JPH063730B2 - Paste type cadmium negative electrode - Google Patents

Paste type cadmium negative electrode

Info

Publication number
JPH063730B2
JPH063730B2 JP59126004A JP12600484A JPH063730B2 JP H063730 B2 JPH063730 B2 JP H063730B2 JP 59126004 A JP59126004 A JP 59126004A JP 12600484 A JP12600484 A JP 12600484A JP H063730 B2 JPH063730 B2 JP H063730B2
Authority
JP
Japan
Prior art keywords
cadmium
negative electrode
metal cadmium
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59126004A
Other languages
Japanese (ja)
Other versions
JPS617565A (en
Inventor
英男 海谷
信吾 津田
収 高橋
基秀 増井
実 山賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59126004A priority Critical patent/JPH063730B2/en
Publication of JPS617565A publication Critical patent/JPS617565A/en
Publication of JPH063730B2 publication Critical patent/JPH063730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池用ペースト式カドミウム負極
に関する。
TECHNICAL FIELD The present invention relates to a paste type cadmium negative electrode for alkaline storage batteries.

従来例の構成とその問題点 アルカリ蓄電池用ペースト式カドミウム負極は、一般に
酸化カドミウムあるいは水酸化カドミウムを主体とし、
これにカーボニルニッケル,グラファイト等の導電性粉
末、ポリビニルアルコール,カルボキシメチルセルロー
ス等の結着材及び水やエチレングリコール等の溶媒を加
え、混練してペーストとし、これをニッケルメッキした
開孔鋼板等の導電性芯材に塗着し、乾燥した後、アルカ
リ溶液中で化成することによって製造される。
Configuration of conventional example and its problems Paste type cadmium negative electrode for alkaline storage battery is generally mainly cadmium oxide or cadmium hydroxide,
Conductive powders such as carbonyl nickel and graphite, binders such as polyvinyl alcohol and carboxymethyl cellulose, and solvents such as water and ethylene glycol are added and kneaded to form a paste. It is manufactured by applying it to a conductive core material, drying it, and then performing chemical conversion in an alkaline solution.

前記の化成工程の目的は、活物質材料に用いる酸化カド
ミウム,水酸化カドミウムなどの放電状態のカドミウム
化合物の一部または全部を充電状態の金属カドミウムに
変換し、負極内に予備充電部分を付与することにある。
負極内に予備充電部分が存在しない場合は、負極の利用
率が正極に比べ低いため、放電が負極支配となり、電池
の高率放電特性が悪くなり、また負極が完全放電を受け
るため電池の特性劣化が著しくなる。このような理由で
化成が行われる。この化成工程では、また負極容量の2
0〜10%の充電を行うため、要する電力は大きい。ま
た、化成工程で、充電状態の金属カドミウムを電極内に
均一に分布させることは容易でなく、特性のバラツキを
生じやすい。この傾向は、ペースト式電極において著し
い。
The purpose of the chemical conversion step is to convert a part or all of the cadmium compound in a discharged state such as cadmium oxide and cadmium hydroxide used as the active material into metal cadmium in a charged state to provide a precharged portion in the negative electrode. Especially.
When there is no pre-charged part in the negative electrode, the utilization factor of the negative electrode is lower than that of the positive electrode, so discharge becomes dominant and the high rate discharge characteristic of the battery deteriorates. Deterioration becomes remarkable. For this reason, formation is carried out. In this conversion process, the negative electrode capacity of 2
Since 0 to 10% of charging is performed, a large amount of power is required. Further, in the chemical conversion step, it is not easy to uniformly distribute the charged metal cadmium in the electrode, and variations in characteristics are likely to occur. This tendency is remarkable in the paste type electrode.

このような問題を解決するために、特公昭57−379
89,特開昭57−5265にみられるように、活性な
金属カドミウム粉末を予備充電量相当として活物質混合
時に添加することにより、化成工程を不要とする方法が
提案されている。しかし、このような構成の電極では、
金属カドミウム粉末が、導電性の低い酸化カドミウム粉
末あるいは水酸化カドミウム粉末の間に介在し、金属カ
ドミウム相互の電気的接触が少ないため、化成によって
生成するマトリクス状の金属カドミウムよりも充放電に
寄与する割合が小さい。言い換えれば、添加した金属カ
ドミウムの利用率は低い。また、充電時に生成する金属
カドミウムは、導電性芯材付近に集中し、極板表面まで
成長しにくい。密閉形ニッケル−カドミウム蓄電池のよ
うに密閉構造を採る電池では、過充電時に正極より発生
する酸素ガスを負極の金属カドミウムで吸収するので、
酸素の吸収をよくするには、金属カドミウムが極板の表
面に存在することが望ましい。しかし、金属カドミウム
粉末を添加する前述の方式の電極では、そのような望ま
しいものとはならない。
In order to solve such a problem, Japanese Patent Publication No. 57-379
89, Japanese Patent Application Laid-Open No. 57-5265, a method has been proposed in which an active metal cadmium powder is added at the time of mixing an active material in an amount corresponding to a precharge amount, thereby eliminating the need for a chemical conversion step. However, in the electrode having such a configuration,
Metal cadmium powder intervenes between cadmium oxide powder or cadmium hydroxide powder with low conductivity, and electrical contact between metal cadmium is small, so it contributes to charge and discharge more than metal cadmium in matrix form generated by chemical conversion. The proportion is small. In other words, the utilization rate of the added metal cadmium is low. Further, metal cadmium generated during charging is concentrated near the conductive core material and is unlikely to grow to the surface of the electrode plate. In a battery having a sealed structure such as a sealed nickel-cadmium storage battery, the oxygen gas generated from the positive electrode during overcharge is absorbed by the negative electrode metal cadmium.
In order to improve the absorption of oxygen, it is desirable that cadmium metal be present on the surface of the electrode plate. However, the above-mentioned type of electrode in which the metal cadmium powder is added does not make such a desirable result.

また、予備充電量として添加する金属カドミウムは、電
気化学的に活性である必要がある。しかし、活性な金属
カドミウムを使用する場合、その活性度のために、作業
中に空気中の酸素,水蒸気等と反応して酸化被膜を形成
し、不活性化を起こす問題があった。このような問題に
対し、比較的活性度の低い、粒径の大きな球形の金属カ
ドミウムの表面に、故意に酸化被膜を形成して安定化し
たものを使用する提案(特公昭57−37986)や、
不活性化を防止するために、金属カドミウムをリン酸塩
とともに使用する方法(特開昭57−5265)等があ
るが、これらの方法によっても、金属カドミウムの活性
度低下の面に問題を残すところがあった。
Further, the metal cadmium added as a precharge amount needs to be electrochemically active. However, when active cadmium metal is used, there is a problem that, due to its activity, it reacts with oxygen, water vapor, etc. in the air to form an oxide film and inactivates. To solve such a problem, it is proposed to use a spherical metal cadmium having a relatively low activity and a large particle size, which is formed by intentionally forming and stabilizing an oxide film (Japanese Patent Publication No. 57-37986). ,
In order to prevent inactivation, there is a method of using metal cadmium with a phosphate (Japanese Patent Laid-Open No. 57-5265) and the like, but these methods also leave a problem in terms of a decrease in the activity of metal cadmium. There was a place.

発明の目的 本発明は、以上のような問題点を解決し、予備充電量と
して添加する金属カドミウム粉末を有効に利用し、化成
工程が不要のペースト式カドミウム負極を提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to effectively use metal cadmium powder added as a precharge amount to provide a paste-type cadmium negative electrode that does not require a chemical conversion step.

発明の構成 本発明のカドミウム負極は、酸化カドミウム粉末と金属
カドミウム粉末を主とする活性質混合物を導電性芯材に
保持させた極板の表面層に、電気メッキもしくは化学メ
ッキの手段により、ニッケルメッキ層を付与したもので
ある。
Composition of the invention The cadmium negative electrode of the present invention is a surface layer of an electrode plate in which an active mixture mainly composed of cadmium oxide powder and metal cadmium powder is held on a conductive core material, by means of electroplating or chemical plating, nickel. It is provided with a plating layer.

以下、本発明の原理を説明する。The principle of the present invention will be described below.

前記のように、化成工程を不要にする目的で予備充電量
相当分として添加した金属カドミウム粉末は、導電率の
低い酸化カドミウムや水酸化カドミウムの間に散在して
おり、相互の電気的接触が少ないために、充放電に寄与
する割合が少なく、利用率の低い状態となっている。ま
た、化成工程で得られる金属カドミウムのように導電マ
トリクスを形成していないので、充電により生成する金
属カドミウムは極板の芯材付近に集中し、正極から発生
する酸素ガスを効率的に吸収できる極板表面にはあまり
分布しない。ところが、電気メッキや化学メッキによっ
て負極の表面層に活物質と密着性のよいニッケルメッキ
層を設けると、充電時に生成する金属カドミウムは、活
物質を保持する芯材と、極板表面のニッケルメッキ層の
両方から成長し、活物質層内に散在する金属カドミウム
粉末を介してマトリクスを形成する。このようにして電
気的接触の多くなった金属カドミウム粉末の利用率は向
上し、また極板表面層に金属カドミウムが多く分布する
ようになるため、過充電時に酸素ガスの吸収能が向上す
る。
As described above, the metal cadmium powder added as a portion corresponding to the amount of preliminary charge for the purpose of eliminating the chemical conversion step is scattered between cadmium oxide and cadmium hydroxide having low conductivity, and mutual electrical contact occurs. Since the amount is small, the contribution to charge / discharge is small and the utilization rate is low. Further, unlike the metal cadmium obtained in the chemical conversion process, since a conductive matrix is not formed, the metal cadmium generated by charging is concentrated near the core material of the electrode plate and can efficiently absorb the oxygen gas generated from the positive electrode. It is not so distributed on the surface of the electrode plate. However, when a nickel plating layer that has good adhesion to the active material is provided on the surface layer of the negative electrode by electroplating or chemical plating, the metal cadmium generated during charging is the core material that holds the active material and the nickel plating on the surface of the electrode plate. A matrix is formed through metal cadmium powder that grows from both layers and is interspersed within the active material layer. In this way, the utilization rate of the metal cadmium powder that has increased electrical contact is improved, and since a large amount of metal cadmium is distributed in the electrode plate surface layer, the oxygen gas absorption capacity is improved during overcharge.

また、金属カドミウムは、粒径が小さく、表面積の大き
な活性度の高いものを使用するのが好ましいが、そのよ
うなものは、前に述べたとおり作業中に不活性化してし
まう。しかし、初期に高い活性度を有する金属カドミウ
ムを使用して極板を形成した後、電気メッキあるいは化
学メッキを行えば、電気メッキ時の陰分極あるいは化学
メッキ浴中の還元剤により、金属カドミウム表面に形成
された不活性酸化被膜が還元され、金属カドミウムは元
の高活性な状態に戻る。このように、再活性化された金
属カドミウムは、酸化カドミウム中に存在するため、後
の水洗,乾燥等の工程においても容易に不活性化される
ことがなく、活性な状態で電池内へ組み込むことができ
る。
Further, it is preferable to use metal cadmium having a small particle size and a large surface area and high activity, but such metal cadmium is inactivated during the operation as described above. However, if the electrode plate is formed using metal cadmium having a high activity in the initial stage and then electroplating or chemical plating is performed, the surface of the metal cadmium can be changed by the negative polarization during electroplating or the reducing agent in the chemical plating bath. The inactive oxide film formed on the surface is reduced, and the metal cadmium returns to its original highly active state. As described above, the reactivated metal cadmium is present in the cadmium oxide, so that it is not easily deactivated in the subsequent steps such as washing with water and drying, and is incorporated into the battery in an active state. be able to.

なお、従来、極板強度を補強する目的で化成工程を有す
るペースト式負極の表面に金属粉末を塗布することが特
開昭53−86442で提案されている。本発明では、
化成工程を不要にする目的で添加する予備充電量として
の金属カドミウムの効率を向上するものであり、金属被
膜層は、極板補強の場合のもののように強固である必要
はない。
Heretofore, it has been proposed in JP-A-53-86442 to apply a metal powder to the surface of a paste type negative electrode having a chemical conversion step for the purpose of reinforcing the strength of the electrode plate. In the present invention,
It improves the efficiency of metal cadmium as a precharge added for the purpose of eliminating the chemical conversion step, and the metal coating layer does not need to be as strong as in the case of electrode plate reinforcement.

実施例の説明 平均粒径約1μmの酸化カドミウム粉末70重量部と、
金属カドミウム粉末30重量部とを混合し、これにポリ
ビニルアルコールのエチレングリコール溶液を加え、混
練してペースト状にする。このペーストを厚さ0.1mm
のニッケルメッキした開孔鉄板に塗着し、約140℃で
30分間乾燥し、厚さ約0.5mmの極板を得た。この極
板をpH3〜5、液温50℃に調整した硫酸ニッケルの1
モル/水溶液中において、100mA/cm2の電流密
度で陰電解し、極板表面層にニッケルメッキをした。
Description of Examples 70 parts by weight of cadmium oxide powder having an average particle size of about 1 μm,
30 parts by weight of metal cadmium powder is mixed, and an ethylene glycol solution of polyvinyl alcohol is added to this and kneaded to form a paste. This paste is 0.1mm thick
Was applied to the nickel-plated perforated iron plate and dried at about 140 ° C. for 30 minutes to obtain an electrode plate having a thickness of about 0.5 mm. This electrode plate was adjusted to pH 3-5 and liquid temperature 50 ° C.
A negative electrode was electrolyzed at a current density of 100 mA / cm 2 in a mol / water solution, and the surface layer of the electrode plate was plated with nickel.

メッキ終了後、極板を水洗,乾燥し、所定の寸法に切断
した。
After the plating was completed, the electrode plate was washed with water, dried and cut into a predetermined size.

使用した金属カドミウム粉末は、電気化学的処理により
製造した非定形微粒子で、比表面積の大きなものであ
る。また、その処法の変化により、平均粒径、比表面積
を変えた。電気メッキの量は、その通電時間を変えて調
整した。
The metal cadmium powder used is an amorphous fine particle produced by an electrochemical treatment and has a large specific surface area. Moreover, the average particle diameter and the specific surface area were changed by changing the processing method. The amount of electroplating was adjusted by changing the energization time.

上記の負極を焼結式ニッケル正極と組み合わせて120
0mAh相当の密閉形電池を試作し、電池特性を試験し
た。試験は、金属カドミウム粉末の利用率を評価するた
めの放電率特性試験と、過充電時の酸素ガス吸収能力を
評価するための電池内圧試験とを行った。放電率特性
は、20℃において、5c相当の電流で放電したときの
放電容量と、0.2c相当で放電したときの放電容量の
比率で評価した。また、内圧は、20℃で1c相当の電
流で充電したときの電池内圧のピーク値で評価した。
The above negative electrode is combined with a sintered nickel positive electrode to obtain 120
A sealed battery corresponding to 0 mAh was prototyped and tested for battery characteristics. The tests were a discharge rate characteristic test for evaluating the utilization rate of the metal cadmium powder and a battery internal pressure test for evaluating the oxygen gas absorption capacity during overcharge. The discharge rate characteristics were evaluated by the ratio of the discharge capacity when discharged at a current equivalent to 5c and the discharge capacity when discharged at equivalent to 0.2c at 20 ° C. The internal pressure was evaluated by the peak value of the internal pressure of the battery when charged at 20 ° C. with a current equivalent to 1 c.

第1図は金属カドミウム粉末の粒径と放電容量比率の関
係を示す。図中、aは前記の負極を用いた電池、bはニ
ッケルメッキをしない他は前記と同じ負極を用いた電池
を表わす。
FIG. 1 shows the relationship between the particle size of metal cadmium powder and the discharge capacity ratio. In the figure, a represents a battery using the above negative electrode, and b represents a battery using the same negative electrode as that described above except that nickel plating is not performed.

aでは前述のように、予備充電量としての金属カドミウ
ムの利用率が向上しているため、bに比べ著しく特性が
向上している。用いる金属カドミウム粉末は、粒径の小
さい方が活性で、利用率が高く、放電率特性も良好であ
るが、小さすぎると、主活物質である酸化カドミウム間
に形成される空間部に埋もれる形となり、ニッケルメッ
キによる導電マトリクスに組み込まれず逆に利用率が低
下してしまう。従って、その適正粒径は0.5〜2.5
μm程度である。
As described above, in a, the utilization rate of metal cadmium as the precharge amount is improved, so that the characteristics are significantly improved as compared with b. Regarding the metal cadmium powder used, the smaller the particle size, the more active, the higher the utilization rate and the better the discharge rate characteristics, but if it is too small, it will be buried in the space formed between the main active materials, cadmium oxide. Therefore, it is not incorporated in the conductive matrix formed by nickel plating, and conversely the utilization rate decreases. Therefore, the appropriate particle size is 0.5 to 2.5.
It is about μm.

第2図は金属カドミウムの比表面積と放電容量比率との
関係を示す。なお、比表面積はBET法により求めた。
比表面積が大きくなると、金属カドミウムの活性度が上
がり、放電率特性も向上するが、この傾向はある時点で
飽和してしまう。金属カドミウムを含む極板をメッキす
れば、当然金属カドミウム面もメッキ層で被覆される。
上記の放電率がある時点で飽和してしまう現象は、金属
カドミウムの表面積の増加に伴い、メッキ層で被覆され
る金属カドミウムの割合が増加し、この部分の金属カド
ミウムが充放電反応に寄与できなくなる原因によるもの
と考えられる。また、比表面積の大きな金属カドミウム
は、活性度が高すぎ、作業中の発火等の危険性も増大す
る。以上から、適正な比表面積は0.5〜5cm2/g程
度である。
FIG. 2 shows the relationship between the specific surface area of metal cadmium and the discharge capacity ratio. The specific surface area was determined by the BET method.
As the specific surface area increases, the activity of metallic cadmium increases and the discharge rate characteristic improves, but this tendency becomes saturated at some point. When the electrode plate containing metal cadmium is plated, the metal cadmium surface is naturally covered with the plating layer.
The phenomenon that the above discharge rate becomes saturated at a certain point is that as the surface area of metal cadmium increases, the proportion of metal cadmium covered with the plating layer increases, and the metal cadmium in this part can contribute to the charge / discharge reaction. It is thought that this is due to the disappearance. In addition, cadmium metal having a large specific surface area has too high an activity, and the risk of ignition during work increases. From the above, an appropriate specific surface area is about 0.5 to 5 cm 2 / g.

第3図は負極板へのニッケルメッキ量と電池内圧のピー
クとの関係を示す。前述のように、極板表面にニッケル
メッキ層を設けると、電池充電時に生成する金属カドミ
ウムが極板表面層に多く分布するようになるため、酸素
ガスの吸収能が向上し、電池の内圧が低下する。この傾
向は、メッキ量が極板の単位面積当り2mg/cm2程度か
ら顕著になる。しかし、メッキ量が多すぎると、極板表
面層を完全に覆う形となり、酸素ガス、電解液の移動を
妨げるため、逆効果となる。以上からメッキ量の適正範
囲は2〜20mg/cm2程度である。
FIG. 3 shows the relationship between the nickel plating amount on the negative electrode plate and the peak of the battery internal pressure. As described above, when a nickel plating layer is provided on the surface of the electrode plate, a large amount of metal cadmium generated during battery charging becomes distributed in the surface layer of the electrode plate, which improves the oxygen gas absorption capacity and reduces the internal pressure of the battery. descend. This tendency becomes remarkable when the plating amount is about 2 mg / cm 2 per unit area of the electrode plate. However, if the amount of plating is too large, the surface layer of the electrode plate will be completely covered, and the movement of oxygen gas and the electrolytic solution will be hindered. From the above, the appropriate range of the plating amount is about 2 to 20 mg / cm 2 .

上記の例では、電気メッキしたが、化学メッキでも同様
の効果が得られる。
Although electroplating is performed in the above example, the same effect can be obtained by chemical plating.

発明の効果 以上のように、本発明によれば、金属カドミウム粉末の
活性度が低下することなく、酸素ガスの吸収能にもすぐ
れた化成工程不要の高性能のペースト式カドミウム負極
をうることができる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a high-performance paste-type cadmium negative electrode which does not require a chemical conversion step and has an excellent oxygen gas absorbing ability without decreasing the activity of the metal cadmium powder. it can.

【図面の簡単な説明】[Brief description of drawings]

第1図は負極に添加した金属カドミウムの粒径と電池の
放電容量比率との関係を示す図、第2図は金属カドミウ
ム粉末の比表面積と電池の放電容量比率との関係を示す
図、第3図は負極へのニッケルメッキ量と電池内圧のピ
ークとの関係を示す図である。
FIG. 1 is a diagram showing the relationship between the particle size of metal cadmium added to the negative electrode and the discharge capacity ratio of the battery, and FIG. 2 is a diagram showing the relationship between the specific surface area of the metal cadmium powder and the discharge capacity ratio of the battery. FIG. 3 is a diagram showing the relationship between the nickel plating amount on the negative electrode and the peak of the battery internal pressure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増井 基秀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山賀 実 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motohide Masui 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Minoru Yamaga 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化カドミウム粉末と金属カドミウム粉末
を主とする活物質混合物を導電性芯材に保持させた極板
表面層に、連続したニッケルメッキ層を形成したペース
ト式カドミウム負極。
1. A paste-type cadmium negative electrode in which a continuous nickel plating layer is formed on an electrode plate surface layer in which a conductive core material holds an active material mixture mainly containing cadmium oxide powder and metal cadmium powder.
【請求項2】前記金属カドミウム粉末の平均粒径が0.
5〜2.5μm,比表面積が0.5〜5m2/gである特
許請求の範囲第1項記載のペースト式カドミウム負極。
2. The average particle size of the metal cadmium powder is 0.
The paste type cadmium negative electrode according to claim 1, which has a specific surface area of 5 to 2.5 μm and a specific surface area of 0.5 to 5 m 2 / g.
【請求項3】前記ニッケルメッキ層の重量が2〜20mg
/cm2である特許請求の範囲第1項記載のペースト式カ
ドミウム負極。
3. The nickel plating layer has a weight of 2 to 20 mg.
The paste-type cadmium negative electrode according to claim 1, wherein the negative electrode is Cs / cm 2 .
JP59126004A 1984-06-19 1984-06-19 Paste type cadmium negative electrode Expired - Lifetime JPH063730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59126004A JPH063730B2 (en) 1984-06-19 1984-06-19 Paste type cadmium negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59126004A JPH063730B2 (en) 1984-06-19 1984-06-19 Paste type cadmium negative electrode

Publications (2)

Publication Number Publication Date
JPS617565A JPS617565A (en) 1986-01-14
JPH063730B2 true JPH063730B2 (en) 1994-01-12

Family

ID=14924342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59126004A Expired - Lifetime JPH063730B2 (en) 1984-06-19 1984-06-19 Paste type cadmium negative electrode

Country Status (1)

Country Link
JP (1) JPH063730B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109371A (en) * 1979-02-15 1980-08-22 Matsushita Electric Ind Co Ltd Method of producing cadmium negative electrode for alkaline battery
JPS575265A (en) * 1980-06-11 1982-01-12 Sanyo Electric Co Ltd Manufacture of pasted cadmium cathode
JPS5772264A (en) * 1980-10-20 1982-05-06 Matsushita Electric Ind Co Ltd Cadmium electrode for alkaline battery and its manufacture
JPS5832363A (en) * 1981-08-19 1983-02-25 Matsushita Electric Ind Co Ltd Manufacture of negative cadmium electrode for alkaline storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109371A (en) * 1979-02-15 1980-08-22 Matsushita Electric Ind Co Ltd Method of producing cadmium negative electrode for alkaline battery
JPS575265A (en) * 1980-06-11 1982-01-12 Sanyo Electric Co Ltd Manufacture of pasted cadmium cathode
JPS5772264A (en) * 1980-10-20 1982-05-06 Matsushita Electric Ind Co Ltd Cadmium electrode for alkaline battery and its manufacture
JPS5832363A (en) * 1981-08-19 1983-02-25 Matsushita Electric Ind Co Ltd Manufacture of negative cadmium electrode for alkaline storage battery

Also Published As

Publication number Publication date
JPS617565A (en) 1986-01-14

Similar Documents

Publication Publication Date Title
JP3010950B2 (en) Alkaline storage battery and method for manufacturing the same
JPH063730B2 (en) Paste type cadmium negative electrode
JPH0568828B2 (en)
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP2854926B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JP3113534B2 (en) Non-sintered nickel electrode and method for producing the same
JPH0234433B2 (en)
JPS60216449A (en) Manufacture of paste type cadmium negative plate
JPH0680585B2 (en) Method for producing paste type cadmium negative electrode
JPH03159064A (en) Nickel-cadmium storage battery
JPH0675397B2 (en) Method for producing paste type cadmium negative electrode
JPS62136763A (en) Manufacture of paste type cadmium negative electrode
JPS63310565A (en) Manufacture of paste type cadmium negative electrode
JPS6351051A (en) Hydrogen absorption alloy negative electrode for alkaline cell
JPH10144314A (en) Alkaline secondary battery
JPH06124706A (en) Sealed nickel-zinc storage battery
JPH09245827A (en) Manufacture of alkaline storage battery
JPH03746B2 (en)
JPS58137963A (en) Alkaline zinc storage battery
JPH03133058A (en) Manufacture of paste type cadmium negative electrode
JPH0433258A (en) Paste type cadmium cathode for alkaline storage battery and manufacture thereof
JPH0119620B2 (en)
JPH0419962A (en) Cadmium negative electrode for use in alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term