JPS63158750A - Zink electrode for alkaline storage battery - Google Patents
Zink electrode for alkaline storage batteryInfo
- Publication number
- JPS63158750A JPS63158750A JP61304406A JP30440686A JPS63158750A JP S63158750 A JPS63158750 A JP S63158750A JP 61304406 A JP61304406 A JP 61304406A JP 30440686 A JP30440686 A JP 30440686A JP S63158750 A JPS63158750 A JP S63158750A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- thallium
- electrode
- metallic
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 62
- 239000011701 zinc Substances 0.000 claims abstract description 62
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052716 thallium Inorganic materials 0.000 claims abstract description 13
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011787 zinc oxide Substances 0.000 claims abstract description 8
- 150000003476 thallium compounds Chemical class 0.000 claims abstract description 6
- 239000011149 active material Substances 0.000 claims description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 abstract description 6
- 239000002245 particle Substances 0.000 abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- -1 polytetrafluoroethylene Polymers 0.000 abstract description 4
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 abstract description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 abstract description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 abstract description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- FYWSTUCDSVYLPV-UHFFFAOYSA-N nitrooxythallium Chemical compound [Tl+].[O-][N+]([O-])=O FYWSTUCDSVYLPV-UHFFFAOYSA-N 0.000 abstract description 2
- 229940101209 mercuric oxide Drugs 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- WKMKTIVRRLOHAJ-UHFFFAOYSA-N oxygen(2-);thallium(1+) Chemical compound [O-2].[Tl+].[Tl+] WKMKTIVRRLOHAJ-UHFFFAOYSA-N 0.000 description 3
- 229910003438 thallium oxide Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910000474 mercury oxide Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- BSWGGJHLVUUXTL-UHFFFAOYSA-N silver zinc Chemical compound [Zn].[Ag] BSWGGJHLVUUXTL-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910021515 thallium hydroxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/244—Zinc electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明はニッケルー亜鉛蓄電池や、銀−亜鉛蓄電池など
に用いられる活物質として亜鉛を使用するアルカリ蓄電
池用亜鉛極に関するものである。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a zinc electrode for an alkaline storage battery that uses zinc as an active material for use in nickel-zinc storage batteries, silver-zinc storage batteries, and the like.
(ロ)従来の技術
負極活物質として用いられる亜鉛は単位重量当りのエネ
ルギー密度が大きく、且安価であるという利点があり、
このような亜鉛極を有してなるアルカリ亜鉛蓄電池は高
エネルギー密度で作動電圧が高い等の特徴のある電池と
しての期待が大さい。(b) Conventional technology Zinc, which is used as a negative electrode active material, has the advantage of having a high energy density per unit weight and being inexpensive.
Alkaline zinc storage batteries having such zinc electrodes have great expectations as batteries with features such as high energy density and high operating voltage.
ところが、この種のアルカリ亜鉛蓄電池では、放電時に
亜鉛がアルカリ電解液中に溶出して生した亜鉛酸イオン
が充電時には亜鉛極表面に樹枝状に電析し生長するので
、充放電の繰返しによりこの電析亜鉛がセパレータを貫
通し正極に接触して電池内向部短絡を引き起こしたり、
あるいは亜鉛極表面が高密度化して電池放電容量が低下
する結果、電池のサイクル寿命が非常に短いという欠点
がある。However, in this type of alkaline zinc storage battery, zinc leaches into the alkaline electrolyte during discharge and produces zincate ions, which are then deposited and grown in the form of branches on the surface of the zinc electrode during charging. Electrodeposited zinc may penetrate the separator and come into contact with the positive electrode, causing a short circuit in the inward direction of the battery.
Another disadvantage is that the surface of the zinc electrode becomes highly dense and the battery discharge capacity decreases, resulting in a very short cycle life of the battery.
この欠点に対処し、電池のサイクル特性を改善する従来
技術として例えば特開昭59〜189562号公報には
タリウムの酸化物または水酸化物と、インジウムの酸化
物または水酸化物を亜鉛活物質に対し総量1〜15重量
%添加、含有させるとサイクル特性の大幅な向上が得ら
れることが開示きれて、いる、しかしながら、これらを
単に添加するのみでは樹枝状亜鉛の生長を有効に阻止す
ることができず、その効果を十分に発揮することができ
ない。As a conventional technique for addressing this drawback and improving battery cycle characteristics, for example, Japanese Patent Laid-Open No. 189562 discloses that thallium oxide or hydroxide and indium oxide or hydroxide are used as zinc active materials. However, it has been disclosed that the cycle characteristics can be significantly improved by adding a total amount of 1 to 15% by weight. However, simply adding these substances cannot effectively inhibit the growth of dendritic zinc. and cannot fully demonstrate its effects.
これは、これらの添加物が還元きれて、サイクル数が進
行するに従い金属亜鉛表面を覆うものの、充放電サイク
ルの初期においては、これら添加物が金属亜鉛表面を覆
っておらず、この時に樹枝状亜鉛生成の核となるような
金属亜鉛が一旦出現すると、サイクル数が進行するに従
い前記添加物があったとしても、樹枝状亜鉛生長が有効
に阻止できないためである。また、前記添加物が金属亜
鉛表面を覆うのは、充放電サイクルを数10回程度繰り
返した後であり、この時点では樹枝状亜鉛生成の核とな
るような金属亜鉛がすでに出現している。更に樹枝状亜
鉛の生成は急速充電時及び過充電時に特に顕著となる。This is because these additives are reduced and cover the surface of the metal zinc as the number of cycles progresses, but at the beginning of the charge/discharge cycle, these additives do not cover the surface of the metal zinc, and at this time the dendritic This is because once metallic zinc, which becomes the core of zinc production, appears, the growth of dendritic zinc cannot be effectively inhibited as the number of cycles progresses, even if the additive is present. Further, the additive covers the surface of metallic zinc only after the charge/discharge cycle has been repeated several dozen times, and at this point, metallic zinc that will become the nucleus for the formation of dendritic zinc has already appeared. Furthermore, the formation of dendritic zinc becomes particularly noticeable during rapid charging and overcharging.
(ハ)発明が解決しようとする問題点
本発明は前記問題点に鑑みなきれたものであって、亜鉛
極における充放電サイクル初期の金属亜鉛粒子からの樹
枝状亜鉛発生を抑制し、サイクル特性のすぐれたアルカ
リ蓄電池を提供しようとするものである。(c) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems, and it suppresses the generation of dendritic zinc from metal zinc particles at the initial stage of charge/discharge cycles in a zinc electrode, and improves cycle characteristics. The aim is to provide an excellent alkaline storage battery.
(ニ)問題点を解決するだめの手段
本発明は、酸化亜鉛と金属1鉛とを七活物質とする亜鉛
極において、前記金属亜鉛をタリウムあるいはタリウム
化合物で覆ったことを要旨とするものである。(d) Means to solve the problem The gist of the present invention is that in a zinc electrode whose seven active materials are zinc oxide and metallic lead, the metallic zinc is covered with thallium or a thallium compound. be.
(ホ) 作用
急速充電時あるいは過充電時の亜鉛極の電極電位は通常
の充電時よりも専制にシフトし、亜鉛酸イオンが還元き
れて金属亜鉛上に電着する反応がおこりやすくなる。す
なわち急速充電時あるいは過充電時の亜鉛極における電
極反応は、酸化亜鉛が還元される反応と、亜鉛酸イ才〉
・が還元されて金属亜鉛上に!着する反応との競争反応
となる。(e) Effect: During rapid charging or overcharging, the electrode potential of the zinc electrode shifts more arbitrarily than during normal charging, and a reaction in which zincate ions are completely reduced and electrodeposited on metal zinc becomes more likely to occur. In other words, the electrode reaction at the zinc electrode during rapid charging or overcharging is a reaction in which zinc oxide is reduced and a reaction in which zinc oxide is reduced.
・is reduced to metal zinc! It becomes a competitive reaction with the reaction that occurs.
ところが金属亜鉛表面をタリウムあるいはタリウム化合
物で覆っておくと電着反応の過電圧が増大し、酸化亜鉛
の還元だけが優先的におこるようになる。したがってサ
イクル初期に急速充電や過充電を行っても、亜鉛極から
の樹枝状亜鉛生長を有効に阻止でき電池円内部短絡を抑
制しうる。However, when the surface of metallic zinc is covered with thallium or a thallium compound, the overvoltage of the electrodeposition reaction increases, and only the reduction of zinc oxide occurs preferentially. Therefore, even if rapid charging or overcharging is performed at the beginning of the cycle, the growth of dendritic zinc from the zinc electrode can be effectively prevented, and short circuits within the battery circle can be suppressed.
(へ) 実施例
3規定の水酸化ナトリウム水溶液IPに亜鉛粉末500
gを添加し、30分間浸漬した後ろ過し、500m2
の純水で10回水洗した。この亜鉛粉末を0.5%の硝
酸第1タリウム水溶液50om (lに投入し、攪拌し
、ろ過後、水洗し、70℃で乾燥させ、タリウムにより
表面を攬われた金属亜鉛を作成した。尚、この時のタリ
ウム被膜の重量は金属亜鉛に対して1Fijt%であっ
た。次に、この金属亜鉛15重量部と酸化亜鉛100重
量部、及び水素過電圧を上げるための酸化水銀2重量部
とを粉体混合した後、水とポリテトラフルオロエチレン
(PTFE)をi加、混練し、ペーストを得、集電体上
に圧着して亜鉛極とした。この本発明亜鉛極と焼結式ニ
ッケル極とを組み合わせて、円筒密閉型の公称容量70
0mAhの本発明に係るニッケルー亜鉛電池Aを10セ
ル作成した。(f) Example 3 Add 500% zinc powder to the specified sodium hydroxide aqueous solution IP.
g, soaked for 30 minutes, filtered, 500m2
It was washed 10 times with pure water. This zinc powder was poured into 50 ml of 0.5% thallium nitrate aqueous solution, stirred, filtered, washed with water, and dried at 70°C to produce metallic zinc whose surface was removed by thallium. The weight of the thallium coating at this time was 1Fijt% based on the metal zinc.Next, 15 parts by weight of this metal zinc, 100 parts by weight of zinc oxide, and 2 parts by weight of mercury oxide to increase the hydrogen overvoltage were added. After mixing the powders, water and polytetrafluoroethylene (PTFE) were added and kneaded to obtain a paste, which was pressed onto a current collector to form a zinc electrode.The zinc electrode of the present invention and the sintered nickel electrode In combination, the nominal capacity of the cylindrical sealed type is 70
Ten cells of 0 mAh nickel-zinc battery A according to the present invention were prepared.
また比較用電池として、金属亜鉛表面をタリウム処理し
ていない金属亜鉛を用い酸化タリウムを2重量部添加し
た以外は、本発明亜鉛極と同様の亜鉛極を得、比較電池
Bを同様にして10セル作成した。In addition, as a comparison battery, a zinc electrode similar to the zinc electrode of the present invention was obtained, except that metal zinc whose surface was not treated with thallium was used and 2 parts by weight of thallium oxide was added, and a comparative battery B was prepared in the same manner. Created a cell.
次にこれらの電池を用い、充電をICの電流で150%
、放電をICの電流で100%行い、電池容量力500
mAh(終止t)El、OV )以下?、: ナツタト
コ口を電池寿命とするサイクル条件にて、充放電サイク
ルテストを行った。この結果を、図に示す。Next, use these batteries and charge them at 150% with the IC current.
, the discharge is performed 100% with the IC current, and the battery capacity is 500%.
mAh (end t) El, OV ) or less? , : A charge/discharge cycle test was conducted under cycle conditions that set the battery life at the end of the battery life. The results are shown in the figure.
図の結果より、本発明1池Aが優れていることがわかる
。これは、樹枝状亜鉛発生の核となる金属亜鉛粒子表面
をタリウムにより覆っているので、サイクル数が進行し
ても、樹枝状亜鉛の生長を有効に抑制していることに基
づくものである。From the results shown in the figure, it can be seen that the first cell A of the present invention is superior. This is because the surface of the metallic zinc particles, which serve as the nucleus for the generation of dendritic zinc, is covered with thallium, so that even as the number of cycles progresses, the growth of dendritic zinc is effectively suppressed.
尚、タリウムの添加量としては金属亜鉛重量に対して0
.5〜2.0重量%とするのが好ましいことが実験によ
って確認された。The amount of thallium added is 0 based on the weight of metal zinc.
.. It has been confirmed through experiments that the content is preferably 5 to 2.0% by weight.
また実施例においては金属亜鉛粒子表面を金属タリウム
で覆うものを開示したが、酸化タリウムなどのタリウム
化合物で覆っても同棲の効果がある。Further, in the examples, the surface of metal zinc particles is coated with metal thallium, but coating with a thallium compound such as thallium oxide also has a coexistence effect.
(ト) 発明の効果
本発明のアルカリ蓄電池用亜鉛極は、添加せる金属亜鉛
粒子の表面をタリウムあるいはタリウム化合物で覆うこ
とにより効果的に樹枝状亜鉛生長を抑制しうるので、か
かる亜鉛極を用いたアルカリ蓄電池はサイクル特性にお
いてきわめて優れたものであり、その工業的価値は大き
い。(G) Effects of the Invention The zinc electrode for alkaline storage batteries of the present invention can effectively suppress the growth of dendritic zinc by covering the surface of the metal zinc particles to be added with thallium or a thallium compound. The alkaline storage batteries used in this study have extremely excellent cycle characteristics and are of great industrial value.
図は電池のサイクル特性比較図である。 A・・・本発明電池、B・・・比較電池。 The figure is a comparison diagram of cycle characteristics of batteries. A: Battery of the present invention, B: Comparative battery.
Claims (1)
のにおいて、前記金属亜鉛をタリウムあるいはタリウム
化合物で覆ったことを特徴とするアルカリ蓄電池用亜鉛
極。(1) A zinc electrode for an alkaline storage battery using zinc oxide and metallic zinc as main active materials, characterized in that the metallic zinc is covered with thallium or a thallium compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61304406A JPH079807B2 (en) | 1986-12-19 | 1986-12-19 | Zinc electrode for alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61304406A JPH079807B2 (en) | 1986-12-19 | 1986-12-19 | Zinc electrode for alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63158750A true JPS63158750A (en) | 1988-07-01 |
JPH079807B2 JPH079807B2 (en) | 1995-02-01 |
Family
ID=17932625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61304406A Expired - Lifetime JPH079807B2 (en) | 1986-12-19 | 1986-12-19 | Zinc electrode for alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH079807B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0224963A (en) * | 1988-07-13 | 1990-01-26 | Sanyo Electric Co Ltd | Alkaline storage battery and its zinc electrode |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5812403B2 (en) * | 2011-09-02 | 2015-11-11 | 日産自動車株式会社 | Alkaline secondary battery |
-
1986
- 1986-12-19 JP JP61304406A patent/JPH079807B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0224963A (en) * | 1988-07-13 | 1990-01-26 | Sanyo Electric Co Ltd | Alkaline storage battery and its zinc electrode |
Also Published As
Publication number | Publication date |
---|---|
JPH079807B2 (en) | 1995-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2507161B2 (en) | Zinc alloy for zinc alkaline battery, method for producing the same, and zinc alkaline battery using the same | |
JPS63158750A (en) | Zink electrode for alkaline storage battery | |
JPS63158749A (en) | Zinc electrode for alkaline storage battery | |
JPS5983347A (en) | Sealed nickel-cadmium storage battery | |
JPH06260166A (en) | Nickel electrode for alkaline storage battery | |
JP4356119B2 (en) | Sintered nickel electrode for alkaline storage battery | |
JPS63126164A (en) | Alkali zinc storage battery | |
JPH0410181B2 (en) | ||
JPS63126163A (en) | Alkaline storage battery | |
JP2931316B2 (en) | Manufacturing method of alkaline zinc storage battery | |
JPH0252386B2 (en) | ||
JPS62108467A (en) | Alkaline zinc storage battery | |
JPS58137966A (en) | Zinc electrode | |
JPH073793B2 (en) | Alkaline zinc storage battery | |
JPH0719617B2 (en) | Alkaline zinc storage battery | |
JPS6084768A (en) | Alkaline zinc storage battery | |
JPH09245827A (en) | Manufacture of alkaline storage battery | |
JPH03159064A (en) | Nickel-cadmium storage battery | |
JPH071695B2 (en) | Alkaline zinc storage battery | |
JPS58137963A (en) | Alkaline zinc storage battery | |
JPS5822868B2 (en) | nickel zinc alkaline storage battery | |
JPH06223823A (en) | Negative electrode plate for sealed type alkaline storage battery | |
JPS60225372A (en) | Alkaline zinc storage battery | |
JPH0722022B2 (en) | Method for manufacturing sealed alkaline zinc storage battery | |
JPH0799692B2 (en) | Zinc alloy for alkaline zinc secondary battery, method for producing the same, and alkaline zinc secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |