JP2000348731A - Nickel electrode for alkaline storage battery - Google Patents

Nickel electrode for alkaline storage battery

Info

Publication number
JP2000348731A
JP2000348731A JP11159257A JP15925799A JP2000348731A JP 2000348731 A JP2000348731 A JP 2000348731A JP 11159257 A JP11159257 A JP 11159257A JP 15925799 A JP15925799 A JP 15925799A JP 2000348731 A JP2000348731 A JP 2000348731A
Authority
JP
Japan
Prior art keywords
substrate
nickel
cobalt
active material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11159257A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kodama
充浩 児玉
Takashi Watari
高志 亘
Masaharu Watada
正治 綿田
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP11159257A priority Critical patent/JP2000348731A/en
Publication of JP2000348731A publication Critical patent/JP2000348731A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance an active material utilization factor and improve a high- rate discharge characteristic by applying etching to a metal porous substrate and by applying cobalt-plating to it. SOLUTION: This nickel electrode is made by filling an active material containing nickel hydroxide as a main constituent in a metal porous substrate. When etching and cobalt-plating are applied to the substrate, the surface of the substrate is roughened and unevenness is imparted to it. Thereby, the coming-off of the active material from the substrate is prevented, and the contact area of the active material to the substrate can be increased. The plated cobalt is electrochemically oxidized during initial charging, a conductive layer of high-order cobalt oxyhydroxide is formed in the vicinity of the substrate, and the active material is connected to the substrate, so that a battery having a high active material utilization factor and an excellent high-rate discharge characteristic can be provided. A cobalt-plating amount of the substrate is preferably set to 0.3-10 mg/cm2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素電池
に用いられる正極基板の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a positive electrode substrate used for a nickel metal hydride battery.

【0002】[0002]

【従来の技術】近年、携帯電話、電動工具及び小型パー
ソナルコンピュータにおいてエネルギー密度の高いニッ
ケル水素電池が使用されている。従来、ニッケル水素電
池は高出力用途には不向きであると言われていたが、高
率放電特性の改良によって、電気とガソリンの両方をエ
ネルギー源として走行するハイブリッド自動車への用途
においても使用され始めている。このような背景におい
て、より高性能なニッケル水素電池の開発が期待されて
いる。
2. Description of the Related Art In recent years, nickel-metal hydride batteries having a high energy density have been used in portable telephones, power tools and small personal computers. Conventionally, nickel-metal hydride batteries were said to be unsuitable for high-power applications.However, due to the improved high-rate discharge characteristics, nickel-metal hydride batteries have begun to be used in hybrid vehicles that run on both electricity and gasoline as energy sources. I have. Against this background, the development of higher performance nickel-metal hydride batteries is expected.

【0003】現在、ニッケル水素電池では、負極に水素
を吸蔵放出することが可能な水素吸蔵合金、正極に水酸
化ニッケルが用いられている。正極を大別すると、焼結
式ニッケル極及びペースト式ニッケル極の2種類があ
る。焼結式ニッケル極は、金属粉末を焼結した多孔体基
板の孔中に中和反応を利用して水酸化ニッケルを析出成
長させて作製する。ここで用いる多孔体基板は、電極の
強度を保つ役割をしているので空孔率を大きくすること
は難しく、高容量化が望めないという問題点がある。一
方、ペースト式ニッケル極は、水酸化ニッケル、導電
剤、及びバインダーなどを混合しペースト状にして、金
属多孔体基板に塗布後、乾燥して作製する。この場合、
金属多孔体基板の空孔率を大きくしても、バインダーが
補強剤となり電極強度が保たれ、また、導電剤を添加し
ているため集電効果が維持でき高容量化が可能であると
いう利点がある。
At present, in a nickel-metal hydride battery, a hydrogen storage alloy capable of storing and releasing hydrogen is used for a negative electrode, and nickel hydroxide is used for a positive electrode. The positive electrode is roughly classified into two types, a sintered nickel electrode and a paste nickel electrode. The sintered nickel electrode is prepared by depositing and growing nickel hydroxide in a hole of a porous substrate obtained by sintering a metal powder using a neutralization reaction. Since the porous substrate used here has a role of maintaining the strength of the electrode, it is difficult to increase the porosity, and there is a problem that a high capacity cannot be expected. On the other hand, the paste-type nickel electrode is prepared by mixing nickel hydroxide, a conductive agent, a binder, and the like, forming a paste, applying the paste to a porous metal substrate, and then drying. in this case,
Even if the porosity of the porous metal substrate is increased, the binder serves as a reinforcing agent to maintain the electrode strength, and the addition of a conductive agent can maintain the current collection effect and increase the capacity. There is.

【0004】ペースト式ニッケル極に使用する多孔体基
板は開口部が大きいため、水酸化ニッケル粒子間の接触
が多くなる。放電時において、オキシ水酸化ニッケルか
ら還元されて水酸化ニッケルを生成し、水酸化ニッケル
はアルカリ溶液中で絶縁性が高いため、水酸化ニッケル
粒子間の電子供給が阻害され、活物質の利用率や高率放
電特性が低下する。この問題点を解決するため、導電剤
として、金属コバルトや酸化コバルトを添加したり、あ
るいは水酸化コバルトで被覆した水酸化ニッケルが用い
られている。この結果、水酸化ニッケル粒子間の導電性
ネットワークが確保され、活物質の利用率は向上した。
Since the porous substrate used for the paste-type nickel electrode has a large opening, contact between nickel hydroxide particles increases. At the time of discharge, nickel oxyhydroxide is reduced to form nickel hydroxide. Nickel hydroxide has a high insulating property in an alkaline solution, so that electron supply between nickel hydroxide particles is hindered, and the utilization rate of the active material is reduced. And high-rate discharge characteristics decrease. In order to solve this problem, nickel hydroxide added with cobalt metal or cobalt oxide or coated with cobalt hydroxide is used as a conductive agent. As a result, a conductive network between the nickel hydroxide particles was secured, and the utilization rate of the active material was improved.

【0005】さらに、特開平2−253559号公報、
特開平4−192259号公報、特開平5−17661
号公報及び特開平5−82027号公報などに記載され
ているように、多孔体基板にコバルトメッキを施すこと
により、活物質の利用率を向上させることが提案されて
いる。しかしながら、依然として焼結式ニッケル極に比
べ、高率放電特性は劣っており、ペースト式ニッケル極
は、水酸化ニッケル粒子と多孔体基板との接触面積が少
なくスムーズな電子供給が行われないため、反応抵抗が
大きくなり高率放電時の電圧降下が大きくなるという問
題点がある。また、サイクルを繰り返すと、多孔体基板
から活物質が脱落し、容量低下を引き起こすことがあ
る。
Further, Japanese Patent Application Laid-Open No. 253559/1990,
JP-A-4-192259, JP-A-5-17661
As described in Japanese Patent Application Laid-Open No. 5-82027 and Japanese Patent Application Laid-Open No. 5-82027, it has been proposed to improve the utilization ratio of an active material by applying cobalt plating to a porous substrate. However, the high-rate discharge characteristics are still inferior to the sintered nickel electrode, and the paste nickel electrode has a small contact area between the nickel hydroxide particles and the porous substrate, so that a smooth electron supply is not performed. There is a problem that the reaction resistance increases and the voltage drop during high-rate discharge increases. Further, when the cycle is repeated, the active material may fall off from the porous substrate, causing a decrease in capacity.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記従来技術
の問題点に鑑みなされたものであり、活物質利用率が高
く、高率放電特性に優れたニッケル水素電池を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a nickel-metal hydride battery having a high active material utilization rate and excellent high-rate discharge characteristics. I do.

【0007】[0007]

【課題を解決するための手段】本発明は、金属多孔体基
板に水酸化ニッケルを主成分とする活物質を充填したニ
ッケル電極において、該金属多孔体基板がエッチング処
理され、且つ、コバルトメッキされているアルカリ蓄電
池用ニッケル電極を用いることにより、金属多孔体基板
表面を粗面化して表面凹凸を付与することができ、活物
質の金属多孔体基板からの脱落を防止し、活物質と金属
多孔体基板との接触面積を増大させることが可能とな
り、また、メッキされたコバルトは初期充電時に電気化
学的に酸化され、高次なオキシ水酸化コバルトの導電層
を多孔体基板近傍に形成し、ニッケル活物質と金属多孔
体基板を接続することにより、活物質利用率が高く、高
率放電特性に優れたニッケル水素電池を提供することが
可能となる。
According to the present invention, there is provided a nickel electrode in which a porous metal substrate is filled with an active material containing nickel hydroxide as a main component, wherein the porous metal substrate is etched and cobalt-plated. By using the nickel electrode for alkaline storage batteries, it is possible to roughen the surface of the porous metal substrate to provide surface irregularities, prevent the active material from falling off the porous metal substrate, It is possible to increase the contact area with the body substrate, and the plated cobalt is electrochemically oxidized at the time of initial charging, forming a conductive layer of higher-order cobalt oxyhydroxide near the porous body substrate, By connecting the nickel active material and the porous metal substrate, it is possible to provide a nickel-metal hydride battery having a high active material utilization rate and excellent high-rate discharge characteristics.

【0008】[0008]

【発明の実施の形態】本発明は、金属多孔体基板に水酸
化ニッケルを主成分とする活物質を充填したニッケル電
極において、該金属多孔体基板がエッチング処理され、
且つ、コバルトメッキされているアルカリ蓄電池用ニッ
ケル電極であり、前記金属多孔体基板のコバルトメッキ
量が、該金属多孔体基板に対し0. 3〜10mg/cm
2 であるアルカリ蓄電池用ニッケル電極である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a nickel electrode in which a porous metal substrate is filled with an active material mainly composed of nickel hydroxide.
And a nickel electrode for an alkaline storage battery plated with cobalt, wherein the amount of cobalt plating on the porous metal substrate is 0.3 to 10 mg / cm with respect to the porous metal substrate.
2 is a nickel electrode for an alkaline storage battery.

【0009】エッチング方法として、酸、例えば、塩酸
や酢酸などに浸漬し、金属多孔体基板の表面層を溶解さ
せることなどが挙げられるが、これに限定されるもので
はない。エッチング時、加温することが望ましいが、こ
れに限定されるものではない。
The etching method includes, but not limited to, dipping in an acid such as hydrochloric acid or acetic acid to dissolve the surface layer of the porous metal substrate. During the etching, it is desirable to heat, but it is not limited to this.

【0010】メッキ方法としては、電解メッキあるいは
無電解メッキなどが挙げられるが、これに限定されるも
のではない。
The plating method includes, but is not limited to, electrolytic plating and electroless plating.

【0011】[0011]

【実施例】以下、本発明の詳細について実施例により説
明するが、本発明はこれに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

【0012】(本発明)80℃、0. 1mol/lの酢
酸水溶液中にニッケル多孔体基板を10分間浸漬し、ニ
ッケル多孔体表面をエッチングして表面を粗面化した。
次いで、ニッケル多孔体基板をアルカリ溶液中で電解還
元してアルカリ脱脂を行った後、硫酸アンモニウムコバ
ルト、塩化アンモニウム及び塩化ナトリウムを25:
1:2の比率で混合した溶液を準備し、この溶液中にお
いて、作用極にニッケル多孔体基板、対極に金属コバル
ト板を用いて電解メッキを行った。コバルトのメッキ量
は4mg/cm2 であった。ニッケル多孔体基板の目付
重量は、500g/m2 であった。
(Invention) A nickel porous substrate was immersed in an aqueous 0.1 mol / l acetic acid solution at 80 ° C. for 10 minutes, and the surface of the nickel porous material was etched to roughen the surface.
Next, the nickel porous substrate is electrolytically reduced in an alkaline solution to perform alkali degreasing, and then ammonium cobalt sulfate, ammonium chloride, and sodium chloride are added in 25:
A solution mixed at a ratio of 1: 2 was prepared, and in this solution, electrolytic plating was performed using a nickel porous substrate as a working electrode and a metal cobalt plate as a counter electrode. The cobalt plating amount was 4 mg / cm 2 . The basis weight of the nickel porous substrate was 500 g / m 2 .

【0013】正極は、β−Co(OH)2 を表面に被覆
した水酸化ニッケルを80重量部と結着剤としての5%
のカルボキシメチルセルロース(CMC)水溶液を20
重量部混合したものを集電体であるコバルトメッキした
ニッケル多孔体基板に塗布して乾燥した。その後プレス
して電極厚みを0.5mmした。正極容量は、500m
Ahであった。
The positive electrode was composed of 80 parts by weight of nickel hydroxide coated on the surface with β-Co (OH) 2 and 5% as a binder.
Carboxymethylcellulose (CMC) aqueous solution
The mixture of parts by weight was applied to a nickel-plated cobalt-plated substrate serving as a current collector and dried. Thereafter, pressing was performed to reduce the electrode thickness to 0.5 mm. Positive electrode capacity is 500m
Ah.

【0014】負極は、水素吸蔵合金としてMmNi3.6
Co0.6 Mn0.35Al0.3 の組成の合金を使用した。M
mは希土類元素の混合物であるミッシュメタルを意味す
る。この試料に増粘剤を加えてペースト状にし、穿孔鋼
板に塗布し、乾燥後プレスして水素吸蔵合金電極を作製
した。
The negative electrode is composed of MmNi 3.6 as a hydrogen storage alloy.
An alloy having a composition of Co 0.6 Mn 0.35 Al 0.3 was used. M
m means a misch metal which is a mixture of rare earth elements. A thickener was added to this sample to form a paste, which was applied to a perforated steel plate, dried and pressed to produce a hydrogen storage alloy electrode.

【0015】電解液には、水酸化カリウムが40重量部
及び水酸化リチウムが5重量部のアルカリ水溶液を用い
た。
As the electrolyte, an alkaline aqueous solution containing 40 parts by weight of potassium hydroxide and 5 parts by weight of lithium hydroxide was used.

【0016】これら正極、負極及び電解液を組み合わせ
開放型電池を作製し、参照極にHg/HgO電極を用い
た。
An open-type battery was fabricated by combining the positive electrode, the negative electrode, and the electrolytic solution, and an Hg / HgO electrode was used as a reference electrode.

【0017】(比較例1)80℃、0. 1mol/lの
酢酸水溶液中にニッケル多孔体基板を10分間浸漬し、
ニッケル多孔体表面をエッチングして表面を粗面化し
た。ニッケル多孔体基板の目付重量は、500g/m2
であった。
Comparative Example 1 A nickel porous substrate was immersed in an aqueous 0.1 mol / l acetic acid solution at 80 ° C. for 10 minutes.
The surface of the nickel porous body was etched to roughen the surface. The basis weight of the nickel porous substrate is 500 g / m 2.
Met.

【0018】正極は、β−Co(OH)2 を表面に被覆
した水酸化ニッケルを80重量部と結着剤として5%の
カルボキシメチルセルロース(CMC)水溶液を20重
量部混合したものを集電体であるニッケル多孔体基板に
塗布し乾燥した。その後プレスして電極厚みを0.5m
mとした。正極容量は、500mAhであった。
The current collector was prepared by mixing 80 parts by weight of nickel hydroxide coated on the surface with β-Co (OH) 2 and 20 parts by weight of a 5% aqueous carboxymethyl cellulose (CMC) solution as a binder. And dried on a nickel porous substrate. Then press the electrode thickness 0.5m
m. The positive electrode capacity was 500 mAh.

【0019】負極は、水素吸蔵合金としてMmNi3.6
Co0.6 Mn0.35Al0.3 の組成の合金を使用した。こ
の試料に増粘剤を加えてペースト状にし、穿孔鋼板に塗
布し、乾燥後プレスして水素吸蔵合金電極を作製した。
The negative electrode was made of MmNi 3.6 as a hydrogen storage alloy.
An alloy having a composition of Co 0.6 Mn 0.35 Al 0.3 was used. A thickener was added to this sample to form a paste, which was applied to a perforated steel plate, dried and pressed to produce a hydrogen storage alloy electrode.

【0020】電解液には、水酸化カリウムが40重量部
及び水酸化リチウムが5重量部のアルカリ水溶液を用い
た。
As the electrolytic solution, an alkaline aqueous solution containing 40 parts by weight of potassium hydroxide and 5 parts by weight of lithium hydroxide was used.

【0021】これら正極、負極及び電解液を組み合わせ
開放型電池を作製し、参照極にHg/HgO電極を用い
た。
An open-type battery was manufactured by combining the positive electrode, the negative electrode, and the electrolytic solution, and an Hg / HgO electrode was used as a reference electrode.

【0022】(比較例2)ニッケル多孔体基板をアルカ
リ溶液中で電解還元してアルカリ脱脂を行った。次い
で、硫酸アンモニウムコバルト、塩化アンモニウム及び
塩化ナトリウムを25:1:2の比率で混合した溶液を
準備し、この溶液中において、作用極にニッケル多孔体
基板、対極に金属コバルト板を用いて電解メッキを行っ
た。コバルトのメッキ量は4mg/cm2 であった。ニ
ッケル多孔体基板の目付重量は、500g/m2 であっ
た。
(Comparative Example 2) A nickel porous substrate was electrolytically reduced in an alkaline solution to perform alkaline degreasing. Next, a solution prepared by mixing ammonium cobalt sulfate, ammonium chloride and sodium chloride at a ratio of 25: 1: 2 was prepared. In this solution, electrolytic plating was performed using a nickel porous substrate as a working electrode and a metal cobalt plate as a counter electrode. went. The cobalt plating amount was 4 mg / cm 2 . The basis weight of the nickel porous substrate was 500 g / m 2 .

【0023】正極は、β−Co(OH)2 を表面に被覆
した水酸化ニッケルを80重量部と結着剤として5%の
カルボキシメチルセルロース(CMC)水溶液を20重
量部混合したものを集電体であるコバルトメッキしたニ
ッケル多孔体基板に塗布して乾燥した。その後プレスし
て電極厚みを0.5mmとした。正極容量は、500m
Ahであった。
The current collector was prepared by mixing 80 parts by weight of nickel hydroxide coated on the surface with β-Co (OH) 2 and 20 parts by weight of a 5% aqueous solution of carboxymethyl cellulose (CMC) as a binder. And dried on a cobalt-plated nickel porous substrate. Thereafter, pressing was performed to reduce the electrode thickness to 0.5 mm. Positive electrode capacity is 500m
Ah.

【0024】負極は、水素吸蔵合金としてMmNi3.6
Co0.6 Mn0.35Al0.3 の組成の合金を使用した。こ
の試料に増粘剤を加えてペースト状にし、穿孔鋼鈑に塗
布し、乾燥後プレスして水素吸蔵合金電極を作製した。
The negative electrode was made of MmNi 3.6 as a hydrogen storage alloy.
An alloy having a composition of Co 0.6 Mn 0.35 Al 0.3 was used. A thickener was added to this sample to form a paste, which was applied to a perforated steel plate, dried and pressed to produce a hydrogen storage alloy electrode.

【0025】電解液には、水酸化カリウムが40重量部
及び水酸化リチウムが5重量部のアルカリ水溶液を用い
た。
As the electrolytic solution, an alkaline aqueous solution containing 40 parts by weight of potassium hydroxide and 5 parts by weight of lithium hydroxide was used.

【0026】これら正極、負極及び電解液を組み合わせ
開放型電池を作製し、参照極にHg/HgO電極を用い
た。
An open-type battery was fabricated by combining the positive electrode, the negative electrode, and the electrolytic solution, and an Hg / HgO electrode was used as a reference electrode.

【0027】(比較例3)ニッケル多孔体基板をアルカ
リ溶液中で電解還元してアルカリ脱脂を行った。次い
で、0.08mol/lの塩化コバルト溶液、1.0m
ol/lの塩酸ヒドラジン溶液及び0.4mol/lの
酒石酸ナトリウム溶液を混合し、水酸化ナトリウムを加
えph=12に調整後、溶液の温度を90℃にした。こ
の溶液にアルカリ脱脂したニッケル多孔体基板を浸漬し
無電解メッキを行った。コバルトのメッキ量は4mg/
cm2 であった。ニッケル多孔体基板の目付重量は、5
00g/m2 であった。
Comparative Example 3 A nickel porous substrate was electrolytically reduced in an alkaline solution to perform alkaline degreasing. Then, a 0.08 mol / l cobalt chloride solution, 1.0 m
An ol / l hydrazine hydrochloride solution and a 0.4 mol / l sodium tartrate solution were mixed, and sodium hydroxide was added to adjust the pH to 12, followed by adjusting the temperature of the solution to 90 ° C. An alkaline degreased nickel porous substrate was immersed in this solution to perform electroless plating. Cobalt plating amount is 4mg /
cm 2 . The basis weight of the nickel porous substrate is 5
It was 00 g / m 2 .

【0028】正極は、β−Co(OH)2 を表面に被覆
した水酸化ニッケルを80重量部と結着剤として5%の
カルボキシメチルセルロース(CMC)水溶液を20重
量部混合したものを集電体であるコバルトメッキしたニ
ッケル多孔体基板に塗布して乾燥した。その後プレスし
て電極厚みを0.5mmとした。正極容量は、500m
Ahであった。
The current collector was prepared by mixing 80 parts by weight of nickel hydroxide coated on the surface with β-Co (OH) 2 and 20 parts by weight of a 5% aqueous carboxymethylcellulose (CMC) solution as a binder. And dried on a cobalt-plated nickel porous substrate. Thereafter, pressing was performed to reduce the electrode thickness to 0.5 mm. Positive electrode capacity is 500m
Ah.

【0029】負極は、水素吸蔵合金としてMmNi3.6
Co0.6 Mn0.35Al0.3 の組成の合金を使用した。こ
の試料に増粘剤を加えてペースト状にし、穿孔鋼鈑に塗
布し、乾燥後プレスして水素吸蔵合金電極を作製した。
The negative electrode was made of MmNi 3.6 as a hydrogen storage alloy.
An alloy having a composition of Co 0.6 Mn 0.35 Al 0.3 was used. A thickener was added to this sample to form a paste, which was applied to a perforated steel plate, dried and pressed to produce a hydrogen storage alloy electrode.

【0030】電解液には、水酸化カリウムが40重量部
及び水酸化リチウムが5重量部のアルカリ水溶液を用い
た。
As the electrolytic solution, an alkaline aqueous solution containing 40 parts by weight of potassium hydroxide and 5 parts by weight of lithium hydroxide was used.

【0031】これら正極、負極及び電解液を組み合わせ
開放型電池を作製し、参照極にHg/HgO電極を用い
た。
An open-type battery was fabricated by combining the positive electrode, the negative electrode, and the electrolytic solution, and an Hg / HgO electrode was used as a reference electrode.

【0032】(比較例4)正極は、β−Co(OH)2
を表面に被覆した水酸化ニッケルを80重量部として結
着剤5%のカルボキシメチルセルロース(CMC)水溶
液を20重量部混合したものを集電体であるニッケル多
孔体基板に塗布し乾燥した。ニッケル多孔体基板の目付
重量は、500g/m2 であった。その後プレスして電
極厚みを0.5mmした。正極容量は、500mAhで
あった。
Comparative Example 4 The positive electrode was β-Co (OH) 2
A mixture of 80 parts by weight of nickel hydroxide coated on the surface with 20 parts by weight of an aqueous solution of carboxymethyl cellulose (CMC) containing 5% of a binder was applied to a nickel porous substrate as a current collector and dried. The basis weight of the nickel porous substrate was 500 g / m 2 . Thereafter, pressing was performed to reduce the electrode thickness to 0.5 mm. The positive electrode capacity was 500 mAh.

【0033】負極は、水素吸蔵合金としてMmNi3.6
Co0.6 Mn0.35Al0.3 の組成の合金を使用した。こ
の試料に増粘剤を加えてペースト状にし、穿孔鋼鈑に塗
布し、乾燥後プレスして水素吸蔵合金電極を作製した。
The negative electrode was made of MmNi 3.6 as a hydrogen storage alloy.
An alloy having a composition of Co 0.6 Mn 0.35 Al 0.3 was used. A thickener was added to this sample to form a paste, which was applied to a perforated steel plate, dried and pressed to produce a hydrogen storage alloy electrode.

【0034】電解液には、水酸化カリウムが40重量部
及び水酸化リチウムが5重量部のアルカリ水溶液を用い
た。
As the electrolyte, an alkaline aqueous solution containing 40 parts by weight of potassium hydroxide and 5 parts by weight of lithium hydroxide was used.

【0035】これら正極、負極及び電解液を組み合わせ
開放型電池を作製し、参照極にHg/HgO電極を用い
た。
An open-type battery was fabricated by combining the positive electrode, the negative electrode, and the electrolytic solution, and an Hg / HgO electrode was used as a reference electrode.

【0036】図1は本発明及び比較例1、2、3、4の
高率放電特性を示した。10C放電において、比較例4
では、約60%の利用率であるのに対し、本発明では、
約85%の利用率を得た。したがって、金属多孔体基板
表面を粗面化し、表面凹凸を有することにより、活物質
の金属多孔体基板からの脱落が防止され、活物質と金属
多孔体基板との接触面積が増大したことにより、高率放
電特性が約25%以上向上することが分かる。
FIG. 1 shows the high-rate discharge characteristics of the present invention and Comparative Examples 1, 2, 3, and 4. Comparative Example 4 at 10C discharge
Then, while the utilization rate is about 60%, in the present invention,
About 85% utilization was obtained. Therefore, by roughening the surface of the porous metal substrate and having surface irregularities, the active material is prevented from falling off the porous metal substrate, and the contact area between the active material and the porous metal substrate is increased, It can be seen that the high rate discharge characteristics are improved by about 25% or more.

【0037】本発明及び比較例1、2、3、4の電池に
ついて、1サイクル目の充電条件は、1/50CmAで
10時間定電流充電し、さらに0.1CmAで10時間
定電流充電した。放電条件は、0.2CmAでHg/H
gO極に対して0Vまで定電流放電した。2サイクル目
以降は、0.1CmAで15時間定電流充電し、0.2
CmAでHg/HgO極に対して0Vまで定電流放電し
た。放電容量が安定するまでこの操作を繰り返した。
The batteries of the present invention and Comparative Examples 1, 2, 3, and 4 were charged at a constant current of 1/50 CmA for 10 hours at the first cycle, and further charged at 0.1 CmA for 10 hours. The discharge condition is Hg / H at 0.2 CmA.
The gO electrode was discharged at a constant current to 0 V. After the second cycle, the battery was charged at a constant current of 0.1 CmA for 15 hours.
A constant current discharge was performed to 0 V with respect to the Hg / HgO electrode at CmA. This operation was repeated until the discharge capacity became stable.

【0038】放電容量が安定した後、0.1CmAでで
15時間定電流充電し、5CmA及び10CmAでHg
/HgO極に対し0Vまで放電した。0.1CmAで1
5時間定電流充電した後、カレントインターラプター法
により10CmAを通電した時の抵抗を測定した。
After the discharge capacity was stabilized, the battery was charged at a constant current of 0.1 CmA for 15 hours, and Hg was charged at 5 CmA and 10 CmA.
/ HgO electrode was discharged to 0V. 1 at 0.1 CmA
After charging at a constant current for 5 hours, the resistance was measured when a current of 10 CmA was applied by the current interrupter method.

【0039】図2に10CmAを通電した時のカレント
インターラプター法により求めたIRドロップ、反応抵
抗、及び全抵抗を示した。コバルトのメッキ量が0. 3
mg/cm2 以下では、メッキしていない場合とほぼ同
様の抵抗値を示す。しかし、コバルトのメッキ量がそれ
以上になると、IRドロップは増加するが、逆に反応抵
抗は減少する。コバルトのメッキ量が10mg/cm2
まではメッキしていない場合に比べ全抵抗は小さくなる
が、それ以上では、全抵抗は大きくなる。したがって、
本発明では、コバルトメッキ量は、該金属多孔体基板に
対し0.3〜10mg/cm2 であることが必要であ
る。
FIG. 2 shows the IR drop, the reaction resistance, and the total resistance obtained by the current interrupter method when a current of 10 CmA was applied. The amount of cobalt plating is 0.3
When the concentration is not more than mg / cm 2 , the resistance value is almost the same as in the case where no plating is performed. However, when the amount of cobalt plating exceeds that, the IR drop increases but the reaction resistance decreases. Cobalt plating amount is 10mg / cm 2
Until plating, the total resistance is lower than when no plating is performed, but above that, the total resistance increases. Therefore,
In the present invention, the amount of cobalt plating needs to be 0.3 to 10 mg / cm 2 for the porous metal substrate.

【0040】[0040]

【発明の効果】上述の如く本発明によれば、金属多孔体
基板に水酸化ニッケルを主成分とする活物質を充填した
ニッケル電極において、該金属多孔体基板がエッチング
処理され、且つ、コバルトメッキされているアルカリ蓄
電池用ニッケル電極を用いることにより、金属多孔体基
板表面を粗面化して表面凹凸を付与することができ、活
物質の金属多孔体基板からの脱落を防止し、活物質と金
属多孔体基板との接触面積を増大させることが可能とな
り、また、メッキされたコバルトは初期充電時に電気化
学的に酸化され、高次なオキシ水酸化コバルトの導電層
を多孔体基板近傍に形成し、ニッケル活物質と金属多孔
体基板を接続することにより、活物質利用率が高く高率
放電特性に優れたニッケル水素電池を提供することが可
能となる。
As described above, according to the present invention, in a nickel electrode in which a porous metal substrate is filled with an active material containing nickel hydroxide as a main component, the porous metal substrate is subjected to etching treatment and cobalt plating. By using the nickel electrode for an alkaline storage battery, the surface of the porous metal substrate can be roughened to provide surface irregularities, preventing the active material from falling off the porous metal substrate, and preventing the active material and the metal from being removed. It is possible to increase the contact area with the porous substrate, and the plated cobalt is electrochemically oxidized during the initial charging, forming a higher-order conductive layer of cobalt oxyhydroxide near the porous substrate. By connecting the nickel active material and the porous metal substrate, it is possible to provide a nickel-metal hydride battery having a high active material utilization rate and excellent high-rate discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明及び比較例1、2、3、4のニッケル水
素電池について高率放電特性を示した図である。
FIG. 1 is a diagram showing high-rate discharge characteristics of the nickel-metal hydride batteries of the present invention and Comparative Examples 1, 2, 3, and 4.

【図2】本発明及び比較例のニッケル水素電池につい
て、10CmAを通電した時のカレントインターラプタ
ー法により求めた各抵抗を示した図である。
FIG. 2 is a diagram showing respective resistances obtained by a current interrupter method when a current of 10 CmA is applied to the nickel-metal hydride batteries of the present invention and a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 押谷 政彦 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 Fターム(参考) 5H016 AA05 BB11 BB13 CC03 CC06 EE01 HH01 5H017 AA02 AS10 BB16 CC05 CC25 DD01 DD05 EE01 EE04 HH01 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masahiko Oshitani 6-6 Josai-cho, Takatsuki-shi, Osaka F-term in Yuasa Corporation (Reference) 5H016 AA05 BB11 BB13 CC03 CC06 EE01 HH01 5H017 AA02 AS10 BB16 CC05 CC25 DD01 DD05 EE01 EE04 HH01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属多孔体基板に水酸化ニッケルを主成
分とする活物質を充填したニッケル電極において、該金
属多孔体基板がエッチング処理され、且つ、コバルトメ
ッキされていることを特徴とするアルカリ蓄電池用ニッ
ケル電極。
1. A nickel electrode in which a porous metal substrate is filled with an active material mainly composed of nickel hydroxide, wherein the porous metal substrate is etched and cobalt-plated. Nickel electrode for storage batteries.
【請求項2】 前記金属多孔体基板のコバルトメッキ量
が、該金属多孔体基板に対し0. 3〜10mg/cm2
であることを特徴とする請求項1記載のアルカリ蓄電池
用ニッケル電極。
2. The amount of cobalt plating on the porous metal substrate is 0.3 to 10 mg / cm 2 with respect to the porous metal substrate.
The nickel electrode for an alkaline storage battery according to claim 1, wherein
JP11159257A 1999-06-07 1999-06-07 Nickel electrode for alkaline storage battery Pending JP2000348731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11159257A JP2000348731A (en) 1999-06-07 1999-06-07 Nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11159257A JP2000348731A (en) 1999-06-07 1999-06-07 Nickel electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2000348731A true JP2000348731A (en) 2000-12-15

Family

ID=15689815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11159257A Pending JP2000348731A (en) 1999-06-07 1999-06-07 Nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2000348731A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536430A (en) * 2001-07-16 2004-12-02 ナイラー ヨーロッパ アーベー Method for manufacturing biplate laminate, biplate laminate, and bipolar battery
CN103531752A (en) * 2012-07-04 2014-01-22 北京精密机电控制设备研究所 Novel composite electrode and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536430A (en) * 2001-07-16 2004-12-02 ナイラー ヨーロッパ アーベー Method for manufacturing biplate laminate, biplate laminate, and bipolar battery
JP4785342B2 (en) * 2001-07-16 2011-10-05 ナイラー インターナショナル アーベー Biplate laminate manufacturing method, biplate laminate and bipolar battery
US8053111B2 (en) 2001-07-16 2011-11-08 Nilar International Ab Method for manufacturing a biplate assembly, a biplate assembly and a bipolar battery
CN103531752A (en) * 2012-07-04 2014-01-22 北京精密机电控制设备研究所 Novel composite electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
US5393616A (en) Metal hydride electrode
JP2993886B2 (en) Anode and cathode for alkaline storage battery and method for producing the same
EP1258045A1 (en) Nickel hydroxide paste with pectin binder
JP2000348731A (en) Nickel electrode for alkaline storage battery
JP2004124132A (en) Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JP2001093520A (en) Hydrogen storage alloy electrode and preparation thereof
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP4531874B2 (en) Nickel metal hydride battery
JP4334783B2 (en) Negative electrode plate for nickel / hydrogen storage battery, method for producing the same, and nickel / hydrogen storage battery using the same
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH11238507A (en) Alkaline storage battery
JP2000077064A (en) Hydrogen storage electrode and its manufacture
JP2589750B2 (en) Nickel cadmium storage battery
JPH10112326A (en) Electrode for alkaline secondary battery
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery
JP2003297350A (en) Nickel - hydrogen storage battery and its manufacturing method
JP2000223146A (en) Nickel hydrogen storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2002042801A (en) Hydrogen storage alloy electrode and its production
JP2000188125A (en) Manufacture of sealed alkaline storage battery
JP2001345099A (en) Active material for nickel positive electrode and nickel- hydrogen secondary cell
JP2001126755A (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090220