JP2797554B2 - Nickel cadmium storage battery - Google Patents

Nickel cadmium storage battery

Info

Publication number
JP2797554B2
JP2797554B2 JP1300468A JP30046889A JP2797554B2 JP 2797554 B2 JP2797554 B2 JP 2797554B2 JP 1300468 A JP1300468 A JP 1300468A JP 30046889 A JP30046889 A JP 30046889A JP 2797554 B2 JP2797554 B2 JP 2797554B2
Authority
JP
Japan
Prior art keywords
cadmium
negative electrode
battery
storage battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1300468A
Other languages
Japanese (ja)
Other versions
JPH03159064A (en
Inventor
英男 海谷
勝已 山下
哲秀 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1300468A priority Critical patent/JP2797554B2/en
Publication of JPH03159064A publication Critical patent/JPH03159064A/en
Application granted granted Critical
Publication of JP2797554B2 publication Critical patent/JP2797554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルカドミウム蓄電池の改良に関する
ものであり、さらに詳しくは、ニッケルカドミウム蓄電
池に使用されるペースト式カドミウム負極の改良によ
り、ニッケルカドミウム蓄電池の充電性能、寿命性能の
改良をはかるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a nickel cadmium storage battery, and more particularly, to a method of charging a nickel cadmium storage battery by improving a paste-type cadmium negative electrode used for the nickel cadmium storage battery. It aims to improve performance and life performance.

従来の技術 ニッケルカドミウム蓄電池に使用されるカドミウム負
極は、一般に焼結式のものとペースト式のものがある。
ペースト式カドミウム負極は、焼結式に比べ製造工程が
簡単であり、高エネルギー密度が得られる等の利点があ
る。ペースト式カドミウム負極は、一般に酸化カドミウ
ムあるいは水酸化カドミウムを主体とし、これにカーボ
ニルニッケル、グラファイト等の導電性粉末、ポリビニ
ルアルコール、カルボキシメチルセルロース等の結着剤
及び水やエチレングリコール等の溶媒を加え、混練して
ペーストとし、これをニッケルメッキした開孔鋼板等の
導電性芯材に塗着し、乾燥した後、アルカリ溶液中で化
成することによって製造される。
2. Description of the Related Art A cadmium negative electrode used in a nickel cadmium storage battery generally includes a sintered type and a paste type.
The paste-type cadmium negative electrode has advantages in that the manufacturing process is simpler than that of the sintering type, and a high energy density can be obtained. Paste type cadmium negative electrode is generally based on cadmium oxide or cadmium hydroxide, conductive powder such as carbonyl nickel, graphite, polyvinyl alcohol, a binder such as carboxymethyl cellulose and a solvent such as water and ethylene glycol, It is manufactured by kneading to form a paste, applying the paste to a conductive core material such as a nickel-plated apertured steel sheet, drying, and then forming it in an alkaline solution.

前記の化成工程の目的は、活物質材料に用いる酸化カ
ドミウム、水酸化カドミウムなどの放電状態のカドミウ
ム化合物の一部または前部を充電状態の金属カドミウム
に変換し、負極内に予備充電部分を付与することにあ
る。
The purpose of the chemical conversion step is to convert a part or the front part of a cadmium compound in a discharged state, such as cadmium oxide or cadmium hydroxide used as an active material, into a charged metal cadmium, and to provide a precharged part in the negative electrode. Is to do.

発明が解決しようとする課題 このようにペースト式カドミウム負極は、焼結式に比
べて製造が容易で、高い容量密度が得られる利点を有す
るが、焼結式のような導電性マトリクスが存在しないた
め、電池充電時に生成する金属カドミウムの成長が芯材
近傍で起こり、極板表面層まで達しにくい。このため過
充電時に正極から発生する酸素ガスとの反応が効率的に
行われず、密閉形電池に使用すると、電池の内圧が高く
なるという欠点がある。
Problems to be Solved by the Invention As described above, the paste-type cadmium negative electrode is easier to manufacture than the sintering method, and has an advantage of obtaining a high capacity density, but does not have a conductive matrix as in the sintering method. Therefore, the growth of metal cadmium generated at the time of battery charging occurs near the core material, and it is difficult to reach the electrode plate surface layer. Therefore, the reaction with oxygen gas generated from the positive electrode at the time of overcharging is not efficiently performed, and when used in a sealed battery, there is a disadvantage that the internal pressure of the battery increases.

また、ニッケルカドミウム蓄電池で充放電を繰り返す
と、カドミウム負極のカドミウム活物質は、部分的に溶
解析出反応を起こし、活物質結晶の成長を生じる。この
場合、焼結式のような三次元的な活物質保持体を有しな
いペースト式カドミウム負極では、活物質の結晶成長
が、焼結式に比べて大きく成長した活物質結晶が、セパ
レータを通過して正極に達することによる正負極の短絡
による充放電寿命特性が、焼結式負極を用いた場合より
も、悪いという欠点がある。
In addition, when charge and discharge are repeated in the nickel cadmium storage battery, the cadmium active material of the cadmium negative electrode partially causes a dissolution / precipitation reaction, thereby causing growth of active material crystals. In this case, in a paste-type cadmium negative electrode having no three-dimensional active material holder as in a sintering method, active material crystals grow larger than in a sintering method, and pass through the separator. There is a drawback that the charge / discharge life characteristics due to the short circuit of the positive and negative electrodes due to reaching the positive electrode by comparison with the case of using the sintered negative electrode are worse.

本発明は、このようなペースト式カドミウム負極の課
題を解決することにより、充電性能、及び寿命特性が良
好な高エネルギー密度を有するニッケルカドミウム蓄電
池を提供するものである。
The present invention provides a nickel cadmium storage battery having high energy density with good charging performance and long life characteristics by solving the problems of such a paste-type cadmium negative electrode.

課題を解決するための手段 本発明は、ニッケルカドミウム蓄電池のカドミウム負
極として導電性芯体上に塗着されたカドミウム活物質上
に、耐アルカリ性のTi,VN,TaNのうちいずれか1種ある
いはこれらの混合物である導電性チッ化物層を形成した
ペースト式カドミウム負極を用いることにより、高エネ
ルギー密度が得られるペースト式カドミウム負極の利点
を生かすとともに、その欠点である酸素ガス吸収性の改
良による電池充電性能の改良、及び充放電によるカドミ
ウム活物質の結晶成長を抑制することにより、寿命特性
の改良を行うものである。
Means for Solving the Problems The present invention provides, on a cadmium active material coated on a conductive core as a cadmium negative electrode of a nickel cadmium storage battery, any one of alkali-resistant Ti, VN, TaN or these By using a paste-type cadmium negative electrode with a conductive nitride layer formed of a mixture of The life characteristics are improved by improving the performance and suppressing the crystal growth of the cadmium active material due to charge and discharge.

作用 カドミウム畜電池、特に密閉形畜電池では、過充電時
に正極から発生する酸素ガスを負極で効率的に吸収する
ことが重要である。正極から発生する酸素ガスは、負極
に存在する金属カドミウムと反応して消費されるが、ペ
ースト式カドミウム負極では、焼結式のような導電性マ
トリクスが存在しないため、電池充電時に生成する金属
カドミウムの成長が芯材近傍で起こり、極板表面層まで
達しにくい。このため過充電時に正極から発生する酸素
ガスとの反応が効率的に行われず、密閉形電池に使用す
ると、電池の内圧が高くなる。
Action In cadmium storage batteries, particularly sealed storage batteries, it is important that the negative electrode efficiently absorbs oxygen gas generated from the positive electrode during overcharge. Oxygen gas generated from the positive electrode is consumed by reacting with metal cadmium present in the negative electrode.However, in the case of a paste-type cadmium negative electrode, since there is no conductive matrix as in a sintered type, the metal cadmium generated during battery charging is not present. Growth occurs near the core material and hardly reaches the electrode plate surface layer. Therefore, the reaction with oxygen gas generated from the positive electrode at the time of overcharging is not efficiently performed, and when used in a sealed battery, the internal pressure of the battery increases.

このような欠点を改善するため、ペースト式負極の表
面に炭素粉末層を形成し、表面部の導電性を向上するこ
とが提案されている(特開昭60−63875号公報)。
In order to improve such a defect, it has been proposed to form a carbon powder layer on the surface of the paste type negative electrode to improve the conductivity of the surface (JP-A-60-63875).

負極表面に導電層が存在すると、電池充電時に負極内
に生成する金属カドミウムは、その導電層に沿って極板
表面層に多く生成するようになり、酸素の吸収反応が効
率的に進行する。
When a conductive layer is present on the surface of the negative electrode, a large amount of metal cadmium generated in the negative electrode when the battery is charged is generated along the conductive layer on the surface layer of the electrode plate, and the oxygen absorption reaction proceeds efficiently.

本発明では、極板表面に耐アルカリ性のTiN,VN,TaNの
うちいずれか1種あるいはこれらの混合物である導電性
チッ化物層を形成することにより、極板表面に導電層を
付与し、過充電時の酸素吸収反応を効率的に行うもので
ある。また、負極での酸素吸収は、電気化学的な酸素還
元でも進行するため、酸素還元触媒能の高い物質の存在
は、酸素吸収に対して非常に有効となる。本発明のチッ
化物は、酸素還元に対して触媒としての作用を有するた
め、金属カドミウムの極板表面への分布とともに、酸素
吸収性をさらに向上できる。カドミウム負極の充放電反
応は、一般に次式で表わされる。
In the present invention, a conductive layer is provided on the surface of the electrode plate by forming a conductive nitride layer of any one of alkali-resistant TiN, VN, and TaN or a mixture thereof on the surface of the electrode plate. It efficiently performs an oxygen absorption reaction during charging. In addition, oxygen absorption at the negative electrode proceeds even by electrochemical oxygen reduction. Therefore, the presence of a substance having a high oxygen reduction catalytic ability is very effective for oxygen absorption. Since the nitride of the present invention acts as a catalyst for oxygen reduction, the distribution of metal cadmium on the electrode plate surface and the oxygen absorption can be further improved. The charge / discharge reaction of a cadmium negative electrode is generally represented by the following equation.

Cd(OH)+2e-←→Cd+2OH- しかし、実際は水酸化カドミウムと金属カドミウムの
固相反応ではなく、カドミ酸イオンのような中間体を経
由する溶解析出反応であることが知られており、充放電
の繰り返しにより、活物質結晶の変形や成長を伴う。こ
のような活物質結晶の成長が、負極外部への成長として
進行し、セパレータを通過して正極へ達すると、正負極
の短絡を生じ、電池の充放電が不能となる。
Cd (OH) 2 + 2e - ← → Cd + 2OH - In practice, however, is not a solid-phase reaction of cadmium hydroxide and metallic cadmium, are known to be soluble deposition reaction via intermediates such as cadmium ion, Repetition of charge and discharge involves deformation and growth of the active material crystal. Such growth of the active material crystal proceeds as growth outside the negative electrode, and when the active material crystal passes through the separator and reaches the positive electrode, a short circuit occurs between the positive electrode and the negative electrode, and the battery cannot be charged or discharged.

このように、負極活物質が正極まで移行して電池の短
絡を生じる原因には、充放電による負極活物質の成長
と、溶解析出時に生成するコロイド状の負極活物質粉末
の電気泳動による正極への移動が考えられている。
As described above, the causes of the negative electrode active material migrating to the positive electrode and causing a short circuit in the battery include the growth of the negative electrode active material by charge and discharge, and the electrophoresis of the colloidal negative electrode active material powder generated during dissolution and deposition to the positive electrode by electrophoresis. Moving is considered.

本発明では、アルカリ中で比較的安定なチッ化物、例
えばTiN、VN、TaNの粉末層をペースト式カドミウム負極
表面に形成することで、カドミウム活物質結晶の成長を
物理的に抑制するものである。
In the present invention, a relatively stable nitride in an alkali, for example, a powder layer of TiN, VN, TaN is formed on the paste-type cadmium negative electrode surface, thereby physically suppressing the growth of cadmium active material crystals. .

従って、ペースト式カドミウム負極の表面に耐アルカ
リ性のTiN,VN,TaNのうちいずれか1種あるいはこれらの
混合物である導電性チッ化物層を形成した負極を用いる
ことにより、ニッケルカドミウム蓄電池の充電性、特に
密閉形での急速充電性と寿命特性が改良され、高エネル
ギー密度が得られるペースト式カドミウム負極の利点を
生かした高エネルギー密度のニッケルカドミウム蓄電池
か得られる。
Therefore, by using a negative electrode having a conductive nitride layer formed of any one of alkali-resistant TiN, VN, and TaN or a mixture thereof on the surface of a paste-type cadmium negative electrode, the chargeability of a nickel-cadmium storage battery can be improved. In particular, a nickel cadmium storage battery having a high energy density, which has the advantages of a paste-type cadmium negative electrode having improved fast chargeability and life characteristics in a sealed form and high energy density can be obtained.

実 施 例 以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

平均粒径約1μm(以下、μmはμと略称する。)の
酸化カドミウム粉末をポリビニルアルコールのエチレン
グリコール溶液で練合してペーストとし、これをニッケ
ルメッキした開孔鉄板に塗着し、乾燥して約0.5mm厚の
極板とした。次にPVAの1wt%水溶液に平均粒径約0.5μ
のチッ化チタン粉末を20wt%を分散させた溶液に上記塗
着極板を浸漬し、乾燥して極板表面上に、チッ化チタン
層を形成した。
Cadmium oxide powder having an average particle size of about 1 μm (hereinafter, μm is abbreviated as μ) is kneaded with an ethylene glycol solution of polyvinyl alcohol to form a paste, which is applied to a nickel-plated open iron plate and dried. The electrode plate was about 0.5 mm thick. Next, an average particle size of about 0.5μ was added to a 1 wt% aqueous solution of PVA.
The coated electrode plate was immersed in a solution in which 20% by weight of the titanium nitride powder was dispersed, and dried to form a titanium nitride layer on the surface of the electrode plate.

次に前記塗着極板をアルカリ液中で陰電解することに
より酸化カドミウムの一部を金属カドミウムに変換し、
予備充電量を付与する化成を行い、水洗乾燥し、この極
板を所定の寸法に切断し、焼結式ニッケル正極と組み合
わせて公称容量1200mAh相当の密閉型ニッケルカドミウ
ム蓄電池(A)を試作した。
Next, a part of cadmium oxide is converted to metal cadmium by performing negative electrolysis on the coated electrode plate in an alkaline solution,
A chemical formation giving a pre-charged amount was performed, washed and dried, the electrode plate was cut into a predetermined size, and a sealed nickel cadmium storage battery (A) having a nominal capacity of 1200 mAh was prototyped in combination with a sintered nickel positive electrode.

また同様な方法で、チッ化チタンの代わりに炭素粉末
層を形成した負極を使用した比較例の電池(B)、また
別の比較例として同様な方法で、極板の表面にチッ化チ
タン、炭素粉末層等の導電層を一切形成しない従来の負
極を用いた電池(C)を試作した。
A battery (B) of a comparative example using a negative electrode having a carbon powder layer formed thereon instead of titanium nitride in a similar manner, and titanium nitride on the surface of an electrode plate in another similar manner using a similar method, A battery (C) using a conventional negative electrode in which no conductive layer such as a carbon powder layer was formed was prototyped.

また、電池(A)及び(B)に使用した負極表面のチ
ッ化チタン粉末層及び炭素粉末層の厚さは、極板断面の
電子顕微鏡での観察によると約5μであった。
The thickness of the titanium nitride powder layer and the carbon powder layer on the surface of the negative electrode used in the batteries (A) and (B) was about 5 μm according to the electron microscope observation of the electrode plate cross section.

これらの電池について、負極の酸素ガス吸収性を評価
するための過充電時の電池内圧試験及び、負極の寿命特
性を評価するための電池充放電サイクル試験を行った。
For these batteries, a battery internal pressure test during overcharge for evaluating the oxygen gas absorbency of the negative electrode and a battery charge / discharge cycle test for evaluating the life characteristics of the negative electrode were performed.

電池内圧試験は、20℃において、1〜3CmAの電流で充
電した時の電池内ピーク圧力で評価した。サイクル特性
は20℃で1/3C相当の電流で4.5時間充電し、1CmA相当の
電流を流す抵抗負荷で完全放電を繰返し、サイクルによ
る容量劣化で評価した。
In the battery internal pressure test, the battery was evaluated at a peak pressure in the battery when charged at a current of 1 to 3 CmA at 20 ° C. The cycle characteristics were evaluated by charging at 20 ° C with a current equivalent to 1 / 3C for 4.5 hours, repeating complete discharge with a resistive load flowing a current equivalent to 1CmA, and deteriorating capacity due to the cycle.

第1図は、充電レートと電池内ピーク圧力の関係を示
す図であり、図中の(a)は、本発明の電池(A)の特
性を示し、(b),(c)は、同様に比較例(B)、
(C)の電池の特性を示す。
FIG. 1 is a diagram showing the relationship between the charging rate and the peak pressure in the battery, wherein (a) shows the characteristics of the battery (A) of the present invention, and (b) and (c) show the same. Comparative Example (B),
The characteristics of the battery (C) are shown.

本発明による電池は、負極表面に導電性を有するチッ
化チタン粉末層を形成しているため、充電時に金属カド
ミウムが極板表面に分布しやすいため、負極表面に導電
層を有しない従来の電池(C)に比べ酸素吸収能力が高
く、電池内圧が低くなり、大電流充電、すなわち急速充
電が可能となる。また同様な理由で負極表面に炭素粉末
層で導電性を付与した負極を用いた比較例(B)の電池
も、酸素吸収能力が向上するが、本発明の電池(A)よ
りも電池内圧がやや高くなるのは、炭素粉末の方が、チ
ッ化チタン粉末よりも酸素還元に対する触媒効果が低い
ためと考えられる。
Since the battery according to the present invention has a conductive titanium nitride powder layer formed on the surface of the negative electrode, metal cadmium is easily distributed on the surface of the electrode plate during charging, and thus a conventional battery having no conductive layer on the surface of the negative electrode. Compared with (C), the oxygen absorption capacity is higher, the internal pressure of the battery is lower, and large current charging, that is, rapid charging is possible. For the same reason, the battery of Comparative Example (B) using the negative electrode in which the negative electrode surface is provided with conductivity by a carbon powder layer also has an improved oxygen absorption capacity, but has a higher internal pressure than the battery (A) of the present invention. It is considered that the reason why the carbon powder is slightly higher is that carbon powder has a lower catalytic effect on oxygen reduction than titanium nitride powder.

第2図は、1サイクル目の容量を100とした時の容量
維持率と充放電サイクル数との関係を示す。(a)は本
発明による電池(A)の特性、(b)、(c)は同様に
比較例(B)、(C)の電池の特性を示す。
FIG. 2 shows the relationship between the capacity retention ratio and the number of charge / discharge cycles when the capacity in the first cycle is set to 100. (A) shows the characteristics of the battery (A) according to the present invention, and (b) and (c) similarly show the characteristics of the batteries of Comparative Examples (B) and (C).

本発明による電池(A)及び負極表面に炭素粉末層を
設けた負極を用いた電池(B)は、従来の電池(C)に
比べ大幅に寿命特性が向上している。これは、電池
(A)、(B)の負極表面上のチッ化チタン粉末層ある
いは、炭素粉末層により充放電サイクルによる負極表面
からの活物質の成長が抑制され、正負極の短絡による寿
命劣化が抑制されたためと考えられる。
The battery (A) according to the present invention and the battery (B) using the negative electrode having a carbon powder layer provided on the surface of the negative electrode have significantly improved life characteristics as compared with the conventional battery (C). This is because the titanium nitride powder layer or the carbon powder layer on the negative electrode surfaces of the batteries (A) and (B) suppresses the growth of the active material from the negative electrode surface due to the charge / discharge cycle, and shortens the life due to the short circuit between the positive and negative electrodes. It is considered that was suppressed.

次に、チッ化チタン層の適正被膜厚さを検討するため
に、実施例(A)と同様な方法で、PVA水溶液中に添加
するチッ化チタン粉末量を変化させ、チッ化チタン層の
厚さを0.5μから30μ程度まで変化させた負極を試作
し、実施例(A)と同様な電池を試作し、電池内圧特
性、及び充放電サイクル寿命試験を行った。下表にその
結果を示す。試験条件は、実施例(A)の同様であり、
表には、3CmA充電時の電池ピーク内圧値と、容量維持率
が初期の80%になる時の充放電サイクル数を示した。
Next, in order to examine the proper thickness of the titanium nitride layer, the amount of titanium nitride powder added to the PVA aqueous solution was changed in the same manner as in Example (A), and the thickness of the titanium nitride layer was changed. A negative electrode having a thickness of about 0.5 μm to about 30 μm was prototyped, and a battery similar to that of Example (A) was trially produced, and a battery internal pressure characteristic and a charge / discharge cycle life test were performed. The following table shows the results. The test conditions are the same as in Example (A),
The table shows the battery peak internal pressure value during 3 CmA charging and the number of charge / discharge cycles when the capacity retention ratio becomes 80% of the initial value.

チッ化チタン粉末層の厚さが1μ以下となると負極板
表面の導電性が低下するとともに、負極の変形及び活物
質の成長を抑制する効果が十分発揮されなくなるため、
その厚さの下限は約1μ程度と考えられ、またその厚さ
が20μ以上になると逆にサイクル寿命特性が劣化する。
When the thickness of the titanium nitride powder layer is 1 μ or less, the conductivity of the negative electrode plate surface decreases, and the effect of suppressing the deformation of the negative electrode and the growth of the active material is not sufficiently exhibited.
The lower limit of the thickness is considered to be about 1 .mu., And when the thickness is 20 .mu. Or more, the cycle life characteristic is deteriorated.

充放電を繰り返すと、負極表面のチッ化チタン粉末層
中にカドミウム活物質が移動し、チッ化チタン層の多孔
度を低下させ、充放電に必要な電解液の移動性を低下さ
せる。負極表面のチッ化チタン層の厚さが厚すぎる場
合、充放電の繰り返しによる上記の現象が顕著になり、
放電特性の劣化を起こすものと考えられ、従ってその厚
さの上限は約20μ程度と考えられる。
When charge and discharge are repeated, the cadmium active material moves into the titanium nitride powder layer on the negative electrode surface, lowering the porosity of the titanium nitride layer and lowering the mobility of the electrolyte required for charge and discharge. If the thickness of the titanium nitride layer on the negative electrode surface is too thick, the above phenomenon due to repetition of charging and discharging becomes remarkable,
It is considered that the discharge characteristics deteriorate, and therefore the upper limit of the thickness is considered to be about 20 μm.

本実施例では、チッ化チタンについて説明したが、耐
アルカリ性と、導電性を有するVN、TaNを用いた場合あ
るいは、これらの混合物を用いても、同様な効果が得ら
れる。使用するチッ化物については、上記のように耐ア
ルカリ性が良好なものが望ましいが、例えば、ZrNのよ
うに耐アルカリ性がやや劣るものも、寿命特性向上に対
する効果はやや劣るものの、使用は可能である。
In this example, titanium nitride was described. However, similar effects can be obtained when VN or TaN having alkali resistance and conductivity is used, or when a mixture thereof is used. For the nitride to be used, it is desirable that the alkali resistance is good as described above.For example, even if the alkali resistance is slightly inferior such as ZrN, the effect on improving the life characteristics is slightly inferior, but it is possible to use. .

発明の効果 以上のように、本発明によれば、導電性芯体に塗着し
たカドミウム活物質の表面層に、TiN,VN,TaNのうちいず
れか1種あるいはこれらの混合物である導電性チッ化物
の粉末層を有するペースト式カドミウム負極を用いたこ
とによって、ニッケルカドミウム蓄電池の充電性能及び
充放電サイクル寿命特性を大幅に改良することができ
る。
Effect of the Invention As described above, according to the present invention, the conductive layer of any one of TiN, VN, and TaN or a mixture thereof is applied to the surface layer of the cadmium active material applied to the conductive core. The use of a paste-type cadmium negative electrode having a powder layer of a compound can significantly improve the charging performance and charge-discharge cycle life characteristics of a nickel-cadmium storage battery.

【図面の簡単な説明】[Brief description of the drawings]

第1図はニッケルカドミウム蓄電池の充電レートと電池
ピーク内圧との関係を示す図、第2図は容量維持率と充
放電サイクルとの関係を示す図である。
FIG. 1 is a diagram showing a relationship between a charge rate of a nickel cadmium storage battery and a battery peak internal pressure, and FIG. 2 is a diagram showing a relationship between a capacity retention ratio and a charge / discharge cycle.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/24 H01M 4/62──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/24 H01M 4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性芯体に塗着したカドミウム活物質の
表面層に、TiN,VN,TaNのうちいずれか1種あるいはこれ
らの混合物である導電性チッ化物の粉末層を有するペー
スト式カドミウム負極を用いたことを特徴とするニッケ
ルカドミウム蓄電池。
1. A paste-type cadmium having a powder layer of a conductive nitride, which is any one of TiN, VN, and TaN, or a mixture thereof, on a surface layer of a cadmium active material applied to a conductive core. A nickel cadmium storage battery using a negative electrode.
【請求項2】カドミウム活物質表面層の導電性チッ化物
粉末層の厚さが1〜20μmであることを特徴とする特許
請求の範囲第1項記載のニッケルカドミウム蓄電池。
2. The nickel cadmium storage battery according to claim 1, wherein the thickness of the conductive nitride powder layer on the cadmium active material surface layer is 1 to 20 μm.
JP1300468A 1989-11-17 1989-11-17 Nickel cadmium storage battery Expired - Fee Related JP2797554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1300468A JP2797554B2 (en) 1989-11-17 1989-11-17 Nickel cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300468A JP2797554B2 (en) 1989-11-17 1989-11-17 Nickel cadmium storage battery

Publications (2)

Publication Number Publication Date
JPH03159064A JPH03159064A (en) 1991-07-09
JP2797554B2 true JP2797554B2 (en) 1998-09-17

Family

ID=17885161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300468A Expired - Fee Related JP2797554B2 (en) 1989-11-17 1989-11-17 Nickel cadmium storage battery

Country Status (1)

Country Link
JP (1) JP2797554B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868912A (en) * 1993-11-22 1999-02-09 E. I. Du Pont De Nemours And Company Electrochemical cell having an oxide growth resistant current distributor
JP2001266886A (en) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd Non-sintering type positive electrode for alkaline storage battery and alkaline storage battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568624B2 (en) * 1988-04-19 1997-01-08 松下電器産業株式会社 Cadmium negative electrode for alkaline storage battery and method for producing the same

Also Published As

Publication number Publication date
JPH03159064A (en) 1991-07-09

Similar Documents

Publication Publication Date Title
JP2797554B2 (en) Nickel cadmium storage battery
JPH0624148B2 (en) Sealed nickel cadmium storage battery
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JP2004281289A (en) Alkaline storage battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP2754800B2 (en) Nickel cadmium storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3118357B2 (en) Non-sintered positive electrode plate for alkaline storage batteries
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JP2773308B2 (en) Manufacturing method of paste-type cadmium negative electrode
JP2840270B2 (en) Paste type cadmium electrode for alkaline storage battery and method for producing the same
JPS63126163A (en) Alkaline storage battery
JPH03745B2 (en)
JP3043108B2 (en) Method for producing non-sintered cadmium electrode plate for alkaline storage battery
JPH11149920A (en) Nickel electrode for alkali secondary battery and alkali secondary battery
JPH03159065A (en) Nickel-cadmium storage battery
JP3995288B2 (en) Cadmium negative electrode for alkaline storage battery and method for producing the same
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JPH09245827A (en) Manufacture of alkaline storage battery
JPH03746B2 (en)
JPH0831316B2 (en) Method for producing paste type cadmium negative electrode
JPH03192655A (en) Manufacture of paste type cadmium negative electrode
JPH0234433B2 (en)
JPH0675397B2 (en) Method for producing paste type cadmium negative electrode
JP2000223146A (en) Nickel hydrogen storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees