JP2000223146A - Nickel hydrogen storage battery - Google Patents

Nickel hydrogen storage battery

Info

Publication number
JP2000223146A
JP2000223146A JP11022407A JP2240799A JP2000223146A JP 2000223146 A JP2000223146 A JP 2000223146A JP 11022407 A JP11022407 A JP 11022407A JP 2240799 A JP2240799 A JP 2240799A JP 2000223146 A JP2000223146 A JP 2000223146A
Authority
JP
Japan
Prior art keywords
nickel
hydroxide
hydrogen storage
electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11022407A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kodama
充浩 児玉
Kengo Furukawa
健吾 古川
Toshiki Tanaka
俊樹 田中
Minoru Kurokuzuhara
実 黒葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP11022407A priority Critical patent/JP2000223146A/en
Publication of JP2000223146A publication Critical patent/JP2000223146A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a storage battery which is low in capacity degradation after over discharge and good in cycle life characteristic by performing initial charge at a specific battery temperature. SOLUTION: Initial charge is performed at battery temperature 40-80 deg.C. Preferably, in this nickel hydrogen storage battery, electrolyte is composed of potassium hydroxide, lithium hydroxide, and sodium hydroxide. Preferable electrolyte contains 25-45 pts.wt. potassium hydroxide, 0.5-12 pts.wt. lithium hydroxide, and 1-5 pts.wt. sodium hydroxide. Higher-order cobalt oxide formed by using alkaline aqueous solution containing a plurality of alkaline metal ions as the electrolyte and performing the initial charge in a temperature range of 40-80 deg.C does not receive reduction even in an over discharge state and keeps a strong conductive network. Thus, reduction of availability of a nickel electrode is prevented, corrosion of surfaces of negative electrode hydrogen storage alloy is restrained, and therefore, this nickel hydrogen lead-acid battery is provided which is good in capacity recovery characteristic after over discharge and cycle life characteristic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素蓄電
池に用いられる正極及び負極の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a positive electrode and a negative electrode used for a nickel-metal hydride storage battery.

【0002】[0002]

【従来の技術】近年、携帯電話、電動工具及び小型パー
ソナルコンピュータにおいてエネルギー密度の高いニッ
ケル水素蓄電池が使用されている。従来ニッケル水素蓄
電池は高出力用途には不向きであると言われていたが、
高率放電特性の改良によって、電気とガソリンの両方を
エネルギー源として走行するハイブリッド自動車への用
途においても使用され始めている。このような背景にお
いて、より高性能なニッケル水素蓄電池の開発が期待さ
れている。
2. Description of the Related Art In recent years, nickel-metal hydride storage batteries having a high energy density have been used in portable telephones, power tools and small personal computers. Conventionally, nickel-metal hydride batteries were said to be unsuitable for high-power applications,
Improvements in high-rate discharge characteristics have begun to be used in applications to hybrid vehicles that run on both electricity and gasoline as energy sources. Against this background, development of a nickel-metal hydride storage battery with higher performance is expected.

【0003】現在ニッケル水素蓄電池では、負極に水素
を吸蔵放出することが可能な水素吸蔵合金、正極に水酸
化ニッケル、及び電解液にアルカリ水溶液が用いられて
いる。
At present, in a nickel-metal hydride storage battery, a hydrogen storage alloy capable of storing and releasing hydrogen is used for a negative electrode, nickel hydroxide is used for a positive electrode, and an alkaline aqueous solution is used for an electrolyte.

【0004】正極を大別すると、焼結式ニッケル極及び
ペースト式ニッケル極の2種類がある。焼結式ニッケル
極は、金属粉末を焼結した多孔体基板の孔中に中和反応
を利用して水酸化ニッケルを析出成長させて作製する。
ここで用いる多孔体基板は電極の強度を保つ役割をして
いるので空孔率を大きくすることは難しく高容量化が望
めないという問題点がある。一方、ペースト式ニッケル
極は、水酸化ニッケル、導電剤、及びバインダーなどを
混合しペースト状にして、金属多孔体基板に塗布後、乾
燥して作製する。この場合、金属多孔体基板の空孔率を
大きくしても、バインダーが補強剤となり電極強度が保
たれ、また、導電剤を添加しているため集電効果が維持
でき高容量化が可能であるという利点がある。
The positive electrodes are roughly classified into two types: a sintered nickel electrode and a paste nickel electrode. The sintered nickel electrode is prepared by depositing and growing nickel hydroxide in a hole of a porous substrate obtained by sintering a metal powder using a neutralization reaction.
Since the porous substrate used here has a role of maintaining the strength of the electrode, it is difficult to increase the porosity, and there is a problem that a high capacity cannot be expected. On the other hand, the paste-type nickel electrode is prepared by mixing nickel hydroxide, a conductive agent, a binder, and the like, forming a paste, applying the paste to a porous metal substrate, and then drying. In this case, even if the porosity of the porous metal substrate is increased, the binder serves as a reinforcing agent to maintain the electrode strength, and the addition of a conductive agent can maintain the current collection effect and increase the capacity. There is an advantage that there is.

【0005】しかしながら、ペースト式ニッケル極の活
物質にβ−Co(OH)2 あるいはα−Co(OH)2
を表面に被覆した水酸化ニッケルを使用した場合、初期
充電時に形成されたβ−CoOOHの導電経路が過放電
により分解され、導電経路が維持できず活物質の電子的
孤立化が進行する。そのため、過放電前に比べると放電
容量が小さくなり容量が回復しなくなるという問題点が
あった。そこで、水酸化カリウム水溶液に水酸化ナトリ
ウムや水酸化リチウムなどを添加した電解液を用いるこ
とにより、この問題点は若干改善されるが、依然とし
て、未解決であった。
However, β-Co (OH) 2 or α-Co (OH) 2 is used as the active material of the paste-type nickel electrode.
When nickel hydroxide coated on the surface is used, the conductive path of β-CoOOH formed at the time of initial charging is decomposed by overdischarge, and the conductive path cannot be maintained, and electronic isolation of the active material proceeds. For this reason, there is a problem that the discharge capacity is smaller than before the overdischarge and the capacity cannot be recovered. Thus, by using an electrolytic solution obtained by adding sodium hydroxide, lithium hydroxide, or the like to an aqueous potassium hydroxide solution, this problem is slightly improved, but it has not been solved.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記従来技術
の問題点に鑑みなされたものであり、過放電後の容量劣
化が小さく、サイクル寿命特性に優れたニッケル水素蓄
電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a nickel-metal hydride storage battery having a small capacity deterioration after overdischarge and excellent cycle life characteristics. And

【0007】[0007]

【課題を解決するための手段】本発明は、初期充電時に
電池を加温して、電解液に複数のアルカリ金属水酸化物
を含むことにより、より強固なβ−CoOOHの導電経
路を形成させ、過放電後の容量回復及びサイクル寿命特
性に優れた二次電池を提供することが可能となる。
SUMMARY OF THE INVENTION According to the present invention, a battery is heated at the time of initial charging, and a plurality of alkali metal hydroxides are contained in an electrolyte to form a stronger .beta.-CoOOH conductive path. Thus, it is possible to provide a secondary battery having excellent capacity recovery after overdischarge and excellent cycle life characteristics.

【0008】[0008]

【発明の実施の形態】負極に水素を吸蔵放出可能な水素
吸蔵合金、β−Co(OH)2 あるいはα−Co(O
H)2 を表面に被覆した水酸化ニッケル及び電解液にア
ルカリ金属の水酸化物を複数含有するアルカリ水溶液を
用い、初期の密閉化成時における電池温度を40〜80
℃に保って充電してニッケル水素蓄電池を作成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A hydrogen storage alloy capable of storing and releasing hydrogen in a negative electrode, β-Co (OH) 2 or α-Co (O
H) Using nickel hydroxide coated on the surface with 2 and an alkaline aqueous solution containing a plurality of alkali metal hydroxides in the electrolytic solution, the battery temperature during the initial sealed formation was set to 40 to 80.
Charge the battery while maintaining the temperature at ℃.

【0009】初期充電時の充電電流が、1/20CmA
以上の場合には、水酸化コバルトからオキシ水酸化コバ
ルトへの変換効率が低下し、導電性ネットワークの形成
が不完全となり、高い活物質利用率を得ることができな
くなる。そのため、1/20CmA以下で初期充電を行
う必要があり、好ましくは、1/30CmA以下で初期
充電を行う。
The charging current during the initial charging is 1/20 CmA
In the case described above, the conversion efficiency of cobalt hydroxide to cobalt oxyhydroxide decreases, the formation of the conductive network becomes incomplete, and a high active material utilization cannot be obtained. Therefore, it is necessary to perform initial charging at 1/20 CmA or less, and preferably, perform initial charging at 1/20 CmA or less.

【0010】電解液は、水酸化カリウム、水酸化リチウ
ム及び水酸化ナトリウムから成り、該水酸化カリウムが
25〜45重量部、該水酸化リチウムが0. 5〜12重
量部及び該水酸化ナトリウム1〜5が重量部のものが好
ましい。
The electrolytic solution comprises potassium hydroxide, lithium hydroxide and sodium hydroxide. The potassium hydroxide is 25 to 45 parts by weight, the lithium hydroxide is 0.5 to 12 parts by weight and the sodium hydroxide is 1 to 25 parts by weight. It is preferable that 5 are parts by weight.

【0011】[0011]

【実施例】以下、本発明の詳細について、実施例により
説明するが、本発明はこれに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

【0012】(本発明1)電解液には、水酸化カリウム
が34重量部、水酸化リチウムが2. 5重量部、及び水
酸化ナトリウムが4重量部のアルカリ水溶液を用いた。
(Invention 1) An alkaline aqueous solution containing 34 parts by weight of potassium hydroxide, 2.5 parts by weight of lithium hydroxide, and 4 parts by weight of sodium hydroxide was used as an electrolytic solution.

【0013】正極は、β−Co(OH)2 を表面に被覆
した水酸化ニッケルを80重量部と結着剤カルボキシメ
チルセルロースを含む水溶液を20重量部混合したもの
を集電体であるニッケル多孔体基板に塗布し乾燥した。
その後プレスして電極厚みを0.5mmにした。正極容
量は、500mAhであった。
The positive electrode is made of a nickel porous material as a current collector obtained by mixing 80 parts by weight of nickel hydroxide coated on the surface with β-Co (OH) 2 and 20 parts by weight of an aqueous solution containing carboxymethylcellulose as a binder. It was applied to a substrate and dried.
Thereafter, pressing was performed to reduce the electrode thickness to 0.5 mm. The positive electrode capacity was 500 mAh.

【0014】負極は、水素吸蔵合金としてMmNi3.6
Co0.6 Mn0.35Al0.3 の組成の合金を使用した。M
mは希土類元素の混合物であるミッシュメタルを意味す
る。この試料に増粘剤を加えてペースト状にし、穿孔鋼
鈑に塗布し、乾燥後プレスして水素吸蔵合金電極を作製
した。負極容量は、1000mAhであった。
The negative electrode is composed of MmNi 3.6 as a hydrogen storage alloy.
An alloy having a composition of Co 0.6 Mn 0.35 Al 0.3 was used. M
m means a misch metal which is a mixture of rare earth elements. A thickener was added to this sample to form a paste, which was applied to a perforated steel plate, dried and pressed to produce a hydrogen storage alloy electrode. The negative electrode capacity was 1000 mAh.

【0015】これらを正極、負極及び電解液を組み合わ
せ開放型電池を作製し、その後40〜80℃の温度範囲
で初期充電を行った。
These were combined with a positive electrode, a negative electrode and an electrolytic solution to prepare an open-type battery, and thereafter, an initial charge was performed in a temperature range of 40 to 80 ° C.

【0016】(本発明2)電解液には、水酸化カリウム
が28重量部、水酸化リチウムが6重量部、及び水酸化
ナトリウムが4重量部のアルカリ水溶液を用いた。
(Invention 2) An alkaline aqueous solution containing 28 parts by weight of potassium hydroxide, 6 parts by weight of lithium hydroxide, and 4 parts by weight of sodium hydroxide was used as the electrolytic solution.

【0017】正極は、β−Co(OH)2 を表面に被覆
した水酸化ニッケルを80重量部と結着剤カルボキシメ
チルセルロースを含む水溶液を20重量部混合したもの
を集電体であるニッケル多孔体基板に塗布し乾燥した。
その後プレスして電極厚みを0.5mmにした。正極容
量は、500mAhであった。
The positive electrode is a nickel porous material as a current collector obtained by mixing 80 parts by weight of nickel hydroxide coated on the surface with β-Co (OH) 2 and 20 parts by weight of an aqueous solution containing a carboxymethyl cellulose binder. It was applied to a substrate and dried.
Thereafter, pressing was performed to reduce the electrode thickness to 0.5 mm. The positive electrode capacity was 500 mAh.

【0018】負極は、水素吸蔵合金としてMmNi3.6
Co0.6 Mn0.35Al0.3 の 組成の合金を使用した。
Mmは上記と同様に希土類元素の混合物であるミッシュ
メタルを意味する。この試料に増粘剤を加えてペースト
状にし、穿孔鋼鈑に塗布し、乾燥後プレスして水素吸蔵
合金電極を作製した。負極容量は、1000mAhであ
った。
The negative electrode is made of MmNi 3.6 as a hydrogen storage alloy.
An alloy having a composition of Co 0.6 Mn 0.35 Al 0.3 was used.
Mm means a misch metal which is a mixture of rare earth elements as described above. A thickener was added to this sample to form a paste, which was applied to a perforated steel plate, dried and pressed to produce a hydrogen storage alloy electrode. The negative electrode capacity was 1000 mAh.

【0019】これらを正極、負極及び電解液を組み合わ
せ開放型電池を作製し、その後40〜80℃の温度範囲
で初期充電を行った。
These were combined with a positive electrode, a negative electrode and an electrolytic solution to prepare an open-type battery, and thereafter, an initial charge was performed in a temperature range of 40 to 80 ° C.

【0020】(比較例1)電解液には、水酸化カリウム
が34重量部、水酸化リチウムが2. 5重量部、及び水
酸化ナトリウムが4重量部のアルカリ水溶液を用いた。
Comparative Example 1 An alkaline aqueous solution containing 34 parts by weight of potassium hydroxide, 2.5 parts by weight of lithium hydroxide, and 4 parts by weight of sodium hydroxide was used as an electrolytic solution.

【0021】正極は、β−Co(OH)2 を表面に被覆
した水酸化ニッケルを80重量部と結着剤カルボキシメ
チルセルロースを含む水溶液を20重量部混合したもの
を集電体であるニッケル多孔体基板に塗布し乾燥した。
その後プレスして電極厚みを0.5mmにした。正極容
量は、500mAhであった。
The positive electrode is a nickel porous material serving as a current collector obtained by mixing 80 parts by weight of nickel hydroxide coated on the surface with β-Co (OH) 2 and 20 parts by weight of an aqueous solution containing a carboxymethyl cellulose binder. It was applied to a substrate and dried.
Thereafter, pressing was performed to reduce the electrode thickness to 0.5 mm. The positive electrode capacity was 500 mAh.

【0022】負極は、水素吸蔵合金としてMmNi3.6
Co0.6 Mn0.35Al0.3 の組成の合金を使用した。こ
の試料に増粘剤を加えてペースト状にし、穿孔鋼鈑に塗
布し、乾燥後プレスして水素吸蔵合金電極を作製した。
負極容量は、1000mAhであった。
The negative electrode was made of MmNi 3.6 as a hydrogen storage alloy.
An alloy having a composition of Co 0.6 Mn 0.35 Al 0.3 was used. A thickener was added to this sample to form a paste, which was applied to a perforated steel plate, dried and pressed to produce a hydrogen storage alloy electrode.
The negative electrode capacity was 1000 mAh.

【0023】これらを正極、負極及び電解液を組み合わ
せ開放型電池を作製し、その後初期充電を20℃で行っ
た。
These were combined with a positive electrode, a negative electrode and an electrolytic solution to produce an open-type battery, after which initial charging was performed at 20 ° C.

【0024】(比較例2)電解液には、水酸化カリウム
が28重量部、水酸化リチウムが6重量部、及び水酸化
ナトリウムが4重量部のアルカリ水溶液を用いた。
Comparative Example 2 An alkaline aqueous solution containing 28 parts by weight of potassium hydroxide, 6 parts by weight of lithium hydroxide, and 4 parts by weight of sodium hydroxide was used as an electrolytic solution.

【0025】正極は、β−Co(OH)2 を表面に被覆
した水酸化ニッケルを80重量部と結着剤カルボキシメ
チルセルロースを含む水溶液を20重量部混合したもの
を集電体であるニッケル多孔体基板に塗布し乾燥した。
その後プレスして電極厚みを0.5mmにした。正極容
量は、500mAhであった。
The positive electrode is a nickel porous material as a current collector obtained by mixing 80 parts by weight of nickel hydroxide coated on the surface with β-Co (OH) 2 and 20 parts by weight of an aqueous solution containing a carboxymethyl cellulose binder. It was applied to a substrate and dried.
Thereafter, pressing was performed to reduce the electrode thickness to 0.5 mm. The positive electrode capacity was 500 mAh.

【0026】負極は、水素吸蔵合金としてMmNi3.6
Co0.6 Mn0.35Al0.3 の 組成の合金を使用した。
この試料に増粘剤を加えてペースト状にし、穿孔鋼鈑に
塗布し、乾燥後プレスして水素吸蔵合金電極を作製し
た。負極容量は、1000mAhであった。
The negative electrode was made of MmNi 3.6 as a hydrogen storage alloy.
An alloy having a composition of Co 0.6 Mn 0.35 Al 0.3 was used.
A thickener was added to this sample to form a paste, which was applied to a perforated steel plate, dried and pressed to produce a hydrogen storage alloy electrode. The negative electrode capacity was 1000 mAh.

【0027】これらを正極、負極及び電解液を組み合わ
せ開放型電池を作製し,その後初期充電を20℃で行っ
た。
These were combined with a positive electrode, a negative electrode and an electrolytic solution to produce an open-type battery, after which initial charging was performed at 20 ° C.

【0028】(比較例3)電解液には、水酸化カリウム
が39重量部、及び水酸化リチウムが3重量部のアルカ
リ水溶液を用いた。
Comparative Example 3 An alkaline aqueous solution containing 39 parts by weight of potassium hydroxide and 3 parts by weight of lithium hydroxide was used as an electrolytic solution.

【0029】正極は、β−Co(OH)2 を表面に被覆
した水酸化ニッケルを80重量部と結着剤カルボキシメ
チルセルロースを含む水溶液を20重量部混合したもの
を集電体であるニッケル多孔体基板に塗布し乾燥した。
その後プレスして電極厚みを0.5mmにした。正極容
量は、500mAhであった。
The positive electrode is a nickel porous material as a current collector obtained by mixing 80 parts by weight of nickel hydroxide coated on the surface with β-Co (OH) 2 and 20 parts by weight of an aqueous solution containing a carboxymethyl cellulose binder. It was applied to a substrate and dried.
Thereafter, pressing was performed to reduce the electrode thickness to 0.5 mm. The positive electrode capacity was 500 mAh.

【0030】負極は、水素吸蔵合金としてMmNi3.6
Co0.6 Mn0.35Al0.3 の組成の合金を使用した。こ
の試料に増粘剤を加えてペースト状にし、穿孔鋼鈑に塗
布し、乾燥後プレスして水素吸蔵合金電極を作製した。
負極容量は、1000mAhであった。
The negative electrode was made of MmNi 3.6 as a hydrogen storage alloy.
An alloy having a composition of Co 0.6 Mn 0.35 Al 0.3 was used. A thickener was added to this sample to form a paste, which was applied to a perforated steel plate, dried and pressed to produce a hydrogen storage alloy electrode.
The negative electrode capacity was 1000 mAh.

【0031】これらを正極、負極及び電解液を組み合わ
せ開放型電池を作製し,その後20〜80℃の温度範囲
で初期充電を行った。
These were combined with a positive electrode, a negative electrode and an electrolytic solution to produce an open-type battery, which was then initially charged in a temperature range of 20 to 80 ° C.

【0032】(比較例4)電解液には、水酸化カリウム
が28重量部、及び水酸化ナトリウムが8重量部のアル
カリ水溶液を用いた。
(Comparative Example 4) As an electrolytic solution, an alkaline aqueous solution containing 28 parts by weight of potassium hydroxide and 8 parts by weight of sodium hydroxide was used.

【0033】正極は、β−Co(OH)2 を表面に被覆
した水酸化ニッケルを80重量部と結着剤カルボキシメ
チルセルロースを含む水溶液を20重量部混合したもの
を集電体であるニッケル多孔体基板に塗布し乾燥した。
その後プレスして電極厚みを0.5mmにした。正極容
量は、500mAhであった。
The positive electrode is a nickel porous material as a current collector obtained by mixing 80 parts by weight of nickel hydroxide coated on the surface with β-Co (OH) 2 and 20 parts by weight of an aqueous solution containing a carboxymethyl cellulose binder. It was applied to a substrate and dried.
Thereafter, pressing was performed to reduce the electrode thickness to 0.5 mm. The positive electrode capacity was 500 mAh.

【0034】負極は、水素吸蔵合金としてMmNi3.6
Co0.6 Mn0.35Al0.3 の 組成の合金を使用した。
この試料に増粘剤を加えてペースト状にし、穿孔鋼鈑に
塗布し、乾燥後プレスして水素吸蔵合金電極を作製し
た。負極容量は、1000mAhであった。
The negative electrode was made of MmNi 3.6 as a hydrogen storage alloy.
An alloy having a composition of Co 0.6 Mn 0.35 Al 0.3 was used.
A thickener was added to this sample to form a paste, which was applied to a perforated steel plate, dried and pressed to produce a hydrogen storage alloy electrode. The negative electrode capacity was 1000 mAh.

【0035】これらを正極、負極及び電解液を組み合わ
せ開放型電池を作製し、その後20〜80℃の温度範囲
で初期充電を行った。
The positive electrode, the negative electrode, and the electrolytic solution were combined to form an open-type battery, and thereafter, an initial charge was performed in a temperature range of 20 to 80 ° C.

【0036】本発明1、本発明2、比較例1、比較例
2、比較例3及び比較例4の電池について、20〜80
℃の温度範囲において、1サイクル目の充電条件は、1
/50CmAで10時間定電流充電し、さらに0.1C
mAで10時間定電流充電した。放電条件は、0.2C
mAで0.6Vまで定電流放電した。2サイクル目以降
は、0.1CmAで15時間定電流充電し、0.2Cm
Aで1.0Vまで定電流放電した。この操作を4サイク
ル繰り返した後、過放電させるため、1Ωの定抵抗で4
8時間短絡放置した。過放電後回復率を検討するため、
再度2サイクル目と同条件で充放電を繰り返した。
The batteries according to the present invention 1, the present invention 2, the comparative examples 1, 2, 3, and 4 were subjected to 20 to 80.
In the temperature range of ° C., the charging condition in the first cycle is 1
/ Constant current charging at 50 CmA for 10 hours, and 0.1 C
The battery was charged at a constant current of 10 hours at mA. Discharge condition is 0.2C
The battery was discharged at a constant current of 0.6 V at mA. After the second cycle, the battery is charged at a constant current of 0.1 CmA for 15 hours,
The battery was discharged at a constant current of 1.0 A to 1.0 V. After repeating this operation for 4 cycles, in order to overdischarge,
It was short-circuited for 8 hours. To study the recovery rate after overdischarge,
The charge and discharge were repeated again under the same conditions as the second cycle.

【0037】図1は本発明1、本発明2、比較例1、比
較例2、比較例3及び比較例4の電池の過放電試験後の
容量回復特性を示した。本発明は比較例1及び2と比べ
40℃以上に加温し初期充電を行うことより、過放電後
の容量回復率が約5%向上することが分かる。また、比
較例3及び4に示した2種類混合したアルカリ水溶液に
比べ本発明の3種類混合したアルカリ水溶液を電解液に
用いると、過放電後の容量回復率が約5%向上すること
が分かる。
FIG. 1 shows the capacity recovery characteristics of the batteries of Invention 1, Invention 2, Comparative Example 1, Comparative Example 2, Comparative Example 3 and Comparative Example 4 after the overdischarge test. It can be seen that the capacity recovery rate after overdischarge is improved by about 5% in the present invention by performing the initial charging by heating to 40 ° C. or higher as compared with Comparative Examples 1 and 2. In addition, it can be seen that the capacity recovery rate after overdischarge is improved by about 5% when the three kinds of mixed alkaline aqueous solutions of the present invention are used for the electrolytic solution as compared with the two kinds of mixed alkaline aqueous solutions shown in Comparative Examples 3 and 4. .

【0038】この原因として、初期充電時の水酸化コバ
ルトからオキシ水酸化コバルトなどの高次のコバルト酸
化物への電気化学的酸化を、高温、且つナトリウムとリ
チウムが共存する水酸化カリウム水溶液の電解液中で行
うことによって、過放電(低電位)状態においても還元
を受けず強固な導電性ネットワークが維持されるため、
ニッケル電極の利用率の低下が防止されたためであると
考えられる。
The reason for this is that the electrochemical oxidation of cobalt hydroxide to a higher-order cobalt oxide such as cobalt oxyhydroxide at the time of initial charging is carried out at a high temperature and in the electrolysis of an aqueous potassium hydroxide solution in which sodium and lithium coexist. By performing in a liquid, a strong conductive network is maintained without being reduced even in an overdischarged (low potential) state.
This is considered to be because the reduction in the utilization rate of the nickel electrode was prevented.

【0039】図2は、本発明2及び比較例2及び4の電
池の300サイクル後の負極水素吸蔵合金表面の電子顕
微鏡写真である。本発明は、比較例と比べ希土類水酸化
物の針状生成物が著しく抑制されていることが分かる。
また、各電解液を分析した結果、本発明においては、比
較例に比べ希土類イオン量が著しく多いことが分かっ
た。したがって、初期充電時に40℃以上に加温し電解
液を3成分系にすることにより、希土類がイオン化され
電解液に溶出し、負極水素吸蔵合金表面の希土類水酸化
物の析出生成が抑制されると考えられる。
FIG. 2 is an electron micrograph of the surface of the negative electrode hydrogen storage alloy after 300 cycles of the batteries of Invention 2 and Comparative Examples 2 and 4. It can be seen that in the present invention, needle-like products of rare earth hydroxides are significantly suppressed as compared with Comparative Examples.
In addition, as a result of analyzing each electrolytic solution, it was found that in the present invention, the amount of rare earth ions was significantly larger than that of the comparative example. Therefore, the rare earth is ionized and eluted into the electrolyte by heating the electrolyte to a three-component system by heating to 40 ° C. or more at the time of initial charging, and the precipitation of rare earth hydroxide on the surface of the negative electrode hydrogen storage alloy is suppressed. it is conceivable that.

【0040】なお、初期充電時に80℃を超えると電解
液の蒸発が盛んになり、また、負極の水素吸蔵合金表面
の腐食が進行するため好ましくない。
If the temperature exceeds 80 ° C. at the time of initial charging, the evaporation of the electrolytic solution becomes active and corrosion of the surface of the hydrogen storage alloy of the negative electrode proceeds, which is not preferable.

【0041】[0041]

【発明の効果】本発明の電池においては過放電後の容量
回復特性が著しく向上し、負極水素吸蔵合金表面の腐食
が抑制された。比較例と異なり、電解液に複数のアルカ
リ水溶液を混合したものを用い、初期充電時に加温する
ことにより、より強固な導電性ネットワークの形成が可
能となり、負極水素吸蔵合金表面の腐食の抑制が可能と
なった。
According to the battery of the present invention, the capacity recovery characteristic after overdischarge is remarkably improved, and the corrosion of the surface of the negative electrode hydrogen storage alloy is suppressed. Unlike the comparative example, by using a mixture of a plurality of alkaline aqueous solutions in the electrolytic solution and heating at the time of initial charging, it is possible to form a stronger conductive network and suppress corrosion of the negative electrode hydrogen storage alloy surface. It has become possible.

【0042】以上の説明から明かなように、上述の如く
本発明によれば、電解液に複数のアルカリ金属イオンを
含有するアルカリ水溶液を用い、40〜80℃の温度範
囲で初期の充電をすることにより形成された高次のコバ
ルト酸化物は、過放電(低電位)状態においても還元を
受けず強固な導電性ネットワークを維持するため、ニッ
ケル電極の利用率の低下が防止され、、且つ負極水素吸
蔵合金表面の腐食を抑制するため、過放電後の容量回復
特性及びサイクル寿命特性に優れたニッケル水素蓄電池
の提供が可能となる。
As is apparent from the above description, according to the present invention, as described above, an initial aqueous charge is performed in a temperature range of 40 to 80 ° C. using an alkaline aqueous solution containing a plurality of alkali metal ions as an electrolytic solution. The high-order cobalt oxide thus formed does not undergo reduction even in an overdischarge (low potential) state and maintains a strong conductive network, so that a decrease in the utilization rate of the nickel electrode is prevented, and Since the corrosion of the hydrogen storage alloy surface is suppressed, it is possible to provide a nickel-metal hydride storage battery having excellent capacity recovery characteristics after overdischarge and excellent cycle life characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明1、2、比較例1、2、3及び4のニッ
ケル水素蓄電池について過放電後の容量回復特性を示し
たものである。
FIG. 1 shows the capacity recovery characteristics after overdischarge of the nickel-metal hydride storage batteries of the present inventions 1, 2, and Comparative Examples 1, 2, 3, and 4.

【図2】本発明2、比較例2及び4の負極水素吸蔵合金
表面の電子顕微鏡写真を示したものである。
FIG. 2 shows electron micrographs of the surfaces of the negative electrode hydrogen storage alloys of Invention 2 and Comparative Examples 2 and 4.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒葛原 実 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 Fターム(参考) 5H028 AA01 AA06 EE05 FF04 HH08 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Minoru Kuzukatsubara 6-6 Josaicho, Takatsuki-shi, Osaka F-term in Yuasa Corporation (reference) 5H028 AA01 AA06 EE05 FF04 HH08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解液にアルカリ金属の水酸化物を複数
含有するアルカリ水溶液を用いるニッケル水素蓄電池に
おいて、初期充電を電池温度40〜80℃で行なうこと
を特徴とするニッケル水素蓄電池。
1. A nickel-metal hydride storage battery using an alkaline aqueous solution containing a plurality of alkali metal hydroxides in an electrolytic solution, wherein initial charging is performed at a battery temperature of 40 to 80 ° C.
【請求項2】 前記電解液が、水酸化カリウム、水酸化
リチウム及び水酸化ナトリウムから成ることを特徴とす
る請求項1記載のニッケル水素蓄電池。
2. The nickel-metal hydride storage battery according to claim 1, wherein said electrolyte comprises potassium hydroxide, lithium hydroxide and sodium hydroxide.
JP11022407A 1999-01-29 1999-01-29 Nickel hydrogen storage battery Pending JP2000223146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11022407A JP2000223146A (en) 1999-01-29 1999-01-29 Nickel hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11022407A JP2000223146A (en) 1999-01-29 1999-01-29 Nickel hydrogen storage battery

Publications (1)

Publication Number Publication Date
JP2000223146A true JP2000223146A (en) 2000-08-11

Family

ID=12081822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11022407A Pending JP2000223146A (en) 1999-01-29 1999-01-29 Nickel hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP2000223146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190565A (en) * 2017-04-28 2018-11-29 株式会社豊田自動織機 Activation method of nickel metal hydride battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190565A (en) * 2017-04-28 2018-11-29 株式会社豊田自動織機 Activation method of nickel metal hydride battery

Similar Documents

Publication Publication Date Title
CN112018344B (en) Carbon-coated nickel sulfide electrode material and preparation method and application thereof
JP2982805B1 (en) Hydrogen storage alloy for battery, method for producing the same, and alkaline storage battery using the same
US5984982A (en) Electrochemical synthesis of cobalt oxyhydroxide
JP4747233B2 (en) Alkaline storage battery
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
CN100511782C (en) Alkaline secondary battery positive electrode material and alkaline secondary battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP2000223146A (en) Nickel hydrogen storage battery
JPH1064535A (en) Nickel electrode for alkaline storage battery
CA2333079A1 (en) Active electrode compositions comprising raney based catalysts and materials
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2001126755A (en) Nickel-metal hydride storage battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP2797554B2 (en) Nickel cadmium storage battery
JP3501378B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP4531874B2 (en) Nickel metal hydride battery
KR100666869B1 (en) Metallic glass matrix cathode composite containing cathode materials for secondary batteries and manufacturing method of the same
JP3494342B2 (en) Method for manufacturing positive electrode of secondary battery
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
KR100300327B1 (en) A composition for a positive electrode of a nickel-metal hydride battery, a positive electrode using the same and a nickel-metal hydride battery using the same
CN115332512A (en) Lithium ion battery negative electrode material beta-SnSb/HCS/C and preparation method thereof
JP2022182856A (en) Hydrogen storage alloy negative electrode and nickel hydrogen secondary battery including the same
JP2000348731A (en) Nickel electrode for alkaline storage battery
JP3995288B2 (en) Cadmium negative electrode for alkaline storage battery and method for producing the same
CN117096290A (en) Positive electrode material and solid-state battery containing same