JP2734149B2 - Manufacturing method of paste-type cadmium negative electrode - Google Patents

Manufacturing method of paste-type cadmium negative electrode

Info

Publication number
JP2734149B2
JP2734149B2 JP1330760A JP33076089A JP2734149B2 JP 2734149 B2 JP2734149 B2 JP 2734149B2 JP 1330760 A JP1330760 A JP 1330760A JP 33076089 A JP33076089 A JP 33076089A JP 2734149 B2 JP2734149 B2 JP 2734149B2
Authority
JP
Japan
Prior art keywords
cadmium
negative electrode
magnesium
active material
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1330760A
Other languages
Japanese (ja)
Other versions
JPH03190054A (en
Inventor
徳之 藤岡
勝巳 山下
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1330760A priority Critical patent/JP2734149B2/en
Publication of JPH03190054A publication Critical patent/JPH03190054A/en
Application granted granted Critical
Publication of JP2734149B2 publication Critical patent/JP2734149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケル−カドミウム蓄電池に用いられる
ぺースト式カドミウム負極の製造法の改良に関するもの
である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing a past-type cadmium negative electrode used for a nickel-cadmium storage battery.

従来の技術 一般に、アルカリ蓄電池用ぺースト式カドミウム負極
の製造方法は、酸化カドミウムあるいは水酸化カドミウ
ムを主体とするカドミウム活物質粉末、カーボニルニッ
ケルやグラファイト等の導電性粉末、ポリビニルアルコ
ールやカルボキシメチルセルロース等の結着剤と水やエ
チレングリコール等の溶媒を混練してぺーストとしたも
のをニッケルメッキした開孔銅板等の導電性芯体に塗着
し、乾燥したものをアルカリ溶液中で化成している。と
ころが、前述のぺースト式カドミウム負極では、活物質
構成物質のほとんどがカドミウム化合物であるため、充
放電におけるカドミウムの利用率が、従来の焼結式カド
ミウム負極に比べて低いことや、充放電繰返し特性(以
下サイクル特性と称す)が低いという欠点を有してい
た。
2. Description of the Related Art In general, a method of manufacturing a paste-type cadmium negative electrode for an alkaline storage battery includes a cadmium active material powder mainly composed of cadmium oxide or cadmium hydroxide, a conductive powder such as carbonyl nickel or graphite, and a polyvinyl alcohol or carboxymethyl cellulose. A paste made by kneading a binder and a solvent such as water or ethylene glycol is applied to a conductive core such as a nickel-plated apertured copper plate, and dried to form a chemical in an alkaline solution. . However, in the above-mentioned past-type cadmium negative electrode, since most of the active material constituent materials are cadmium compounds, the utilization rate of cadmium in charge and discharge is lower than that of the conventional sintered cadmium negative electrode, and the charge-discharge repetition rate is low. There was a disadvantage that the characteristics (hereinafter referred to as cycle characteristics) were low.

以上の問題点を解決するため特公昭62-15994号公報に
見られるように、活物質中に酸化マグネシウム粉末を添
加する方法や、また別の方法としてマグネシウム塩水溶
液に含浸する方法もあるが、後者の方法ではマグネシウ
ムの分散性が粉末添加に比して良くなるが、一方で理由
は明確ではないがわずかながら利用率が低下する。
As disclosed in JP-B-62-15994 to solve the above problems, there is a method of adding magnesium oxide powder in the active material, and as another method, there is also a method of impregnating with a magnesium salt aqueous solution, In the latter method, the dispersibility of magnesium is improved as compared with the addition of powder. On the other hand, although the reason is not clear, the utilization rate slightly decreases.

発明が解決しようとする課題 本発明は、マグネシウムの適切な添加方法を検討する
ことにより、上記のような問題点を解決し、利用率なら
びにサイクル特性が良好なぺースト式カドミウム負極を
得ることを目的とする。
Problem to be Solved by the Invention The present invention solves the above-mentioned problems by examining an appropriate method of adding magnesium, and aims to obtain a paste-type cadmium negative electrode having good utilization and cycle characteristics. Aim.

課題を解決するための手段 本発明では、導電性芯体に酸化カドミウムを主体とす
る活物質ぺーストを塗着する工程と、前記塗着極板にリ
ン酸塩とマグネシウム塩を導入する工程と、次いで前記
塗着極板中のマグネシウム塩をアルカリ水溶液中で水酸
化マグネシウムに変換する工程を有し、液含浸によりカ
ドミウム負極内の空隙に水酸化マグネシウムを均一に添
加するとともに、リン酸塩により利用率の低下を抑制す
ることで、以上のような課題を解決するものである。
Means for Solving the Problems In the present invention, a step of applying an active material paste mainly composed of cadmium oxide to a conductive core, and a step of introducing a phosphate and a magnesium salt to the coated electrode plate Then, a step of converting the magnesium salt in the coated electrode plate to magnesium hydroxide in an alkaline aqueous solution, while uniformly adding magnesium hydroxide to the voids in the cadmium negative electrode by liquid impregnation, and phosphate The problem described above is solved by suppressing a decrease in the utilization rate.

作用 カドミウム負極において、マグネシウム化合物のカド
ミウム活物質の利用率向上や、サイクル特性の向上に対
するメカニズムは明確でないが、カドミウム負極の充放
電反応に関与する中間生成物(カドミウム酸イオン)の
析出反応に対してマグネシウムが析出サイトに吸着し、
活物質の凝集粗大化を防止することにより、その効果が
得られると推測される。
The mechanism of the cadmium negative electrode to improve the utilization of the cadmium active material of the magnesium compound and the cycle characteristics is not clear, but the cadmium negative electrode is responsible for the precipitation reaction of intermediate products (cadmium ion) involved in the charge / discharge reaction of the cadmium negative electrode. Magnesium is adsorbed on the precipitation site,
It is presumed that the effect is obtained by preventing the active material from agglomerating and coarsening.

ところが、マグネシウム化合物として例えば、酸化マ
グネシウムも粉末の状態で添加した場合、カドミウム活
物質中での分散が不十分になりやすく、また酸化マグネ
シウム粉末粒子がカドミウム活物質粒子の間に介在する
ことにより、カドミウム活物質粒子間での電気的接触が
不十分になりやすい。そこでマグネシウム塩水溶液に浸
漬した後、アルカリ水溶液中で水酸化マグネシウムに変
換する方法では、多孔性のカドミウム活物質中に十分に
分散させることが可能であり、またカドミウム活物質粒
子のマトリックスを崩さないのでカドミウム活物質間の
電気的接触も保たれている。また、マグネシウム化合物
が、充放電反応に多く寄与する多孔性のカドミウム活物
質表面に多く存在するため、カドミウム活物質の利用率
向上やサイクル特性に対してより大きな効果が期待でき
る。
However, as a magnesium compound, for example, when magnesium oxide is also added in a powder state, the dispersion in the cadmium active material tends to be insufficient, and the magnesium oxide powder particles are interposed between the cadmium active material particles, Electrical contact between the cadmium active material particles tends to be insufficient. Therefore, in the method of converting into magnesium hydroxide in an aqueous alkaline solution after immersion in a magnesium salt aqueous solution, it is possible to sufficiently disperse the cadmium active material particles in the porous cadmium active material, and do not disturb the matrix of the cadmium active material particles Therefore, the electrical contact between the cadmium active materials is also maintained. In addition, since a large amount of the magnesium compound is present on the surface of the porous cadmium active material that greatly contributes to the charge / discharge reaction, a greater effect can be expected on the improvement of the utilization rate of the cadmium active material and the cycle characteristics.

しかしながら、このとき酸化カドミウムを主体とした
極板をマグネシウム塩を含む水溶液に浸漬、あるいはそ
の後アルカリ水溶液中で水酸化マグネシウムに変換する
工程を通すと、その理由は詳かではないが、利用率が低
下してしまった。これは、マグネシウム塩を含む水溶液
への浸漬あるいはアルカリ水溶液中で酸化カドミウムが
水和反応を起こし、酸化カドミウム表面に導電性の極め
て低い水酸化カドミウムの層が形成されたため活物質表
面の導電性が低下したことによるものか、あるいはマグ
ネシウム塩と反応し同様に酸化カドミウム表面に水酸化
マグネシウムの層が形成され、イオン導電性が低下して
しまったかの、何れかの理由によるものと考えられる。
However, at this time, if the electrode plate mainly composed of cadmium oxide is immersed in an aqueous solution containing a magnesium salt or passed through a step of converting into magnesium hydroxide in an alkaline aqueous solution, the reason is not clear, but the utilization rate is not clear. It has dropped. This is because the cadmium oxide undergoes a hydration reaction in an aqueous solution containing a magnesium salt or in an alkaline aqueous solution, and a layer of cadmium hydroxide with extremely low conductivity is formed on the surface of the cadmium oxide. This is considered to be due to either the decrease or the ionic conductivity of the cadmium oxide formed by the reaction with the magnesium salt.

そこで本発明はリン酸塩とマグネシウム塩を含む水溶
液に浸漬することで、リン酸塩の添加により酸化カドミ
ウム表面に酸素酸カドミウム薄膜が形成され、この薄膜
により酸化カドミウムと水との水和反応を抑制して導電
性の低下を防ぐとともに、前述したマグネシウム化合物
の活物質粗大化を防止するという効果が液浸漬による分
散性の向上とともに十分発揮されることにより、カドミ
ウム活物質の利用率向上やサイクル特性に対して真に有
効となる。
Thus, the present invention provides a cadmium oxide thin film on the surface of cadmium oxide by the addition of phosphate by immersing it in an aqueous solution containing a phosphate and a magnesium salt, and this thin film prevents the hydration reaction between cadmium oxide and water. In addition to suppressing the decrease in conductivity by suppressing the conductivity, the effect of preventing the active material from coarsening of the magnesium compound described above is fully exhibited together with the improvement of the dispersibility by the liquid immersion, so that the utilization rate of the cadmium active material can be improved and the cycle can be improved. It is truly effective for properties.

実施例 以下本発明の実施例を詳述する。Examples Hereinafter, examples of the present invention will be described in detail.

平均粒径約1μの酸化カドミウム粉末にポリビニルア
ルコールのエチレングリコール溶液を加え、混練してぺ
ースト状にする。このぺーストを導電性支持体である厚
さ0.1mmのニッケルメッキした開孔銅板に塗着し、約140
℃で30分間乾燥し、厚さ約0.5mmの極板を得た。次にリ
ン酸二ナトリウム10wt%と硫酸マグネシウム1モル/lを
含む混液に前記極板を含浸し、乾燥後、アルカリ溶液中
で理論容量の約40%充電(化成)し、水洗、乾燥後アル
カリ蓄電池用ぺースト式負極(a)を得た。上記カドミ
ウム負極と、比較例としてあらかじめ酸化マグネシウム
1wt%を添加して化成を行ったもの(b)、別の比較例
として1モル/lの硫酸マグネシウム溶液のみに浸漬処理
を行った後化成したもの(c)、もうひとつ別の比較例
として酸化カドミウムのみで化成を行ったもの(d)と
を焼結式ニッケル正極とを組み合わせ密閉型ニッケル−
カドミウム蓄電池を試作し、これらのサイクル寿命試験
と放電率特性試験を行った。サイクル特性は20℃で1/3C
相当の電流で4,5時間充電し、1C相当の電流を流す抵抗
負荷で完全放電を繰り返し、サイクルによる容量低下で
評価した。放電率特性は電池を20℃で0.1C相当の電流で
15時間充電し、1〜5C相当の電流で放電したときの放電
容量と、0.2C相当の電流で放電したときの放電容量との
比率で評価した。
An ethylene glycol solution of polyvinyl alcohol is added to cadmium oxide powder having an average particle size of about 1 μm and kneaded to form a paste. This paste was applied to a nickel-plated apertured copper plate having a thickness of 0.1 mm, which is a conductive support, and the paste was applied for about 140 minutes.
It dried at 30 degreeC for 30 minutes, and obtained the about 0.5-mm-thick electrode plate. Next, the electrode plate is impregnated with a mixture containing 10% by weight of disodium phosphate and 1 mol / l of magnesium sulfate, dried, then charged (formulated) to about 40% of the theoretical capacity in an alkaline solution, washed with water, dried, and washed with an alkaline solution. A paste negative electrode (a) for a storage battery was obtained. The cadmium negative electrode and magnesium oxide
As another comparative example, a chemical conversion was carried out by adding 1 wt% (b), and as another comparative example, a chemical treatment was performed after immersion treatment only in a 1 mol / l magnesium sulfate solution (c). (D) chemically formed only with cadmium oxide and a sintered nickel positive electrode combined with closed nickel-
A cadmium storage battery was prototyped, and its cycle life test and discharge rate characteristic test were performed. Cycle characteristics are 1 / 3C at 20 ℃
The battery was charged for 4 to 5 hours with a considerable current, and the battery was completely discharged with a resistance load flowing a current of 1C. The discharge rate characteristics are as follows.
The battery was charged for 15 hours and evaluated by the ratio of the discharge capacity when discharged at a current equivalent to 1 to 5C and the discharge capacity when discharged at a current equivalent to 0.2C.

第1回は、1サイクル目の容量を100とした場合の容
量維持率と、充放電サイクル数との関係を示す。図中A
は本発明による負極(a)を用いた電池、Bは酸化マグ
ネシウム粉末を酸化カドミウムに対し1wt%添加して得
た負極(b)を用いた電池、Cは1mol/l硫酸マグネシウ
ム溶液に含浸して得た負極(c)を用いた電池、Dは従
来の負極(d)を用いた電池の特性を示す。この結果か
ら明らかなように、本発明の負極(a)を用いた電池A
は、比較例である従来の負極(b),(c),(d)を
用いた電池B,C,Dに比べて大幅にサイクル特性が向上し
ている。
The first shows the relationship between the capacity retention rate when the capacity of the first cycle is 100 and the number of charge / discharge cycles. A in the figure
Is a battery using the negative electrode (a) according to the present invention, B is a battery using the negative electrode (b) obtained by adding magnesium oxide powder to cadmium oxide at 1 wt%, and C is a battery impregnated with a 1 mol / l magnesium sulfate solution. The battery using the negative electrode (c) obtained as described above, and D shows the characteristics of the battery using the conventional negative electrode (d). As is clear from the result, the battery A using the negative electrode (a) of the present invention
Has significantly improved cycle characteristics as compared with the batteries B, C, and D using the conventional negative electrodes (b), (c), and (d) as comparative examples.

第2図は放電容量比率と放電レートとの関係を示す図
である。図から明らかなように本発明の負極(a)を用
いた電池Aは比較例の従来の負極(b),(c),
(d)を用いた電池B,C,Dに比べて放電率特性が向上し
ている。
FIG. 2 is a diagram showing a relationship between a discharge capacity ratio and a discharge rate. As is clear from the figure, the battery A using the negative electrode (a) of the present invention is the same as the conventional negative electrodes (b), (c) and
The discharge rate characteristics are improved as compared with the batteries B, C, and D using (d).

さらに第3図は5CMAでの放電容量比率とカドミウム活
物質量に対するマグネシウム化合物中のマグネシウム量
の重量比との関係を示す図である。Aは本発明によるリ
ン酸二ナトリウム濃度を10wt%一定として硫酸マグネシ
ウム濃度を変えて添加した負極、Bは酸化マグネシウム
添加量を変えて添加した負極、Cは硫酸マグネシウムの
みで濃度を変えて添加した負極をそれぞれ用いた電池を
示す。図から明らかなように、本発明の負極を用いた電
池Aは従来からの負極を用いた電池B,Cに比べて、少量
のマグネシウム量でも高い放電率特性が得られる。
FIG. 3 is a graph showing the relationship between the discharge capacity ratio at 5 CMA and the weight ratio of the amount of magnesium in the magnesium compound to the amount of cadmium active material. A is a negative electrode according to the present invention in which the concentration of disodium phosphate is kept constant at 10 wt% and the concentration of magnesium sulfate is changed, B is a negative electrode that is added while changing the amount of magnesium oxide added, and C is a concentration of magnesium sulfate alone added while changing the concentration. A battery using each of the negative electrodes is shown. As is clear from the figure, the battery A using the negative electrode of the present invention can obtain high discharge rate characteristics even with a small amount of magnesium, as compared with the conventional batteries B and C using the negative electrode.

一般に放電率特性は予備充電物としての金属カドミウ
ム量の増加とともに向上するが、予備充電量が同一の場
合の特性の差は充放電の電気化学反応に寄与するカドミ
ウム活物質の割合、すなわち利用率の差によるものと考
えられる。本発明による負極では、リン酸塩の添加によ
り酸化カドミウムと水との水和反応が抑制されるととも
に高い分散度合でマグネシウム化合物が添加されており
少量の添加でもカドミウム活物質の利用率が向上し、よ
って放電率特性が向上したものと考えられる。また、前
述の通りサイクル特性についても、高分散したマグネシ
ウム化合物により充放電の繰り返しにおけるカドミウム
活物質の凝集粗大化による負極放電特性の劣化が防止さ
れているために向上するものと考えられる。
In general, the discharge rate characteristics improve with an increase in the amount of metal cadmium as a pre-charged material, but the difference in characteristics when the pre-charge amount is the same is the ratio of the cadmium active material that contributes to the electrochemical reaction of charging and discharging, that is, the utilization rate It is thought to be due to the difference in In the negative electrode according to the present invention, the hydration reaction between cadmium oxide and water is suppressed by the addition of phosphate, and the magnesium compound is added with a high degree of dispersion, and the utilization of the cadmium active material is improved even with a small amount of addition. Therefore, it is considered that the discharge rate characteristics were improved. Further, as described above, it is considered that the cycle characteristics are also improved because the highly dispersed magnesium compound prevents deterioration of the negative electrode discharge characteristics due to aggregation and coarsening of the cadmium active material during repeated charge and discharge.

なお本実施例ではリン酸塩としてリン酸二ナトリウム
を用いたが、他にリン酸二カリウム,ピロリン酸ナトリ
ウム,ヘキサメタリン酸ナトリウム等のリン酸塩を、ま
たマグネシウム塩として硫酸マグネシウムを用いたが、
他に塩化マグネシウム,硝酸マグネシウム等のマグネシ
ウム塩をそれぞれ用いても同様の効果が得られる。
In this example, disodium phosphate was used as a phosphate, but other phosphates such as dipotassium phosphate, sodium pyrophosphate and sodium hexametaphosphate were used, and magnesium sulfate was used as a magnesium salt.
Similar effects can be obtained by using other magnesium salts such as magnesium chloride and magnesium nitrate.

発明の効果 以上のように、本発明によれば、カドミウム活物質の
利用率向上による放電率特性の向上とサイクル特性の優
れたぺースト式カドミウム負極が得られる。
Effects of the Invention As described above, according to the present invention, a paste-type cadmium negative electrode having improved discharge rate characteristics and improved cycle characteristics by improving the utilization rate of the cadmium active material can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はニッケル−カドミウム蓄電池のサイクル特性を
示す図、第2図は放電容量比率と放電レートとの関係を
示す図、第3図は放電容量比率とマグネシウム添加量と
の関係を示す図である。
FIG. 1 is a diagram showing a cycle characteristic of a nickel-cadmium storage battery, FIG. 2 is a diagram showing a relationship between a discharge capacity ratio and a discharge rate, and FIG. 3 is a diagram showing a relationship between a discharge capacity ratio and a magnesium addition amount. is there.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−310564(JP,A) 特開 昭63−310565(JP,A) 特開 平1−260761(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-310564 (JP, A) JP-A-63-310565 (JP, A) JP-A-1-260761 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性芯体に酸化カドミウムを主体とする
活物質ペーストを塗着する工程と、前記塗着極板をリン
酸塩とマグネシウム塩を含む水溶液に浸漬して前記塗着
極板中にリン酸塩とマグネシウム塩を導入する工程と、
次いで前記塗着極板中のマグネシウム塩をアルカリ水溶
液で水酸化マグネシウムに変換する工程を有することを
特徴とするペースト式カドミウム負極の製造法。
A step of applying an active material paste mainly composed of cadmium oxide to a conductive core; and immersing the coated electrode plate in an aqueous solution containing a phosphate and a magnesium salt. A step of introducing a phosphate and a magnesium salt therein,
A method for producing a paste-type cadmium negative electrode, comprising a step of converting a magnesium salt in the coated electrode plate to magnesium hydroxide with an aqueous alkali solution.
JP1330760A 1989-12-19 1989-12-19 Manufacturing method of paste-type cadmium negative electrode Expired - Fee Related JP2734149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1330760A JP2734149B2 (en) 1989-12-19 1989-12-19 Manufacturing method of paste-type cadmium negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330760A JP2734149B2 (en) 1989-12-19 1989-12-19 Manufacturing method of paste-type cadmium negative electrode

Publications (2)

Publication Number Publication Date
JPH03190054A JPH03190054A (en) 1991-08-20
JP2734149B2 true JP2734149B2 (en) 1998-03-30

Family

ID=18236239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330760A Expired - Fee Related JP2734149B2 (en) 1989-12-19 1989-12-19 Manufacturing method of paste-type cadmium negative electrode

Country Status (1)

Country Link
JP (1) JP2734149B2 (en)

Also Published As

Publication number Publication date
JPH03190054A (en) 1991-08-20

Similar Documents

Publication Publication Date Title
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JP3198891B2 (en) Positive electrode for alkaline storage battery
JP2797554B2 (en) Nickel cadmium storage battery
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JP2754800B2 (en) Nickel cadmium storage battery
JP3097238B2 (en) Anode plate for alkaline storage battery
JPH03133058A (en) Manufacture of paste type cadmium negative electrode
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JPH09245827A (en) Manufacture of alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH03192655A (en) Manufacture of paste type cadmium negative electrode
JPS63310565A (en) Manufacture of paste type cadmium negative electrode
JP3118357B2 (en) Non-sintered positive electrode plate for alkaline storage batteries
RU2140120C1 (en) Method for manufacturing alkaline-cell oxydic nickel plate
JPH0831315B2 (en) Method for producing paste type cadmium negative electrode
JPH03745B2 (en)
JPH044558A (en) Manufacture of positive electrode plate for alkaline storage battery
JPS61124057A (en) Manufacture of paste type cadmium negative pole
JPH03192656A (en) Manufacture of paste type cadmium negative electrode
JPH063730B2 (en) Paste type cadmium negative electrode
JPH0760681B2 (en) Method for producing nickel positive electrode
JPH01107452A (en) Manufacture of paste type cadmium negative electrode
JPH04344B2 (en)
JPS58137964A (en) Alkaline zinc storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees