JPH03159064A - Nickel-cadmium storage battery - Google Patents

Nickel-cadmium storage battery

Info

Publication number
JPH03159064A
JPH03159064A JP1300468A JP30046889A JPH03159064A JP H03159064 A JPH03159064 A JP H03159064A JP 1300468 A JP1300468 A JP 1300468A JP 30046889 A JP30046889 A JP 30046889A JP H03159064 A JPH03159064 A JP H03159064A
Authority
JP
Japan
Prior art keywords
cadmium
negative electrode
battery
active material
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1300468A
Other languages
Japanese (ja)
Other versions
JP2797554B2 (en
Inventor
Hideo Kaiya
英男 海谷
Katsumi Yamashita
山下 勝已
Tetsuyoshi Goto
後藤 哲秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1300468A priority Critical patent/JP2797554B2/en
Publication of JPH03159064A publication Critical patent/JPH03159064A/en
Application granted granted Critical
Publication of JP2797554B2 publication Critical patent/JP2797554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve charging performance and service life characteristics by using a paste cadmium negative electrode with a powder layer of conductive nitride provided on the surface of a cadmium active material. CONSTITUTION:As a cadmium negative electrode, a paste cadmium negative electrode formed with a powder layer of alkaliproof conductive nitride on a cadmium active material applied on a conductive core is used. Thus an advantage of the paste cadmium negative electrode that high energy density can be obtained is utilized as well as improvement in battery charging performance due to improvement of oxygen gas absorption and improvement in service life characteristics due to suppression of crystal growth of the cadmium active material due to charge and discharge are realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルカドミウム蓄電池の改良に関するも
のであり、さらに詳しくは、ニッケルカドミウム蓄電池
に使用されるペースト式カドミウム負極の改良により、
ニッケルカドミウム蓄電池の充電性能、寿命性能の改良
をはかるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in nickel-cadmium storage batteries, and more particularly, improvements in paste-type cadmium negative electrodes used in nickel-cadmium storage batteries.
The aim is to improve the charging performance and life performance of nickel-cadmium storage batteries.

従来の技術 ニッケルカドミウム蓄電池に使用されるカドミウム負極
は、一般に焼結式のものとペースト式のものがある。ペ
ースト式カドミウム負極は、焼結式に比べ製造工程が簡
単であり、高エネルギー密度が得られる等の利点がある
。ペースト式カドミウム負極は、一般に酸化カドミウム
あるいは水酸化カドミウムを主体とし、これにカーボニ
ルニッケル、グラファイト等の導電性粉末、ポリビニル
アルコール、カルボキシメチルセルロース等の結着剤及
び水やエチレングリコール等の溶媒を加え、混練してペ
ーストとし、これをニッケルメッキした開孔鋼板等の導
電性芯材に塗着し、乾燥した後、アルカリ溶液中で化成
することによって製造される。
BACKGROUND OF THE INVENTION Cadmium negative electrodes used in nickel-cadmium storage batteries are generally of a sintered type or a paste type. The paste type cadmium negative electrode has advantages such as a simpler manufacturing process and higher energy density than the sintered type. Paste-type cadmium negative electrodes generally consist of cadmium oxide or hydroxide, to which conductive powders such as carbonyl nickel and graphite, binders such as polyvinyl alcohol and carboxymethyl cellulose, and solvents such as water and ethylene glycol are added. It is manufactured by kneading it into a paste, applying it to a conductive core material such as a nickel-plated perforated steel plate, drying it, and then chemically converting it in an alkaline solution.

前記の化成工程の目的は、活物質材料に用いる酸化カド
ミウム、水酸化カドミウムなどの放電状態のカドミウム
化合物の一部または全部を充電状態の金属カドミウムに
変換し、負極内に予備充電部分を付与することにある。
The purpose of the above chemical conversion step is to convert part or all of the cadmium compound in a discharged state, such as cadmium oxide or cadmium hydroxide, used for the active material into metallic cadmium in a charged state, and to provide a pre-charged portion within the negative electrode. There is a particular thing.

発明が解決しようとする課題 このようにペースト式カドミウム負極は、焼結式に比べ
て製造が容易で、高い容量密度が得られる利点を有する
が、焼結式のような導電性マトリクスが存在しないため
、電池充電時に生成する金属カドミウムの成長が芯材近
傍で起こり、極板表面層まで達しにくい。このため過充
電時に正極から発生する酸素ガスとの反応が効率的に行
われず、密閉形電池に使用すると、電池の内圧が高くな
るという欠点がある。
Problems to be Solved by the Invention As described above, paste-type cadmium negative electrodes have the advantage that they are easier to manufacture and can obtain higher capacity density than sintered-type ones, but unlike sintered-type cadmium negative electrodes, there is no conductive matrix. Therefore, the growth of metallic cadmium produced during battery charging occurs near the core material, making it difficult to reach the surface layer of the electrode plate. For this reason, the reaction with oxygen gas generated from the positive electrode during overcharging does not occur efficiently, and when used in a sealed battery, there is a drawback that the internal pressure of the battery increases.

また、ニッケルカドミウム蓄電池で充放電を繰り返すと
、カドミウム負極のカドミウム活物質は、部分的に溶解
析出反応を起こし、活物質結晶の成長を生じる。この場
合、焼結式のような三次元的な活物質保持体を有しない
ペースト式カドミウム負極では、活物質の結晶成長が、
焼結式に比べて大きく成長した活物質結晶が、セパレー
タを通過して正極に達することによる正負極の短絡によ
る充放電寿命特性が、焼結式負極を用いた場合よりも、
悪いという欠点がある。
Further, when charging and discharging are repeated in a nickel-cadmium storage battery, the cadmium active material of the cadmium negative electrode partially causes a dissolution precipitation reaction, resulting in the growth of active material crystals. In this case, in a paste type cadmium negative electrode that does not have a three-dimensional active material support such as a sintered type, the crystal growth of the active material is
Compared to the sintered type, the active material crystals that have grown larger pass through the separator and reach the positive electrode, resulting in a short circuit between the positive and negative electrodes.
It has the disadvantage of being bad.

本発明は、このようなペースト式カドミウム負極の課題
を解決することにより、充電性能、及び寿命特性が良好
な高エネルギー密度を有するニッケルカドミウム蓄電池
を提供するものである。
The present invention provides a nickel-cadmium storage battery having high energy density and good charging performance and life characteristics by solving the problems of the paste-type cadmium negative electrode.

課題を解決するための手段 本発明は、ニッケルカドミウム蓄電池のカドミウム負極
として導電性芯体上に塗着されたカドミウム活物質上に
、耐アルカリ性の導電性チッ化物層を形成したペースト
式カドミウム負極を用いることにより、高エネルギー密
度が得られるペースト式カドミウム負極の利点を生かす
とともに、その欠点である酸素ガス吸収性の改良による
電池充電性能の改良、及び充放電によるカドミウム活物
質の結晶成長を抑制することにより、寿命特性の改良を
行うものである。
Means for Solving the Problems The present invention uses a paste-type cadmium negative electrode in which an alkali-resistant conductive nitride layer is formed on a cadmium active material coated on a conductive core as a cadmium negative electrode for a nickel-cadmium storage battery. By using this method, we can take advantage of the advantages of paste-type cadmium negative electrodes that can obtain high energy density, and improve battery charging performance by improving oxygen gas absorption, which is a drawback, and suppress crystal growth of cadmium active material during charging and discharging. This improves the life characteristics.

作   用 カドミウム蓄電池、特に密閉形蓄電池では、過充電時に
正極から発生する酸素ガスを負極で効率的に吸収するこ
とが重要である。正極から発生する酸素ガスは、負極に
存在する金属カドミウムと反応して消費されるが、ペー
スト式カドミウム負極では、焼結式のような導電性マト
リクスが存在しないため、電池充電時に生成する金属カ
ドミウムの成長が芯材近傍で起こり、極板表面層まで達
しにくい。このた−め過充電時に正極から発生する酸素
ガスとの反応が効率的に行われず、密閉形電池に使用す
ると、電池の内圧が高くなる。
Function In cadmium storage batteries, especially sealed storage batteries, it is important that the negative electrode efficiently absorbs oxygen gas generated from the positive electrode during overcharging. Oxygen gas generated from the positive electrode is consumed by reacting with the metal cadmium present in the negative electrode, but with paste-type cadmium negative electrodes, there is no conductive matrix like in the sintered type, so the metal cadmium generated during battery charging is consumed. Growth occurs near the core material and is difficult to reach the surface layer of the electrode plate. For this reason, the reaction with oxygen gas generated from the positive electrode during overcharging does not occur efficiently, and when used in a sealed battery, the internal pressure of the battery increases.

このような欠点を改善するため、ペースト式負極の表面
に炭素粉末層を形成し、表面部の導電性を向上すること
が提案されている(特開昭60−63875号公報)。
In order to improve these drawbacks, it has been proposed to form a carbon powder layer on the surface of a paste-type negative electrode to improve the conductivity of the surface portion (Japanese Patent Application Laid-Open No. 60-63875).

負極表面に導電層が存在すると、電池充電時に負極内に
生成する金属カドミウムは、その導電層に沿って極板表
面層に多く生成するようになり、酸素の吸収反応が効率
的に進行する。
When a conductive layer is present on the surface of the negative electrode, a large amount of metal cadmium generated within the negative electrode during battery charging will be generated along the conductive layer on the surface layer of the electrode plate, and the oxygen absorption reaction will proceed efficiently.

本発明では、極板表面に耐アルカリ性の導電性チッ化物
層を形成することにより、極板表面に導電層を付与し、
過充電時の酸素吸収反応を効率的に行うものである。ま
た、負極での酸素吸収は、電気化学的な酸素還元でも進
行するため、酸素還元触媒能の高い物質の存在は、酸素
吸収に対して非常に有効となる。本発明のチツ化物は、
酸素還元に対して触媒としての作用を有するため、金属
カドミウムの極板表面への分布とともに、酸素吸収性を
さらに向上できる。 カドミウム負極の充放電反応は、
一般に次式で表わされる。
In the present invention, a conductive layer is provided on the surface of the electrode plate by forming an alkali-resistant conductive nitride layer on the surface of the electrode plate,
This efficiently performs the oxygen absorption reaction during overcharging. Furthermore, since oxygen absorption at the negative electrode also proceeds through electrochemical oxygen reduction, the presence of a substance with high oxygen reduction catalytic ability is very effective for oxygen absorption. The titanium compound of the present invention is
Since it acts as a catalyst for oxygen reduction, it can further improve the distribution of metal cadmium on the surface of the electrode plate and further improve oxygen absorption. The charge/discharge reaction of cadmium negative electrode is
It is generally expressed by the following formula.

Cd(OH)2+  2e−−→Cd  +  20H
−″しかし、実際は水酸化カドミウムと金属カドミウム
の固相反応ではなく、カドミ酸イオンのような中間体を
経由する溶解析出反応であることが知られており、充放
電の繰り返しにより、活物質結晶の変形や成長を伴う。
Cd(OH)2+ 2e--→Cd+20H
-"However, it is actually known that it is not a solid-state reaction between cadmium hydroxide and metal cadmium, but a solution-deposition reaction via an intermediate such as cadmate ion. Through repeated charging and discharging, active material crystals accompanied by deformation and growth.

このような活物質結晶の成長が、負極外部への成長とし
て進行し、セパレータを通過して正極へ達すると、正負
極の短絡を生じ、電池の充放電が不能となる。
When such active material crystal growth progresses to the outside of the negative electrode and reaches the positive electrode through the separator, a short circuit occurs between the positive and negative electrodes, making it impossible to charge and discharge the battery.

このように、負極活物質が正極まで移行して電池の短絡
を生じる原因には、充放電による負極活物質の成長と、
溶解析出時に生成するコロイド状の負極活物質微粉末の
電気泳動による正極への移動が考えられている。
In this way, the causes of the negative electrode active material migrating to the positive electrode and causing a short circuit in the battery include growth of the negative electrode active material due to charging and discharging,
It is considered that the colloidal negative electrode active material fine powder generated during dissolution deposition is transferred to the positive electrode by electrophoresis.

本発明では、アルカリ中で比較的安定なチッ化物、例え
ばTiN、VN、TaNの粉末層をペースト式カドミウ
ム負極表面に形成することで、カドミウム活物質結晶の
成長を物理的に抑制するものである。
In the present invention, the growth of cadmium active material crystals is physically suppressed by forming a powder layer of a nitride, such as TiN, VN, or TaN, which is relatively stable in alkali, on the surface of a paste-type cadmium negative electrode. .

従って、ペースト式カドミウム負極の表面に耐アルカリ
性、導電性のチン化物粉末層を形成した負極を用いるこ
とにより、ニッケルカドミウム蓄電池の充電性、特に密
閉形での急速充電性と寿命特性が改良され、高エネルギ
ー密度が得られるペースト式カドミウム負極の利点を生
かした高エネルギー密度のニッケルカドミウム蓄電池が
得られる。
Therefore, by using a paste-type cadmium negative electrode with an alkali-resistant and conductive tinide powder layer formed on its surface, the chargeability of the nickel-cadmium storage battery, especially the rapid chargeability and life characteristics of a sealed type, can be improved. A nickel-cadmium storage battery with high energy density can be obtained, taking advantage of the paste-type cadmium negative electrode that can provide high energy density.

実  施  例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

平均粒径約1μmの酸化カドミウム粉末をポリビニルア
ルコールのエチレングリコール溶液で練合してペースト
とし、これをニッケルメツ千した開孔鉄板に塗着し、乾
燥して約0.5關厚の極板とした。次にPVAの1wt
%水溶液に平均粒径約0.5μのチッ化チタン粉末を2
0w【%を分散させた溶液に上記塗着極板を浸漬し、乾
燥して極板表面上に、チッ化チタン層を形成した。
Cadmium oxide powder with an average particle size of about 1 μm was kneaded with a polyvinyl alcohol ethylene glycol solution to make a paste, which was applied to a nickel-plated perforated iron plate and dried to form an electrode plate with a thickness of about 0.5 mm. did. Next, 1wt of PVA
2% titanium nitride powder with an average particle size of about 0.5μ in an aqueous solution.
The coated electrode plate was immersed in a solution in which 0w% was dispersed and dried to form a titanium nitride layer on the surface of the electrode plate.

次に前記塗着極板をアルカリ液中で陰電解することによ
り酸化カドミウムの一部を金属カドミウムに変換し、予
備充電量を付与する化成を行い、水洗乾燥し、この極板
を所定の寸法に切断し、焼結式ニッケル正極と組み合わ
せて公称容量1200mAh相当の密閉型ニッケルカド
ミウム蓄電池(A)を試作した。
Next, a part of the cadmium oxide is converted into metal cadmium by electrolyzing the coated electrode plate in an alkaline solution, a chemical formation is performed to give a precharge amount, and the electrode plate is washed and dried with water to form the electrode plate into a predetermined size. A sealed nickel-cadmium storage battery (A) with a nominal capacity of 1200 mAh was prototyped by cutting it into pieces and combining it with a sintered nickel positive electrode.

また同様な方法で、チッ化チタンの代わりに炭素粉末層
を形成した負極を使用した比較例の電池(B)、また別
の比較例として同様な方法で、極板の表面にチッ化チタ
ン、炭素粉末層等の導電層を一切形成しない従来の負極
を用いた電池(C)を試作した。
In addition, a comparative example battery (B) using a negative electrode with a carbon powder layer formed instead of titanium nitride was prepared using the same method, and another comparative example was prepared using a similar method using titanium nitride on the surface of the electrode plate. A battery (C) was prototyped using a conventional negative electrode without any conductive layer such as a carbon powder layer.

また、電池(A)及び(B)に使用した負極表面のチッ
化チタン粉末層及び炭素粉末層の厚さは、極板断面の電
子顕微鏡での観察によると約5μであった。
Further, the thickness of the titanium nitride powder layer and the carbon powder layer on the surface of the negative electrode used in Batteries (A) and (B) was approximately 5 μm according to observation of the cross section of the electrode plate using an electron microscope.

これらの電池について、負極の酸素ガス吸収性を評価す
るための過充電時の電池内圧試験及び、負極の寿命特性
を評価するための電池充放電サイクル試験を行った。
These batteries were subjected to a battery internal pressure test during overcharging to evaluate the oxygen gas absorbability of the negative electrode, and a battery charge/discharge cycle test to evaluate the life characteristics of the negative electrode.

電池内圧試験は、20℃において、1〜3CmAの電流
で充電した時の電池内ピーク圧力で評価した。サイクル
特性は20℃で1/3C相当の電流で45時間充電し、
I CmA相当の電流を流す抵抗負荷で完全放電を繰返
し、サイクルによる容量劣化で評価した。
The battery internal pressure test was evaluated based on the peak pressure inside the battery when charging with a current of 1 to 3 CmA at 20°C. The cycle characteristics are charged at 20℃ with a current equivalent to 1/3C for 45 hours,
Complete discharge was repeated with a resistive load that caused a current equivalent to I CmA to flow, and the capacity deterioration due to the cycles was evaluated.

第1図は、充電レートと電池内ピーク圧力の関係を示す
図であり、図中の(a)は、本発明の電池(A)の特性
を示し、(b)、(c)は、同様に比較例(B)、(C
)の電池の特性を示す。
FIG. 1 is a diagram showing the relationship between the charging rate and the peak pressure inside the battery, in which (a) shows the characteristics of the battery (A) of the present invention, and (b) and (c) show the same characteristics. Comparative examples (B) and (C
) shows the characteristics of the battery.

本発明による電池は、負極表面に導電性を有するチソ化
チタン粉末層を形成しているため、充電時に金属カドミ
ウムが極板表面に分布しやすいため、負極表面に導電層
を有しない従来の電池(C)に比べ酸素吸収能力が高く
、電池内圧が低くなり、大電流充電、すなわち急速充電
が可能となる。また同様な理由で負極表面に炭素粉末層
で導電性を付与した負極を用いた比較例(B)の電池も
、酸素吸収能力が向上するが、本発明の電池(A)より
も電池内圧がやや高くなるのは、炭素粉末の方が、チッ
化チタン粉末よりも酸素還元に対する触媒効果が低いた
めと考えられる。
Since the battery according to the present invention has a conductive titanium thiodide powder layer formed on the surface of the negative electrode, metal cadmium is likely to be distributed on the surface of the electrode plate during charging. Compared to (C), the oxygen absorption capacity is higher, the internal pressure of the battery is lower, and large current charging, that is, rapid charging is possible. For the same reason, the battery of Comparative Example (B), which uses a negative electrode whose surface is made conductive with a carbon powder layer, also has improved oxygen absorption capacity, but the internal pressure of the battery is lower than that of the battery of the present invention (A). The reason for the slightly higher value is thought to be that carbon powder has a lower catalytic effect on oxygen reduction than titanium nitride powder.

第2図は、1サイクル目の容量を100とした時の容量
維持率と充放電サイクル数との関係を示す。(a)は本
発明による電池(A)の特性、(b)、(C)は同様に
比較例(B)、(C)の電池の特性を示す。
FIG. 2 shows the relationship between the capacity retention rate and the number of charge/discharge cycles when the capacity at the first cycle is 100. (a) shows the characteristics of the battery (A) according to the present invention, and (b) and (C) similarly show the characteristics of the batteries of comparative examples (B) and (C).

本発明による電池(A)及び負極表面に炭素粉末層を設
けた負極を用いた電池(B)は、従来の電池(C)に比
べ大幅に寿命特性が向上している。これは、電池(A)
、(B)の負極表面上のチツ化チタン粉末層あるいは、
炭素粉末層により充放電サイクルによる負極表面からの
活物質の成長が抑制され、正負極の短絡による寿命劣化
が抑制されたためと考えられる。
The battery (A) according to the present invention and the battery (B) using a negative electrode provided with a carbon powder layer on the surface of the negative electrode have significantly improved life characteristics compared to the conventional battery (C). This is the battery (A)
, a titanium titanium powder layer on the negative electrode surface of (B), or
This is thought to be because the carbon powder layer suppressed the growth of the active material from the negative electrode surface during charge/discharge cycles, thereby suppressing life deterioration due to short circuits between the positive and negative electrodes.

次に、チッ化チタン層の適正被膜厚さを検討するために
、実施例(A)と同様な方法で、PVA水溶液中に添加
するチッ化チタン粉末量を変化させ、チッ化チタン層の
厚さを0.5μから30μ程度まで変化させた負極を試
作し、実施例(A)と同様な電池を試作し、電池内圧特
性、及び充放電サイクル寿命試験を行った。下表にその
結果を示す。試験条件は、実施例(A)と同様であり、
表には、30mA充電時の電池ピーク内圧値と、容量維
持率が初期の80%になる時の充放電サイクル数を示し
た。
Next, in order to examine the appropriate film thickness of the titanium nitride layer, the amount of titanium nitride powder added to the PVA aqueous solution was varied in the same manner as in Example (A), and the thickness of the titanium nitride layer was Negative electrodes with varying thicknesses from about 0.5 μm to about 30 μm were produced, and batteries similar to those in Example (A) were produced, and battery internal pressure characteristics and charge/discharge cycle life tests were conducted. The results are shown in the table below. The test conditions are the same as in Example (A),
The table shows the battery peak internal pressure value at 30 mA charging and the number of charge/discharge cycles when the capacity retention rate reaches 80% of the initial value.

以  下  余  白 チッ化チタン粉末層の厚さが1μ以下となると負極板表
面の導電性が低下するとともに、負極の変形及び活物質
の成長を抑制する効果が十分発揮されなくなるため、そ
の厚さの下限は約1μ程度と考えられ、またその厚さが
20μ以上になると逆にサイクル寿命特性が劣化する。
Below Margin If the thickness of the titanium nitride powder layer is less than 1 μm, the conductivity of the surface of the negative electrode plate will decrease and the effect of suppressing the deformation of the negative electrode and the growth of the active material will not be sufficiently exerted. The lower limit of the thickness is thought to be approximately 1 μm, and if the thickness exceeds 20 μm, the cycle life characteristics will deteriorate.

充放電を繰り返すと、負極表面のチッ化チタン粉末層中
にカドミウム活物質が移動し、チッ化チタン層の多孔度
を低下させ、充放電に必要な電解液の移動性を低下させ
る。負極表面のチッ化チタン層の厚さが厚すぎる場合、
充放電の繰り返しによる上記の現象が顕著になり、放電
特性の劣化を起こすものと考えられ、従ってその厚さの
上限は約20μ程度と考えられる。
When charging and discharging are repeated, the cadmium active material moves into the titanium nitride powder layer on the surface of the negative electrode, reducing the porosity of the titanium nitride layer and reducing the mobility of the electrolyte necessary for charging and discharging. If the thickness of the titanium nitride layer on the negative electrode surface is too thick,
It is thought that the above-mentioned phenomenon becomes noticeable due to repeated charging and discharging, causing deterioration of the discharge characteristics, and therefore, the upper limit of the thickness is considered to be about 20 μm.

本実施例では、チッ化チタンについて説明したが、耐ア
ルカリ性と、導電性を有するVN、TaNを用いた場合
あるいは、これらの混合物を用いても、同様な効果が得
られる。使用するチッ化物については、上記のように耐
アルカリ性が良好なものが望ましいが、例えば、ZrN
のように耐アルカリ性がやや劣るものも、寿命特性向上
に対する効果はやや劣るものの、使用は可能である。
Although titanium nitride has been described in this embodiment, similar effects can be obtained by using VN or TaN, which have alkali resistance and conductivity, or by using a mixture thereof. As for the nitride to be used, it is desirable that it has good alkali resistance as mentioned above, but for example, ZrN
Those with slightly inferior alkali resistance, such as , can also be used, although their effect on improving life characteristics is somewhat inferior.

発明の効果 以上のように、本発明によれば、カドミウム負極の簡単
な処理によってニッケルカドミウム蓄電池の性能を大幅
に改良することができる。
Effects of the Invention As described above, according to the present invention, the performance of a nickel-cadmium storage battery can be significantly improved by simple treatment of the cadmium negative electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はニッケルカドミウム蓄電池の充電レートと電池
ピーク内圧との関係を示す図、第2図は容量維持率と充
放電サイクル数との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the charging rate and battery peak internal pressure of a nickel-cadmium storage battery, and FIG. 2 is a diagram showing the relationship between the capacity retention rate and the number of charge/discharge cycles.

Claims (3)

【特許請求の範囲】[Claims] (1)導電性芯体に塗着したカドミウム活物質の表面層
に導電性チッ化物の粉末層を有するペースト式カドミウ
ム負極を用いたことを特徴とするニッケルカドミウム蓄
電池。
(1) A nickel-cadmium storage battery characterized by using a paste-type cadmium negative electrode having a conductive nitride powder layer on the surface layer of a cadmium active material coated on a conductive core.
(2)導電性チッ化物粉末が、TiN、VN、TaNの
うちいずれか1種、あるいはこれらの混合物であること
を特徴とする特許請求の範囲第1項記載のニッケルカド
ミウム蓄電池。
(2) The nickel-cadmium storage battery according to claim 1, wherein the conductive nitride powder is any one of TiN, VN, and TaN, or a mixture thereof.
(3)カドミウム活物質表面層の導電性チッ化物粉末層
の厚さが1〜20μであることを特徴とする特許請求の
範囲第1項又は第2項記載ののニッケルカドミウム蓄電
池。
(3) The nickel-cadmium storage battery according to claim 1 or 2, wherein the conductive nitride powder layer of the cadmium active material surface layer has a thickness of 1 to 20 μm.
JP1300468A 1989-11-17 1989-11-17 Nickel cadmium storage battery Expired - Fee Related JP2797554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1300468A JP2797554B2 (en) 1989-11-17 1989-11-17 Nickel cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300468A JP2797554B2 (en) 1989-11-17 1989-11-17 Nickel cadmium storage battery

Publications (2)

Publication Number Publication Date
JPH03159064A true JPH03159064A (en) 1991-07-09
JP2797554B2 JP2797554B2 (en) 1998-09-17

Family

ID=17885161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300468A Expired - Fee Related JP2797554B2 (en) 1989-11-17 1989-11-17 Nickel cadmium storage battery

Country Status (1)

Country Link
JP (1) JP2797554B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868912A (en) * 1993-11-22 1999-02-09 E. I. Du Pont De Nemours And Company Electrochemical cell having an oxide growth resistant current distributor
EP1137083A2 (en) * 2000-03-21 2001-09-26 Matsushita Electric Industrial Co., Ltd. Non-sintered type positive electrode for alkaline storage battery and alkaline storage battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267958A (en) * 1988-04-19 1989-10-25 Matsushita Electric Ind Co Ltd Cadmium negative electrode for alkaline storage battery and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267958A (en) * 1988-04-19 1989-10-25 Matsushita Electric Ind Co Ltd Cadmium negative electrode for alkaline storage battery and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868912A (en) * 1993-11-22 1999-02-09 E. I. Du Pont De Nemours And Company Electrochemical cell having an oxide growth resistant current distributor
EP1137083A2 (en) * 2000-03-21 2001-09-26 Matsushita Electric Industrial Co., Ltd. Non-sintered type positive electrode for alkaline storage battery and alkaline storage battery
EP1137083A3 (en) * 2000-03-21 2002-07-31 Matsushita Electric Industrial Co., Ltd. Non-sintered type positive electrode for alkaline storage battery and alkaline storage battery
US6573006B2 (en) 2000-03-21 2003-06-03 Matsushita Electric Industrial Co., Ltd. Non-sintered type positive electrode for alkaline storage battery and alkaline storage battery

Also Published As

Publication number Publication date
JP2797554B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
JPH0624148B2 (en) Sealed nickel cadmium storage battery
JP2797554B2 (en) Nickel cadmium storage battery
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP2754800B2 (en) Nickel cadmium storage battery
JPH0568828B2 (en)
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JP3343413B2 (en) Alkaline secondary battery
JPH03159065A (en) Nickel-cadmium storage battery
JPS63126163A (en) Alkaline storage battery
JP2854920B2 (en) Nickel-metal hydride battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JP3118357B2 (en) Non-sintered positive electrode plate for alkaline storage batteries
JPH1040950A (en) Alkaline secondary battery
JPH03192655A (en) Manufacture of paste type cadmium negative electrode
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH03745B2 (en)
JPH0234433B2 (en)
JPS63158750A (en) Zink electrode for alkaline storage battery
JPH09245827A (en) Manufacture of alkaline storage battery
JPH08315812A (en) Nickel electrode for alkaline storage battery
JPH03746B2 (en)
JPH0831316B2 (en) Method for producing paste type cadmium negative electrode
JPH01107452A (en) Manufacture of paste type cadmium negative electrode
JPH0675397B2 (en) Method for producing paste type cadmium negative electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees