JPS5931177B2 - Zinc electrode for alkaline storage battery - Google Patents

Zinc electrode for alkaline storage battery

Info

Publication number
JPS5931177B2
JPS5931177B2 JP51009044A JP904476A JPS5931177B2 JP S5931177 B2 JPS5931177 B2 JP S5931177B2 JP 51009044 A JP51009044 A JP 51009044A JP 904476 A JP904476 A JP 904476A JP S5931177 B2 JPS5931177 B2 JP S5931177B2
Authority
JP
Japan
Prior art keywords
zinc
storage battery
alkaline storage
active material
metal core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51009044A
Other languages
Japanese (ja)
Other versions
JPS5292337A (en
Inventor
保 城上
圀昭 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP51009044A priority Critical patent/JPS5931177B2/en
Publication of JPS5292337A publication Critical patent/JPS5292337A/en
Publication of JPS5931177B2 publication Critical patent/JPS5931177B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本轟明は命−芯体の表面に亜鉛活物質層を設けたアルカ
リ蓄電池用亜鉛極の改良に関レ、特にサィク、!IX特
性と重負荷特性とを向上せしめたもので、る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the improvement of zinc electrodes for alkaline storage batteries in which a zinc active material layer is provided on the surface of a core body, and in particular to the improvement of zinc electrodes for alkaline storage batteries. It has improved IX characteristics and heavy load characteristics.

従来、亜鉛を陰極として用いたアルカリ蓄電池ツ奄*例
えばユツケルー亜鉛蓄電池、銀−亜鉛蓄電池などが開発
されており、その一部は既に実用化されている。
Hitherto, alkaline storage batteries using zinc as a cathode have been developed, such as Yutskele zinc storage batteries and silver-zinc storage batteries, some of which have already been put into practical use.

これらアルカリ蓄電池の陰極はシート状の金属芯体に亜
鉛、酸化亜鉛等を主体とする電極材料を結着剤でシート
状に成形した亜鉛系電極活物質層を圧着したものでめる
。このように金属芯体に亜鉛系電極活物質層を設けた極
板を陰極とするアルカリ蓄電池は、カドミウムを陰極と
するニッケル−カドミウム蓄電池に比べて、作動電圧が
0.2〜0.4V高く性能的に優れているにも拘らず、
放電サイクル寿命が短く重負荷放電特性が悪いため、未
だ実用化されるに至つていない。このように亜鎖奪陰極
として用いたアルカリ蓄電池の放電サイクル寿命が短か
く、重負荷特性が悪い原因は、充電時に陰極か、ら発生
する水素ガスを完全に抑制できないためで、る。即ち亜
鉛陰極はカドミウム陰極に比べて負電位に藝る上、亜鉛
自体の過電圧が低いため水素ガスを発生し易いからでる
る。従つて充電時に水素ガスの発生を防ぐ手段として例
えば陰極の8チ程度を水銀アマルガム化することが提案
されているが、金属芯体を形成する材料の水素ガス発生
に対する過電圧が低り、ため、亜鉛を主体とする電極活
物質層からの水素ガス発生を抑えたとしても、金属芯体
から発生する水素ガスを完全に抑えることができない。
このように金属芯体から発生する水素ガスが、微量であ
つても該芯体に密着して設けられている亜鉛活物質が徐
々に剥離脱絡するため充放電時の電子伝導性が低下し、
この結果蓄電池の放電サイクル寿命を低下させ重負荷物
性を悪くするものである。本発明はかかる点に鑑み種々
研究を行なつた結果、金属芯体の表面に、亜鉛活物質よ
り水素過電圧が大なる導電材料を耐アルカリ性樹脂で結
着した導電性樹脂層を介して、亜鉛系電極活物質層を般
けて、放電サイクル特性と重負荷特性とを向上せしめた
アルカリ蓄電池用亜鉛極を提供することを目的とするも
のである。以下本発明を図面に示す一実施態様に基づい
て詳細に説明する。
The cathode of these alkaline storage batteries is made of a sheet-like metal core with a zinc-based electrode active material layer formed into a sheet shape using a binder and made of an electrode material mainly composed of zinc, zinc oxide, etc., which is bonded to the sheet-like metal core. In this way, an alkaline storage battery whose cathode is an electrode plate with a zinc-based electrode active material layer on a metal core has an operating voltage 0.2 to 0.4 V higher than a nickel-cadmium storage battery whose cathode is cadmium. Despite its superior performance,
It has not yet been put into practical use because of its short discharge cycle life and poor heavy load discharge characteristics. The reason for the short discharge cycle life and poor heavy load characteristics of alkaline storage batteries used as subchain deprived cathodes is that hydrogen gas generated from the cathode during charging cannot be completely suppressed. That is, the zinc cathode has a negative potential compared to the cadmium cathode, and the overvoltage of zinc itself is low, so hydrogen gas is easily generated. Therefore, as a means to prevent the generation of hydrogen gas during charging, it has been proposed to amalgamate about 8 squares of the cathode with mercury, but the overvoltage of the material forming the metal core against hydrogen gas generation is low. Even if hydrogen gas generation is suppressed from the electrode active material layer mainly composed of zinc, hydrogen gas generated from the metal core cannot be completely suppressed.
In this way, even if the amount of hydrogen gas generated from the metal core is small, the zinc active material provided in close contact with the core gradually peels off and entangles, resulting in a decrease in electronic conductivity during charging and discharging. ,
As a result, the discharge cycle life of the storage battery is reduced and the physical properties under heavy load are deteriorated. In view of the above, the present invention has been developed as a result of conducting various studies, and as a result, zinc The object of the present invention is to provide a zinc electrode for an alkaline storage battery that has improved discharge cycle characteristics and heavy load characteristics using a system electrode active material layer. The present invention will be described in detail below based on one embodiment shown in the drawings.

第1図及び第2図において1は亜鉛極で、この亜鉛極1
は銀、銅或はこれら合金の多孔金属板からなる金属芯体
2の表面に、亜鉛活物質より水素過電圧が大なる導電材
料を耐アルカリ性樹脂で結着した導電性樹脂層3を介し
て、シート状の亜鉛系電極活物質層4を設けたものであ
る。なお図において5は銀箔などの電気導電性の優れた
材料からなる導電端子である。また亜鉛、アマルガム化
亜鉛、酸化亜鉛など亜鉛活物質より水素過電圧が大なる
導電材料としては例えばビスマス、銀、インジウム、カ
ドミウム、金属アマルガム化物などの金属粉の他、カー
ボンブラツク、アセチレンブラツク、鱗状黒鉛などの黒
鉛粉でるる。
In Figures 1 and 2, 1 is a zinc electrode, and this zinc electrode 1
A conductive resin layer 3 is formed by bonding a conductive material with a higher hydrogen overvoltage than a zinc active material with an alkali-resistant resin on the surface of a metal core body 2 made of a porous metal plate made of silver, copper, or an alloy thereof. A sheet-like zinc-based electrode active material layer 4 is provided. In the figure, 5 is a conductive terminal made of a material with excellent electrical conductivity such as silver foil. Conductive materials such as zinc, amalgamated zinc, and zinc oxide that have a higher hydrogen overvoltage than zinc active materials include metal powders such as bismuth, silver, indium, cadmium, and metal amalgamates, as well as carbon black, acetylene black, and scaly graphite. Graphite powder such as Ruru.

またこれら導電材粉を結着する耐アルカリ性樹脂として
は例えばポリビニールアルコール、ポリスチレン、エポ
キシ樹脂などがあり、導電材粉と耐アルカリ性樹脂との
混合比率は、樹脂の水溶液濃度が3〜30重量%で、こ
の水溶液10に対して導電材粉1〜10程度の重量比で
混合したものが好ましく、この範囲の下限値未満では水
素ガス発生に対する十分な抑制効果がなく、また上限値
を越えると粘性が高くなり金属芯体の表面に薄い導電性
樹脂層を形成し難くなる。またこの導電性樹脂層3の厚
さは5μ以上であれば良く、特VC.lOOμ程度が好
ましいが、余り厚過ぎると蓄電池の容積が大きくなるの
で好ましくない。上記構成の亜鉛極1は例えば第3図に
示す如きニツケル一亜鉛アルカリ蓄電池の陰極6として
組合てられるものである。このアルカリ蓄電池けニツケ
ル粉を焼結した多孔性焼結基板内にニツケル活物質を充
填して形成した陽極7と前記亜鉛陰極6との間にポリア
ミド樹脂の不織布からなるセパレーター8を挟持せしめ
、これを渦巻状に巻回して円柱状の発電要素9を形成し
、この発電要素9を陰極端子を兼ねる円筒状の金属容器
10内に収納すると共にアルカリ電解液を注入して密封
型のニツケル一亜鉛アルカリ蓄電池を形成したものであ
る。なお図において11は金属容器10の開口部を密封
する絶縁封口板で、この絶縁封口板11の中央部には導
電端子5に接続する陽極端子12が設けられている。
Examples of alkali-resistant resins that bind these conductive material powders include polyvinyl alcohol, polystyrene, and epoxy resins. It is preferable to mix conductive material powder at a weight ratio of 1 to 10 parts per 10 parts of this aqueous solution.If the weight ratio is less than the lower limit of this range, there will be no sufficient suppressing effect on hydrogen gas generation, and if it exceeds the upper limit, the viscosity will increase. becomes high, making it difficult to form a thin conductive resin layer on the surface of the metal core. Further, the thickness of this conductive resin layer 3 may be 5μ or more, and the thickness of the conductive resin layer 3 may be 5μ or more. A thickness of approximately 1OOμ is preferable, but if it is too thick, the volume of the storage battery becomes large, which is not preferable. The zinc electrode 1 having the above structure is used, for example, as the cathode 6 of a nickel-zinc alkaline storage battery as shown in FIG. A separator 8 made of a non-woven fabric of polyamide resin is sandwiched between the anode 7 formed by filling a nickel active material into a porous sintered substrate made of sintered nickel powder for the alkaline storage battery and the zinc cathode 6. is spirally wound to form a cylindrical power generation element 9, and this power generation element 9 is housed in a cylindrical metal container 10 which also serves as a cathode terminal, and an alkaline electrolyte is injected into a sealed nickel-zinc. It forms an alkaline storage battery. In the figure, reference numeral 11 denotes an insulating sealing plate for sealing the opening of the metal container 10, and an anode terminal 12 connected to the conductive terminal 5 is provided in the center of the insulating sealing plate 11.

また13は陰極6と金属容器10とを接続する亜鉛極導
電端子、14は絶縁板である。しかして上記構成のアル
カリ蓄電池において陰極6は、水素過電圧の低い金属芯
体2を、亜鉛より水素過電圧が大きい導電材と耐アルカ
リ樹脂とで形成された導電性樹脂層3で被覆した構造で
あるため、充電時においても、前記金属芯体2からの水
素ガス発生を完全に抑制することができ、この結果導電
性樹脂層3を介して金属芯体2の表面に設けた亜鉛系電
極活物質層4が剥離、脱落することを防止できるもので
ある。
Further, 13 is a zinc electrode conductive terminal that connects the cathode 6 and the metal container 10, and 14 is an insulating plate. In the alkaline storage battery having the above structure, the cathode 6 has a structure in which a metal core 2 with a low hydrogen overvoltage is coated with a conductive resin layer 3 made of a conductive material with a higher hydrogen overvoltage than zinc and an alkali-resistant resin. Therefore, even during charging, hydrogen gas generation from the metal core 2 can be completely suppressed, and as a result, the zinc-based electrode active material provided on the surface of the metal core 2 via the conductive resin layer 3 can be completely suppressed. This can prevent the layer 4 from peeling off or falling off.

次に本発明の具体的な実施例について説明する。Next, specific examples of the present invention will be described.

厚さ0.15mu1幅33龍、長さ165mm銅板に多
数の孔を形成して金属芯体とし、この金属芯体に銀箔か
らなる導電端子を溶着する。次に5重量%のポリビニー
ルアルコール水溶液10m2中に3tの金属ビスマス粉
を分散した耐アルカリ性の樹脂を前記金属芯体の表面に
塗布して厚さ100μの導電性樹脂層を形成する。また
10重量%アマルガム化亜鉛107、酸化亜鉛70r,
水酸化カルシウム10tを十分混合し、含有量20重量
%、のポリテトラフロルエチレン分散液30meで混練
した後、8〜12回ロール圧延を行なつて厚さ0.35
mmの亜鉛系電極活物質層を作成する。この電極活物質
層を導電性樹脂層を形成した前記金属芯体の両面に圧着
して亜鉛陰極を作成する。この亜鉛陰極を、ポリアミド
樹脂からなるセパレーターを介してニツケル陽極と積層
し、第3図に示す如きニツケル一亜鉛アルカリ蓄電池を
作成した。このニツケル一亜鉛アルカリ蓄電池に室温で
300mAの電流を7時間通電して充電を行ない、同電
流で放電電圧が1.0になるまで放電したときの放電容
量が、放充電を繰返し行なつた場合にどのように変化す
るかを測定し、蓄電池のサイクル特性を調べた。その結
果は第4図のグラフに曲線Aで示す通りである。またこ
の蓄電池VC3OOmAの電流で7時間通電して充電を
行ない、しかる後1500mAの電流で放電を行なつて
電圧が1.0になるまでの放電時間を測定し、重負荷特
性を調べた。この測定結果は第5図のグラフに曲線Aで
示す通りである。なお本発明と比較するために、前記実
施例において導電性樹脂層を設けていないニツケル一亜
鉛アルカリ蓄電池を作成し、このサイクル特性と重負荷
特性とを測定し、その結果を第4図及び第5図に夫々曲
線Bで示す。
A large number of holes are formed in a copper plate having a thickness of 0.15 mu, a width of 33 mm, and a length of 165 mm to form a metal core, and a conductive terminal made of silver foil is welded to this metal core. Next, an alkali-resistant resin prepared by dispersing 3 tons of bismuth metal powder in 10 m 2 of a 5% by weight aqueous polyvinyl alcohol solution is applied to the surface of the metal core to form a conductive resin layer with a thickness of 100 μm. Also 10% by weight amalgamated zinc 107, zinc oxide 70r,
After sufficiently mixing 10 tons of calcium hydroxide and kneading with 30 me of a polytetrafluorethylene dispersion having a content of 20% by weight, the mixture was rolled 8 to 12 times to a thickness of 0.35.
A zinc-based electrode active material layer of mm thickness is created. This electrode active material layer is pressure-bonded to both sides of the metal core on which the conductive resin layer is formed, thereby creating a zinc cathode. This zinc cathode was laminated with a nickel anode through a separator made of polyamide resin to produce a nickel-zinc alkaline storage battery as shown in FIG. This nickel-zinc alkaline storage battery is charged by applying a current of 300 mA at room temperature for 7 hours, and the discharge capacity is the same when the discharge voltage is 1.0 after repeated discharging and charging. We measured how the battery's temperature changes and investigated the cycle characteristics of the storage battery. The results are shown by curve A in the graph of FIG. Further, this storage battery was charged by applying current for 7 hours with a current of VC3OOmA, and then discharged with a current of 1500 mA, and the discharge time until the voltage reached 1.0 was measured to examine heavy load characteristics. The results of this measurement are shown by curve A in the graph of FIG. For comparison with the present invention, a nickel-zinc alkaline storage battery without the conductive resin layer was prepared in the above example, and its cycle characteristics and heavy load characteristics were measured, and the results are shown in FIGS. 4 and 4. Each curve is shown as curve B in Fig. 5.

なお上記実施例Vc}いて金属芯体として多孔金属板を
用いたものについて示したが、本発明はこれに限定され
るものではなく、例えば金網、工クズパッドメタルなど
を用いたものでも良い。
Although the above-mentioned Example Vc was shown using a porous metal plate as the metal core, the present invention is not limited to this, and it is also possible to use, for example, a wire mesh, engineered scrap pad metal, or the like.

以上説明した如く、本発明に係るアルカリ蓄電池用亜鉛
極によれば、亜鉛活物質より水素過電圧が大きい導電材
料を耐アルカリ性樹脂で結着した導電性樹脂層を介して
金属芯体の表面にシ一下状に圧延成形した亜鉛系活物質
層を設けた構造であるため、アルカリ電解液中において
充電を行なつても、水素過電圧の小さい金属芯体からの
水素ガスの発生を阻止することができると共に、耐アル
カリ性樹脂の結着性と相俟つて、金属芯体と亜鉛系活物
質層とを長期間にわたつて強固に接合することができる
。従つて充放電サイクルを繰返し行なつても亜鉛活物質
が金属芯体から剥離、脱落することがなく、サイクル寿
命を向上させることができると共に.重負荷特性を大幅
に改善せしめることができるなど顕著な効果を有するこ
とができるものである。図面の簡傘な説明 第1図は本発明に係るアルカリ蓄電池用亜鉛極の一部切
欠した正面図、第2図は第1図の−線に沿う断面図、第
3図はアルカリ蓄電池の断面図、第4図はサイクル特性
を示すグラフ、第5図は重負荷特性を示すグラフである
As explained above, according to the zinc electrode for an alkaline storage battery according to the present invention, a conductive material having a higher hydrogen overvoltage than a zinc active material is bonded to the surface of a metal core via a conductive resin layer bound with an alkali-resistant resin. Because it has a structure with a zinc-based active material layer that is rolled and formed into a single bottom shape, it is possible to prevent the generation of hydrogen gas from the metal core, which has a low hydrogen overvoltage, even when charging is performed in an alkaline electrolyte. In addition, together with the binding properties of the alkali-resistant resin, the metal core and the zinc-based active material layer can be firmly bonded over a long period of time. Therefore, even after repeated charge/discharge cycles, the zinc active material does not peel off or fall off from the metal core, improving cycle life. It can have remarkable effects such as being able to significantly improve heavy load characteristics. Brief explanation of the drawings FIG. 1 is a partially cutaway front view of a zinc electrode for an alkaline storage battery according to the present invention, FIG. 2 is a cross-sectional view taken along the line - in FIG. 1, and FIG. 3 is a cross-section of the alkaline storage battery. 4 is a graph showing cycle characteristics, and FIG. 5 is a graph showing heavy load characteristics.

1・・・亜鉛極、2・・・金属芯体、3・・・導電性樹
脂層、4・I亜鉛系電極活物質層、5・・・導電端子、
6・・・陰極、7・・・陽極、8・・・セパレーター、
9・・・発電要素。
DESCRIPTION OF SYMBOLS 1... Zinc electrode, 2... Metal core, 3... Conductive resin layer, 4-I zinc-based electrode active material layer, 5... Conductive terminal,
6... Cathode, 7... Anode, 8... Separator,
9... Power generation element.

Claims (1)

【特許請求の範囲】[Claims] 1 金属芯体の表面に、亜鉛活物質より水素過電圧が大
なる導電材料を耐アルカリ性樹脂で結着した導電性樹脂
層を介して、亜鉛系電極活物質層を設けたことを特徴と
するアルカリ蓄電池用亜鉛極。
1. An alkaline electrode characterized in that a zinc-based electrode active material layer is provided on the surface of a metal core via a conductive resin layer in which a conductive material having a higher hydrogen overvoltage than a zinc active material is bound with an alkali-resistant resin. Zinc electrode for storage batteries.
JP51009044A 1976-01-30 1976-01-30 Zinc electrode for alkaline storage battery Expired JPS5931177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51009044A JPS5931177B2 (en) 1976-01-30 1976-01-30 Zinc electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51009044A JPS5931177B2 (en) 1976-01-30 1976-01-30 Zinc electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS5292337A JPS5292337A (en) 1977-08-03
JPS5931177B2 true JPS5931177B2 (en) 1984-07-31

Family

ID=11709630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51009044A Expired JPS5931177B2 (en) 1976-01-30 1976-01-30 Zinc electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS5931177B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191959A (en) * 1981-05-22 1982-11-25 Furukawa Battery Co Ltd:The Manufacture of plate for storage battery
JPS58188059A (en) * 1982-04-28 1983-11-02 Meidensha Electric Mfg Co Ltd Negative electrode for secondary battery
JPS616260U (en) * 1984-06-15 1986-01-14 三洋電機株式会社 alkaline zinc storage battery
DE60237021D1 (en) * 2001-09-17 2010-08-26 Kawasaki Heavy Ind Ltd ACTIVE MATERIAL FOR CELLS AND METHOD FOR THE PRODUCTION THEREOF
JP6347321B2 (en) * 2014-04-28 2018-06-27 日産自動車株式会社 Negative electrode structure, air battery using the same, and method of manufacturing negative electrode structure

Also Published As

Publication number Publication date
JPS5292337A (en) 1977-08-03

Similar Documents

Publication Publication Date Title
JP4617105B2 (en) Coin-type all-solid-state battery
JP3387158B2 (en) Zinc plate
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPS5937667A (en) Metal oxide-hydrogen battery
JPH1186898A (en) Alkaline storage battery
JP4836351B2 (en) Electrode plate for alkaline storage battery and alkaline storage battery using the same
JP3411365B2 (en) Negative electrode active material containing Ga as main component and secondary battery using the same
JPH1021897A (en) Secondary battery electrode
JP2989877B2 (en) Nickel hydride rechargeable battery
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
US3600226A (en) Method for making cadmium electrodes for nickel-cadmium cells
JPH0763004B2 (en) Sealed alkaline storage battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
JPS5832362A (en) Alkaline zinc secondary battery
JPH0935718A (en) Alkaline secondary battery
JP2848465B2 (en) Metal-hydrogen alkaline storage battery
JP3387763B2 (en) Manufacturing method of alkaline storage battery
JP3004241B2 (en) Hydrogen battery
JPH04248268A (en) Electrode of battery
JPS5931178B2 (en) alkaline storage battery
JPH0251874A (en) Alkaline zinc lead-acid battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP3267156B2 (en) Nickel hydride rechargeable battery