JPS61208755A - Pasted negative cadmium plate for sealed alkaline storage battery - Google Patents

Pasted negative cadmium plate for sealed alkaline storage battery

Info

Publication number
JPS61208755A
JPS61208755A JP60049763A JP4976385A JPS61208755A JP S61208755 A JPS61208755 A JP S61208755A JP 60049763 A JP60049763 A JP 60049763A JP 4976385 A JP4976385 A JP 4976385A JP S61208755 A JPS61208755 A JP S61208755A
Authority
JP
Japan
Prior art keywords
active material
material layer
layer
conductive
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60049763A
Other languages
Japanese (ja)
Other versions
JPH0568828B2 (en
Inventor
Masao Ichiba
市場 正夫
Tsukane Ito
伊藤 束
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60049763A priority Critical patent/JPS61208755A/en
Publication of JPS61208755A publication Critical patent/JPS61208755A/en
Publication of JPH0568828B2 publication Critical patent/JPH0568828B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the ability of a pasted negative cadmium plat to absorb oxygen by mixing carbon particles into the active material layer and coating the active material layer with a thin conductive layer principally composed of carbon particles. CONSTITUTION:A mixture principally composed of an active material such as metallic Cd, CdO or Cd(OH)2 is applied to a conductive core to form a paint film used as the active material layer. Carbon particles are dispersed in the active material layer and its surface is coated with a thin conductive layer principally composed of carbon particles. Due to the above thin layer formed on the active material layer, highly conductive metallic Cd is deposited near the conductive core during charging. The thin layer and the core are connected electrically by excess metallic Cd and metallic Cd is deposited rapidly on the surface of the negative plate which easily becomes in contact with oxygen produced from a positive plate. As a result, oxygen can be chemically consumed and the thin layer can electrochemically consume oxygen, thereby increasing the ability of the negative plate to absorb oxygen.

Description

【発明の詳細な説明】 (1)  産業上の利用分野 本発明は酸素ガス吸収能力の向上及び充電時に於ける水
素ガス発生の抑制を行なった密閉型アルカリ蓄電他用ペ
ースト式カドミウム陰極板に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Industrial Application The present invention relates to a paste-type cadmium cathode plate for use in sealed alkaline power storage, etc., which improves oxygen gas absorption ability and suppresses hydrogen gas generation during charging.

(ロ)従来の技術 ペースト式カドミウム陰極板に、焼結式力ドミ−ラム陰
極板に比し製造工程が簡単で8v、製造コストが安く、
高エネルギー密度が得られる等擾れ九利点を有する反面
、極板の電子伝導性に劣るため過充電にエリ陽極板から
発生する酸素ガスの吸収能力が悪く、密閉型電池に使用
すると内部ガス圧が上外し易いという欠点があっ友。こ
のカドミウム陰極板による酸素ガス吸収反応は次式で示
される。
(b) Compared to the conventional paste-type cadmium cathode plate, the manufacturing process is simpler, 8V, and the manufacturing cost is lower than that of the sintered-type force dolum cathode plate.
Although it has the advantage of obtaining high energy density, the electron conductivity of the electrode plate is poor, so the ability to absorb oxygen gas generated from the anode plate during overcharging is poor, and when used in a sealed battery, the internal gas pressure The disadvantage is that it is easy to put it on and take it off. The oxygen gas absorption reaction by this cadmium cathode plate is expressed by the following equation.

Cd+hOz+H20−CdtOH)z−111つ萱り
気、液、固6相界面における反応であり。
Cd+hOz+H20-CdtOH)z-11 This is a reaction at the interface of six phases: air, liquid, and solid.

金属カドミウムと酸素ガスが多く接触する程反応は活発
である。焼結式極板では基体となるニールケル焼結体の
導電マトリックスが存在する九め充電反応はこの導電マ
トリックスを通して極板全体に均一に進行し、i板表面
近傍にも金属カドミウムが生成し易い。ところがペース
ト式極板は活物質1@の導電性が低く、充電反応は芯体
近傍から極板表面に向って徐々に進行するため、金員カ
ドミウムは導電芯体から離れ友極板表面近傍に生成され
難くなっている。したがって、a!素ガスは通気性の悪
い極板表面層全通過して初めて吸収されることになり、
酸素ガス吸収能力が低くなる。
The more the metal cadmium and oxygen gas come into contact, the more active the reaction is. In the case of a sintered electrode plate, a conductive matrix of Niel-Kel sintered body as a base exists, and the charging reaction proceeds uniformly over the entire electrode plate through this conductive matrix, and metal cadmium is likely to be generated near the surface of the i-plate. However, in paste-type electrode plates, the active material 1@ has low conductivity, and the charging reaction progresses gradually from the vicinity of the core toward the surface of the electrode plate. Therefore, the metal cadmium leaves the conductive core and moves near the surface of the electrode plate. It is becoming harder to generate. Therefore, a! The elementary gas is absorbed only after passing through the entire surface layer of the electrode plate, which has poor air permeability.
Oxygen gas absorption capacity decreases.

特開昭54−109134号公報でに、充電時に陽極板
から発生する酸素が接触し易いペースト式カドミウム陰
極板の表面に、予め金属カドミウム【生成させ、予備充
電量としての金属カドミウムの確保と、酸素ガス吸収能
力の向上?行なうことが提案されている。しかしながら
、陰極板表面に金属カドミウム?生成させる友めには化
成を行なうことが必要であり、この化成にエリ工数及び
設備が大幅に増加する。また、予備充電量としての金属
カドミウムはペースト作與時に金属カドミウム粉末勿直
接混入することにLり確保することができるので化成は
実用的なものとは言えず、更に、陰極板表面に予め生成
させた金属カドミウムは充放電初期に於いて酸素ガス吸
収に役立つものの、充放電?繰り返して行なうと充放電
に関与する工うになり、金属カドミウムが水酸化カドミ
ウムに変化して陰極板の酸素ガス吸収能力を長期にわ之
って維持することができない。
In Japanese Patent Application Laid-Open No. 54-109134, metal cadmium is generated in advance on the surface of a paste-type cadmium cathode plate, which is easily contacted by oxygen generated from the anode plate during charging, and the amount of metal cadmium is secured as a pre-charge amount. Improvement in oxygen gas absorption ability? It is proposed to do so. However, is there metallic cadmium on the surface of the cathode plate? It is necessary to perform chemical conversion to produce the metal, and this chemical conversion significantly increases the number of man-hours and equipment. In addition, metal cadmium as a pre-charge amount can be secured by directly mixing metal cadmium powder when preparing the paste, so chemical formation is not practical. The metal cadmium that has been used for this purpose helps absorb oxygen gas during the early stages of charging and discharging. If this is repeated, it will become involved in charging and discharging, and the metal cadmium will change to cadmium hydroxide, making it impossible to maintain the oxygen gas absorption ability of the cathode plate for a long period of time.

ま九、1tfi極板は満充電となった後過充電がかけら
れると水素発生電位に到達し、水素全発生し始める。即
ちこれは水の電解反応であって次式の反応が起こってい
る。
(9) When the 1TFI electrode plate is overcharged after being fully charged, it reaches the hydrogen generation potential and begins to generate all hydrogen. That is, this is an electrolytic reaction of water, and the following reaction occurs.

2H20+26 −20H+H2?−t21こうして発
生する水素は酸素とは異なり電池内で消費することがで
きないものであり、電池内にX積されていく。このため
水素ガス発生を抑える丸めに一般に陰極容量を陽極容量
工9大きく設定して電池内に組み込み、陰極板が満充電
にならないようにしている。ところが、陰極板としてペ
ースト式カドミウム陰極板?用い、例えばO″Cのよう
に非常に低い温度で充電?した場合には、陰極板は満充
電となる以前に水素ガス七発生する。これはペースト式
カドミウム陰極板は、活物質層の導電性が低く充電時の
電流分布が不均一となジ、まt、0でという低温では陰
極板での充電反応に遅れが生じて、充電がスムーズに進
まなくなる之め、陰極板内の充電反応面に於ける過電圧
が高まり水素ガスが発生し易くなるためと考えられる。
2H20+26 -20H+H2? -t21 Unlike oxygen, the hydrogen thus generated cannot be consumed within the battery, and is accumulated in the battery. For this reason, in order to suppress the generation of hydrogen gas, the cathode capacity is generally set to a large anode capacity 9 and incorporated into the battery to prevent the cathode plate from becoming fully charged. However, is it a paste-type cadmium cathode plate? For example, if the cathode plate is charged at a very low temperature such as O''C, hydrogen gas will be generated before the cathode plate is fully charged.This is because the paste-type cadmium cathode plate is The charging reaction inside the cathode plate is delayed and the charging reaction inside the cathode plate is delayed at low temperatures such as zero, and the charging reaction inside the cathode plate is delayed. This is thought to be because the overvoltage on the surface increases and hydrogen gas is more likely to be generated.

シ九カって、ペースト式カドミウム陰極板全備え次電池
は、特に低温では用いることができず2使用範囲が限定
されてい比。
However, a paste-type rechargeable battery with a complete cadmium cathode plate cannot be used particularly at low temperatures, and its range of use is limited.

el  発明が解決しようとする問題点本発明はペース
ト式カドミウム陰極板に於ける酸素ガス吸収能力を向上
させると共に低温充電時の水素カス発生上押えることに
エリ、この種陰極板を用い友電池の使用範囲上拡大しよ
うとするものである。
el Problems to be Solved by the Invention The present invention aims to improve the oxygen gas absorption capacity of a paste-type cadmium cathode plate and to suppress the generation of hydrogen scum during low-temperature charging. The aim is to expand the scope of use.

に)問題点を解決するための手段 本発明のペースト式カドミウム陰極板に、導電芯体に塗
着形成してなる金属カドミウム、酸化カドミウムま友は
水酸化カドミウムなどの活物質全主体とする活物質層の
内部に、アセチレンブラックまたは黒鉛などの炭素粉末
を混入すると共に。
(b) Means for solving the problem The paste-type cadmium cathode plate of the present invention is made of metal cadmium or cadmium oxide formed by coating on a conductive core. Along with mixing carbon powder such as acetylene black or graphite inside the material layer.

前記活物質層の表面に炭素粉末?主成分とする導電性薄
層を形成させたものである。
Carbon powder on the surface of the active material layer? A conductive thin layer is formed as the main component.

(ホ)作 用 ペースト式カドミウム陰極板の活物質層の表面に炭素粉
末からなる導電性の薄層が存在すると、充電に工9導電
芯体近傍から導電性の良好な金属カドミウムが生成して
行き、ある部分に於いて生成し九金喝カドミウムが活物
質層表面の前記導電性薄層に到達すると、導電性薄層と
導電性芯体が充電生成物である金属カドミウムに工って
電気的に接続されて、陽極板から発生する酸素ガスと接
触し易い陰極板表面部分に早期に金属カドミウムが生成
されるので酸素ガスを化学的に消費できると共に、前記
導電性N膚に於いて酸素ガス?電気化学的に消費できる
友め酸素ガス吸収能力が向上する。
(e) Effect If a conductive thin layer made of carbon powder exists on the surface of the active material layer of a paste-type cadmium cathode plate, highly conductive metal cadmium is generated from near the conductive core during charging. When the cadmium produced in a certain area reaches the conductive thin layer on the surface of the active material layer, the conductive thin layer and the conductive core work on the metal cadmium, which is a charged product, and generate electricity. Since metallic cadmium is generated early on the surface of the cathode plate that is easily connected to the oxygen gas generated from the anode plate, the oxygen gas can be chemically consumed, and the oxygen gas? The ability to absorb oxygen gas, which can be consumed electrochemically, is improved.

また、更に活物質ノー内に炭素粉末を混入すると。Moreover, if carbon powder is further mixed into the active material.

活物質層内に炭素粉末による導電マl”J フクスが形
成され、且つ活物質層表面に炭素粉末からなる導電性薄
層が存在するため充電反応点が多くでき。
A conductive layer made of carbon powder is formed in the active material layer, and a conductive thin layer made of carbon powder is present on the surface of the active material layer, so there are many charging reaction points.

充電反応が低温に於いてもスムーズに進行して水素ガス
発生が抑制される。
The charging reaction proceeds smoothly even at low temperatures, and hydrogen gas generation is suppressed.

(へ)実施例 酸化カドミウム粉末と金属カドミウム粉末とアセチレン
ブラック全重量比で90:10:4の割合で混合し1次
いで糊料剤としてのメチルセルロース、補強材としての
ナイロン繊維及び分散媒としての水?加えて混練し、こ
うして得られた混線物音パンチングメタルからなる導電
芯体に塗着。
(F) Example: Cadmium oxide powder, metal cadmium powder, and acetylene black were mixed in a total weight ratio of 90:10:4.Then, methyl cellulose was used as a sizing agent, nylon fiber was used as a reinforcing material, and water was used as a dispersion medium. ? The mixture is then kneaded and applied to a conductive core made of punched metal.

乾燥し、更にその表面にアセチレンブラックとポリビニ
ルアルコール勿5ニアの割合で含有する懸I@液に浸漬
して、活物質層内に炭素粉末?含有し且つ活物質層表面
に炭素粉末を主成分とする導電性湧層奮備えt本発明極
板に’F!7’c。
After drying, the surface is further immersed in a liquid containing acetylene black and polyvinyl alcohol in a proportion of 50% to form carbon powder within the active material layer. The electrode plate of the present invention contains a conductive spring layer mainly composed of carbon powder on the surface of the active material layer. 7'c.

ま之、比較として前記本発明極板に於いて活物質層表面
に炭素粉末からなる導電性薄ノー金形取していない比較
極板A1及び前記本発明画板に於いて活物質層内に炭素
粉末を添加していない比較極板Bf夫々作製した。
As a comparison, there is a comparative electrode plate A1 in which the active material layer is made of carbon powder on the surface of the electrode plate of the present invention without any conductive thin metal molding, and a comparative electrode plate A1 in which the active material layer is not formed with carbon in the electrode plate of the present invention. Comparative electrode plates Bf to which no powder was added were each produced.

次いでこれら極板′に#1極とし夫々焼結式ニッケル陽
極板との間にセパレータ全弁して渦巻状に巻回し電池外
装ケースに組み込み密閉型ニッケルーカドミウム電a?
作展し、0でに於いて10時間率電流(0,IC電流)
で1遍間充電を行ない、充電終了後の電池内部ガス圧(
Total圧)お工びH2分圧を測定し九〇この結果全
上記電池に使用した陰極板に対応させて下表に示す。
Next, the #1 electrode was attached to each of these electrode plates, and a separator was placed between each sintered nickel anode plate, and the separator was wound spirally into a sealed nickel-cadmium battery case.
10 hours rate current at 0 (0, IC current)
After charging the battery for one hour, the internal gas pressure of the battery (
Total pressure) The H2 partial pressure was measured and the results are shown in the table below, corresponding to the cathode plates used in all the above batteries.

(す7cm) 表より明らかなように本発明極板を用いt電池は、比較
極板A及びB−i用い之電池に比べて、電池内部ガス圧
、即ち酸素ガスと水素ガス’Iトータルした圧力及び水
素ガスの分圧が共に低く抑えられていることがわかる。
(7 cm) As is clear from the table, the T battery using the electrode plate of the present invention has a higher internal gas pressure, that is, the total of oxygen gas and hydrogen gas 'I, than the battery using the comparative electrode plates A and B-i. It can be seen that both the pressure and the partial pressure of hydrogen gas are kept low.

この理由?推察するに、本発明極板は活物質層表面の炭
素粉末からなる導電性薄層にエリ酸素ガスと接触し易い
部分に早期に金属カドミウムが生成される友め、陽極板
から発生する酸素ガスの吸収能力が向上し、ま友この導
電性薄層と活物質層内の炭素粉末の存在により充電反応
点が多く充電がスムーズに進行するため、過電圧の上昇
が抑えられ水素ガス発生が抑制され友と考えられる。こ
れに対して、比較極板A及びBは前記活物質層表面の炭
素粉末からなる導電性薄層あるいは前記活物質層内部の
炭素粉末の何れかを持たない友め、^ 尚、前記活物質層表面の導電層を形成する炭素粉末は、
アルカリ電解液中で安定、充放電反応に関与せず電池性
能に何ら悪影響をもたらさない。
The reason for this? Presumably, the electrode plate of the present invention has a conductive thin layer made of carbon powder on the surface of the active material layer, and metal cadmium is generated early in the parts that easily come into contact with oxygen gas, and the oxygen gas generated from the anode plate. Due to the presence of Mayuko's conductive thin layer and the carbon powder in the active material layer, there are many charging reaction points and charging proceeds smoothly, suppressing the rise in overvoltage and suppressing hydrogen gas generation. Considered a friend. On the other hand, comparative plates A and B do not have either the conductive thin layer made of carbon powder on the surface of the active material layer or the carbon powder inside the active material layer. The carbon powder that forms the conductive layer on the surface of the layer is
Stable in alkaline electrolyte, does not participate in charge/discharge reactions and has no adverse effect on battery performance.

水素過電圧の低下による著しい水素ガス発生を引き起こ
さない、廉価であるなどの特徴全能ね備え次ものであり
、該炭素粉末に代えて金属粉末を用いた場合には以下の
問題があり好ましくない。
It has the following characteristics: it does not cause significant hydrogen gas generation due to a reduction in hydrogen overvoltage, it is inexpensive, etc. However, when a metal powder is used in place of the carbon powder, it is not preferred because of the following problems.

■ カドミウムを用い友場合には・導電層としての金属
カドミウムが直接充放電に関与するため、その効果〒持
続することができない。
■ When using cadmium, the effect cannot be sustained because the metal cadmium as a conductive layer is directly involved in charging and discharging.

■ アルミニウム、亜鉛、錫%鉛、銅等を用い次場合に
は、アルカリ電解液中に溶出するため導電層が消失し、
その効果を失う。加えて、亜鉛は伍 充放電反応にエリ陰極表面に針状結晶全形成し1八 池内部矧絡會引き起こし電池寿命の低下金もtら−めげ
≦が勾番ハタルL飛虞シ訃 噛昏鉤lけCu ”” C
u” (i’)反応により電池の自己放電全促進させる
■ When aluminum, zinc, tin% lead, copper, etc. are used, the conductive layer disappears as it dissolves into the alkaline electrolyte.
loses its effect. In addition, zinc completely forms acicular crystals on the surface of the cathode during the charging and discharging reaction, causing internal interactions and reducing battery life. Hook Cu ”” C
The u''(i') reaction promotes the complete self-discharge of the battery.

■ 鉄、ニッケル、コバル)、 白金等に用い友場合に
は、水素過電圧が小さいため過充電時に陰極板エフ著し
い水素ガス発生r引き起こし、密閉化され九電池内部の
糸を破壊するに至る。
■ When used with iron, nickel, cobal), platinum, etc., the hydrogen overvoltage is small, so when overcharged, the cathode plate causes significant hydrogen gas generation, causing the battery to become airtight and destroy the threads inside the battery.

■ 金、銀、その他意出量の少ない金属は、炭素粉末に
比べると非常に高価であり、実用に供することが困難で
ある。
■ Gold, silver, and other metals that are less available are much more expensive than carbon powder, making it difficult to put them into practical use.

■ その他罪金属元素に近い金属や導電性金属酸化物と
呼ばれる物質も、電導度が小さく効果が少ない事、また
に高価である事などにエリ有効ではない。
■ Other sin Metals that are close to metal elements and substances called conductive metal oxides are also not effective because they have low conductivity and little effect, and are also expensive.

一!t、活物質層内に混入させる炭素としては。one! t, as carbon mixed into the active material layer.

繊維状のものも考えられるが、繊維状のものは活物質中
に均一に分散し難く、廼に炭素繊維は炭素粉末エフ高価
なものであるため、粉末状のものが好ましい。
A fibrous material is also possible, but a fibrous material is difficult to disperse uniformly in the active material, and carbon fibers are expensive compared to carbon powder, so a powdered material is preferred.

(ト)発明の効果 本発明の密閉型アルカリ蓄電他用ペースト式カドドミウ
ム陰極板は、導電芯体に塗着形成してなるカドミウム活
物質上生体とする活物質層の内部に炭素粉末全混入する
と共に、前記活物質層の表面に炭素粉末を主成分とする
導電性薄層を形成させたものであり、前記活物質層表面
の導電性薄層の存在にエリ、充電時に活物質層表面近傍
に金属カドミウムが生成し易くなる之め酸素ガス吸収能
力が向上し、また、前記導電性薄層と活物質層内部の炭
素粉末にエフ陰極板の導電性が向上する友め充電がスム
ーズに進行し過電圧が高まることが抑えられ水素ガスの
発生が抑制される。これにエリ、前記陰極板全使用し几
電池は低温充電時に於いても電池内部ガス圧の上昇が低
く抑えられ、電池の使用範囲全拡大することが可能であ
る。
(G) Effects of the Invention The sealed paste-type cadmium cathode plate for use in alkaline power storage, etc. of the present invention has carbon powder completely mixed inside the active material layer formed on the cadmium active material formed by coating on a conductive core. In addition, a conductive thin layer mainly composed of carbon powder is formed on the surface of the active material layer. Since metal cadmium is easily generated, the oxygen gas absorption ability is improved, and the conductivity of the F cathode plate is improved due to the conductive thin layer and the carbon powder inside the active material layer, and charging progresses smoothly. This suppresses the increase in overvoltage and suppresses the generation of hydrogen gas. In addition, in a battery that uses all of the cathode plates, the increase in gas pressure inside the battery can be suppressed to a low level even during low-temperature charging, making it possible to expand the range of use of the battery.

Claims (1)

【特許請求の範囲】[Claims] (1)導電芯体に塗着形成してなるカドミウム活物質を
主体とする活物質層の内部に炭素粉末を混入すると共に
、前記活物質層の表面に炭素粉末を主成分とする導電性
薄層を形成してなる密閉型アルカリ蓄電他用ペースト式
カドミウム陰極板。
(1) Carbon powder is mixed inside an active material layer mainly composed of cadmium active material formed by coating on a conductive core, and a conductive thin film mainly composed of carbon powder is applied to the surface of the active material layer. Paste-type cadmium cathode plate for sealed alkaline power storage and other applications.
JP60049763A 1985-03-13 1985-03-13 Pasted negative cadmium plate for sealed alkaline storage battery Granted JPS61208755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60049763A JPS61208755A (en) 1985-03-13 1985-03-13 Pasted negative cadmium plate for sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60049763A JPS61208755A (en) 1985-03-13 1985-03-13 Pasted negative cadmium plate for sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS61208755A true JPS61208755A (en) 1986-09-17
JPH0568828B2 JPH0568828B2 (en) 1993-09-29

Family

ID=12840211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60049763A Granted JPS61208755A (en) 1985-03-13 1985-03-13 Pasted negative cadmium plate for sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS61208755A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273566A (en) * 1985-09-26 1987-04-04 Shin Kobe Electric Mach Co Ltd Manufacture of anode plate for sealed alkaline storage battery
JPS63158747A (en) * 1986-12-22 1988-07-01 Matsushita Electric Ind Co Ltd Plate type cadmium negative electrode
JPS63202857A (en) * 1987-02-17 1988-08-22 Sanyo Electric Co Ltd Cadmium electrode for alkaline storage battery
JPH03147257A (en) * 1989-10-31 1991-06-24 Shin Kobe Electric Mach Co Ltd Paste type cathode plate for sealed nickel-cadmium storage battery
EP0645832A2 (en) * 1993-08-11 1995-03-29 VARTA Batterie Aktiengesellschaft Negative electrode for gas tight alkaline accumulators, having a gas consuming layer comprising carbon black

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569777A (en) * 1979-07-04 1981-01-31 Suwa Seikosha Kk Liquid crystal display body
JPS5713103A (en) * 1980-06-23 1982-01-23 Meidensha Electric Mfg Co Ltd Wet type finely pulverizing method in manufacture of rare earth element magnet
JPS5772264A (en) * 1980-10-20 1982-05-06 Matsushita Electric Ind Co Ltd Cadmium electrode for alkaline battery and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569777A (en) * 1979-07-04 1981-01-31 Suwa Seikosha Kk Liquid crystal display body
JPS5713103A (en) * 1980-06-23 1982-01-23 Meidensha Electric Mfg Co Ltd Wet type finely pulverizing method in manufacture of rare earth element magnet
JPS5772264A (en) * 1980-10-20 1982-05-06 Matsushita Electric Ind Co Ltd Cadmium electrode for alkaline battery and its manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273566A (en) * 1985-09-26 1987-04-04 Shin Kobe Electric Mach Co Ltd Manufacture of anode plate for sealed alkaline storage battery
JPH0622129B2 (en) * 1985-09-26 1994-03-23 新神戸電機株式会社 Method for manufacturing cathode plate for sealed alkaline storage battery
JPS63158747A (en) * 1986-12-22 1988-07-01 Matsushita Electric Ind Co Ltd Plate type cadmium negative electrode
JPH0555980B2 (en) * 1986-12-22 1993-08-18 Matsushita Electric Ind Co Ltd
JPS63202857A (en) * 1987-02-17 1988-08-22 Sanyo Electric Co Ltd Cadmium electrode for alkaline storage battery
JPH0640489B2 (en) * 1987-02-17 1994-05-25 三洋電機株式会社 Cadmium electrode for alkaline storage battery
JPH03147257A (en) * 1989-10-31 1991-06-24 Shin Kobe Electric Mach Co Ltd Paste type cathode plate for sealed nickel-cadmium storage battery
EP0645832A2 (en) * 1993-08-11 1995-03-29 VARTA Batterie Aktiengesellschaft Negative electrode for gas tight alkaline accumulators, having a gas consuming layer comprising carbon black
EP0645832A3 (en) * 1993-08-11 1995-06-07 Varta Batterie Negative electrode for gas tight alkaline accumulators, having a gas consuming layer comprising carbon black.
CN1065665C (en) * 1993-08-11 2001-05-09 瓦尔达电池股份公司 Negative electrode for gastight alkaline storage batteries which has a carbon black-containing gas-consumption layer

Also Published As

Publication number Publication date
JPH0568828B2 (en) 1993-09-29

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3923157B2 (en) Alkaline storage battery
US3785868A (en) Zinc electrode
JP2001338645A (en) Paste type positive electrode for alkaline battery and nickel hydrogen battery
JPH117948A (en) Nickel-hydrogen battery anode and manufacture thereof
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JP3198891B2 (en) Positive electrode for alkaline storage battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPS624828B2 (en)
JP3461923B2 (en) Negative electrode material for battery and method of manufacturing the same, negative electrode body and secondary battery using the same
JPH0536392A (en) Nickel hydrogen secondary cell module
JPH04109556A (en) Closed-type secondary battery
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery
JP3287386B2 (en) Nickel electrode for alkaline storage battery
JPH0234433B2 (en)
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH09245827A (en) Manufacture of alkaline storage battery
JPH11260359A (en) Alkaline storage battery
JPS59114767A (en) Manufacture of hydrogen electrode
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP2840270B2 (en) Paste type cadmium electrode for alkaline storage battery and method for producing the same
JPS62252072A (en) Manufacture of negative electrode for alkaline storage battery
JPH06124706A (en) Sealed nickel-zinc storage battery
JPH03159064A (en) Nickel-cadmium storage battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery