挙げることができる。中でも、一般式Lm
Nix Mny z (ただし、AはAl,Coから選ばれ
る少なくとも一種の金属、原子比x,y,zはその合計
値が4.8≦x+y+z≦5.4を示す)で表されるも
のを用いることが好ましい。
The hydrogen storage alloy is particularly limited.
Not electrochemically generated water in the electrolyte
Element can be occluded and the occluded hydrogen can be easily released during discharge
Anything that can be done is acceptable. As this hydrogen storage alloy,
For example, LaNiFive, MmNi Five(Mm; Mishmeta
L), LmNiFive(Lm: lantern-enriched misch
Al), Mn, C
o, Ti, Cu, Zn, Zr, Cr, B
Substituted multi-element type, TiNi type, TiF
e-type ones can be mentioned. Among them, the general formula Lm
NixMnyAz(However, A is selected from Al and Co
At least one metal, and the atomic ratios x, y, z are the sum of
The value is 4.8 ≦ x + y + z ≦ 5.4)
It is preferred to use

【0018】前記高分子結着剤としては、例えばカルボ
キシメチルセルロース、メチルセルロース、ポリアクリ
ル酸ナトリウム、ポリテトラフルオロエチレン、スチレ
ン・ブタジエンゴム、変性スチレン・ブタジエンゴム等
を挙げることができる。
Examples of the polymer binder include carboxymethylcellulose, methylcellulose, sodium polyacrylate, polytetrafluoroethylene, styrene / butadiene rubber, and modified styrene / butadiene rubber.

【0019】前記導電材としては、例えばニッケルフレ
ーク、カーボンブラック等を用いることができる。
As the conductive material, for example, nickel flake, carbon black or the like can be used.

【0020】前記負極は、前記容器底部側の端部に0.
1〜5mmの幅の実質的に前記集電板が露出する領域を
有することが必要である。前記負極における前記容器底
部側端部の集電板露出部の幅を0.1mm未満にする
と、この集電板の無地部を前記円板状の導電部材にスポ
ット溶接する際に発生する熱や爆飛により前記負極層が
発火や着火し、その結果その近傍のセパレータが熱収縮
を生じて正負極同士が内部短絡する虞がある。一方、前
記負極における前記容器底部側端部の集電板露出部の幅
が5mmを超えると、負極に占める負極層の面積が減少
して二次電池の容量低下を招く虞がある。より好ましい
前記負極における前記容器底部側端部の集電板露出部の
幅は、0.5〜2.0mmである。 2)正極11 この正極11は、前述したように上側端部に無地部8を
有する導電性基板9に活物質である水酸化ニッケル粒子
を含む正極層10を形成し、かつ無地部8にリード8a
を例えば溶接により取り付けた構造を有する。この正極
層は、例えば活物質である水酸化ニッケル粒子に導電材
料を添加し、高分子結着剤および水と共に混練して調製
したペーストを、前述した導電性基板に充填し、乾燥し
た後、成形することにより形成される。
The negative electrode is placed at an end on the bottom side of the container.
It is necessary to have a region having a width of 1 to 5 mm substantially exposing the current collector plate. When the width of the exposed portion of the current collector plate at the bottom end portion of the negative electrode is less than 0.1 mm, heat generated when spot-welding the uncoated portion of the current collector plate to the disc-shaped conductive member is reduced. The bomb blast may cause the negative electrode layer to ignite or ignite, resulting in thermal contraction of the nearby separator and an internal short circuit between the positive and negative electrodes. On the other hand, if the width of the exposed portion of the current collector plate at the end of the negative electrode on the bottom side of the container exceeds 5 mm, the area of the negative electrode layer occupying the negative electrode may decrease, which may cause a reduction in the capacity of the secondary battery. More preferably, the width of the exposed portion of the current collector plate at the end on the container bottom side in the negative electrode is 0.5 to 2.0 mm. 2) Positive Electrode 11 As described above, the positive electrode 11 is formed by forming the positive electrode layer 10 containing nickel hydroxide particles as an active material on the conductive substrate 9 having the uncoated portion 8 at the upper end, and forming a lead on the uncoated portion 8. 8a
Is attached by, for example, welding. This positive electrode layer, for example, after adding a conductive material to nickel hydroxide particles as an active material, kneading the mixture with a polymer binder and water, filling the conductive substrate described above, and drying, It is formed by molding.

【0021】前記水酸化ニッケル粒子としては、例えば
単一の水酸化ニッケル粒子、または亜鉛、コバルト、ビ
スマス、銅のような金属を金属ニッケルと共に共沈され
た水酸化ニッケル粒子を用いることができる。特に、後
者の水酸化ニッケル粒子を含む正極は、高温状態におけ
る充電効率をより一層向上することが可能になる。
As the nickel hydroxide particles, for example, single nickel hydroxide particles or nickel hydroxide particles in which a metal such as zinc, cobalt, bismuth or copper is coprecipitated with metallic nickel can be used. In particular, the latter positive electrode containing nickel hydroxide particles can further improve the charging efficiency in a high-temperature state.

【0022】前記水酸化ニッケル粒子は、X線粉末回折
法による(101)面のピーク半価幅が0.8゜/2θ
(Cu−Kα)以上であることが好ましい。より好まし
い水酸化ニッケル粒子のピーク半価幅は0.9〜1.0
゜/2θ(Cu−Kα)である。
The nickel hydroxide particles have a peak half-value width of the (101) plane determined by an X-ray powder diffraction method of 0.8 ° / 2θ.
(Cu-Kα) or more is preferable. More preferable peak half width of nickel hydroxide particles is 0.9 to 1.0.
゜ / 2θ (Cu-Kα).

【0023】前記導電材料としては、例えば金属コバル
ト、コバルト酸化物、コバルト水酸化物等を挙げること
ができる。
Examples of the conductive material include metal cobalt, cobalt oxide, cobalt hydroxide and the like.

【0024】前記高分子結着剤としては、例えばカルボ
キシメチルセルロース、メチルセルロース、ポリアクリ
ル酸ナトリウム、ポリテトラフルオロエチレン等を挙げ
ることができる。
Examples of the polymer binder include carboxymethylcellulose, methylcellulose, sodium polyacrylate, polytetrafluoroethylene and the like.

【0025】前記導電性基板としては、例えばニッケ
ル、ステンレスまたはニッケルメッキが施された金属か
ら形成された網状、スポンジ状、繊維状、もしくはフェ
ルト状の金属多孔体等を挙げることができる。
Examples of the conductive substrate include a mesh-like, sponge-like, fiber-like, or felt-like porous metal body made of nickel, stainless steel, or nickel-plated metal.

【0026】前記正極は、表出した集電板を除く面積が
電池の理論容量(Ah)当たり30cm2以上、つまり
30cm2/Ah以上である。この正極面積を30cm2
/Ah未満にすると、大電流放電が困難になる虞があ
る。より好ましい正極面積は、38cm2/Ah以上で
ある。正極の面積を大きくするためには、電極群の外径
および高さが一定であれば正極の厚さを薄くすることに
より対応することができる。これは、電極群に倦回され
る正極の長さが長り、正極数が多くなって倦回後におけ
る電極群に占める面積が広くなるからである。しかしな
がら、正極の厚さを薄くし過ぎると、正極の強度が低下
して倦回時に割れや亀裂等が発生して電極群の不良が増
大するばかりか、電極群に占めるセパレータの面積の増
大して容量低下を招く。したがって、前記正極の面積の
上限は100cm2/Ahにすることが好ましい。 3)セパレータ7 このセパレータ7としては、例えばポリアミド繊維製不
織布、ポリエチレン、ポリプロピレンなどのポリオレフ
ィン繊維製不織布、またはこれらの不織布に親水性官能
基を付与したものを挙げることができる。
[0026] The positive electrode, exposed to the area except for the current collecting plate of the battery theoretical capacity (Ah) per 30 cm 2 or more, i.e. 30 cm 2 / Ah or more. This positive electrode area is 30 cm 2
If it is less than / Ah, large current discharge may be difficult. A more preferable positive electrode area is 38 cm 2 / Ah or more. In order to increase the area of the positive electrode, if the outer diameter and height of the electrode group are constant, the thickness of the positive electrode can be reduced. This is because the length of the positive electrode wound by the electrode group increases, the number of positive electrodes increases, and the area occupied by the electrode group after the rotation increases. However, if the thickness of the positive electrode is made too thin, the strength of the positive electrode decreases, cracks and cracks occur at the time of fatigue, and not only the defect of the electrode group increases, but also the area of the separator in the electrode group increases. Causes a reduction in capacity. Therefore, the upper limit of the area of the positive electrode is preferably set to 100 cm 2 / Ah. 3) Separator 7 Examples of the separator 7 include a nonwoven fabric made of a polyamide fiber, a nonwoven fabric made of a polyolefin fiber such as polyethylene and polypropylene, or a nonwoven fabric provided with a hydrophilic functional group.

【0027】4)アルカリ電解液 このアルカリ電解液としては、例えば水酸化ナトリウム
(NaOH)と水酸化リチウム(LiOH)の混合液、
水酸化カリウム(KOH)とLiOHの混合液、KOH
とLiOHとNaOHの混合液等を用いることができ
る。
4) Alkaline Electrolyte As the alkaline electrolyte, for example, a mixed solution of sodium hydroxide (NaOH) and lithium hydroxide (LiOH),
A mixture of potassium hydroxide (KOH) and LiOH, KOH
And a mixed solution of LiOH and NaOH.

【0028】前記円板状の導電部材は、アルカリ電解液
に腐食されず、比抵抗が小さく、さらに比較的低コスト
の材料から作られることが好ましい。例えば、純ニッケ
ル、ステンレス鋼、ニッケルめっきが施された金属の板
が好適である。前記導電部材の厚さは、厚いほど、導体
抵抗が低くなって、大電流を流しし易くなるものの、あ
まり厚くし過ぎるとコスト高や二次電池の容量低下(電
極群が収納される有底円筒状容器の容積低下)を招く。
このため、前記導電部材の厚さを0.15〜2.0mm
にすることが好ましい。なお、前記円板状の導電部材を
負極の無地部下端に接続させる形態に限らず、複数の帯
状の導電部材を負極の無地部下端に接続し、これら帯状
の導電部材を容器底部の内面にスポット溶接等により接
続した形態にしてもよい。
The disc-shaped conductive member is preferably made of a material which is not corroded by an alkaline electrolyte, has a low specific resistance, and is relatively inexpensive. For example, pure nickel, stainless steel, and a nickel-plated metal plate are preferable. As the thickness of the conductive member increases, the conductor resistance decreases and a large current easily flows. However, when the thickness is too large, the cost increases and the capacity of the secondary battery decreases (the bottom where the electrode group is housed). (Reduction in volume of the cylindrical container).
Therefore, the thickness of the conductive member is 0.15 to 2.0 mm
Is preferable. The present invention is not limited to the embodiment in which the disc-shaped conductive member is connected to the lower end of the uncoated portion of the negative electrode, but a plurality of strip-shaped conductive members are connected to the lower end of the uncoated portion of the negative electrode, and these strip-shaped conductive members are formed on the inner surface of the container bottom. The connection may be made by spot welding or the like.

【0029】本発明に係るアルカリ二次電池に用いる電
極群2において、前述した図2に示すように負極5の容
器1底部側に位置する無地部3端部から正極11の容器
1底部側に位置する端部までの長さ(負極およびセパレ
ータの突出長さ)をh1とすると、このh1は正極11と
負極6が導通される導電部材13との短絡を防止する観
点からh1>0にすることが好ましい。また、正極11と
負極6との対抗面積を十分に取るためにはh1<5mm
にすることが好ましい。つまり、0<h1<5mmにする
ことが好ましい。また、本発明に係るアルカリ二次電池
に用いる電極群2において前述した図2に示すようにセ
パレータ7の容器1底部側に位置する無地部3端部から
正極11の容器1底部側に位置する端部までの長さ(セ
パレータの突出長さ)をh2とすると、このh2は0<h
2<h1を満たすことが好ましい。前記円板状の導電部材
表面に形成される多数の微小突起は、高さが前記h1
下であることが好ましい。以上説明した本発明に係るア
ルカリ二次電池(例えばニッケル・水素二次電池)は、
容器と、この容器内に収納され、水素吸蔵合金粉末を含
む負極層を有する負極および水酸化ニッケルを含む正極
層を有する正極をセパレータを挟んで渦巻き状に捲回し
た電極群と、前記容器内に収容されたアルカリ電解液と
を具備し、前記負極が少なくとも一方の側端部に無地部
を有するパンチングメタルシートからなる集電板を有
し、かつ前記無地部を帯状または前記容器底部と相似し
た板状の導電部材を介して前記容器底部の内面に接続さ
れている。また、前記負極は前記容器底部側の端部に
0.1〜5mmの幅の実質的に前記集電板が露出する領
域を有する。
In the electrode group 2 used in the alkaline secondary battery according to the present invention, as shown in FIG. 2 described above, from the end of the uncoated portion 3 located on the bottom side of the container 1 of the negative electrode 5 to the bottom side of the container 1 of the positive electrode 11 If the length to the end of the position (protruding length of the negative electrode and the separator) and h 1, h 1 from the viewpoint the h 1 is to prevent a short circuit between the conductive member 13 to be conductive positive electrode 11 and the negative electrode 6 is> Preferably, it is set to zero. In order to sufficiently secure the opposing area between the positive electrode 11 and the negative electrode 6, h 1 <5 mm
Is preferable. That is, it is preferable that 0 <h 1 <5 mm. Further, in the electrode group 2 used in the alkaline secondary battery according to the present invention, as shown in FIG. 2 described above, the separator 7 is located from the end of the uncoated portion 3 located on the bottom side of the container 1 to the cathode 11 on the bottom side of the container 1. If the length to the end (the protruding length of the separator) and h 2, the h 2 is 0 <h
2 <preferably satisfies the h 1. Number of minute protrusions formed on the disc-shaped conductive member surface, it is preferable that the height is the h 1 below. The alkaline secondary battery according to the present invention described above (for example, a nickel-metal hydride secondary battery)
A container, an electrode group housed in the container, and a spirally wound negative electrode having a negative electrode layer containing a hydrogen storage alloy powder and a positive electrode having a positive electrode layer containing nickel hydroxide with a separator interposed therebetween; Wherein the negative electrode has a current collector plate made of a punched metal sheet having a solid portion at at least one side end, and the solid portion is strip-shaped or similar to the container bottom. Connected to the inner surface of the bottom of the container via a plate-shaped conductive member. In addition, the negative electrode has an area on the bottom side of the container where the current collector plate is substantially exposed and has a width of 0.1 to 5 mm.

【0030】このような構成の二次電池は、高容量化を
維持しつつ、大電流放電時における作動電圧の低下を抑
制できるとともに負極の集電板(特に無地部)を導電部
材に溶接する際の発火や着火に伴う正負極間の短絡を防
止することができる。すなわち、ニッケル・水素二次電
池は一般的にニッケル・カドミウム二次電池に比べて内
部抵抗が大きいため、特に高い放電率で放電した場合、
作動電圧の低下が生じる。
In the secondary battery having such a configuration, it is possible to suppress a decrease in the operating voltage at the time of discharging a large current while maintaining a high capacity, and to weld a negative electrode current collector plate (particularly a plain portion) to a conductive member. It is possible to prevent a short circuit between the positive and negative electrodes due to ignition or ignition at the time. In other words, nickel-hydrogen secondary batteries generally have a higher internal resistance than nickel-cadmium secondary batteries, and especially when discharged at a high discharge rate,
The operating voltage is reduced.

【0031】前述したニッケル・水素二次電池におい
て、高い放電率で作動させても電池作動電圧の低下を抑
制ないし防止するにはその内部抵抗を可能な限り低くす
る必要がある。
In the above-described nickel-hydrogen secondary battery, it is necessary to reduce the internal resistance as much as possible to suppress or prevent a decrease in the battery operating voltage even when operated at a high discharge rate.

【0032】このようなことから、本発明は少なくとも
一方の側端部に無地部を有するパンチングメタルシート
からなる集電板を有する負極を用い、この負極の無地部
を帯状または前記容器底部と相似した板状の導電部材を
介して容器底部の内面に接続することによって、負極と
容器との間の接触抵抗を著しく低減できるため、大電流
放電時における作動電圧の低下を効果的に抑制すること
ができる。
In view of the above, the present invention uses a negative electrode having a current collector made of a punched metal sheet having a non-colored portion at at least one side end, and the non-colored portion of the negative electrode is strip-shaped or similar to the container bottom. Since the contact resistance between the negative electrode and the container can be significantly reduced by connecting to the inner surface of the container bottom through the plate-shaped conductive member, it is possible to effectively suppress a decrease in the operating voltage at the time of large current discharge. Can be.

【0033】また、前記負極として前記容器底部側の端
部に0.1〜5mmの幅の実質的に前記集電板が露出す
る領域を有する構造のものを用いることによって、高容
量化を維持しつつ、この無地部端部を例えば円板状の導
電部材にスポット溶接する際に発生する熱や爆飛により
前記負極層が発火ないし着火するのを防止できる。その
結果、前記負極層の発火や着火に起因するセパレータの
熱収縮を防止して正負極同士が内部短絡する問題を回避
できる。特に、表出される集電板を除く正極の面積を電
池の理論容量(Ah)当たり30cm2以上にすること
によって、正負極間を流れる電流の密度を小さくするこ
とができる。その結果、作動電圧の低下を抑制して大電
流放電を実現できる。
In addition, a high capacity is maintained by using a negative electrode having a structure in which the current collector plate is substantially exposed at a width of 0.1 to 5 mm at an end on the bottom side of the container. In addition, it is possible to prevent the negative electrode layer from being ignited or ignited by heat or explosion generated when spot-welding the uncoated end portion to, for example, a disk-shaped conductive member. As a result, thermal contraction of the separator due to ignition or ignition of the negative electrode layer can be prevented, and the problem of internal short circuit between the positive and negative electrodes can be avoided. In particular, by setting the area of the positive electrode excluding the exposed current collector plate to 30 cm 2 or more per theoretical capacity (Ah) of the battery, the density of the current flowing between the positive and negative electrodes can be reduced. As a result, a large current discharge can be realized while suppressing a decrease in the operating voltage.

【0034】また、前述した図1に示すように電極群2
の正極11のリード8a上端に中央に穴14が開口され
た円板状導電部材15をスポット溶接し、この導電部材
15に接続された正極タブ19を通して正極端子として
機能する封口板17に接続すれば、電池の内部抵抗をよ
り一層低減でき、さらに負極6の無地部3下端を円板状
の導電部材13に接続した構造との相互作用により、渦
巻状に巻回した電極群2の形状安定性を向上できるた
め、電池の組み立ても容易に行なうことができる。
Further, as shown in FIG.
A disk-shaped conductive member 15 having a hole 14 opened in the center is spot-welded to the upper end of the lead 8a of the positive electrode 11 and connected to a sealing plate 17 functioning as a positive electrode terminal through a positive electrode tab 19 connected to the conductive member 15. In this case, the internal resistance of the battery can be further reduced, and further, the interaction with the structure in which the lower end of the uncoated portion 3 of the negative electrode 6 is connected to the disk-shaped conductive member 13 allows the shape of the spirally wound electrode group 2 to be stabilized. Since the performance can be improved, the battery can be easily assembled.

【0035】さらに、図4に示すように前記負極6無地
部3下端が当接される表面に多数の微小突起12が形成
された構造の円板状導電部材13を用いれば、前記負極
の無地部下端を前記円板状の導電部材表面に当接させて
溶接する際、前記導電部材表面の多数の微小突起が前記
無地部下端の端面に食い込むような状態で圧接されるた
め、溶接電流を流すときの接触抵抗を小さくでき、溶接
後における溶接点の強度を向上することが可能になる。
Further, as shown in FIG. 4, if a disc-shaped conductive member 13 having a structure in which a large number of minute projections 12 are formed on the surface where the lower end of the negative electrode 6 uncoated portion 3 is in contact is used, When the lower end is abutted against the surface of the disc-shaped conductive member and welded, a large number of minute projections on the surface of the conductive member are pressed into contact with the end surface of the lower end of the uncoated portion, so that welding current is reduced. The contact resistance when flowing can be reduced, and the strength of the welding point after welding can be improved.

【0036】[0036]

【実施例】以下、本発明の好ましい実施例を前述した図
面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0037】(実施例1〜5および比較例1〜6) <負極の作製>Lm(Lm;ランタン富化したミッシュ
メタル)Ni3.6 Co0.8 Mn0.3 Al0.3の水素吸蔵
合金を作製した。これら合金を1000℃のアルゴン雰
囲気中で10時間熱処理して合金組成を均質化した。つ
づいて、この水素吸蔵合金を機械的に粉砕し、篩い分け
を行なって25〜75μmの粉末を取出した。得られた
水素吸蔵合金粉末100質量部にポリアクリル酸ナトリ
ウム0.3質量部、カルボキシメチルセルロース(CM
C)0.1質量部、カルボキシ変性スチレン・ブタジエ
ンゴム0.5質量部、導電性材料としてのカーボンブラ
ック0.5質量部およびニッケルフレーク0.5質量部
を添加し、水30質量部と共に混合することによりペー
ストを調製した。ひきつづき、厚さ0.06mm、下側
端を幅1mmに亘って無地部とし、かつ直径1mmの開
口が45%の開口率でパンチングされたパンチドメタル
シートを用意し、このパンチングメタルシート全面に前
記ペーストを塗布し、80℃の温度で1時間乾燥した
後、ローラプレスで圧延して負極層を形成した。この
後、前記負極層の一部を除去し、所望の寸法に裁断する
ことにより前述した図2および図3に示す下端から5m
mの高さの領域を表出させて負極を作製した。
[0037] (Examples 1 to 5 and Comparative Examples 1 to 6) <Preparation of Negative Electrode>Lm; was prepared (Lm lanthanum enriched misch metal) Ni 3.6 Co 0.8 Mn 0.3 Al 0.3 of the hydrogen storage alloy. These alloys were heat-treated in an argon atmosphere at 1000 ° C. for 10 hours to homogenize the alloy compositions. Subsequently, the hydrogen storage alloy was mechanically pulverized and sieved to obtain a powder of 25 to 75 μm. To 100 parts by mass of the obtained hydrogen storage alloy powder, 0.3 parts by mass of sodium polyacrylate and carboxymethyl cellulose (CM
C) 0.1 parts by mass, 0.5 parts by mass of carboxy-modified styrene / butadiene rubber, 0.5 parts by mass of carbon black as a conductive material and 0.5 parts by mass of nickel flake are added, and mixed with 30 parts by mass of water. Thus, a paste was prepared. Subsequently, a punched metal sheet having a thickness of 0.06 mm, a lower end formed as a solid portion over a width of 1 mm, and an opening having a diameter of 1 mm punched at an opening ratio of 45% is prepared. The paste was applied, dried at a temperature of 80 ° C. for 1 hour, and then rolled by a roller press to form a negative electrode layer. Thereafter, a part of the negative electrode layer is removed and cut to a desired size, thereby obtaining a 5 m from the lower end shown in FIGS. 2 and 3 described above.
A negative electrode was produced by exposing a region having a height of m.

【0038】<正極の作製>水酸化ニッケル粉末90質
量部および一酸化コバルト粉末10質量部からなる混合
粉体に、カルボキシメチルセルロース(CMC)0.3
質量部、ポリテトラフルオロエチレンのディスパージョ
ン(比重1.5、固形分60質量%)を固形分換算で
0.5質量部を添加し、純水45質量部と共に混合する
ことによりペーストを調製した。
<Preparation of Positive Electrode> A mixed powder comprising 90 parts by mass of nickel hydroxide powder and 10 parts by mass of cobalt monoxide powder was mixed with 0.3 part of carboxymethyl cellulose (CMC).
A paste was prepared by adding 0.5 parts by mass of a dispersion of polytetrafluoroethylene (specific gravity: 1.5, solid content: 60% by mass) in terms of solid content and mixing with 45 parts by mass of pure water. .

【0039】また、ニッケル発泡シートの上側端を幅2
mmに亘ってその長さ方向に加圧して緻密化することに
より上端に幅2mmに亘って加圧前に比べて1/5の厚
さを有する無地部を形成した。つづいて、前記無地部を
除くニッケル発泡シートに前記ペーストを充填し、10
0℃の温度で乾燥した後、ローラプレスで圧延して正極
層を形成し、さらに前記無地部に厚さ0.08mm、幅
3mmのニッケルメッキステレンス鋼製のリードを溶接
し、所望の寸法に裁断することにより上側端にリードを
有する正極を作製した。
Further, the upper end of the nickel foam sheet has a width of 2 mm.
By pressing in the length direction over the length of 1 mm to densify, a plain portion having a thickness of 1/5 of that before the pressing was formed over the width of 2 mm at the upper end. Subsequently, the paste was filled in a nickel foam sheet excluding the uncoated portion, and
After drying at a temperature of 0 ° C., rolling was performed with a roller press to form a positive electrode layer, and a lead made of nickel-plated stainless steel having a thickness of 0.08 mm and a width of 3 mm was welded to the uncoated portion to a desired size. By cutting, a positive electrode having a lead at the upper end was produced.

【0040】得られた正極は、その正極層の面積が組み
立てられる電池の理論容量あたり38cm2、つまり3
8cm2/Ahであった。 <ニッケル・水素二次電池の組み立て>前記負極、厚さ
0.13mmのポリプロピレン不織布からなるセパレー
タおよび前記正極を前述した図2に示すように前記負極
6の無地部3が下部側に表出し、前記正極11のリード
8aが上部側に表出するように相互にずらして積層し、
この積層物を渦巻状に巻回することにより外径16m
m,中心部に直径4mmの空洞部を有する電極群を作製
した。なお、前記セパレータの下端および前記負極の下
端をそれぞれ前記正極の下端を基準にしてそれぞれ1.
0mm(図2中のh 2に相当),2.0mm(図2中の
1に相当)突出させた。次いで、表面に高さ1.0mm
の微小突起が多数形成された直径15.5mmのニッケ
ル製円板状導電部材を用意し、この導電部材の微小突起
が形成された面に前記電極群の突出した負極の無地部を
圧接し、スポット溶接することにより当接部に約20箇
所のナゲットを形成し電極群と導電部材とを一体化し
た。つづいて、前記電極群を有底円筒状の容器内にその
電極群と一体化された円板状導電部材が内部底面側に位
置するように挿入して前記導電部材を前記容器の内部底
面に接触させた。ひきつづき、上部溶接電極を前記電極
群の中央の空洞部を通して挿入してその溶接電極先端で
前記導電部材を加圧し、同時に前記容器の外側底面に配
置した下部溶接電極でその容器を上方に向けて加圧した
後、両溶接電極かに電流を通電することにより前記円板
状導電部材を前記容器の内部底面に溶接した。次いで、
前記容器内の電極群の上端に突出した正極のリードにニ
ッケル製の円板状導電部材を載置し、20箇所を点溶接
した後、ニッケル製の正極タブの一端を前記導電部材に
溶接した。つづいて、前記容器内に水酸化カリウムを主
体とする電解液を注入した。ひきつづき、前記正極タブ
の他端を孔を有する封口板に溶接した。この後、予め前記
封口板にゴム製の安全弁をその封口板の孔を塞ぐように
配置し、この封口板上にガス抜き孔を有する帽子形状を
なす正極端子を前記安全弁を囲むように載置した後、溶
接した。前記封口板を前記有底円筒状容器の上端開口部
にガスケットを介して嵌め込み、型締め加工することに
より前述した図1に示す構造を有する4/5Aサイズの
円筒形ニッケル水素二次電池を組み立てた。
The obtained positive electrode has a positive electrode layer area
38cm per theoretical capacity of batteryTwoThat is, 3
8cmTwo/ Ah. <Assembly of nickel-hydrogen secondary battery> The negative electrode, thickness
Separate made of 0.13mm polypropylene non-woven fabric
The positive electrode and the positive electrode are connected to the negative electrode as shown in FIG.
6 uncovered portion 3 is exposed to the lower side, and the lead of the positive electrode 11
8a are shifted from each other so as to be exposed on the upper side,
This laminate is spirally wound to form an outer diameter of 16 m.
m, electrode group having a hollow part with a diameter of 4 mm at the center
did. The lower end of the separator and the lower part of the negative electrode
The ends are each 1.
0 mm (h in FIG. 2) Two), 2.0 mm (in FIG. 2)
h1). Then, on the surface 1.0mm height
Nickel with a diameter of 15.5mm on which a large number of microprojections are formed
Prepare a disk-shaped conductive member made of
The uncoated uncoated portion of the negative electrode of the electrode group is formed on the surface where
Approximately 20 parts are abutted by pressing and spot welding.
Forming a nugget in place and integrating the electrode group and conductive members
Was. Subsequently, the electrode group is placed in a bottomed cylindrical container.
The disc-shaped conductive member integrated with the electrode group is located
The conductive member is inserted so as to be placed on the inner bottom of the container.
Surface. Continue to attach the upper welding electrode to the electrode
Insert through the central cavity of the group and at its welding electrode tip
The conductive member is pressurized and simultaneously placed on the outer bottom surface of the container.
The container was pressurized upward with the placed lower welding electrode
After that, a current is applied to both welding electrodes to
The conductive member was welded to the inner bottom surface of the container. Then
The lead of the positive electrode protruding from the upper end of the electrode group in the container is
Place a nickel-plated disc-shaped conductive member and spot weld 20 places
After that, one end of the nickel positive electrode tab is connected to the conductive member.
Welded. Subsequently, potassium hydroxide is mainly contained in the container.
An electrolyte to be a body was injected. Next, the positive electrode tab
Was welded to a sealing plate having holes. After this,
Insert a rubber safety valve into the sealing plate to cover the hole in the sealing plate
Arrange the cap shape with a vent hole on this sealing plate
After placing the positive electrode terminal around the safety valve,
Contacted Opening the sealing plate to the upper end opening of the bottomed cylindrical container
Into the mold via a gasket and mold clamping
4 / 5A size having the structure shown in FIG.
A cylindrical nickel-metal hydride secondary battery was assembled.

【0041】(実施例2)パンチングメタルシートの下
端から0.1mmの高さの領域を表出させ、それ以外の
領域の負極層を形成した負極を用いたい外、実施例1と
同様な図1に示す構造を有する4/5Aサイズの円筒形
ニッケル水素二次電池を組み立てた。
Example 2 A view similar to that of Example 1, except that a region having a height of 0.1 mm from the lower end of the punched metal sheet is exposed, and a negative electrode in which a negative electrode layer is formed in other regions is not used. A 4 / 5A cylindrical nickel-metal hydride secondary battery having the structure shown in FIG. 1 was assembled.

【0042】(実施例3)パンチングメタルシートの下
端から0.5mmの高さの領域を表出させ、それ以外の
領域の負極層を形成した負極を用いたい外、実施例1と
同様な図1に示す構造を有する4/5Aサイズの円筒形
ニッケル水素二次電池を組み立てた。
(Example 3) A view similar to that of Example 1 except that a region having a height of 0.5 mm from the lower end of the punched metal sheet is exposed, and a negative electrode having a negative electrode layer formed in other regions is not used. A 4 / 5A cylindrical nickel-metal hydride secondary battery having the structure shown in FIG. 1 was assembled.

【0043】(実施例4)パンチングメタルシートの下
端から2mmの高さの領域を表出させ、それ以外の領域
の負極層を形成した負極を用いたい外、実施例1と同様
な図1に示す構造を有する4/5Aサイズの円筒形ニッ
ケル水素二次電池を組み立てた。
(Example 4) As shown in FIG. 1 similar to Example 1, except that a region having a height of 2 mm from the lower end of the punched metal sheet was exposed, and a negative electrode layer in the other region was not used. A 4 / 5A size cylindrical nickel-metal hydride secondary battery having the structure shown was assembled.

【0044】(実施例5)パンチングメタルシートの下
端から3mmの高さの領域を表出させ、それ以外の領域
の負極層を形成した負極を用いたい外、実施例1と同様
な図1に示す構造を有する4/5Aサイズの円筒形ニッ
ケル水素二次電池を組み立てた。
(Example 5) As shown in FIG. 1 similar to Example 1, except that a region having a height of 3 mm from the lower end of the punched metal sheet was exposed and a negative electrode layer was formed in other regions. A 4 / 5A size cylindrical nickel-metal hydride secondary battery having the structure shown was assembled.

【0045】(実施例6)パンチングメタルシートの下
端から5mmの高さの領域を表出させ、それ以外の領域
の負極層を形成した負極を用いたい外、実施例1と同様
な図1に示す構造を有する4/5Aサイズの円筒形ニッ
ケル水素二次電池を組み立てた。
(Example 6) FIG. 1 is similar to Example 1 except that a region having a height of 5 mm from the lower end of the punched metal sheet is exposed and a negative electrode layer in the other region is used. A 4 / 5A size cylindrical nickel-metal hydride secondary battery having the structure shown was assembled.

【0046】(比較例1)パンチングメタルシートの下
端を表出させず、全面に負極層を形成した負極を用いた
い外、実施例1と同様な4/5Aサイズの円筒形ニッケ
ル水素二次電池を組み立てた。
(Comparative Example 1) A cylindrical nickel-metal hydride secondary battery of 4 / 5A size similar to that of Example 1 except that the lower end of the punched metal sheet is not exposed and a negative electrode having a negative electrode layer formed on the entire surface is desired to be used. Was assembled.

【0047】(比較例2)パンチングメタルシートの下
端から8mmの高さの領域を表出させ、それ以外の領域
の負極層を形成した負極を用いたい外、実施例1と同様
な図1に示す構造を有する4/5Aサイズの円筒形ニッ
ケル水素二次電池を組み立てた。
(Comparative Example 2) As shown in FIG. 1 similar to that of Example 1, except that a region having a height of 8 mm from the lower end of the punched metal sheet was exposed and a negative electrode layer was formed in other regions. A 4 / 5A size cylindrical nickel-metal hydride secondary battery having the structure shown was assembled.

【0048】得られた実施例1〜6および比較例1,2
の二次電池10000個について、組み立て後25℃で
24時間放置し、電圧を測定した。この測定において、
電池電圧が1mV以下の二次電池を絶縁不良とし、その
不良個数を調べた。その結果を下記表1に示す。また、
実施例1〜6および比較例1,2の二次電池100個に
ついて、所定の初期活性化を行った後、1時間率で1.
2時間の充電を行い、30分間休止し、1時間率の電流
で放電し、0.7Vまで電圧を降下したときの放電容量
を測定し、100個の平均値として求めた。その結果を
下記表1に併記する。
The obtained Examples 1 to 6 and Comparative Examples 1 and 2
After assembling, 10000 secondary batteries were allowed to stand at 25 ° C. for 24 hours after assembly, and the voltage was measured. In this measurement,
A secondary battery having a battery voltage of 1 mV or less was determined to have poor insulation, and the number of defective batteries was examined. The results are shown in Table 1 below. Also,
After the predetermined initial activation was performed on 100 secondary batteries of Examples 1 to 6 and Comparative Examples 1 and 2, after the initial activation, 1.
The battery was charged for 2 hours, paused for 30 minutes, discharged at a current rate of 1 hour, and the discharge capacity when the voltage was dropped to 0.7 V was measured and calculated as an average value of 100 batteries. The results are shown in Table 1 below.

【表1】 [Table 1]

【0049】前記表1から明らかなように容器底部側の
端部から0.1〜5mmの範囲のパンチングメタルシー
ト領域を表出させ、この領域を除く前記パンチングメタ
ルシートに負極層を形成した実施例1〜6の二次電池
は、10000個中の絶縁不良数が最大で1個であり、
かつ高い放電容量を有することがわかる。これに対し、
パンチングメタルシートが容器底部側の端部から表出せ
ず、全面に負極層が形成された比較例1の二次電池は、
高い放電容量を有するものの、1000個中20個の絶
縁不良が発生することがわかる。また、容器底部側の端
部から10mmの範囲のパンチングメタルシート領域を
表出させ、この領域を除く前記パンチングメタルシート
に負極層を形成した比較例2の二次電池は、10000
個中の絶縁不良数が0個であるものの、放電容量が低下
することがわかる。
As is apparent from Table 1, a punched metal sheet region in a range of 0.1 to 5 mm from the end on the container bottom side was exposed, and the negative electrode layer was formed on the punched metal sheet excluding this region. In the secondary batteries of Examples 1 to 6, the number of defective insulations out of 10,000 was at most one,
It can be seen that the battery has high discharge capacity. In contrast,
The secondary battery of Comparative Example 1 in which the punched metal sheet was not exposed from the end on the container bottom side, and the negative electrode layer was formed on the entire surface,
It can be seen that although having a high discharge capacity, 20 out of 1000 insulation failures occur. Further, a secondary battery of Comparative Example 2 in which a punched metal sheet region was exposed in a range of 10 mm from the end on the container bottom side and a negative electrode layer was formed on the punched metal sheet excluding this region, was 10000.
It can be seen that although the number of insulation failures in each cell is 0, the discharge capacity is reduced.

【0050】[0050]

【発明の効果】以上説明したように本発明によれば、高
容量で、かつ大電流放電時における作動電圧の低下を抑
制することが可能で、さらに負極の集電板(特に無地
部)を容器との導通をとるために導電部材に溶接する際
に発生する熱によって前記負極の負極層が発火するのを
防止してセパレータの熱収縮による正負極同士が内部短
絡を回避でき、各種の電動工具や電動補助付き自転車、
電気自動車などの駆動電源として有用なアルカリ二次電
池を提供することができる。
As described above, according to the present invention, it is possible to suppress a decrease in the operating voltage at the time of high-capacity and large-current discharge, and to use a negative electrode current collector plate (particularly, a plain portion). The heat generated when welding to the conductive member to establish conduction with the container prevents the negative electrode layer of the negative electrode from igniting, so that the positive and negative electrodes due to the heat shrinkage of the separator can avoid an internal short circuit, and various electric motors can be used. Bicycles with tools and electric assistance,
An alkaline secondary battery useful as a driving power source for an electric vehicle or the like can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるニッケル水素二次電池を示す断
面図。
FIG. 1 is a sectional view showing a nickel-metal hydride secondary battery according to the present invention.

【図2】図1の二次電池に組込まれる電極群の展開図。FIG. 2 is a developed view of an electrode group incorporated in the secondary battery of FIG.

【図3】図2の電極群を背面から見たときの展開図。FIG. 3 is a developed view of the electrode group of FIG. 2 when viewed from the back.

【図4】図1の二次電池の容器底部内面に配置される円
板状の導電部材を示す平面図。
FIG. 4 is a plan view showing a disc-shaped conductive member disposed on the inner surface of the bottom of the container of the secondary battery of FIG. 1;

【符号の説明】[Explanation of symbols]

1…容器、 2…電極群、 3,8…無地部、 6…負極、 7…セパレータ、 11…正極、 13…導電部材、 17…封口板、 18…絶縁ガスケット。 DESCRIPTION OF SYMBOLS 1 ... container, 2 ... electrode group, 3, 8 ... uncoated part, 6 ... negative electrode, 7 ... separator, 11 ... positive electrode, 13 ... conductive member, 17 ... sealing plate, 18 ... insulating gasket.

フロントページの続き (72)発明者 田口 幸治 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H022 AA04 AA18 BB16 CC13 CC20 CC23 EE01 5H028 AA01 AA05 BB05 BB07 CC05 CC10 CC12 EE01 HH06 HH10Continued on the front page (72) Inventor Koji Taguchi 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation F-term (reference) 5H022 AA04 AA18 BB16 CC13 CC20 CC23 EE01 5H028 AA01 AA05 BB05 BB07 CC05 CC10 CC12 EE01 HH06 HH10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 容器と、この容器内に収納され、水素吸
蔵合金粉末を含む負極層を有する負極および水酸化ニッ
ケルを含む正極層を有する正極をセパレータを挟んで渦
巻き状に捲回した電極群と、前記容器内に収容されたア
ルカリ電解液とを具備し、 前記負極は、少なくとも一方の側端部に無地部を有する
パンチングメタルシートからなる集電板を有し、かつ前
記無地部を帯状または前記容器底部と相似した板状の導
電部材を介して前記容器底部の内面に接続され,かつ前
記負極は、前記容器底部側の端部に0.1〜5mmの幅
の実質的に前記集電板が露出する領域を有することを特
徴とするアルカリ二次電池。
1. An electrode group in which a container, a negative electrode having a negative electrode layer containing hydrogen storage alloy powder, and a positive electrode having a positive electrode layer containing nickel hydroxide, which are housed in the container, are spirally wound with a separator interposed therebetween. And an alkaline electrolyte accommodated in the container, wherein the negative electrode has a current collector plate made of a punched metal sheet having a solid portion at at least one side end, and the solid portion is band-shaped. Alternatively, the negative electrode is connected to the inner surface of the container bottom through a plate-shaped conductive member similar to the container bottom, and the negative electrode has a width of 0.1 to 5 mm at the end on the container bottom side. An alkaline secondary battery having a region where an electric plate is exposed.
【請求項2】 前記電極群に組み込まれた前記正極の正
極層は、電池の理論容量当たり30cm2以上の面積を
有することを特徴とする請求項1記載のアルカリ二次電
池。
2. The alkaline secondary battery according to claim 1, wherein the positive electrode layer of the positive electrode incorporated in the electrode group has an area of 30 cm 2 or more per theoretical capacity of the battery.
JP2001074513A 2001-03-15 2001-03-15 Alkaline secondary battery Withdrawn JP2002280057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001074513A JP2002280057A (en) 2001-03-15 2001-03-15 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001074513A JP2002280057A (en) 2001-03-15 2001-03-15 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JP2002280057A true JP2002280057A (en) 2002-09-27

Family

ID=18931765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001074513A Withdrawn JP2002280057A (en) 2001-03-15 2001-03-15 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2002280057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123782A1 (en) * 2005-05-20 2006-11-23 Matsushita Electric Industrial Co., Ltd. Storage battery and method of producing the same
KR101106455B1 (en) 2005-09-06 2012-01-17 삼성에스디아이 주식회사 Cylindrical lithium ion secondary battery
JP2018170140A (en) * 2017-03-29 2018-11-01 Fdk株式会社 Collector lead and manufacturing method of secondary battery including collector lead

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123782A1 (en) * 2005-05-20 2006-11-23 Matsushita Electric Industrial Co., Ltd. Storage battery and method of producing the same
US7709147B2 (en) 2005-05-20 2010-05-04 Panasonic Corporation Storage battery and production method thereof
KR101106455B1 (en) 2005-09-06 2012-01-17 삼성에스디아이 주식회사 Cylindrical lithium ion secondary battery
JP2018170140A (en) * 2017-03-29 2018-11-01 Fdk株式会社 Collector lead and manufacturing method of secondary battery including collector lead

Similar Documents

Publication Publication Date Title
US6440607B1 (en) Nickel-hydrogen secondary cell
EP0901179B1 (en) Alkaline storage battery
JP2002298906A (en) Nickel-hydrogen secondary battery
JP2003045480A (en) ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
JP2002280057A (en) Alkaline secondary battery
JP2000251871A (en) Alkaline secondary battery
JP3567021B2 (en) Alkaline secondary battery
JP2002289170A (en) Alkali secondary battery
JP2000082491A (en) Nickel-hydrogen secondary battery
JP2000030699A (en) Nickel-hydrogen secondary battery
JP2001006688A (en) Nickel-hydrogen secondary battery
WO1998054775A9 (en) Hydrogen storage alloy
JP2000030736A (en) Nickel hydrogen secondary battery
JPH0547366A (en) Rectangular metal hydride storage battery
JP2000299123A (en) Nickel-hydrogen secondary battery
JP3343413B2 (en) Alkaline secondary battery
JP2001006727A (en) Alkali secondary battery
JP2000260416A (en) Manufacture of battery
JP2002008710A (en) Cylindrical nickel-hydrogen secondary battery
JP2001068145A (en) Rectangular alkaline secondary battery
JP2000268851A (en) Alkaline secondary battery
JP2002033094A (en) Alkali secondary battery
JP2001176540A (en) Nickel hydrogen secondary battery
JPH11250891A (en) Nickel-hydrogen secondary battery
JP2001006724A (en) Cylindrical alkaline secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080306

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603