JPH0547366A - Rectangular metal hydride storage battery - Google Patents

Rectangular metal hydride storage battery

Info

Publication number
JPH0547366A
JPH0547366A JP3316430A JP31643091A JPH0547366A JP H0547366 A JPH0547366 A JP H0547366A JP 3316430 A JP3316430 A JP 3316430A JP 31643091 A JP31643091 A JP 31643091A JP H0547366 A JPH0547366 A JP H0547366A
Authority
JP
Japan
Prior art keywords
negative electrode
metal
battery
electrode
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3316430A
Other languages
Japanese (ja)
Inventor
Yoshiki Fujiwara
孝樹 藤原
Masahito Tomita
正仁 富田
Kenji Inoue
健次 井上
Tsukane Ito
束 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPH0547366A publication Critical patent/JPH0547366A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To suppress the dropping of the hydrogen storage alloy of a negative electrode and prevent the reduction of the current collecting property of the negative electrode during storage for a long period by inserting a metal sheet electrically connected to the negative electrode between the negative electrode faced to a metal outer can and the outer can. CONSTITUTION:The slurry of a hydrogen storage alloy is coated on a conducting carrier, then it is dried, pressurized, and cut, and two negative electrodes 1 are connected with the exposure section 2 of a conducting carrier to form a hydrogen storage alloy negative electrode. A nonporous nickel sheet 3 is welded to the negative electrode 1 including the exposure section 2 to form a negative structure. Three positive electrodes 4 and two sets of the negative structures are combined, an electrode body inserted with separator 5 between the positive and negative electrodes 4, 1 is inserted in an outer can 6, and the negative electrode 1 and the can 6 are electrically connected via the sheet 3. The hydrogen storage alloy is suppressed from being dropped from the negative electrode 1 when the electrode body is inserted into the outer can 6, even if part of the alloy is eluted to form an insulating film, the electric connection between the metal sheet 3 and the outer can 6 can be kept satisfactory.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金よりなる
負極を備えた角形金属水素化物蓄電池における負極と負
極端子兼用金属製外装缶との間の集電構造に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current collecting structure between a negative electrode and a metal outer can for a negative electrode terminal in a prismatic metal hydride storage battery having a negative electrode made of a hydrogen storage alloy.

【0002】[0002]

【従来の技術】近年、コードレス機器の軽量・薄形化に
伴い、これらの機器の電源となる電池に対して、高容量
化及び小型化が要求されるようになっている。高容量化
については、鉛蓄電池及びニッケル−カドミウム電池よ
り軽量で高容量化が可能となるということで、特に常圧
で負極活物質である水素を吸蔵及び放出することのでき
る水素吸蔵合金を備えた電極を負極に用いた金属水素化
物蓄電池が注目されている。他方、小型化については、
従来の円筒形電池に比較して組電池に構成した際に体積
効率が良く、薄形化が可能な角形電池が注目されてい
る。
2. Description of the Related Art In recent years, as the weight and thickness of cordless devices have been reduced, it has been required to increase the capacity and size of batteries used as power sources for these devices. Regarding high capacity, it is lighter than lead acid batteries and nickel-cadmium batteries and can have higher capacities.In particular, it is equipped with a hydrogen storage alloy that can store and release hydrogen, which is the negative electrode active material, at normal pressure. A metal hydride storage battery using such an electrode as a negative electrode is drawing attention. On the other hand, regarding miniaturization,
Attention has been paid to a prismatic battery which has a good volume efficiency when formed into an assembled battery as compared with a conventional cylindrical battery and can be made thin.

【0003】従来の角形電池における電極の集電方法と
しては、特開平1−200552号公報に示されるもの
がある。この集電方法は、正負極とセパレータを積層し
た電極体の外面に負極を位置させ、一対の正極間に配さ
れ電極体の内部に位置する負極と電極体の外面に位置す
る前記負極とを、負極の導電性支持体の露出部を介して
接続し、電極体の下面に位置する前記導電性支持体の露
出部を負極端子を兼用する角形の金属製外装缶の内底面
に圧接させると共に、電極体の外面に位置する負極を金
属製外装缶の内側面に圧接して、負極と金属製外装缶と
を電気的に接続している。
As a conventional electrode current collecting method in a prismatic battery, there is one disclosed in Japanese Patent Application Laid-Open No. 1-200552. This current collecting method includes positioning the negative electrode on the outer surface of the electrode body in which the positive and negative electrodes and the separator are laminated, and placing the negative electrode located between the pair of positive electrodes inside the electrode body and the negative electrode located on the outer surface of the electrode body. , The negative support is connected through the exposed portion of the conductive support, and the exposed portion of the conductive support located on the lower surface of the electrode body is pressed against the inner bottom surface of the rectangular metal outer can that also serves as the negative electrode terminal. The negative electrode located on the outer surface of the electrode body is pressed against the inner surface of the metal outer can to electrically connect the negative electrode and the metal outer can.

【0004】また、金属製外装缶の内側面に電極体の外
面の負極を圧接させるために電極体の厚みを大きくする
と、電極体を金属製外装缶に挿入する際に、電極体の外
面に位置する負極が金属製外装缶の開口縁に接触して活
物質が脱落することがあり、この脱落が生じさせないた
め、角形のニッケル−カドミウム電池では、負極として
焼結基板に活物質を含浸して作製した極板強度の大きい
焼結式負極が用いられていた。
Further, if the thickness of the electrode body is increased in order to press the negative electrode on the outer surface of the electrode body against the inner surface of the metal outer can, the outer surface of the electrode body is inserted when the electrode body is inserted into the metal outer can. The positioned negative electrode may come into contact with the opening edge of the metal outer can to cause the active material to fall off, and this drop does not occur.Therefore, in the rectangular nickel-cadmium battery, the sintered substrate is impregnated with the active material as the negative electrode. A sintered negative electrode having a high electrode plate strength produced by the above method was used.

【0005】ところが、金属水素化物蓄電池では、負極
は水素吸蔵合金を主構成物質としており、この水素吸蔵
合金はニッケル−カドミウム電池におけるカドミウムの
ように、負極活物質を活物質の塩溶液として焼結基板内
に液体の形で含浸するという手段を採ることはできず、
水素吸蔵合金を粉末状態で結着剤と混合し、この混合物
をパンチングメタルや発泡ニッケルなどの活物質保持体
に保持させ、非焼結式負極として構成することになる。
しかしながら、非焼結式負極は、極板強度が焼結式負極
に比べて低く、電極体を金属製外装缶に挿入する際に金
属製外装缶に接触して、負極から水素吸蔵合金が脱落
し、この脱落した水素吸蔵合金によって電池内部短絡を
起こす可能性がある。
However, in a metal hydride storage battery, the negative electrode has a hydrogen storage alloy as a main constituent substance, and this hydrogen storage alloy sinters the negative electrode active material as a salt solution of the active material like cadmium in a nickel-cadmium battery. It is impossible to take the means of impregnating the substrate in the form of liquid,
The hydrogen storage alloy is mixed in a powder state with a binder, and the mixture is held by an active material holder such as punching metal or nickel foam to form a non-sintered negative electrode.
However, the non-sintered negative electrode has a lower electrode plate strength than the sintered negative electrode, and when the electrode body is inserted into the metal outer can, it comes into contact with the metal outer can and the hydrogen storage alloy drops off from the negative electrode. However, the hydrogen storage alloy that has fallen off may cause a short circuit inside the battery.

【0006】また、金属水素化物蓄電池において、負極
の水素吸蔵合金電極を金属製外装缶に直接接触させて集
電した場合には、電池を長期にわたって放置した際に、
負極の水素吸蔵合金の一部が溶解して、負極と金属製外
装缶の間に蓄積し、これが絶縁膜を形成して集電性を低
下させることがある。
Further, in a metal hydride storage battery, when the hydrogen storage alloy electrode of the negative electrode is brought into direct contact with a metal outer can to collect current, when the battery is left for a long period of time,
A part of the hydrogen storage alloy of the negative electrode may be dissolved and accumulated between the negative electrode and the metal outer can, which may form an insulating film and reduce the current collecting property.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記負極か
らの水素吸蔵合金粉末の脱落を抑制すると共に、長期の
放置による負極の集電性の低下を防止することのできる
角形金属水素化物蓄電池を提供しようとするものであ
る。
DISCLOSURE OF THE INVENTION The present invention is directed to a prismatic metal hydride storage battery which can prevent the hydrogen storage alloy powder from falling out of the negative electrode and can prevent the negative electrode from being deteriorated in current collecting property after being left for a long time. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明の角形金属水素化
物蓄電池は、導電性支持体に水素吸蔵合金を保持させた
負極と、正極と、これら両極間に位置するセパレータと
を積層してなる電極体を、負極端子を兼用する金属製外
装缶に収納してなり、前記電極体の金属製外装缶に対向
する面に負極を配し、前記導電性支持体の延長部または
導電性支持体に電気接続した金属シートを、前記金属製
外装缶に対向する負極と金属製外装缶との間に介挿させ
ると共に、前記導電性支持体の延長部または金属シート
を介して前記負極と金属製外装缶とを電気接続したこと
を特徴とするものである。
The prismatic metal hydride storage battery of the present invention comprises a negative electrode having a hydrogen absorbing alloy held on a conductive support, a positive electrode, and a separator positioned between the two electrodes. The electrode body is housed in a metal outer can that also serves as a negative electrode terminal, and the negative electrode is arranged on the surface of the electrode body that faces the metal outer can, and the extension of the conductive support or the conductive support is provided. The metal sheet electrically connected to the negative electrode and the metal outer can, which is interposed between the negative electrode and the metal outer can that face the metal outer can, and the negative electrode and the metal can via the extension of the conductive support or the metal sheet. It is characterized in that it is electrically connected to the outer can.

【0009】また、前記負極と金属製外装缶との間に介
挿させる導電性支持体の延長部または金属シートを金属
多孔板にすることによって、より一層の効果を奏するも
のである。
Further, the extension of the conductive support or the metal sheet interposed between the negative electrode and the metal outer can is made of a metal perforated plate to further enhance the effect.

【0010】[0010]

【作用】電極体の外面に位置すると共に金属製外装缶に
対向する負極の表面に金属シートを配すると、電極体を
金属製外装缶に挿入する際に、金属シートが前記負極表
面に露出するため、負極の主構成物質である水素吸蔵合
金が直接金属製外装缶の内面に接触することがなく、負
極から水素吸蔵合金が脱落することを抑制できる。
When a metal sheet is provided on the surface of the negative electrode located on the outer surface of the electrode body and facing the metal outer can, the metal sheet is exposed on the surface of the negative electrode when the electrode body is inserted into the metal outer can. Therefore, the hydrogen storage alloy, which is the main constituent material of the negative electrode, does not directly contact the inner surface of the metal outer can, and the hydrogen storage alloy can be prevented from falling off from the negative electrode.

【0011】また、電池を長期間放置した際には、負極
の水素吸蔵合金が一部溶出して絶縁膜を形成し、この膜
は充電時に導電性のある金属に還元できないが、電極体
の外面に位置する負極と金属製外装缶との間に、負極に
電気的に接続した金属シートを介在させると、前記絶縁
膜は前記金属シートの負極に対向する面に形成されるの
で、金属シートと金属製外装缶との間の電気接続は維持
でき、負極と負極端子を兼用する金属製外装缶の間の電
気的接続を良好に保つことができる。尚、金属シートと
負極との間に絶縁膜が形成されるが、金属シートは予め
負極と電気的に接続されているため、金属シートと負極
の電気接続が損なわれることはない。
When the battery is left for a long time, the hydrogen storage alloy of the negative electrode is partially eluted to form an insulating film. This film cannot be reduced to a conductive metal during charging, but When a metal sheet electrically connected to the negative electrode is interposed between the negative electrode located on the outer surface and the metal outer can, the insulating film is formed on the surface of the metal sheet facing the negative electrode. The electrical connection between the metal outer can and the metal outer can can be maintained, and the electrical connection between the metal outer can that also serves as the negative electrode and the negative electrode terminal can be favorably maintained. Although an insulating film is formed between the metal sheet and the negative electrode, since the metal sheet is electrically connected to the negative electrode in advance, the electric connection between the metal sheet and the negative electrode is not damaged.

【0012】更に、負極と金属製外装缶とを直接接触さ
せて集電する場合には、充放電により負極が形状変化し
て負極表面に凹凸ができ、負極と金属製外装缶の密着性
が損なわれることがあるが、金属シートを金属製外装缶
に接触させて集電する場合には、金属シートはこのよう
な形状変化がないため、面と面との接触を保つことがで
き、接触抵抗の増加もない。
Further, when the negative electrode and the metal outer can are directly contacted to collect current, the shape of the negative electrode changes due to charging and discharging to form irregularities on the surface of the negative electrode, and the adhesion between the negative electrode and the metal outer can is improved. Although it may be damaged, when the metal sheet is brought into contact with the metal outer can to collect current, the metal sheet does not change in shape like this, so it is possible to maintain contact between the surfaces and There is no increase in resistance.

【0013】このように、電極体の外面の負極と金属製
外装缶との間に負極に電気的に接続した金属シートを介
在させて集電することにより、高率放電時の作動電圧及
び放電容量が向上し、サイクル特性も向上する。
As described above, by interposing the metal sheet electrically connected to the negative electrode between the negative electrode on the outer surface of the electrode body and the metal outer can to collect the current, the operating voltage and the discharge at the high rate discharge can be obtained. The capacity is improved and the cycle characteristics are also improved.

【0014】ところで、金属水素化物蓄電池は、一般
に、過充電時に正極から発生する酸素ガスを負極で消費
するよう構成されており、上記金属シートとして無孔性
の金属シートを用いた場合には、正極から発生した酸素
ガスは、セパレータを介して対極である負極に到達して
消費されるか、または、電池内の空間に放出された後、
電極体の外面に位置する負極と前記金属シートの僅かな
隙間から侵入し、電極体の外面に位置する負極に到達し
て消費される。しかし、これらだけでは、まだ十分に満
足できる酸素ガス消費能力を有しているとはいえない。
By the way, a metal hydride storage battery is generally configured to consume oxygen gas generated from a positive electrode at the time of overcharging at a negative electrode, and when a nonporous metal sheet is used as the metal sheet, Oxygen gas generated from the positive electrode reaches the negative electrode that is the counter electrode through the separator and is consumed, or after being discharged into the space in the battery,
It penetrates through a small gap between the negative electrode located on the outer surface of the electrode body and the metal sheet, reaches the negative electrode located on the outer surface of the electrode body, and is consumed. However, these alone cannot be said to have a sufficiently satisfactory oxygen gas consumption capacity.

【0015】ここにおいて、前記電極体の外面の負極と
金属製外装缶との間に介在する前記金属シートとして、
多孔板、特に三次元構造の金属多孔板を用いると、電池
内空間に放出された酸素ガスが電極体の外面の負極に到
達し易くなって、負極の酸素ガス消費能力が向上する。
これは、発泡ニッケル、金属繊維の焼結多孔体やエキス
パンドメタルのような三次元構造の金属多孔板は、この
多孔板内の孔空間が酸素ガスの流通経路となり、酸素ガ
スがこの空間内を通過して電極体の外面の負極に到達し
易くなるからである。また、前記三次元構造の金属多孔
板に比較してその酸素ガス消費能力は劣るものの、パン
チングメタルのような二次元構造の金属多孔板を用いた
場合にも効果がある。この理由は、前記金属シートが無
孔性のものであると、金属シートと負極の僅かな隙間を
酸素ガスが通した場合のみ、電極体の外面の負極は酸素
ガスを消費することができるが、二次元構造の金属多孔
板を用いた場合には、これに加えて、金属多孔板と外装
缶の僅かな隙間から侵入した酸素ガスも前記金属多孔板
に設けられた孔を介して負極に到達することができるた
めである。
Here, as the metal sheet interposed between the negative electrode on the outer surface of the electrode body and the metal outer can,
When a porous plate, particularly a metal porous plate having a three-dimensional structure, is used, oxygen gas released into the internal space of the battery can easily reach the negative electrode on the outer surface of the electrode body, and the oxygen gas consumption capacity of the negative electrode is improved.
This is because, in a metal porous plate having a three-dimensional structure such as foamed nickel, a sintered porous body of metal fibers or an expanded metal, the pore space in this porous plate serves as a flow path for oxygen gas, and oxygen gas flows in this space. This is because it is easy to pass through and reach the negative electrode on the outer surface of the electrode body. Further, although the oxygen gas consumption capacity is inferior to that of the three-dimensional metal porous plate, it is also effective when a two-dimensional metal porous plate such as punching metal is used. The reason is that when the metal sheet is non-porous, the negative electrode on the outer surface of the electrode body can consume oxygen gas only when oxygen gas passes through a slight gap between the metal sheet and the negative electrode. When a metal porous plate having a two-dimensional structure is used, in addition to this, oxygen gas that has entered through a slight gap between the metal porous plate and the outer can also passes through the holes provided in the metal porous plate to the negative electrode. Because it can reach.

【0016】[0016]

【実施例】以下に、本発明の実施例を示し説明する。 [実施例1]負極に用いる水素吸蔵合金の原材料として
の市販のミッシュメタル(Mm、希土類元素の混合物)
とニッケルとコバルトとアルミニウムとマンガンを、元
素比1.0:3.2:1.0:0.2:0.6に秤量し
た後、高周波誘導炉内で溶解鋳造する。これにより、M
mNi3.2CoAl0.2Mn0.6という組成の水素吸蔵合
金を得る。
EXAMPLES Examples of the present invention will be described below. [Example 1] Commercially available misch metal (Mm, mixture of rare earth elements) as a raw material of a hydrogen storage alloy used for a negative electrode
After nickel, cobalt, aluminum and manganese are weighed in an element ratio of 1.0: 3.2: 1.0: 0.2: 0.6, they are melted and cast in a high frequency induction furnace. This makes M
A hydrogen storage alloy having a composition of mNi 3.2 CoAl 0.2 Mn 0.6 is obtained.

【0017】この合金を機械的に粉砕して、合金重量に
対してポリエチレンオキサイド1.0重量%と、分散媒
としての水とを混合してスラリー状にした。このスラリ
ーをニッケル鍍金を施したパンチングメタルからなる導
電性支持体に塗布、乾燥した後、所定厚みに加圧し切断
して、2枚の負極を負極の導電性支持体の露出部によっ
て接続した水素吸蔵合金負極を作製した。
This alloy was mechanically pulverized and mixed with 1.0% by weight of polyethylene oxide based on the weight of the alloy and water as a dispersion medium to form a slurry. This slurry was applied to a conductive support made of punched metal plated with nickel and dried, and then pressed and cut to a predetermined thickness, and two negative electrodes were connected by exposed portions of the conductive support of the negative electrode. A storage alloy negative electrode was produced.

【0018】図1は、前記負極1、1間を接続する導電
性支持体の露出部2に無孔性のニッケルシート3を溶接
してなる負極構造体の斜視図、図2は、この負極構造体
を用いて作製した本発明電池Aの断面図である。
FIG. 1 is a perspective view of a negative electrode structure obtained by welding a non-porous nickel sheet 3 to an exposed portion 2 of a conductive support that connects the negative electrodes 1 and 1. FIG. FIG. 3 is a cross-sectional view of a battery A of the present invention manufactured using a structure.

【0019】図中、4は水酸化ニッケルを活物質とする
平板状の正極であり、この正極3枚と前記負極構造体2
組(負極4枚)とを組み合わせ、これら正負極4、1の
間にセパレータ5を介在させて積層して電極体が構成さ
れている。6は鉄にニッケル鍍金を施した角形の外装缶
であり、この外装缶は負極端子を兼用している。そし
て、前記外装缶6内には、前記電極体が挿入され、前記
ニッケルシート3は負極1と外装缶6の内面との間に圧
接状態で配されている。 [実施例2]前記実施例1おいて、前記無孔性のニッケ
ルシート3に代えてニッケル金網を用い、その他は前記
実施例1と同様にして電池を構成し、この電池を本発明
電池Bとする。 [比較例]前記実施例1おいて、負極の導電性支持体の
露出部2にニッケルシート3を接続せず、電極体の外面
に位置する負極を、金属製外装缶に直接圧接して電池を
構成し、この電池を比較電池Cとする。
In the figure, reference numeral 4 denotes a plate-shaped positive electrode having nickel hydroxide as an active material, and three positive electrodes and the negative electrode structure 2
A combination (four negative electrodes) is combined, and a separator 5 is interposed between the positive and negative electrodes 4 and 1 to form an electrode assembly. Reference numeral 6 denotes a square outer can made of nickel plated with iron, which also serves as a negative electrode terminal. Then, the electrode body is inserted into the outer can 6, and the nickel sheet 3 is arranged between the negative electrode 1 and the inner surface of the outer can 6 in a pressure contact state. [Example 2] In Example 1, a nickel wire mesh was used in place of the non-porous nickel sheet 3, and a battery was constructed in the same manner as in Example 1 except for the above. And Comparative Example In the above-described Example 1, the nickel sheet 3 was not connected to the exposed portion 2 of the conductive support of the negative electrode, and the negative electrode located on the outer surface of the electrode body was directly pressure-contacted with the metal outer can to make the battery. And this battery is referred to as comparative battery C.

【0020】前記本発明電池Aと比較電池Cを、夫々1
00mAの電流で15時間充電した後、2Aの電流で放電
し、その放電容量と放電電圧を測定した。図5はこの結
果を示す図面であり、放電容量は本発明電池Aの放電容
量を100%として示している。
The battery A of the present invention and the comparative battery C were respectively
After being charged with a current of 00 mA for 15 hours, it was discharged with a current of 2 A, and its discharge capacity and discharge voltage were measured. FIG. 5 is a drawing showing this result, and the discharge capacity is shown assuming that the discharge capacity of the battery A of the present invention is 100%.

【0021】図5より、本発明電池Aは比較電池Cに比
べて、放電容量が向上し、作動電圧も高くなっているこ
とがわかる。これは、本発明電池が負極の集電を、負極
に電気的に接続したニッケルシートと、負極端子を兼用
する金属製外装缶の内面との接触によって行っており、
導電性が良好なニッケルシートと金属製外装缶が面と面
とで接触していることから、これらの間の接触抵抗が小
さくなるのに対し、比較電池では、絶縁性のポリエチレ
ンオキサイドからなる増粘剤によって水素吸蔵合金を結
着した負極表面と金属製外装缶とを接触して集電してお
り、ニッケルシートに比べると負極表面は導電性が低
く、集電部における接触抵抗が大きくなっているためと
考えられる。
It can be seen from FIG. 5 that the battery A of the present invention has a higher discharge capacity and a higher operating voltage than the comparative battery C. The battery of the present invention collects the negative electrode by contacting the nickel sheet electrically connected to the negative electrode and the inner surface of the metal outer can that also serves as the negative electrode terminal,
Since the nickel sheet, which has good conductivity, and the metal outer can are in face-to-face contact, the contact resistance between them is small, whereas the comparative battery is made of the insulating polyethylene oxide. Current is collected by contacting the surface of the negative electrode, which is bound with a hydrogen storage alloy with a sticker, and the metal outer can.The negative electrode surface has lower conductivity than the nickel sheet, and the contact resistance in the current collecting part is large. It is thought to be because

【0022】また、前記本発明電池A及びBと比較電池
Cを、夫々100mAの電流で15時間充電した後、2A
の電流で放電し、電池電圧が1.0Vになった時点で放
電を停止する条件で、充放電サイクルを繰り返した時の
サイクル特性を図6に示す。尚、図中、放電容量は本発
明電池Aのサイクル初期の放電容量を100%として示
している。
Also, the batteries A and B of the present invention and the comparative battery C were charged at a current of 100 mA for 15 hours, respectively, and then 2 A.
FIG. 6 shows the cycle characteristics when the charge / discharge cycle is repeated under the condition that the battery is discharged with the current and the discharge is stopped when the battery voltage becomes 1.0V. In the figure, the discharge capacity is shown assuming that the discharge capacity of the battery A of the present invention at the beginning of the cycle is 100%.

【0023】図6から明らかなように、本発明電池A及
びBは比較電池Cに比べてサイクル寿命が向上してい
る。これは、充放電による負極の形状変形、及び水素吸
蔵合金から溶出した希土類元素による絶縁膜の形成に起
因していると考えられる。
As is apparent from FIG. 6, the batteries A and B of the present invention have a longer cycle life than the comparative battery C. It is considered that this is due to the shape deformation of the negative electrode due to charge and discharge and the formation of the insulating film by the rare earth element eluted from the hydrogen storage alloy.

【0024】比較電池Cでは、負極と金属製外装缶を直
接接触させることにより集電しているため、負極表面の
形状変形によって集電性が低下するが、本発明電池A及
びBではニッケルシート及びニッケル金網と金属製外装
缶を接触させることにより集電を行っているため、負極
が形状変形してもニッケルシートまたはニッケル金網と
金属製外装缶との間の集電効果が低下しない。
In the comparative battery C, current is collected by directly contacting the negative electrode and the metal outer can, and therefore the current collecting property is deteriorated due to the shape deformation of the negative electrode surface. However, in the batteries A and B of the present invention, the nickel sheet is used. Since the current is collected by bringing the nickel wire mesh and the metal outer can into contact with each other, the current collecting effect between the nickel sheet or the nickel wire mesh and the metal outer can is not deteriorated even when the shape of the negative electrode is deformed.

【0025】また、充放電サイクルが経過するにつれ
て、負極の水素吸蔵合金を構成するLaなどの希土類元
素が電解液に溶出し、絶縁性の化合物となって膜を形成
するようになるが、比較電池Cでは、この絶縁膜が負極
と金属製外装缶の間に形成するため、集電性が低下する
のに対して、本発明電池A及びBでは、ニッケルシート
またはニッケル金網と金属製外装缶との間には絶縁膜が
形成されないため、これらの間の集電性が良好に保たれ
る。
Further, as the charge / discharge cycle elapses, rare earth elements such as La constituting the hydrogen storage alloy of the negative electrode are eluted into the electrolytic solution to form an insulating compound and form a film. In Battery C, since this insulating film is formed between the negative electrode and the metal outer can, the current collection performance is reduced, whereas in the batteries A and B of the present invention, the nickel sheet or the nickel wire mesh and the metal outer can are used. Since an insulating film is not formed between and, good current collection between them can be maintained.

【0026】次いで、電池の長期保存による電池内部抵
抗の変化について調べた結果を図7に示す。試験方法
は、前記本発明電池Aと比較電池Cを、夫々100mAの
電流で15時間充電した後、2Aの電流で電池電圧が
1.0Vになるまで放電し、この電池を40℃雰囲気で
放置して電池の内部抵抗を測定するものである。
Next, FIG. 7 shows the results of examining changes in the internal resistance of the battery due to long-term storage of the battery. The test method is as follows. The battery A of the present invention and the comparative battery C were charged at a current of 100 mA for 15 hours, then discharged at a current of 2 A until the battery voltage became 1.0 V, and the batteries were left in an atmosphere of 40 ° C. Then, the internal resistance of the battery is measured.

【0027】図7より、比較電池Cは放置期間が1カ月
位から電池内部抵抗が大きく増加するのに対し、本発明
電池Aは3カ月放置しても電池内部抵抗の増加はほとん
ど見られない。この点に関しても、前述同様水素吸蔵合
金から溶出した希土類元素による絶縁膜の形成に起因し
ていると考えられる。 [実施例3]前記実施例1おいて、前記無孔性のニッケ
ルシート3に代えて発泡ニッケルからなる金属多孔板を
用い、その他は前記実施例1と同様にして電池を構成
し、この電池を本発明電池Dとする。
From FIG. 7, it can be seen that the comparative battery C has a large increase in the internal resistance of the battery starting from about one month, whereas the battery A of the present invention shows almost no increase in the internal resistance of the battery even after being left for 3 months. .. It is considered that this point is also due to the formation of the insulating film by the rare earth element eluted from the hydrogen storage alloy as described above. [Example 3] In Example 1, a battery was constructed in the same manner as in Example 1 except that a metal porous plate made of foamed nickel was used in place of the non-porous nickel sheet 3, and this battery was used. Is referred to as Battery D of the invention.

【0028】前記本発明電池A、B及びDと比較電池C
を夫々、2Aの電流で充電した時の電池内部圧力を測定
し、この結果を図8に示す。また、前記本発明電池A及
びBを100mAの電流で充電した時の電池内部圧力を測
定し、この結果を図9に示す。
Inventive batteries A, B and D and comparative battery C
The internal pressures of the batteries were measured when they were charged with a current of 2 A, and the results are shown in FIG. Further, the internal pressure of the battery when the batteries A and B of the present invention were charged with a current of 100 mA was measured, and the result is shown in FIG.

【0029】図8から、電極体の外面の負極と外装缶と
の間に金属多孔板を介在させた本発明電池B及びDは、
電池内部圧力を低く抑えることができていることがわか
る。これに対して、前記金属シートとして無孔性のもの
を用いた本発明電池A及び比較電池Cは、充電時間が2
0分を越えると急激な電池内部圧力の上昇が生じてい
る。
From FIG. 8, batteries B and D of the present invention in which a porous metal plate was interposed between the negative electrode on the outer surface of the electrode body and the outer can were
It can be seen that the internal pressure of the battery can be kept low. On the other hand, the battery A of the present invention and the comparative battery C using the non-porous metal sheet had a charging time of 2
When the time exceeds 0 minutes, the battery internal pressure rapidly increases.

【0030】これは、本発明電池B及びDでは、過充電
時に正極から発生した酸素ガスが、電極体の外面と外装
缶との間に介在する金属多孔板内を通過して、電極体の
外面の負極に容易に到達して消費されるため、酸素ガス
消費能力が高まり、電池内部圧力が低く抑えられたもの
と考えられる。これに対して、本発明電池A及び比較電
池Cでは、電極体と無孔性金属シートまたは外装缶との
間の僅かな隙間を酸素ガスが通過しなければ、電極体の
外面に位置する負極で酸素ガスを消費することができ
ず、十分な酸素ガス消費反応が行われなかったため、電
池内部圧力が過充電時に急激に上昇したものと考えられ
る。
This is because in the batteries B and D of the present invention, the oxygen gas generated from the positive electrode during overcharge passes through the inside of the metal porous plate interposed between the outer surface of the electrode body and the outer can, and It is considered that since the negative electrode on the outer surface was easily reached and consumed, the oxygen gas consumption capacity was increased and the internal pressure of the battery was kept low. On the other hand, in the battery A of the present invention and the comparative battery C, the negative electrode located on the outer surface of the electrode body was used unless oxygen gas passed through the slight gap between the electrode body and the non-porous metal sheet or the outer can. It is considered that the internal pressure of the battery increased sharply during overcharging because the oxygen gas could not be consumed and the sufficient oxygen gas consumption reaction was not performed.

【0031】また、図9から、充電電流が比較的小さい
場合には、無孔性の金属シートを用いた本発明電池Aに
おいても、急激な電池内圧力の上昇は見られない。これ
は、電池内における酸素ガス消費能力に比較して、電池
内の酸素ガス発生速度が図8に示した2Aの電流で充電
した場合ほど速くないためであり、低電流での充電で
は、無孔性の金属シートを用いても十分使用可能であ
る。 [実施例4]負極として図3に示すように、負極の導電
性支持体の延長部7を無孔性の金属シートで構成し、こ
の金属シートを負極1の一側面を覆うように延出したも
のを用い、図4に示すように、この負極1と正極4とを
1枚ずつ用いて組み合わせ、その他は前記実施例1と同
様にして本発明電池Eを作製した。尚、実施例1と同一
構成物には同一の番号を付与した。
From FIG. 9, when the charging current is relatively small, the battery A of the present invention using the non-porous metal sheet does not show a sharp increase in the battery pressure. This is because the oxygen gas generation rate in the battery is not as fast as that in the case of charging with the current of 2A shown in FIG. Even if a porous metal sheet is used, it can be sufficiently used. [Example 4] As a negative electrode, as shown in Fig. 3, the extension 7 of the conductive support of the negative electrode was made of a non-porous metal sheet, and this metal sheet was extended so as to cover one side surface of the negative electrode 1. As shown in FIG. 4, a battery E of the present invention was produced in the same manner as in Example 1 except that the negative electrode 1 and the positive electrode 4 were used one by one and combined. The same components as in Example 1 were assigned the same numbers.

【0032】前記本発明電池Eも他の本発明電池と同様
に、放電電圧、サイクル特性及び放置後の電池内部抵抗
の何れも優れた特性を示すことが確認された。
It has been confirmed that the battery E of the present invention exhibits excellent characteristics in terms of discharge voltage, cycle characteristics and internal resistance of the battery after being left, like the other batteries of the present invention.

【0033】[0033]

【発明の効果】本発明の角形金属水素化物蓄電池は、負
極の導電性支持体の延長部または導電性支持体に電気的
に接続した金属シートを、金属製外装缶に対向する負極
と金属製外装缶との間に介挿させ、前記導電性支持体の
延長部または金属シートを金属製外装缶に電気接続した
ものであるので、電極体を金属製外装缶に挿入する際
に、前記延長部または金属シートが前記負極表面に露出
し、負極の主構成物質である水素吸蔵合金が直接金属外
装缶に接触することがなく、水素吸蔵合金が負極から脱
落することを抑制できる。また、負極の水素吸蔵合金が
一部溶出して絶縁膜を形成しても、この膜は前記延長部
または金属シートの負極に対向する面に形成され、前記
延長部または金属シートと金属製外装缶との間の電気的
な接続を阻害しないため、負極の集電性を良好に保つこ
とが可能である。
According to the prismatic metal hydride storage battery of the present invention, a metal sheet electrically connected to an extension of the conductive support of the negative electrode or to the conductive support is provided with the negative electrode facing the metal outer can and the metal sheet. Since it is inserted between the outer can and the electrically conductive support is extended and the metal sheet is electrically connected to the metal outer can, the extension when inserting the electrode body into the metal outer can. The metal or metal sheet is exposed on the surface of the negative electrode, and the hydrogen storage alloy, which is the main constituent of the negative electrode, does not come into direct contact with the metal outer can, and the hydrogen storage alloy can be prevented from falling off from the negative electrode. Even if the hydrogen storage alloy of the negative electrode is partially eluted to form an insulating film, this film is formed on the surface of the extension portion or the metal sheet facing the negative electrode, and the extension portion or the metal sheet and the metal outer casing are formed. Since it does not hinder the electrical connection with the can, it is possible to maintain good current collecting performance of the negative electrode.

【0034】また、前記負極と金属製外装缶との間に介
挿させる導電性支持体の延長部または金属シートとして
金属多孔板を用いることにより、酸素ガス消費能力が向
上し、急速充電が可能となる。
By using a porous metal plate as an extension of the conductive support or a metal sheet inserted between the negative electrode and the metal outer can, oxygen gas consumption capacity is improved and rapid charging is possible. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の電池に用いた負極構造体の
斜視図である。
FIG. 1 is a perspective view of a negative electrode structure used in a battery according to an embodiment of the present invention.

【図2】本発明の一実施例の電池の断面図である。FIG. 2 is a sectional view of a battery according to an embodiment of the present invention.

【図3】本発明の他実施例の電池に用いた負極構造体の
斜視図である。
FIG. 3 is a perspective view of a negative electrode structure used in a battery of another example of the present invention.

【図4】本発明の他実施例の電池の断面図である。FIG. 4 is a cross-sectional view of a battery according to another embodiment of the present invention.

【図5】電池の放電特性図である。FIG. 5 is a discharge characteristic diagram of a battery.

【図6】電池のサイクル特性図である。FIG. 6 is a cycle characteristic diagram of a battery.

【図7】放置後の電池の内部抵抗を示す図面である。FIG. 7 is a diagram showing internal resistance of a battery after being left unattended.

【図8】2Aの電流で充電した時の電池内部圧力を示す
図面である。
FIG. 8 is a diagram showing the internal pressure of a battery when charged with a current of 2A.

【図9】100mAの電流で充電した時の電池内部圧力を
示す図面である。
FIG. 9 is a drawing showing the internal pressure of a battery when charged with a current of 100 mA.

【符号の説明】[Explanation of symbols]

1 負極 2 導電性支持体の露出部 3 ニッケルシート(金属シート) 4 正極 5 セパレータ 6 金属製外装缶 7 導電性支持体の延長部 1 Negative Electrode 2 Exposed Part of Conductive Support 3 Nickel Sheet (Metal Sheet) 4 Positive Electrode 5 Separator 6 Metallic Outer Can 7 Extended Part of Conductive Support

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 束 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsukasa Ito 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性支持体に水素吸蔵合金を保持させ
た負極と、正極と、この両極間に介在するセパレータと
を積層してなる電極体を、負極端子を兼用する金属製外
装缶に収納してなり、前記電極体の金属製外装缶に対向
する面に負極を配し、前記導電性支持体の延長部または
導電性支持体に電気接続した金属シートを、前記金属製
外装缶に対向する負極と金属製外装缶との間に介挿させ
ると共に、前記導電性支持体の延長部または金属シート
を介して前記負極と金属製外装缶とを電気接続してなる
角形金属水素化物蓄電池。
1. An electrode body comprising a negative electrode having a hydrogen-absorbing alloy held on a conductive support, a positive electrode, and a separator interposed between the both electrodes, and a metal outer can that also serves as a negative electrode terminal. A metal sheet that is housed and has a negative electrode arranged on the surface of the electrode body that faces the metal outer can, and the metal sheet electrically connected to the extension of the conductive support or the conductive support is placed in the metal outer can. A prismatic metal hydride storage battery in which the negative electrode and the metal outer can are electrically connected to each other via an extension of the conductive support or a metal sheet while being inserted between the opposing negative electrode and the metal outer can. ..
【請求項2】 前記負極と金属製外装缶との間に介挿さ
せる導電性支持体の延長部または金属シートが金属多孔
板であることを特徴とする請求項1に記載の角形金属水
素化物蓄電池。
2. The prismatic metal hydride according to claim 1, wherein the extension of the conductive support or the metal sheet interposed between the negative electrode and the metal outer can is a metal porous plate. Storage battery.
JP3316430A 1991-02-06 1991-11-29 Rectangular metal hydride storage battery Pending JPH0547366A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1524991 1991-02-06
JP3-15249 1991-02-06

Publications (1)

Publication Number Publication Date
JPH0547366A true JPH0547366A (en) 1993-02-26

Family

ID=11883582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3316430A Pending JPH0547366A (en) 1991-02-06 1991-11-29 Rectangular metal hydride storage battery

Country Status (1)

Country Link
JP (1) JPH0547366A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637852A1 (en) * 1993-08-04 1995-02-08 Saft America, Inc. Planar metal gas cell
US6103424A (en) * 1997-03-12 2000-08-15 Sanyo Electric Co., Ltd. Rectangular battery
WO2013012085A1 (en) * 2011-07-20 2013-01-24 株式会社Gsユアサ Cylindrically shaped battery
CN112161193A (en) * 2020-09-29 2021-01-01 扬州大学 Hydrogen supply device for analytical instrument

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637852A1 (en) * 1993-08-04 1995-02-08 Saft America, Inc. Planar metal gas cell
US6103424A (en) * 1997-03-12 2000-08-15 Sanyo Electric Co., Ltd. Rectangular battery
KR100310875B1 (en) * 1997-03-12 2002-08-27 산요 덴키 가부시키가이샤 Square battery
WO2013012085A1 (en) * 2011-07-20 2013-01-24 株式会社Gsユアサ Cylindrically shaped battery
CN103688389A (en) * 2011-07-20 2014-03-26 株式会社杰士汤浅国际 Cylindrically shaped battery
JPWO2013012085A1 (en) * 2011-07-20 2015-02-23 株式会社Gsユアサ Cylindrical battery
EP2736098A4 (en) * 2011-07-20 2015-10-28 Gs Yuasa Int Ltd Cylindrically shaped battery
US9722215B2 (en) 2011-07-20 2017-08-01 Gs Yuasa International Ltd. Cylindrical battery
CN112161193A (en) * 2020-09-29 2021-01-01 扬州大学 Hydrogen supply device for analytical instrument

Similar Documents

Publication Publication Date Title
US5611823A (en) Method for fabricating a battery electrode
JP2000021435A (en) Battery
US5708349A (en) Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery
US5744263A (en) Alkaline storage batteries and nickel electrodes having plurality of substrates
WO2002059986A2 (en) Electrode with flag-shaped tap
EP0083763A1 (en) Iron-silver accumulator having a shunt electrode
EP0901179B1 (en) Alkaline storage battery
JPH0547366A (en) Rectangular metal hydride storage battery
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
KR100943751B1 (en) Nickel-metal hydride secondary battery
JP3407979B2 (en) Prismatic sealed battery
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
KR100816817B1 (en) Negative plate for nickel/metal hydride secondary battery and fabrication method thereof
JP2000082491A (en) Nickel-hydrogen secondary battery
JP2001006688A (en) Nickel-hydrogen secondary battery
JP3094033B2 (en) Nickel hydride rechargeable battery
US5656396A (en) Alkaline storage battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JP2000030736A (en) Nickel hydrogen secondary battery
JP2002280057A (en) Alkaline secondary battery
JP2001023605A (en) Manufacture of battery
JPH05263171A (en) Hydrogen-occluding alloy and its electrode as well as hydrogen storage alloy battery
JP2000299123A (en) Nickel-hydrogen secondary battery
KR100777797B1 (en) Method for electrode connection of nickel/metal hydryde storage battery
JP2000030701A (en) Nickel hydrogen secondary battery